
OLJEDIREKTORATET

NORWEGIAN PETROLEUM DIRECTORATE NPD PAPER NO. 17

Lithology. Wells nos. 2/3-1 2/3-2 and 2/3-3

Stavanger 1978

Oljedirektoratet Norwegian Petroleum Directorate

P.O. Box 600 4001 Stavanger

Oljedirektoratet (Norwegian Petroleum Directorate) P. O. Box 600 4001 Stavanger

Telephone:

National

045 33 160

International

47/45/33 160

Telex:

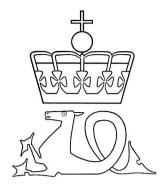
33 100 NOPED

Director General

Director of Planning Department

Head of Exploration Section

Fredrik Hagemann


Farouk Al-Kasim Egil Bergsager

Directions for the Norwegian Petroleum Directorate issued by the Ministry of Industry states that the Directorate among other duties shall:

— maintain contact with scientific institutions and provide that material should be made available for companies and scientific institutions concerned to the extent possible pursuant to the regulation concerning confidential treatment of material forwarded by the licensees and in accordance with the decisions of the Ministry.

This is a part of the responsibility of the Planning Department in the Directorate and the present publication series is meant to partially fulfill this object. It is named NPD Papers and issued as consecutively numbered volumes.

Editor: Lars Mybre

Oljedirektoratet Norwegian Petroleum Directorate

P.O. Box 600 4001 Stavanger

Lithology. Wells 2/3-1, 2/3-2 and 2/3-3

- 13 Tables
 - 3 Figures
 - 2 Appendices

NPD Paper No. 17 Compiler: Roald Riise

Preface

The Norwegian Petroleum Directorate has, among its duties, the responsibility for publication of releasable data connected to petroleum activities on The Norwegian Continental Shelf

In this connection it has been decided to make a standardized description of drill bit cuttings as well as cores.

The sample descriptions are based on the "Standard Legend — Exploration and Production Department of the Royal Dutch/Shell group of companies". The Directorate much appreciates the Royal Dutch/Shell companies and A/S Norske Shell Exploration and Production's permission to use their legend.

The samples and the wire line logs from the herein described well are released to scientific institutions, companies and other interested organizations for further studies. The material pertinent to the well can be examined in the Directorate. For practical reasons an application must be made in each case.

The application should state what material is to be examined, what kind of examination will be made, and the purpose of the studies. It should be addressed to:

oLJEDIREKTORATET att: "Frigivningskomitéen" P.O.Box 600 4001 STAVANGER NORWAY

Acknowledgements

The tables were compiled by Klaus Motland and Per Brandshaug, and the drafting was done by Dag Svardal. Aase Moe had made a paleontological study of a section of well 2/3-3, and this study has been used in the paper. Other colleagues have contributed during discussions on geological interpretations.

Fig. 1

Contents

INTRODUCTION	5
DRILLING OPERATIONS	_
Well 2/3-1	5 6
	6
Well 2/3-3	6
AVAILABLE MATERIAL	7
GEOLOGY	7
Interpreted lithology and lithostratigraphy	7
Well 2/3-2. Lithological differences as compared to 2/3 1	10 11
Discussion1	13
SUMMARY	16
SUMMARY CHART	17
FIGURES	2
1. The block system for concessions	3 18
7 Interpreted Seisiffic Iccold	18
TABLES WELL 2/3-1	20
1 (251005	20
2a. Mud programme	20
2 Tests	21
4 Available logs	21
5a Drill hit cuttings	22 22
5b. Sidewall cores.	44
TABLES WELL 2/3-2	
	23
7a Mud programme	23 23
7b. Mud additives	24
8. Available logs	24
9b. Sidewall cores	25
TABLES WELL 2/3-3	
10 Corings	26
11a Mud programme	26
11b Mud additives	26 27
12 Available 1005	27
120 Diffil Dif Cilifility	28
13b. Wet samples	30
ABBREVIATIONS	31
REFERENCES	32
ADDENDICES: Interpreted lithology logs	
A DDENUTULES: THICHNICICU HIHUMUS V 1060	

LITHOLOGY WELLS 2/3-1, 2/3-2, 2/3-3

Introduction

The Murphy Group was in 1965 allotted license No. 022, comprising blocks 2/3, 3/1, 3/5 and 9/10, on the Norwegian Continental Shelf. The group consisted of:

Norske Murphy Oil Company, Pennzoil Company Norge, Wintershall Norge A/S, Amax Petroleum Norge A/S, Norske Ocean Exploration Company and K/S A/S Polaris Oil Consortium.

Murphy was operator for wells 2/3-1, 2/3-2 and 2/3-3, with permit Nos. 23,30 and 61, respectively. 2/3-1 was spudded 10th February 1969 at 56° 53' 09.5" N, 03° 51' 38.3" E. Objectives were to test the Tertiary and Mesozoic sediments. Some gas was encountered in sandstones of an Oligocene-Miocene age, and this was the only appearence of hydrocarbons in the well. 2/3-1

was plugged and abandoned 3rd April 1969. The 2/3-2 well was spudded on the same structure 28th July 1969 at 56° 54′ 53.7′′ N, 03° 49′ 02.3′′ E. The main objective was the gas bearing Oligocene-Miocene sandstones found in the first well. The expected sandstone beds were well developed, but contained no hydrocarbons and the well was plugged and abandoned 12th August 1969.

After the disappointing results of 2/3-2, the next well was placed on a separate structure, south east of the first one. The 2/3-3 well was spudded 8th October 1971 at the position 56° 48′ 18.9′ N, 03° 58′ 11.8′ E. Objectives were Oligocene sands, Danian limestones and Jurassic sandstones. However, the well revealed no hydrocarbons and was plugged and abandoned 20th November 1971.

Drilling operations

WELL 2/3-1

This exploration well was drilled with the semi-submersible rig ''Ocean Traveler'', at a mean water depth of 57 m (187'). The kelly bushing (KB) elevation was 27 m (89'), and the depths used in the text and on the appended lithology log are measured from the KB. Total depth (TD) is by the driller reported to be 2933.4 m (9624'). The depths of the lithological sequence on the appended log are adjusted to the gamma-ray/sonic logs (GR/BHC-Sonic logs). The 36" and 26" holes were drilled with returns to sea floor. A fresh water/gel mud was spotted in the hole in connection with running of the 30" and 20" casings. The 26" hole was drilled to 463 m (1520") to set the 20' casing at this depth. However, the casing stuck in the hole and would not go below 235 m (902') where it had to be set and cemented.

A 17 1/2" hole was drilled to 1323.5 m (4342') with a Q-Broxin/Caustic mud, which was used to TD. At around 1310 m (4300') gas cut occurred in the mud and the weight had to be raised to 11.5 ppg. The 13 3/8" casing was successfully run, and a 12 1/4" hole was drilled to TD. While preparing to run the next casing, a storm hit the location. The barge moved approximately 300 m (1000') off the location, and the connections to the wellhead had to be disconnected. After waiting on weather for six days, the rig was back on location and the connections were reestablished. A 7" casing string was then set. The setting depths of the four casing strings are given in Table 1, and a summary of mud properties and components in Table 2a and 2b.

Two drill stem tests were made from the

gas bearing formations between approximately 1590 m and 1635 m. The results are listed in Table 3.

Some difficulties occurred during the logging operations through sticky clay sections, and reaming was necessary. The logs are listed in Table 4.

WELL 2/3-2

This well was drilled with the same rig, the "Ocean Traveler". The KB elevation was 27 m (88.5"), and mean water depth at the borehole location was 58.5 m (191.5"). Total depth as measured by the driller is 2297 m (7536").

The well was spudded and a 36" hole was drilled to 94.5 m (310"). A 26" hole was then drilled to 299 m (980"), to simultaneously run the 30" and 20" casings. However, bridging took place, the pipe stuck and a fish was left in hole. The hole was abandoned, and the rig moved approximately 20 m (65") east of the original location. The new location became the final one, and corresponds to the coordinates given in the introduction.

2/3-2 was respudded and the 30" and 20" casings were run separately. The setting depths of the three casing strings used in this well are listed in Table 6.

The 36" and 26" holes, down to 211 m (693") were drilled with sea water and returns were to the sea floor.

The rest of the well was drilled with a Q-Broxin/ Caustic type mud, with properties and components as shown in Table 7a and 7b.

As in 2/3-1 bridging caused problems during the logging operations. This was especially evident in the 17 1/2" hole, which had to be reamed and circulated. Still it turned out to be impossible to obtain an open hole GR/BHC-Sonic survey. The logs are listed in Table 8.

No tests were performed in the 2/3-2 well.

WELL 2/3-3

The jack-up rig "Ocean Tide" was used to drill the 2/3-3 well. The KB elevation was 31.5 m (103') above mean sea level, and the mean water depth at the drill site was 56 m (183'). TD is reported by the drillers to be 2969 m (9741'). The depths of the lithological column on the appended log are adjusted to the GR/BHC-Sonic logs.

A 36" conductor was set in a 38" hole, followed by a 20" casing in a 26" hole. Sloughing of clay caused minor problems while running the latter. So far, the drilling was with sea water, but a gel slurry was spotted in the hole in connection with the casing jobs.

The 17 1/2" hole was drilled using a Spersene /XP-20/ Caustic type mud. While running the 13 3/8" casing it parted, but after a successful fishing job the casing was set without difficulties. The setting depths are listed in Table 10. A summary of the mud properties and components are given in Table 11a and 11b. No problems have been reported in connection with the logging operations, and a list of the logs run is presented in Table 12.

In total eight days were spent waiting on weather during the operations of this well.

Available material

Drill bit cuttings from the three wells are stored at the Norwegian Petroleum Directorate (NPD). The sample intervals are listed in Table 5a, 9a and 13a, respectively. The number of cutting samples available, and their average weight are listed below:

Well	No. of cutting samples	Average dry weight		
2/3-1	225	13 g		
2/3-2	562	14 g		
2/3-3	318	26 g		

Wet samples were collected from the 2/3-3 well. The sample intervals are listed in Table 13b, which also includes average weights after drying, and after being washed through a 74 micron sieve and dried.

Well logs are available from the three wells, and Tables 4, 8 and 12 show the types of logs run, their corresponding logging intervals and in what scales they are available.

Sidewall cores were collected in all the wells, but these are in the possession of the operator. A list of the cores and their corresponding depths are given for each of the wells in Tables 5b, 9b and 13c, respectively.

Conventional cores were not cut in any of the three wells.

Geology

Structurally, block 2/3 is situated in the very south western part of the Norwegian Danish Basin, north of the Mandal High, which is a NNW-SSE trending, eastwardly rotated high with shallow basement (Rønnevik et al. 1975).

The subject wells are located on a north west-south east trending line (Figs. 2 & 3), almost parallel to the strike of the stepfaulted slope to the Central Trough. A map prepared in connection with the proposed nomenclature for the main structural features in the Norwegian North Sea (Rønnevik et al. 1975) is shown at the top of the appended logs.

Interpreted lithologies and lithostratigraphic subdivisions of wells 2/3-1 and 2/3-3 are summarized below and presented graphically on the appended logs. No such log has been made from 2/3-2, mainly because of the similarities to the 2/3-1 well, but also because 2/3-2 is much shallower than the other two wells. Neither will 2/3-2 be treated separately in the following text, but noteworthy differences with respect to 2/3-1 will be commented on.

In the description of the sediments, carbonate rocks are classified according to Dunham (1962) and grain size determinations are based on Wentworth's scale (Wentworth 1922). However, for practical reasons the term silt is only used when particles can be readily seen with the use of low power microscope or hand lens, i.e. greater than 20 microns. Colours are described according to

the ''Rock-Color Chart'' (Geol. Soc. Am. 1970) and are based on dry samples.

The chronostratigraphy indicated in the text and on the appended logs, is mainly based on a paleontological study made by Paleoservices Ltd. and reported to the Norwegian Petroleum Directorate by the operator. From the Eocene and Paleocene of well 2/3-3, however, Aase Moe at the NPD had already made a paleontological study, which is the basis for the datings within these epochs.

The lithostratigraphic nomenclature used is based on the joint work of the UK-Norwegian lithostratigraphic committees, compiled by Deegan & Scull (1977).

INTERPRETED LITHOLOGY AND LITHOSTRATIGRAPHY

The interpretations in this section are based on the description of drill bit cuttings and correlated to the wireline logs, primarily the GR/BHC-Sonic logs.

WELL 2/3-1

The regular sampling of drill bit cuttings started at 479 m, approximately 200 m down in the 17 1/2" hole. As only a rather unreliable GR-log is available from this portion of the hole, no differentiated lithology has been indicated above 479 m on the appended log.

Nordland Group, 84-1330 m:

The first samples obtained indicate mixed lithologies. Medium to very coarse grained

sand units are present between thicker units of light olive grey clay. Shell fragments are frequent in the sand sections. The amount of sand and shells seems to decrease towards 643 m, where appreciable amounts of sand no longer was seen. Traces of carbonaceous material were observed at the base of the mixed sand/clay sequence.

The interval 643-1330 m is mainly composed of clays. These are dominantly olive grey in the upper part of the interval, with an increase of brown shades towards the base. The clays are slightly silty throughout and shell fragments were occasionally observed, but are by far as common as in the sand/clay section above.

Small amounts of limestone appeared around 860 m, and were thereafter found in samples at other depths. The carbonates are classified as mudstones, and are probably too thin to give distinct deflections on the GR/BHC-Sonic logs.

The brownish grey clay at the base of the Nordland Group seems to be gradually more compact and grades into claystone and shale.

The distinct breaks on the GR/BHC-Sonic logs, which are reported to be characteristic for the boundary between the Nordland and Hordaland Group have not been observed in 2/3-1. The boundary is therefore tentatively set at 1330 m, where a thin dolomite string occurs. In the type well for both groups in the Central North Sea, well 2/7-1 (Deegan & Scull 1977, Fig 41), dolomite is present at the very top of the Hordaland Group.

Hordaland Group, 1330-2135 m:

Argillaceous sediments dominate this section. The slight compaction observed at the base of the interval above, may also be seen at the top of this one. The sediment is probably best characterized as a claystone, which further down in the sequence grades into shale. The colour is brownish to olive grey down to approximately 2000 m, where lighter shades prevail. Light olive to brown shales exist

down to around 2100 m, where shales in olive grey, greenish grey, medium dark grey and dark brownish grey were observed.

The argillaceous deposits of this group are mainly slightly to moderately calcareous, micaceous and occasionally silty. The lower varicoloured unit is also texturally somewhat more heterogeneous than the overlying unit. Although claystone and shale constitute the main sediments, both sandstones and carbonates were registered. Two approximately 10-12 m thick layers of very fine to medium grained sandstone are present between 1588 m and 1637 m. These are glauconitic and exhibit light brown as well as greenish grey colours and are moderately sorted. Fair to good gas shows have been reported in the sandstones, and also in some silty shales above. Two tests were performed, one in each of the sandstones lavers.

Lime mud/wackestone stringers are present throughout the Hordaland Group. They are mostly yellowish grey to light grey in colour. Some very hard, crystalline, brown dolomite was observed around 1560 m.

Rogaland Group, 2135-2243 m:

Three litostratigraphic units are recognized within the group in well 2/3-1; the Balder Formation, the Sele Formation and the Lista Formation.

The interval 2135-2153 m consists of varicoloured shales as described at the base of the Hordaland Group, but the shales in this interval were found to be tuffaceous. Vitric tuff is particularly present in a medium dark grey shale, and appears as light grey as well as greyish black specks. 3-4 m thick beds of light grey, lime mudstone were registered in the tuffaceous shale unit. This unit is identified as the Balder Formation. The top and base are clearly defined by the GR/BHC-Sonic logs.

Below 2153 m, varicoloured shales still exist, but a medium dark grey one dominates. Traces of tuff were found to around 2175 m.

This section of slightly tuffaceous and probably interbedded shales belongs in the Sele Formation, and is clearly separated from the Balder Formation by the log patterns.

There is no abrupt break in the lithology at 2175 m, but from approximately this depth medium grey and brownish grey shales seem to dominate and tuff was no longer observed. Traces of dark brown and red shales were still found in the samples, but it is impossible to determine whether this material is caved or not. Small amounts of fine grained, glauconitic sandstone were registered at around 2230 m. As a whole, the interval 2175-2243 m shows greater homogeneity than the Balder and Sele Formations, and is interpreted to represent the Lista Formation. The upper boundary to the Sele Formation is based on the apparent absence of tuff, and must be seen in relation to the sampling interval of 6 m (20').

Chalk Group, 2243-2559 m:

This group is composed of lime mudstone throughout. However, the BHC-Sonic log tends to divide the unit into an upper rather porous part and a lower tight one. The upper section, which comprises the sediments down to 2315 m, consists of white, chalky and firm limestone. The carbonate is relatively pure, but some light grey and marly limestone is present around 2292 m. These upper 72 m of the limestone section are interpreted to belong in the Tor Formation.

The tight lime mudstones below 2315 m are white to very light grey in colour, and are harder than above. Minor amounts of light olive grey marl were observed in the limestone sequence.

These lower 44 m are difficult to place lithostratigraphically. In this part of the North Sea, the Tor Formation is very often underlain by the Hod Formation. The lithology of the Chalk Group of 2/3-1 is in accordance with this subdivision. However, the boundary between the two is usually picked on a characteristic GR/BHC-Sonic log pattern,

showing higher radioactivity and lower velocity for the Hod Formation compared to the Tor Formation (Deegan & Scull 1977).

The contrary is observed in this well. The most likely explanation is probably that the lower tight part represents the lower portion of the Hod Formation, which may be very compact and show a high sonic velocity. This implies that a part of the Hod Formation is missing in 2/3-1.

Cromer Knoll Group, 2359-2546 m:

Both the Rødby Formation and the Valhall Formation, which constitute the group, have been recognized in the well.

There is a sharp break in lithology from the above limestones to a sediment consisting of marl and shale. The upper 12-13 m are dominated by a reddish brown and grey marl. However, medium grey, hard shale was also registered. This unit is underlain by a 2 m thick lime mudstone bed, which is very light grey in colour. This limestone bed marks the base of the Rødby Formation.

A medium grey to greenish grey shale was encountered below the limestone bed, together with some light olive grey marl. In the interval 2395-2425 m, a glauconitic sandstone is present. The sandstone is light olive grey, very fine to fine grained and has a calcareous cement. The thickest bed has its base at around 2425 m and reaches a thickness of 7 m.

Below this bed, there is a rather homogeneous section of medium dark grey, hard and calcareous shale, which persists through the rest of the interval.

The shale dominated section underlying the Rødby Formation, belongs in the Valhall Formation.

Bream Formation, 2546-2563 m:

This unit contains brownish grey to greyish black, micaceous shales. These are probably rich in organic material, and the GR-log shows a high radioactivity. The unit is re-

cognized as the Børglum Member in the Bream Formation.

Unnamed unit, 2563-2580 m (?):

At 2563 m there is an abrupt break in the lithology from the dark shales above to a greenish grey, very fine to fine grained sandstone. Traces of glauconite and mica were registered in the sediment, and grey, calcareous shale partings are present. However, there is no sharp lower boundary of these sediments. The samples indicate a gradation from the greenish sandstones to light grey and finally to reddish brown ones over an interval of approximately 75 m. The GR/BHC-Sonic logs are not indicative of a sharp lithological break.

This sand unit is difficult to conform with confidence in the lithostratigraphy presented by Deegan & Scull (1977). It correlates relatively well to both the Haldager Formation and the Gassum Formation, although the texture and colour of this section favour the Haldager Formation.

Skagerrak Formation, 2580(4)-2832 m:

As indicated above, the greenish grey sand-stones grade into light grey ones. The grains are mainly very fine to fine sized, but the element of medium sized grains increases downwards. Red colourations also increase downwards toward 2650 m, where the sand-stone is mainly reddish brown, very fine to medium grained and poorly sorted. This sediment dominates to approximately 2740 m where light greyish red sandstones were encountered. These persist down to 2832 m. Texturally, the light greyish red sandstones have the same characteristica as the reddish brown ones above.

Shales are present throughout the interval. They appear mainly in thin stringers, but 3-4 m thicks beds occur. The shales have predominantly the same colour as the sand-stones they are intercalated between.

Traces of anhydrite and lignite were observed

at the base of the interval, where also the content of mica is high.

These grey and red arenaceous deposits are interpreted to belong in the Skagerrak Formation.

Smith Bank Formation, 2832-2917 m:

While the Skagerrak Formation consists mainly of sandstones, this unit is dominated by reddish brown shales. The shales are slightly calcareous, and carbonaceous in the upper approximately 20 m. Light brownish grey anhydrite was found in the shale sequence, particularly below 2880 m. A few very fine to fine grained sandstone beds are present. At the top of the section, the sand is mainly light grey, but in the lower part red colourations dominate.

The argillaceous red beds in this interval represent the Smith Bank Formation.

Zechstein Group, 2917-2933 m:

This 16 m thick interval is composed of translucent rock salt, capped by 2-3 m of white, sucrosic anhydrite.

Considerable amounts of shale appear in the samples, but are by the GR/BHC-Sonic logs interpreted to be mainly caved.

WELL 2/3-2. LITHOLOGICAL DIFFERENCES AS COMPARED TO 2/3-1.

The 2/3-2 well bottomed at 2297 m in multicoloured shales. These sediments are equivalent to the lower part of the Hordaland Group in 2/3-1.

Generally, the 2/3-2 sedimentary section shows great similartity to that of the first well, but the corresponding sequences are slightly thicker. This is particularly evident for the sand bodies described from 1588 m to 1637 m in well 2/3-1. In 2/3-2 these two beds are present between 1795 m and 1855 m, and each of them has an approximate thickness of 20-23 m compared to 10-12 m in 2/3-1. This turned out to be the only significant difference between the lithologies in the

two wells, and may partly be explained by their structural positions (Figs. 2 & 3).

WELL 2/3-3

In this well the first cutting sample was obtained at 274 m. No information has been supplied about the sediments above. The only data available is a GR-log run in cased hole. However, the log is practically non interpretive in this part of the hole, and the lithology column above 274 m on the appended log has been left open.

Nordland/Hordaland Groups, 87.5-2267 m: The first cutting samples consist of approximately equal amounts of sand and clay. The sand is mainly medium to very coarse grained, but grains of pebble size were registered as well. The clay is light olive grey and slightly calcareous and silty.

The lack of reliable logs unables a more accurate interpretation of a quantitative distribution of sand and clay layers. The samples, however, indicate a decrease in the sand content towards approximately 550 m, where the sediment is mainly clay. Shell fragments occur throughout, and they seem to be mostly associated with the sand dominated intervals. Pyrite was observed in the clay.

The clay which dominates from around 550 m is olive grey in colour, micaceous and slightly silty. A fairly homogeneous section was penetrated down to approximately 1150 m, from where brown shades were observed in the clay. From around 1050 m, thin stringers of lime mudstone are present. The limestones are mainly yellowish grey in colour.

At around 1250 m a brown to olive black argillaceous sediment was observed. It is more consolidated than the clays above, and is classified as claystone/shale. This sediment is characterized by its high content of mica and carbonaceous material. However, at around 1360 m, olive to brownish grey colours again dominate the shale, and down to approximately 2160 m the sediments are

rather uniform. Various shades between olive grey and brownish grey constitute the colour of the shales, which are predominantly micaceous, slightly calcareous and in places silty. Traces of shell fragments are present throughout, and lignite was occasionally observed, especially below 1725 m.

Limestone stringers are evenly distributed in the shale sequence, as light grey, yellowish grey and brownish grey mud/wackestones. A dark brown, very hard dolomite bed is present at 2025 m.

Traces of coarse sandstone were found at approximately 2035 m.

From around 2160 m a greenish grey, waxy shale appears together with the shales described above. It becomes more prominent downwards, and from approximately 2240 m also dark brownish, light olive grey shales and traces of reddish brown shales were registered. These varicoloured sediments mark the base of the Hordaland Group.

The boundary between the Nordland and the Hordaland Groups has not been indicated, as neither the log patterns nor the lithology of the 2/3-3 well give a conclusive boundary.

Rogaland Group, 2267-2440 m:

Within this group the same three lithostratigraphic formations as recognized in well 2/3-1, are probably present. These are the Balder Formation, the Sele Formation and the Lista Formation.

The interval 2267-2287 m is composed of grey, brown, red and green shales as are present at the base of the Hordaland Group. However, volcanic material was found in the shales, and particularly in a medium grey, silty one. The tuff probably contributes to the characteristic BHC—Sonic log pattern in this interval. A few white, lime mudstone stringers are also present in the unit, which belongs in the Balder Formation.

Below 2287 m, a medium grey, slightly tuffaceous shale tends to dominate, although brown, green and red sediments were still registered. Tuff has not been observed below approximately 2330 m, which consequently has been interpreted to be close to the base of the Sele Formation.

However, there is no sharp lithological break at 2330 m as the medium grey shale continues to be the main sediment. Traces of very fine grained glauconitic sandstone is present around 2335 m and 2425 m, and a few lime mudstone stringers occur.

This argillaceous section reaches down to 2440 m and is interpreted to represent the Lista Formation.

Chalk Group, 2440-2678 m:

The group, which is entirely composed of carbonate rocks, is in 2/3-3 divided into three formations.

The upper 42 m consists of a white, chalky and rather soft lime mudstone. The porosity is high as evidenced by the BHC-Sonic log. "Milky" white chert is common in this unit, which is identified as the Ekofisk Formation.

This formation is underlain by a harder and less porous limestone. The colour is white to very light grey, and chert is less common than above. Thin porous streaks as well as thin medium grey shale stringers make a rather serratic BHC-Sonic log pattern. This unit, which is recognized as the Tor Formation, extends down to 2628 m.

The underlying carbonates show GR/BHC-Sonic log patterns very similar to those reflected by the 2/3-1 well, with a rather high acoustic velocity compared to the Tor Formation. The lithology consists of white to light grey lime mudstones, which are hard and have, according to the BHC-Sonic logs, a low porosity. Traces of very coarse quartz grains were found in the limestone.

Since both the lithology and the wireline logs suggest that this unit is equivalent to the one underlying the Tor Formation in 2/3-1, the same discussion on the lithostratigraphy applies. This concluded for 2/3-1

that the lower tight section most likely represents the lower part of the Hod Formation, which often has a very high velocity as opposed to the upper part. If so, the same part of the Hod Formation is represented from 2628 m to 2678 m in 2/3-3, as between 2515 m and 2559 m in 2/3-1.

Cromer Knoll Group, 2678-2825 m:

Both the Rødby Formation and the Valhall Formation are recognized in well 2/3-3. The base of the Chalk Group is marked by a very sharp deflection on the logs. This reflects an abrubt lithological break from the limestones above, to sandstone, marl and shale. The interval 2678-2706 m is dominated by a reddish brown, soft marl. Coarse to very coarse grained sandstone is present at the top of the interval, and greenish grey shale was observed more or less throughout. At the base of the marl section, there is a 4 m thick lime mudstone bed. The limestone has a yellowish brown colour, is slightly dolomitic and marks the base of the Rødby Formation.

A medium grey, calcareous shale was encountered below the Rødby Formation. Both the samples and the wireline logs indicate that these grey shales constitute a very homogeneous unit down to 2825 m. The section is only interrupted by a few thin dolomite and limestone stringers, and is interpreted to belong in the Valhall Formation.

Bream Formation, 2825-2849 m:

From around 2825 m the grey shales described above grade into darker, more carbonaceous shales. The colour varies between dark grey, olive grey and brownish grey, and the GR log shows a rather high radioactivity. The shales are micaceous, partly calcareous and probably rich in organic material. These highly radioactive dark shales probably represent the Børglum Member, which is a member of the Bream Formation.

Unnamed units, 2849-2890 m (?):

The Børglum Member is underlain by medium grey to brownish grey shales, which occasionally are calcareous. The GR/BHC-Sonic logs indicate a sharp contact between these and the sediments of the Børglum Member. The grey shales extend down to 2875 m, where a greenish grey, very fine to medium grained sandstone was encountered. The sand is moderately sorted, micaceous and contains stringers of greenish grey shale. This sediment seems to persist to approximately 2890 m, although there is no sharp boundary. The sandy section from 2875 m to 2890 m,

probably corresponds to the interval 2563-2580 m in well 2/3-1. Accordingly, the same discussion on the lithostratigraphy prevails, which concluded that the sand section may represent either the Haldager Formation or the Gassum Formation. If the sand belongs in the latter, the overlying grey shales probably belong in the Fjerritslev Formation.

Skagerrak Formation, 2890-2930 m (?); At approximately 2890 m, the colour of the sandstone grades from the greenish grey, to light brownish grey. The latter is mainly very fine to fine grained and micaceous. From around 2915 m the colour is reddish brown, and the sandstone shows a rather poor sorting, as medium to coarse grains also occur. White anhydrite was observed below 2915 m, and brown, calcareous shale is present througout the sand sequence.

This sandstone dominated section is interpreted to be a part of the Skagerrak Formation. It is very thin compared to its equivalent in 2/3-1, approximately 40 m versus more than 250 m.

Zechstein Group, 2930 (?) - 2669 m (TD): The boundary between the Skagerrak Formation and this group is difficult to pick. Neither the samples nor the wireline logs indicate a sharp lithological break. However, greenish grey dolomite appears from 2930 m to 2940 m, interbedded with olive grey shale.

White, sucrosic anhydrite was registered in this interval, and dominates below 2940 m. These mixed lithologies are indicative of the Zechstein Group (Deegan & Scull 1977). The GR/BHC-Sonic logs indicate a high degree of interbedding. Fair amounts of shale are also present.

Although rock salt never appeared in the samples, the Formation Density log may indicate that the well drilled a few meters into the salt.

DISCUSSION

In this section the interpreted lithology, presented in the previous section, is the main basis for comments on the depositional environments.

The 2/3 block is located in the eastern segment of the Northern Permian Basin (Ziegler 1977). Both 2/3-1 and 2/3-3, which are approximately 11 km apart, drilled into evaporites of a Late Permian age. The seismic section (Fig. 2), traverses all the three well locations, and shows that halokinesis probably played an important part in the evolution of the two structures on which the wells were drilled. The north western domal structure, on which 2/3-1 and 2/3-2 are situated, have been considerably uplifted by the salt. A number of faults may be traced on the top the structure and most of them are probably caused by the halokinetic activity. There seems to be a depression of the overlying sediments on the crest of the structure, which may indicate a collapse of the salt.

The south eastern prospect seen in Fig. 2 & 3 is less developed, suggesting that the salt movements by far reached the same level as in the north western one. The sediments capping the salt thus seem to be mainly undisturbed. Well 2/3-3 was placed crestally on this gently dipping structure.

The red beds overlying the Permian evaporites in both wells, are barren of fossils. The series are, however, probably of a Triassic age, based on regional lithological correlations.

Both the argillaceous Smith Bank Formation

and the arenaceous Skagerrak Formation were laid down under continental conditions. The sequence may represent a system of prograding alluvial fans, starting with distal fine grained material, which was overlain by poorly sorted, coarser material. In 2/3-3, the argillaceous Smith Bank Formation is missing, and only approximately 50 m of the Skagerrak Formation is present. Salt movements and rifting probably caused local uplifts with subsequent erosion or non deposition during parts of the Triassic, whereas the area around 2/3-1 contains a more complete sequence. The greenish grey sandstones, which in both wells overly the red beds, are also barren of fossils. As there are no fossils, the Triassic/Jurassic boundary has tentatively been set to coincide approximately with the lithostratigraphic boundary between the Skagerrak Formation and the unnamed sand unit above. While the first probably has been deposited under continental conditions, the greenish, slightly glauconitic sands of a probable Jurassic age reflect a deposition in a marine or possibly coastal-deltaic environment. In the Central North Sea, the Triassic and Jurassic sediments are often separated by an unconformity (Deegan & Scull 1977), which suggests the presence of a hiatus although the sediments do not show a distinct lithological break.

The shales overlying the Jurassic sands have paleontologically been dated to be of a Kimmeridgian age up to approximately 2545 m in 2/3-1 and 2820 m in 2/3-3. As indicated in the lithological section, the same highly radioactive, dark and probably organic shales were registered in both wells, the Børglum Member. These sediments were deposited in a marine environment with high organic productivity and restricted bottom circulation (Ager 1975, Johnson 1975). The grey shales underlying the Børglum Member at the 2/3-3 location, are probably local deposits. The sharp break on the GR/BHC-Sonic logs indicates an erosional contact to the Børglum Member.

The shales overlying the Kimmeridgian deposits are in both wells dated to be of an Early Cretaceous age. The Jurassic/Cretaceous boundary probably presents a regional unconformity, which is referred to as the Late Kimmerian unconformity (Ziegler 1977). The Early Cretaceous uniform grey, argillaceous sediments may have been deposited in an open marine environment with rather continuous subsidence of the basin floor. A regional transgression submerged the Jurassic highs, and decreased the supply of coarse clastic material. In 2/3-1, however, the low energy deposits are interrupted by a marine sandstone bed at around 2425 m. It is likely to think of a major, still emerged high on the Vestland Arch, probably the Hidra High or the Mandal High, as being the source for this sandstone.

In the later parts of the Early Cretaceous fairly pure lime mud was deposited, and it is seen in both wells. This initiated the sedimentation of lime as well as clay material, resulting in the marls and calcareous shales of the Rødby Formation.

The boundary between Early- and Late Cretaceous is probably also represented by an unconformity. The paleontological datings indicate a Santonian/Campanian age of the lower part of the limestone sequences in both wells. Although the Aptian/Albian ages were dominated by a basinwide transgression (Ziegler 1977), rifting took place simultaneously and possibly resulted in uplifts of the 2/3 area. The Late Cretaceous transgression then first submerged the area during the middle part of the Senonian and enabled the deposition of lime mud. 40-50 m of Santonian/Campanian limestones in each of the wells are overlain by Maastrichtian limestones. In the 2/3-1 well these are overlain by Paleocene shales, while 2/3-3 revealed approximately 40 m of Paleocene Danian limestones on top the Maastrichtian carbonates. The Late Cretaceous epoch is characterized

by low energy deposits. All structural highs

were submerged during the transgression, and a relatively pure lime mud was deposited. The lack of core data makes it impossible to determine whether the thin clay seams observed in the carbonates, are of primary or secondary origin. Other wells in the Central North Sea indicate a combination of the two. Diagenesis is probably the main reason for the tightness of the Santonian/Campanian section in both wells, interpreted to represent the lower part of the Hod Formation. This feature has also been reported from other wells in the Central North Sea, and may have been triggered by slight textural differences in the lime mud (Hancock & Scholle 1975).

The fact that Danian limestones are present in 2/3-3 but not in 2/3-1, only about 11 km to the north west, may be related to a smaller degree of salt movements at the 2/3-3 location. It may, however, also be related to the Early Paleocene Laramide rifting phase, which probably caused local uplifts and erosion. Danian carbonates may originally have blanketed the 2/3-1 location, but were subsequently eroded as a result of local uplifts (Figs. 2 & 3). At the 2/3-3 location, however, the tectonic activity was smaller and less erosion, if any at all, took place. It is likely that the 2/3 area, and in particular the northwestern part of the block, acted as one of the sources for the redeposited, conglomeratic Paleocene limestones observed in the Central Trough, which has been named Maureen Formation (Deegan & Scull 1977). The Laramide phase combined with a probable halokinetic activity initiated a regional subsidence of the basins parallelled by uplifting of the flanks (Ziegler 1977). This started a new sedimentary regime, and argillaceous marine sediments were deposited. By the close of the Paleocene, volcanic activity resulted in deposition of tuffs, which mixed with the clay and caused the "rough" apperance of the sediment. It is assumed that the various colours of the shales above, within and below the tuffaceous Balder Formation,

are associated with physical/chemical phenomena in the sea water and bottom, caused by the ash fall (Norw. Petr. Dir. 1977 b).

The Balder Formation spans the Paleocene/Eocene boundary in both wells. The Eocene epoch is characterized by a rather uniform, low energy sedimentation in an open marine environment. In 2/3-3, sediments of an Early Eocene age are present to around 2150 m, from where the fauna suggests an undifferentiated Middle/Late Eocene age up to approximately 2020 m.

The 2/3-1 section indicates Eocene sediments up to approximately 1975 m.

The open marine environments persisted into the Oligocene. In 2/3-3, the uniformity of the sediments even indicates similar conditions throughout the Oligocene and into the Miocene, without major interruptions. In 2/3-1 and 2/3-2, however, marine sand units were encountered, and have been assigned an Oligocene-Miocene age. The sands which reach 10-12 m in 2/3-1 and 20-23 m in 2/3-2, thus reflect different sedimentary environments than indicated through the corresponding period at the 2/3-3 location. As 2/3-2 lies approximately 4 km northwest of 2/3-1, the source of the arenaceous sediments is probably north or west of 2/3-2. The nearest and most likely potential source is the Hidra High, but other features on the Vestland Arch may have contributed. These marine shelf sands, which did not reach the 2/3-3 location, indicate a high energy of deposition probably in fairly shallow waters, interrupted by periods of quiescence when clay and carbonates were deposited.

The argillaceous sediments overlying the sand deposits in 2/3-1 and 2/3-2 indicate that the area attained the same low energy, open marine environments as reflected by the 2/3-3 section. The basin was probably subject to a rather continuous subsidence and the same type of sedimentation persisted during the Miocene.

Poor and partly non-diagnostic faunas are

reported for the post-Oligocene sediments, and this makes the chronostratigraphy very uncertain. The boundaries indicated on the appended logs are therefore partly based on correlations to nearby wells.

While the pre-Pliocene Tertiary sediments mainly indicate deposition in a moderately deep water, the Pliocene sections in all the three wells suggest a shoaling up. Carbonate stringers are very rare, the clay becomes silty

and sand stringers occur in the upper part of the sequences. Also at this level, however, the 2/3-1 and 2/3-2 wells were probably closer to the source than the 2/3-3 as they contain more coarse material.

The upper sections in all three wells, are considered to be Quaternary deposits related to the glacial activity. These sediments seem to have approximately the same thickness of 450—500 m in the wells.

Summary

The Murphy Group drilled three wells in block 2/3. The block is situated in the south western part of the Norwegian Danish Basin, close to the Mandal High.

The wells 2/3-1 and 2/3-2 were drilled in 1969 on a salt dome. The first well was drilled on the crest of the structure, and revealed gas in two 10-12 m thick sandstone layers of an Oligocene-Miocene age. The second well, however, situated on the north western flank of the structure was dry.

Well 2/3-3 was drilled in 1971 on a separate structure, some 11 km south east of well 2/3-1. The well was placed on the crest of the structure, which is formed by a salt pillow.

None of the sedimentary sequences penetrated by 2/3-3 showed hydrocarbons.

Both 2/3-1 and 2/3-3 drilled through the Cenozoic and Mesozoic sediments and into evaporites of a Late Permian age. The sections penetrated by the two wells are fairly comparable but especially the Late Cretaceous and Triassic sections show considerable differences in thickness between the wells. This may indicate local tectonic activities as well as salt movements during the Mesozoic in this part of the Norwegian Danish Basin.

Well 2/3-2 bottomed in argillaceous sediments of an Eocene age.

Summary chart

The following chart shows the main rock types and depositional environments as seen in the wells 2/3-1 and 2/3-3.

	Stratigraphic classi	fication mill.		Sedimentary environments and geological events
QUA'	PLIOCENE	-0-	clay, sand	glacial activity
	MIOCENE		clay	marine
TERTIARY	OLIGOCENE		shale, sand (in 2/3-1)	open marine/marine open marine
TER	EOCENE	50	tuff	volcanic activity—
	PALEOCENE		shale	marine tectonic movements
	FALEOCENE	DANIAN	shale, lime mudstone (in 2/3-3)	open marine
		MAASTRICHTIAN CAMPANIAN	lime mudstone	open marine
	LATE	SANTONIAN		transgression —
	Z	CONIACIAN		transgression
CRETACEOUS		TURONIAN		erosion/non deposition
EO		CENOMANIAN		1.6.
AC.	-	ALBIAN		uplifting—
ET		APTIAN	marl, shale (+ sand)	marine
Z.		BARREMIAN		
0	EARLY	HAUTERIVIAN		
	ΕΛ	VALANGINIAN	7	erosion/non deposition
****		BERRIASIAN		
		PORTLANDIAN	?	erosion/non deposition
	LATE	KIMMERIDGIAN 150	black shale	marine
۲)		OXFORDIAN	sand 2	marine (coastal — deltaic)
JURASSIC	MIDDLE			
Б	EARLY			erosion/non deposition
			?	·
SSIC	LATE	200	sandstone (+ shale)	continental (alluvial)
TRIASSIC	MID.		, , , , , , , , , , , , , , , , , , , ,	,
•	EAR			
DEE		ATE 230-	anhydrite, rock salt 2/3-1 and 2/3-3 bottomed in Permian evaporites.	super saline sea

Chronostratigraphy after F. W. B. van Eysinga, 3rd Edition, 1975.

Fig. 2: Interpreted seismic record. Line 13

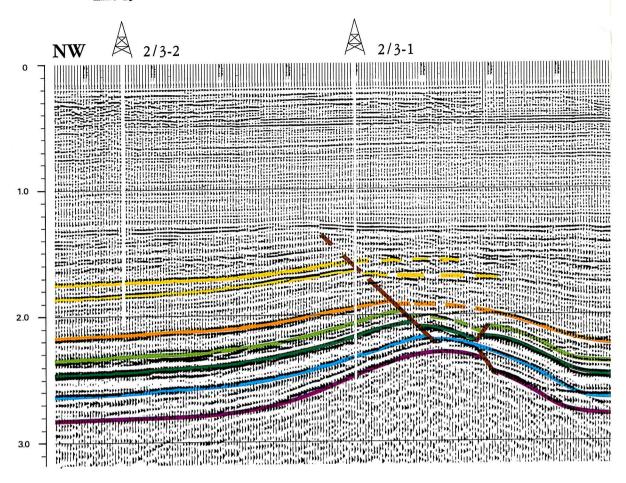
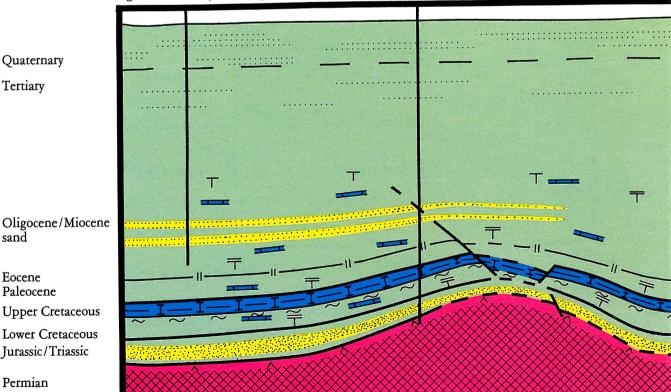
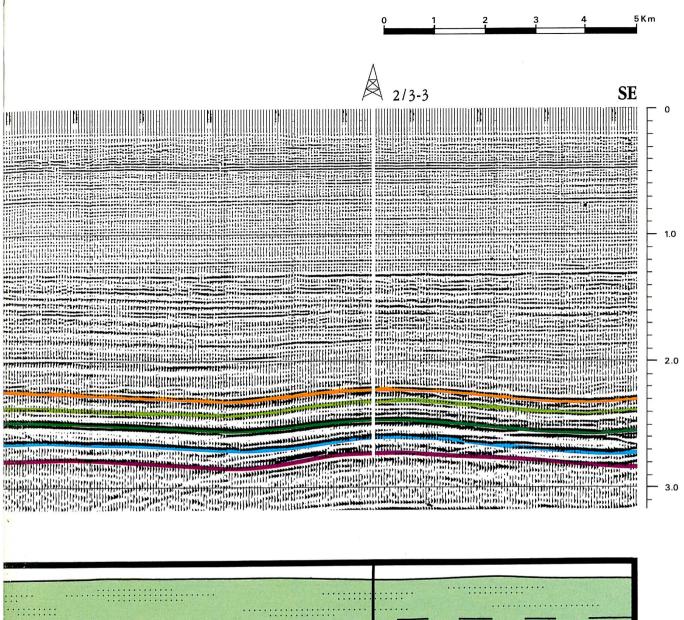
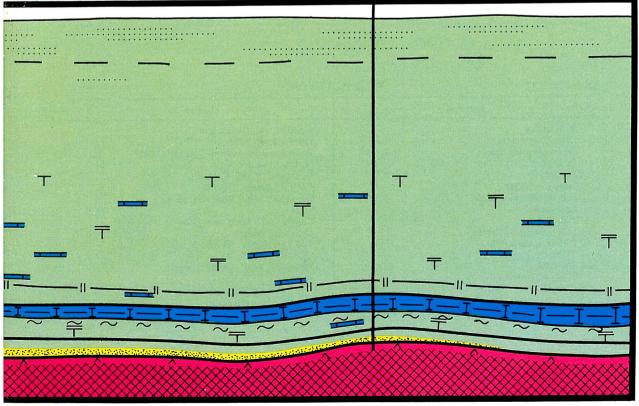





Fig. 3 Summary of interpreted seismic record and lithology. Index: See appendices.

Paleocene Upper Cretaceous Lower Cretaceous

TABLES WELL 2/3-1

Table 1

CASINGS

	Depth below KB			
Diameter	m	ft		
30''	123.7	404		
0'' 0''	247.9	902		
13 3/8''	1297.8	4258		
7''	1669.1	5477		

Table 2 a

MUD PROGAMME

ible 2 a				1.102	NOOTH.		
Depth be	elow KB	Weight	Funnel visc.	Filt loss	% oil	Remarks	Mud components
m	ft	PPg	sec	cm³			
98	320	8.6	60				
124	406	8.8	200 +			Pumped in 470 bbls heavy	A fresh water gel
297	976	Sea water				viscosity gel mud. Sand fell in and 150 bbls mud was pumped in to free pipe.	mud was used for spotting in open hole to 1520'. Fro
463	1520	8.8	108			Displaced hole with 700 bbls 75 viscosity mud.	here to TD a sea water-Q-Broxin-
695	2280	9.0	46			, and the second	caustic mud was
1023	3355	10.3	57	10.2	4 3		used. A high
1308	4290	11.2	43	6.7	3	Started getting gas cut mud,	dilution rate was
1323	4342	11.5	70	7.0		10.6—9.6 ppg. Circulated and conditioned gas cut mud. Raised weight from 10.6 to 11.5.	necessitated by a solids problem.
1527	5010	12.0	65	5.6			
2400	7874	12.3	90	7.6			
2650	8694	12.1	58	8.0			
2933	9624	12.2	70	7.2			

Table 2 b

MUD ADDITIVES

IC Z D	
Function	Product
Bactericides Calcium removers Corrosion inhibitors Defoamer Emulsifiers Filtrate reducers Lost circulation material Lubricants pH control Shale control inhibitors Surface active agents Thinners Viscosifiers Weighting materials	Caustic Soda, Surflo, Lime Caustic Soda, Soda Ash Formaldehyde, Sodium Chromate, Lime Surflo Q-Broxin, CC-16, Con Det CMC, Q-Broxin, CC-16 Bentonite, Mica, Wall Nut, Flosal Lime Caustic Soda, Soda Ash, Lime Q-Broxin, Aktaflo-S Con Det, Surflo, Aktaflo-S Q-Broxin, CC-16 Bentonite, CMC, Flosal, Zeogel Barite

Table 3

TESTS

Туре	Depth below KB		Choke		Re	Final shut-in	Final flow	
	m	ft	size	Oil BPD	Gas MMCFD	Other fluids	pressure psi	pressure psi
DST no. 1 DST no. 2	1624-1635 1588-1600	5328-5368 5210-5250	30/64'' 30/64''	=	10.75 9.25	Two bbls condensate in 10 hrs flow	2692 2687	2608 2662

Table 4

AVAILABLE LOGS

AVAILABLE LOGS						
Туре	Run	Depth l	Depth below KB Scales availa			
	No.	m	ft	1/200	1/500	
IES	1	275—1316	902—4317	>	>	
»	2	1298—2396	4258—7860	»	>	
»	3	2402—2924	7880—9593	>	>	
GR	1	107— 462	350—1515	>	»	
GR/BHC	1	462—1315	1515—4313	>	>	
GR/BHC-C	1	1298—2393	4258—7850	>	>	
»	2	2368—2930	7770—9612	>	w w	
LL—7	1	275—1316	902—4316	*	»	
»	2	1524—1798	5000—5900	>	»	
»	2 2	1966—2042	6450—6700	»	>	
»		2134—2164	7000—7100	»	»	
»	2	2240—2395	7350—7857	»	>	
>>	3	2371—2922	7780—9585	»	>	
MLL—C	1	1158—1316	3800—4318	»	>	
»	2	1524—1664	5000—5460	»	>	
»	2	1740—1777	5710—5830	a	>	
×	2 2 2	2134—2158	7000—7080	>	>	
>	2	2240—2362	7350—7750		»	
>	3	2408—2438	7900—8000	>	»	
»	3	2560—2865	8400—9400	»	»	
SNP	1	1579—1653	5180—5424	>	»	
FDC	1	1579—1653	5/80—5424	»	»	
CBL	1	1158—1652	3800—5421	»	»	
Mud	1	466—2933	1530—9624		»	

Table 5 a

DRILL BIT CUTTINGS

Depth bel	Depth below KB		nterval	Depth be	Sample interval		
	ft	m	ft	m	ft	m	ft
/== /00	1570 1600	9	30	2073—2097	68006880	24	80
479— 488	1570—1600	6	20	2097—2109	6880—6920	12	40
488— 494	1600—1620	18	60	2109—2121	6920—6960	6	20
494— 512	1620—1680	30	100	2121—2183	6960—7160	12	40
512— 756	1680—2480	2	70	2183—2195	7160—7200	6	20
756— 777	2480—2550	15	50	2195—2219	7200—7280	12	40
777— 808	2550—2650	9	30	2219—2225	7280—7300	6	20
808— 817	2650—2680	12	40	2225—2262	7300—7420	12	40
817— 829	2680—2720	9	30	2262—2298	7420—7540	6	20
829— 847	2720—2780	21	70	2298—2310	7540—7580	12	40
847— 869	2780—2850	9	30	2310—2371	7580—7780	6	20
869— 878	2850—2880	6	20	2371—2384	7780—7820	12	40
878— 884	2880—2900	12	40	2384—2457	7820—8060	6	20
884— 920	2900—3020	6	20	2457—2460	8060-8070	3	10
920— 951	3020—3120	9	30	2460—2469	8070—8100	9	30
951— 960	3120—3150	15	50	2469—2512	8100—8240	6	20
960—1021	3150—3350 3350—3390	12	40	2512—2536	8240—8320	24	80
1021—1033		6	20	2536—2573	8320—8440	6	20
1033—1039	3390—3410 3410—3500	9	30	2573—2585	8440-8480	12	40
1039—1067	3500—3540	12	40	2585—2591	8480—8500	6	20
1067—1079		9	30	2591—2603	8500—8540	12	40
1079—1161	3540—3810	12	40	2603—2627	8540—8620	24	80
1161—1173	3810—3850 3850—4250	15	50	2627—2640	8620—8660	12	40
1173—1295	4250—4340	27	90	2627—2640	8660—8700	6	20
1295—1323	4340—4380	6	20	2640—2652	8700—8760	18	60
1323—1335	4340—4380	12	40	2670—2676	8760—8780	6	20
1335—1347	4420—4440	6	20	2676—2798	8780—9180	12	40
1347—1353	4440—4520	12	40	2798—2813	9180—9230	15	50
1353—1378	4520—4540	6	20	2813—2825	9230—9270	6	20
1378—1384	4540—6300	12	40	2825—2899	9270—9510	9	30
1384—1920	6300—6340	6	20	2899—2911	9510—9550	6	20
1920—1932	6340—6780	12	40	2911—2920	9550—9580	3	10
1932—2067	6780—6800	6	20	2920—2932	9580—9620	6	20
2067—2073	0/00-0000	1 "	1 20				

Table 5 b

SIDEWALL CORES

	Depth be	elow KB	Recovery	No.	Depth be	elow KB	Recovery
No.	m	ft	length, in.	140.	m	ft	length, in.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	1587 1588 1589 1589 1589 1590 1591 1592 1593 1595 1597 1597 1598 1600 1601 1624 1625 1626 1627	5208 5210 5212 5213 5214 5216 5218 5224 5228 5232 3239 5240 5244 5249 5251 5329 5332 5333 5337 5341	1/4 1 1 1/4 1 1/4 1 1/4 1 1/2 1 1/4 1 1/4 1 1/4 1 1/4 1 1/4 1 1 1 3/4 1 1/2 3/4 3/4 3/4 1 1/4	23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42	1630 1631 1633 1634 1635 1636 2368 2381 2389 2421 2423 2464 2557 2564 2572 2657 2664 2773 2824	5349 5352 5356 5361 5363 5368 7768 7812 7838 7942 7948 8085 8390 8411 8438 8717 8739 8871 9097 9264 9276	1 1/4 1 1 3/4 1/2 1 1/2
21 22	1629 1630	5344 5349	1 1 1/4	* Below t	2827 his depth the		ere poor and very poor

TABLES WELL 2/3-2

Table 6	CASINGS	
D:	Depth b	elow KB
Diameter	m	ft
30'' 20''	116.4 211.2	382 693
13 3/8''	1050.3	3446

Table 7 a

MUD PROGRAMME

Depth b	Depth below KB		epth below KB Weigh		Funnel	Filt loss	% oil	Remarks
m	ft	PPg	visc. sec.	cm³	96 OII	Remarks		
246	806	8.8	30			Drilled first to 980'. Hole fell in. Reamed and circ with salt water. Washed and redrilled from 383' to 806'		
494	1620	8.9	38			with gel-mud.		
985	3230	10.5	52	14.7		Drilling Gumbo.		
1079	3540	10.5	55	16.0	5000 BBS	Circulated to run logs.		
1080	3542	11.5	53	8.6	3.0			
1289	4230	12.2	52	9.0	2.0			
1502	4928	12.1	50	8.2	3.0			
1732	5683	12.1	50	8.2	2.0			
1982	6502	12.0	58	7.3	2.0			
2093	6967	12.0	60	7.6	2.0	Circulated and made wiper trip back to the 13 3/8" casing.		
2292	7520	12.0	55	7.6	1.0	Short trip and circulation, before running casing.		
2312	7536	12.0	53	8.0	1.0	Running logs.		

Table 7 b

MUD ADDITIVES

Function	Product
Bactericides Corrosion inhibitor Emulsifier Filtrate reducers Lubricant pH control Shale control inhibitors Thinner Viscosifiers Weighting material	Caustic Soda, Lime, Soda Ash. Lime Q-Broxin CMC, Dextrid, Q-Broxin. Lime Caustic Soda, Lime. Q-Broxin, Lime. Q-Broxin, Lime. Q-Broxin, Flosal, Zeogel, Dextrid. Barite.

Table 8

AVAILABLE LOGS

Table 6		50000 0			
	Run	Depth be	Depth below KB		
Туре	no.	m	ft	available	
GR GR/BHC GR GR/BHC-C SNP	1 1 2 2 1 1 1 1 1 1 2 3 1 1 1	85— 544 211— 544 503—2293 1050—2293 1250—1341 1585—1707 1768—1890 1950—2012 2195—2270 212—1038 1050—2092 1737—2296 1280—1341 1585—1707 1768—1890 1950—2012 2195—2270	280—1786 694—1786 1650—7524 3446—7524 4200—4400 5200—5600 5800—6200 6400—6600 7200—7450 694—3407 3446—6862 5700—7533 4200—4400 5200—5600 5800—6200 6400—6600 7200—7450	1/200 ** 1/200, 1/500 ** 1/200 ** 1/200, 1/500 ** ** ** ** ** ** ** ** **	
Mud	1	245—2297	805—7536	1/500	

DRILL BIT CUTTINGS

Table 9 a	9 a DRILL BIT CUTTINGS						
Depth b	Depth below KB Samp		interval	Depth b	elow KB	Sample interval	
m	ft	m	ft	m	ft	m	ft
256— 280 280— 286 286— 304 304— 316 316— 341 341— 366 366— 384 384— 402 402— 430 430— 448 448— 476 476— 494 494— 518 518— 527 527— 546 546— 555 555— 677 677— 695 695— 713 713— 732 732— 744	840— 920 920— 940 940—1000 1000—1040 1040—1120 1120—1200 1260—1320 1320—1410 1410—1470 1470—1560 1560—1620 1700—1730 1730—1790 1790—1820 1820—2220 2220—2280 2280—2340 2340—2400 2400—2440	12 6 18 12 24 12 9 18 9 18 9 18 24 9 18 9 12	40 20 60 40 80 40 30 60 30 60 30 60 30 60 30 60 30 60 30 60 30 60 30 60 30 60 30 60 30 60 80 40 80 60 80 80 80 80 80 80 80 80 80 80 80 80 80	m 805— 814 814— 820 820— 857 857— 863 863— 872 872— 890 890— 945 945— 960 960— 988 988—1015 1015—1024 1024—1036 1036—1042 1042—1079 1079—1085 1085—1146 1146—1152 1152—1274 1274—1420 1420—1433 1433—1573 1573—1585	ft 2640—2670 2670—2690 2690—2810 2810—2830 2830—2860 2860—2920 2920—3100 3100—3150 3150—3240 3240—3330 3330—3360 3360—3400 3400—3420 3420—3540 3540—3560 3760—3780 3780—4180 4180—4660 4660—4700 4700—5160 5160—5200	9 6 9 18 9 15 9 12 6 12 6 12 6	30 20 30 20 30 60 30 50 30 90 30 40 20 40 20 40 20 40 20 40
744— 762 762— 799 799— 805	2440—2500 2500—2620 2620—2640	9 12 6	30 40 20	1585—2292 2292—2297	5200—7520 7520—7536	6 5	20 16

Table 9 b

SIDEWALL CORES

NT-	Depth below KB		Nie	Depth	n below KB
No.	m	ft	No.	m	ft
1	1252	4108 No recovery	22	1815	5954
2	1254	4115	23	1835	6021
2 3 4 5	1255	4118	24	1837	6026
4	1257	4124	25	1839	6032
5	1262	4142	26	1841	6039
6 7	1477	4845	27	1848	6064
7	1497	4910	28	1850	6071
8	1602	5255	29	1854	6082
8 9	1625	5335 repeated	30	1872	6143
10	1628	5341	31	1922	6305
11	1634	5361	32	1970	6464
12	1636	5368	33	1997	6551
13	1649	5409	34	2203	7228 repeated
14	1653	5424	35	2213	7259
15	1668	5471	36	2214	7265
16	1796	5892	37	2218	7277
17	1797	5894	38	2227	7307
18	1800	5904	39	2236	7335
19	1803	5915	40	2247	7373
20	1806	5925	41	2249	7380
21	1807	5928	42	2254	7396

TABLES WELL 2/3-3

Table 10	CASINGS				
	Depth below KB				
Diameter	m	ft			
36''	122.8	403			
36'' 20''	263.9	866			
13 3/8"	1083.4	3554			

Table 11 a

MUD PROGRAMME

Depth b	elow KB	Weight	Funnel visc.	- I FIII IOSS I	% oil	Remarks
m	ft	PPg	sec.	cm³	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
274 636	900 2085	8.7 11.0	49 46	11 12	4.5	Drilled to 915' with no returns Built up mudweight from 10.6 to 11 ppg.
884 1097	2900 3600	11.1 12.0	84 64	10.1 11.0	3 3	750 bbl mud lost on shaker/ and pit.
1097 2149 2649 2667 2795 2997	3600 7050 8690 8752 9171 9734 9734	12.4 13.1 13.1 13.6 13.3 13.2 13.5	52 69 45 68 78 53 48	12.8 8.8 4.8 4.5 4.5 4.4 4.6	5 5 5 4 2.5 4	Built up weight to 12.4 ppg.

Table 11 b

MUD ADDITIVES

Function	Product
Bactericides Calcium remover Corrosion inhibitor Defoamer Emulsifier Filtrate reducers Lubricant pH control Shale control inhibitors Surface active agents Thinners Viscosifiers Weighting material Clays	Caustic Soda, Lime Soda Ash Lime Magconol D-D, Salinex, Magcophos, Diesel Oil CMC, Salinex, Spersene Lime Caustic Soda, Soda Ash, Lime Lime, XP-20 D-D Spersene, XP-20 Salt Gel, Visquick Magcobar Magcogel

Table 12

AVAILABLE LOGS

	Run	Depth be	Scales	
Туре	no.	m	ft	available
GR*	1	91—2970	300—9743	1/200, 1/500
GR/BHC-C	1	10842970	3557—9743	»
FDC	1	1084—2972	3557—9752	»
DIL	1	1084—2970	3557—9743	»
CDM	1	1083—2972	3552—9752	»
Mud	1	97—2967	320—9734	1/500

^{*}Logged in cased hole.

Table 13 a

DRILL BIT CUTTINGS

Depth be	h below KB Sample interval		Depth b	Sample interval			
m	ft	m	ft	m	ft	m	ft
274—1094 1094—1102 1102—1450 1458—1998 1998—2021 2021—2222 2222—2231 2231—2565 2565—2574 2574—2684 2716—2720 2725—2729 2734—2737 2748—2752 2757—2761	900—3590 3590—3615 3615—4755 4785—6555 6555—6630 6630—7290 7290—7320 7320—8415 8415—8445 8445—8805 8910—8925 8940—8955 8970—8985 9015—9030 9045—9060	9 8 4.5 4.5 23 4.5 9 4.5 9	30 25 15 15 75 15 30 15 30 15 **	2771—2775 2803—2807 2812—2816 2821—2826 2830—2835 2839—2844 2848—2853 2862—2867 2867—2871 2903—2908 2912—2917 2922—2926 2931—2783 2940—2944 2949—2954	9090—9105 9195—9210 9225—9240 9225—9270 9285—9300 9315—9330 9345—9360 9390—9405 9405—9420 9525—9540 9555—9570 9585—9600 9615—9130 9645—9600	4.5	15

WET SAMPLES

Depth b	oelow KB	Sample	e interval	Av	erage weights in	ı g	Average %
	ft	m	ft	Gross	Dried	Retained*	retained
m						74	71
280— 317	920—1040	9	30 60	128 99	104 76	22	29
317— 335	1040—1100	18	90	272	255	31	12
335— 390	1100—1280	27	60	263	211	76	36
390— 408	1280—1340	18	30	262	236	94	40
408— 518	1340—1700	9	30	170	151	8	5
518— 609	1700—2000	9	60	206	151	8	5
609— 628	2000—2060	18	30	149	122	8	7
628— 674	2060—2210	9 18	60	127	88	7	8
674— 692	2210—2270	9	30	157	116	9	8
692— 701 701— 719	2270—2300 2300—2360	18	60	145	110	8	7
719— 792	2360—2600	9	30	178	150	10	7
792— 820	2600—2690	27	90	112	79	6	8
820— 838	2690—2750	18	60	148	108	9	8
838— 856	2750—2810	9	30	101	89	7	8
856— 893	2810—2930	36	120	79	57	7	12
893— 930	2930—3050	9	30	144	106	11	10
930— 948	3050—3110	18	60	90	73	4	5
948— 957	3110—3140	9	30	69	56	4	7
957— 994	3140—3260	18	60	120	106	7	6
994—1021	3260—3350	9	30	196	154	9	6
1021—1039	3350—3410	18	60	176	121	5	4
1039—1094	3410—3590	9	30	63	60	7	12
1094—1102	3590—3615	7.6	25	54	44	19	43
1102—1202	3615-3945	4.5	15	82	71	8	11
1202—1210	3945-3970	7.6	25	103	72	8	11
1210—1212	3970-3975	1.5	5	170	119	12	10
1212—1225	3975-4020	13.7	45	100	90	9	10
1225—1238	4020—4060	12	40	104	83	19	23
1238—1244	4060-4080	6	20	54	44	18	41
1244—1349	4080—4425	4.5	15	66	55	13	24
1349—1350	4425—4430	1.5	5	114	97	14	14
1350—1358	4425—4430	7.5	5	133	102	34	33
1358—1363	4455—4470	4.5	15	136	105	13	12
1363—1366	4470—4480	3	10	74	67	. 8	12
1366—1379	4480—4525	4.5	15	111	101	14	14
1379—1402	4525—4600	23	75	100	73	13	18
1402—1414	4600—4640	12	40	83	78	10	13 13
1414—1420	4640—4660	6	20	100	85 72	11 12	16
1420—1425	4660—4675	5	15	79	73	21	21
1425—1434	4675—4705	9	30	127	100 98	35	36
	**4705—4720	4.5	15	120 177	132	45	34
1439—1445	4720—4740	6 4.5	20 15	105	88	22	25
1445—1655	4740—5430		10	70	59	15	25
1655—1658	5430—5440 5440—5460	3	20	69	63	14	22
1658—1664 1664—1710	**5460—5610	4.5	15	97	75	15	20
	5610—5640	9	30	65	52	3	6
1710—1720 1720—1724	5640—5655	4.5	15	122	94	6	6
1724—1733	5655—5685	9	30	137	101	9	9
1733—1737	5685—5700	4.5	15	128	93	15	16
1737—1756	5700—5760	18	60	121	85	14	16
1756—1770	5760—5805	4.5	15	102	78	21	27
1770—1771	5805—5810	1.5	5	120	89	10	11
1771—1774	5810—5820	3	10	78	65	7	11
1774—1779	5820—5835	4.5	15	69	54	5	9
1779—1786	5835—5860	7.5	25	104	78	5	6
1786—1788	5860—5865	1.5	5	77	62	11	18
	5865—5895	9	30	78	61	5	8
1788—1797	7007—7077						2.2
	**5895—6195	4.5	15	107	86	20	23
1788—1797			15 30	114	88	16	18
1788—1797 1797—1888	**5895—6195	4.5					

Table 13 b contd.

WET SAMPLES

Depth l	oelow KB	Samp	le interval	A	verage weights i	in g	Average %
m	ft	m	ft	Gross	Dried	Retained*	retained
1943—1993	**6375—6540	4.5	15	123	89	17	19
1993—2021	6540—6630	27	90	125	94	16	17
2021-2030	**6630—6660	9	30	196	145	41	28
2030—2135	6660-7005	4.5	15	105	82	18	22
2135—2144	7005-7035	9	30	71	67	11	16
2144—2149	7035—7050	4.5	15	116	105	39	37
2149—2158	7050—7080	9	30	108	100	15	15
2158—2185	7080—7170	4.5	15	97	88	21	24
2185—2195	7170—7200	9	30	93	85	22	26
2195—2213	7200—7260	4.5	15	123	109	38	35
2213—2231	7260—7320	18	60	114	107	25	23
2231—2323	7320—7620	4.5	15	130	121	58	48
2323—2332	7620—7650	9	30	93	65	50	83
2332—2337	7650—7665	4.5	15	86	69	35	51
2337—2345	7665—7695	9	30	104	98	32	33
2345—2387	7695—7830	4.5	15	114	107	36	34
2387—2396	7830—7860	9	30	97	93	27	29
2396—2397	7860—7865	1.5	5	167	159	50	31
2397—2400	7865—7875	3	10	111	108	20	19
2400—2423		4.5	15	124		45	
2423—2432	7875—7950		30	144	115		39
2432—2446	7950—7980	9 4.5	15	0000.4000.800	138	25	18
	7980—8025		1.35	98	96	28	29
2446—2455 2455—2469	8025—8055	9 4.5	30	90	88	21	24
	8055—8100		15	153	149	34	23
2469—2483	8100—8145	14	45	79	78	37	47
2483—2538	* *8145—8325	4.5	15	130	129	44	34
2538—2551	8325—8370	14	45	148	148	40	27
2551—2565	8370—8415	4.5	15	82	81	17	21
2565—2579	8415—8460	14	45	101	100	17	17
2579—2611	8460—8565	4.5	15	119	118	26	22
2611—2620	8565—8595	9	30	63	62	13	21
2620—2624	8595—8610	4.5	15	99	99	35	35
2624—2633	8610—8640	9	30	77	76	22	29
2633—2643	8640—8670	4.5	15	97	95	43	45
2643—2652	8670—8700	9	30	140	137	50	36
2652—2702	8700—8865	4.5	15	132	130	27	21
2702—2711	8865—8895	9	30	107	106	8	7
2711—2752	**8895—9030	4.5	15	118	118	41	35
2752—2761	9030—9060	9	30	119	119	46	39
2761—2789	9060—9150	4.5	15	100	100	36	36
2789—2798	9150—9180	9	30	101	101	38	38
2798—2848	9180—9345	4.5	15	109	109	38	35
2848—2858	9345—9375	9	30	87	87	10	11
2858—2867	**9375—9405	4.5	15	90	90	13	14
2967—2885	9405—9465	18	60	82	82	31	38
2885—2912	9465—9555	4.5	15	88	87	16	18
2912—2922	*9555—9585	9	30	64	64	6	9
2922—2963	95859720	4.5	15	101	101	42	42
2963—2967	9720—9743	4.2	14	81	81	46	57

^{*} This table shows the average weight of the dried wet samples and after washing through a 74 micron sieve and dried.

** There were taken two samples.

Table 13 c SIDEWALL CORES

10010 15 -						
	Depth below KB					
No.	m	ft				
1	2375	7792				
	2396	7862 Not recovered				
2 3 4	2410	7906				
4	2422	7946				
	2429	7969				
5 6	2434	7985				
7	2438	8000				
8	2448	8030 Not recovered				
9	2463	8081				
10	2482	8142				
11	2492	8175				
12	2516	8253				
13	2534	8314				
14	2578	8458				
15	2629	8624				
16	2666	8748 Not recovered				
17	2693	8835				
18	2835	9300				
19	2844	9332				
20	2860	9382 Not recovered				
21	2875	9434				
22	2879	9444 Not recovered				
23	2888	9476 Not recovered				
24	2903	9525				
25	2911	9549				
26	2913	9556				
27	2915	9564				
28	2921	9584				
29	2924	9595 Not recovered				
30	2927	9602 Not recovered				

From 30 attempts, 22 cores were recovered. 7 were empty and one bullet was lost. Recoveries were poor, 1/4 inch and less.

Abbreviations

ab	= 2	above	Gast	=	Gastropode	pa	=	= pale
abn	= 2	abundant	glac	=	glacial	Pbl	=	Pebble
amr	= a	amorphous	Glc		Glauconite	Pbl	=	Pepple
ang		angular	glc		glauconitic	pel		pellet
Anhd		Anhydrite	Gn		Gneiss	Pelc		Peleycopod
arg		argillaceous	gn		green	pkst		packstone
_	_		Gran		Granules	pk	=	*
Bar		Barremian	gran	=	granular	plast		plastic
Вс	= I	Breccia	GR		Gamma Ray log	Pleist		Pleistocene
bd	= b	pedded	Gr					
becom	= b	pecoming			Granite	por	=	1
BHC-	= I	Bore Hole	grd		graded	PPg		lb/gallon
Sonic	(Compensated —	grns C1		grains	predom	=	•
	S	Sonic Log	Gvl		Gravel	pres		pressure
BHP		Bottom	gvl		gravelly	Ps1		lb/sq. in.
		Hole Pressure	gy		grey	purp		purple
BHC-C	-	Bore Hole Compensa-	Gyp	=	Gypsum	Pyr	_	Pyrite
2110 0		ed Sonic with				pyr	=	pyritic
		Caliper Log	h	_	horizontal	Qtz	=	Quartz
D:as						qtz	=	
Biot		Biotite	hd 1		hard			
Biv	127	Bivalve	hom	=	homogeneous	rec	=	
bl	= p		IES	_	Induction	red	=	
Bld		Boulders	1153	_		Rk _.	=	Rock
blk	= b	olack	•_		Electrical Survey	rnd	=	rounded
Blm	= E	Belemnite	ıg Ill		Igneous	S	=	Sand
brit	= b	prittle	-		Illite	S	=	1
brn	= b	rown	incr		increasing	sc		scattered
CAT		2 1:	intbd		interbedded	Sch		Schist
CAL		Caliper	irreg	=	irregular	sec		second
Calc		Calcite				sft		soft
calc		alcareous	Kaol	_	Kaolin	Sh	=	01 1
carb		arbonaceous	KB		Kelly Bushing	Si		Silicon
СЫ	100	Cobbles	Kimm			Sid		Siderite
CDM	= 0	Continuous Dipmeter	KIIIIII	=	Kimmeridgian		_	
Cgl	= C	Conglomerate	1		Ii	Sks	=	Slickenside
Chk	= 0	Chalk	lam		laminated	Slt		Silt
Chl	= C	Chlorite	LCM	=	Lost Circulation	slt	=	silty
Cht	= 0	Chert	¥		Material	Sltst		Siltstone
Cl	= C	Clay	Lig		Lignite	SNP	=	Sidewall Neutron
cl	= c	layey	lig		lignitic			Porosity
Clst	-	Claystone	lith		lithic	sph	=	sphericity
cmt		ement	LL	=	Laterolog	spic	=	spicules
col		olour(ed)	lns		lens	SRS	=	Seismic Reference
cont		ontorted	Ls	=	Limestone			Survcy
conv		onvolute	lse	=	loose	srt	=	sorted
crs		oarse	lt	=	light	Sst	=	Sandstone
crm		ream				stnd	=	stained
csg		asing	m	=	medium	strgs	=	strings
C36		23116	matr	=	matrix	Styl	=	Stylolite
DIR	= D	Directional log	met	=	metamorphic	suc	=	sucrose(ic)
distr	= di	istribute(ion)	mdst		mudstone	surf	=	surface
dk	= d	ark	mic	=	micaceous	torrt		
dns	= d	ense	mid		middle	text TD		texture
Dol	= D	Polomite	ML-C		Microlog - Caliper	Tf		Total Depth
dol	= de	olomitic	MLL-C		Microlaterolog	_		Tuff
DLL	= D	ual Laterolog			— Caliper	tf		tuffaceous
dsk	•	usky	mod	=	moderate	tot	=	
- 1			Mrl		Marl	trsl	=	translucent
Ech	= E	chinoid	mrl		marly	trsp	=	transparent
f	= fi	ne	mtl		mottled	TS	=	Temperature Survey
FDC		ormation Density log	Musc		Muscovite	v	=	vertical
fib		brous	MIUSC	_	Muscovite	visc	=	viscosity
filt		Itration				vn		vein
fis		ssile	nod	=	nodular	vy		very
fl		oor	n.s.	=	no sample	12		
Fld					=	W ₁	=	with
-	-	eldspar		_	o:1	wkst	=	wackestone
frag		agment	0	=	Property and the second	wh	=	white
fri		iable	occ		occasional(ly)	xln	=	crystalline
Foram Fos		oraminifera	olv		olive			(netter
1 03	= Fo	C33113	orng	-	orange	yel	-	yellow

Examples of quantitative expressions: (for silt) (slt) - slightly silty, slt - moderately silty, $\underline{\text{slt}}$ - very silty

References

- Ager, D. V. 1975: The Jurassic World Ocean (with special reference to the North Atlantic).

 NPF Jurassic Northern North Sea Symposium, Stavanger 28—30 Sept., JNNSS/1, 1—43.:
- Deegan, C. E. & Scull, B. J. (compilers) 1977: A proposed standard lithostratigraphic nomenclature for the Central and Northern North Sea. Rep. Inst. Geol. Sci, No. 77/25; Bull. Norw. Petrol. Direct., No. 1.
- Dunham, R. J. 1962: Classification of Carbonate Rocks according to depositional texture. *In Ham, W. E. (ed.) Classification of Carbonate Rocks a symposium, AAPG Mem. 1, 108—121.*
- Geol. Soc. of America 1970: Rock-Color Chart.
- Hancock, J. M. & Scholle, P.A. 1975: Chalk of the North Sea. In Woodland, A. W. (ed.) Petroleum and the Continental Shelf of North-West Europe, Vol 1, 413—425. Applied Science Publishers Ltd.
- Johnson, R. J. 1975: The base of the Cretaceous: A discussion. In Woodland, A. W. (ed.) Petroleum and the Continental Shelf of North-West Europe, Vol. 1, 389—402. Applied Science Publishers Ltd.
- Norw. Petr. Dir. 1977: Lithology. Well No. 16/7-1. NPD Paper No. 6, 21 pp.
- Rønnevik, H. C., van den Bosch, W & Bandlien E. H. 1975: A proposed nomenclature for structural features in the Norwegian North Sea. NPF Jurassic Northern North Sea Symposium, Stavanger 28—30 Sept., JNNSS/18, 1—16.
- Wentworth, C. K. 1922: A scale of grade and class terms for clastic sediments. J. Geol., Vol. 30, 377—392.
- Ziegler, P. A. 1977: Geology and hydrocarbon provinces of the North Sea. Geo Journal 1. 1, 7-32.