HYDRO

RFT	RESUL	ts –	SAMPL	E	WELL: 25/1-9
RUN NO/ TEST NO.	DEPTH mRKB-MD	IHP PSIA	FP PSIA	FHP PSIA	REMARKS
	·				
1A/1	2052.0	3254.3	2573.0	4354.9	Very good perm.
2	2053.5	3258.1	2574.1	3257.9	1
3	2056.5	3262.7	2577.5	3263.0) 11
4	2059.0	3266.8	2586.4	3266.9	Fair Perm.
5	2062.0	3271.6	2588.2	3271.5	Very Good Perm.
6	2066.5	3278.5	2594.2	3278.6	, "
7	2072.0	3287.3	2602.3	3287.2	
8	2100.5	3331.5	2648.3	3331.5) II
9	2116.0	3355.8	2679.4	3355.8	17
10	2135.0	3385.7	2708.2	3386.0) "
11	2250.0	3567.4	2894.3	3568.9) H
12	2275.0	3608.2	2930.7	3608.5	j II
13	2520.0	4195.3	3383.2	3994.3	Good Perm.
14	2647.0	4195.3	3676.8	4195.1	Very Good Perm.
15	2698.5	4274.7	3748.9	4274.9	Good Perm.
16	2736.0	4334.5	3802.7	4334.4	, "

HYDRO

RFT	RESUL	ts –	SAMPL	E	WELL: 25/1-9
RUN NO/ TEST NO.	DEPTH mRKB-MD	IHP PSIA	FP PSIA	FHP PSIA	REMARKS
2B/1	2054.5	3258.4	2573.0	3258.9	9 Very Good Perm.
2	2056.2	3261.0	2575.5	3260.9	9 Fair Perm.
3	2060.0	3267.3	2590.0	3268.9	Supercharged
4	2061.0	3268.6	2586.6	-	Very Good Perm.
5	2062.0	3270.1	2587.9	3271.5	5 "
6	2064.0	3275.1	2590.5	3275.0) "
7	2295.0	3641.1	2959.9	3641.1	L "
8	2335.0	3688.3	3004.5	3688.	5 "
9	2405.0	3814.8	3122.1	3814.2	2 "
10	2411.0	3824.2	3130.9	3824.7	7 "
11	2458.0	3898.8	3406.0	3898.4	4 "
12	2465.0	3909.2	3416.9	3909.2	2 No drawdown
13	2547.0	4038.7	3431.9	4038.2	2 Fair Perm.
2C/1	2051.5	3279.0	2574.0	3279.4	4 Good Perm,
					Seal failure
2	2051.5	3279.4	2574.9	3278.8	8 Seal failure
3	2053.3	3282.7	-	3282.3	3 Possible probe
					blockage
4	2053.5	3282.8	-	3282.0	8 "
5	2054.5	3283.7	2573.7	3283.	7 Very Good Perm.
6	2056.5	3287.0	2577.5	3285.4	4 11
7	2052.0	3278.5	2573.4	3278.3	7 "

HYDRO

RFT RESULTS -	- SAMPLE	WELL: 25/1-9									
SAMPLES ARE TAKEN IN TH	E FRIGG FORMATION										
SEGREGATED SAMPLE NO. 1	AT 2053.5 mRKB (RU	N NO. 2A)									
Chamber vol., gal.:	Chamber vol., gal.: 2 3/4										
Filling time, min.: 32											
P chamber, PSIG: 2000											
Gas vol., SCF	56.3										
Oil/cond. vol., liter:	N.A										
Oil/cond. gravity, API	N.A										
Water/Filt., liter:	0.38										
Water/Fist., ppm/Cl:	12750										
Remarks:	Drained on drillfloor. 1 gal chamber sealed and sent onshore. Filling time was 14 minutes.										
SEGREGATED SAMPLE NO. 2 AT	2056.5 mRKB (RUN NO	. 2C)									
Chamber vol., gal:	2 3/4										
Filling time, min.:	25										
P chamber, PSIG:	1650										
Gas vol., SCF:	10.3										
Oil/cond. vol., liter:	5.2										
Oil/cond. gravity, g/cc:	0.87										
Water/Filt., liter:	4.4										
Water/Filt., ppm/Cl:	13800										
Remarks:	Drained on drillfl sealed and sent on was 8 minutes.	oor. 1 gal chamber shore. Filling time									

6.5 Drilling fluids summary

36" hole section: 135 m - 221 m

This section was drilled using seawater with returns to the seabed. A 5 m^3 high viscous pill was pumped on each connection. Then 63 m^3 of 1.25 rd high viscous mud was spotted and the casing was run.

26" hole section: 220 m - 990 m

This section was drilled using prehydrated bentonite/seawater with high viscous pills pumped on every 3. connection. Got stuck at 499 m when drilling 12 1/4" pilot hole. Worked the pipe free with 1702 kN overpull. Displaced the hole to high viscous mud. Opened up to 26". Had to make one extra wiper trip due to logging problems. Displaced the hole to high viscous mud and ran the 20" casing.

17 1/2" hole section: 990 m - 1965 m

This section was drilled using a KCl/Polymer mud. Problems with tight hole were encountered from 1400 to TD. Soltex was added to plaster the formation, and this seemed to help. Logging was done with no problems. Several tight spots had to be reamed when doing wiper trip prior to running the 13 3/8" casing and the mud weight was raised to 1.24 rd. The 13 3/8" casing had to be washed down from 1915 m to 1936 m and was cemented with full returns. Left over mud was transferred to the stand-by boat. This section was drilled with a PAC-polymer/seawater fluid and the weight was kept down to a minimum, starting out at 1.08 rd. The hole was drilled to 2048 m where the coring started. Drilling proceeded to 2807 m with no severe hole problems, although tight hole was often experienced between 2020 m and 2050 m. Logging was done and the well was plugged and permanently abandoned.

(((······································		ai	113	/ 1	n u d	l p	rop	per	ties	20	Date 6/3-1	₽ 1987											
(000) Norsk Hydro	Well Mud	L: 25/: Contra	L-9 actoi	Sy r: Pl	ROMUI	n': 1 D	Boreda	ita Sa	indnes															
Date	Mid. depth m,MD	Mud dens. (SG)	PV cps	YP mPa	GEL 0 mPa	GEL 10 mPa	Ph	100 psi (cc)	HP/HT (CC)	Cl- inn/out mg/l	All Pf	kalin Pm	nity Mf	Ca++ inn/out mg/l	oil	Sol	H2O	V.G. 600 rpm	met 300 rpm	er a 200 rpm	t 11 100 rpm	15 gn 6 rpm	r. F 3 rpm	Mud type
860906 860907 860908 860909 860910	0 0 221 453	0 0 1.15 1.15	00000	00000						/200														Spud Spud Spud Spud Spud
860911 860912 860913 860914 860915	990 990 990 990 990 990	1.15 1.03 1.15 1.15 1.15	0 0 0 14	0 0 0 7	1	2	9.7	6		67000/67000	0.1	0.1	0.2	160/160		2								Spud Spud Spud Spud KCL
860916 860917 860918 860919 860920	1034 1300 1715 1940 1965	1.13 1.15 1.16 1.16 1.2	10 14 13 12 14	7 11 10 10 8	3222	4 4 4 4	10.5 9.5 9.6 9.1 9.3	6 5 5.2 6.3		68000/68000 66000/66000 64000/64000 62000/62000 63000/63000	0.1 0.1 0.1 0.1 0.1	0.1 0.6 0.4 0.4 0.3	0.1 0.1 0.2 0.3 0.3	40/40 600/600 940/940 1040/1040 980/980		3 3 3 3 5		46 44 44	33 32 30	26 25 22	19 17 17	4 4 5	333	KCL KCL KCL KCL KCL
860921 860922 860923 860924 860925	1965 1965 1974 2050 2089	1.24 1.24 1.08 1.08 1.08	14 14 10 13 15	10 10 9 10 8	2 1 2 1	4 2 3 2	9.3 9.8 9.5 9.8	7.3 5 4.9 4.2		60000/60000 22000/22000 22000/22000 23000/23000	0.1 0.2 0.1 0.1	0.4 0.3 0.4 0.6	0.4 0.6 0.4 0.6	1120/1120 400/400 400/400 400/400		6 3 3 3		48 37 46 46	34 27 33 31	23 20 25 23	19 13 15 15	5 2 2 2	3 1 1 1	KCL KCL Polymer Polymer Polymer
860926 860927 860928 860929 860930	2111 2234 2244 2319 2511	1.08 1.08 1.08 1.08 1.08	14 17 18 18 18	9 13 13 12 14	1 2 2 3 4	2 2 2 3 4	10 10 10 10.2 10.3	4 4.5 4.5 4.5 4.5	15 15 15 13	23000/23000 22000/22000 22000/22000 22000/22000 18000/18000	0.1 0.1 0.1 0.2 0.1	0.5 0.6 0.6 0.6 0.6	0.6 0.6 0.5 0.6 0.5	360/360 260/260 240/240 220/220 200/200		3 3 3 3 3		45 60 63 63 63	31 43 45 45 45	24 34 35 36 36	16 23 25 25 25	3 4 5 6	2 3 5 5	Polymer Polymer Polymer Polymer Polymer
861001 861002 861003 861004 861005	2602 2702 2723 2807 2807	1.09 1.09 1.09 1.08 1.08	18 18 17 19 19	14 12 11 13 12	3 3 3 3 3	5 5 4 5 5	9.8 9.9 9.6 10.4 10.1	4.2 3.9 4 3.9 4	13 13 14 13 13	19000/19000 19000/19000 19000/19000 /19000 /19000	0.2 0.2 0.2 0.2 0.2	0.5 0.6 0.7 0.7 0.7	0.4 0.5 0.6 0.7 0.5	200/200 220/220 220/220 /260 /260		4 4 3 4		64 60 56 64 63	46 42 39 45 44	36 33 29 35 35	26 23 20 25 24	7 6 5 6 7	6 4 3 5 4	Polymer Polymer Polymer Polymer Polymer
861006 861007 861008 861009 861009 861010	2807 2807 2807 1797 170	1.09 1.09 1.09 1.09 1.03	16 16 15 16 0	12 11 11 9 0	333	6 5 5 5	10.1 10 10.3 10.7	4 3.9 3.8 4	13 13 13	/19000 19000/ 19000/19000 19000/	0.2	0.7 0.6 1 1.2	0.6 0.6 0.9 0.9	/260 260/ 240/240 380/		4 4 4		55 54 52 50	39 38 37 34	30 30 29 27	23 22 20 19	6 7 6 7	4 4 3	Polymer Polymer Polymer Polymer Polymer
861011 861012	0	1.03	00	0																				Polymer Polymer

Table B-5 Daily mud properties

1 43

t

Table B-6 Mud consumpt	ion		Date
(((()))) System : Boredata Sar	ndnes		27/ 3-1907
Norsk Mud company: PROMUD Hydro			1
Hole size: 36			
BARITE BENTONITE CAUSTIC SODA LIME SODA ASH	(Mt) (Mt) (Kg) (Kg) (Kg)	32 24 300 100 300	
Hole size: 26			
BARITE BENTONITE CAUSTIC SODA SODA ASH Others	(Mt) (Mt) (Kg) (Kg)	101 66 900 1700	
MILTEMP SAPP WO21 MILPOLYMER 302 DRISPAC REG DRISPAC SUPERLO PERMALOSE PRO-DEFOAM	(Kg) (Kg) (Kg) (Kg) (Kg) (Kg) (Kg) (1)	50 50 1000 1275 544 590 4000 108	
Hole size: 17.5			
BARITE CAUSTIC SODA POTASSIUM CL. (KCl) POTASSIUM CL. (KCl) Brine SODA ASH SODIUM BICARBONATE SOLITEX LIQUID DEFOAMER Others:	(Mt) (Kg) (Kg) (M3) (Kg) (Kg) (Kg) (1)	110 1550 50000 400 250 400 3360 81	
PRO-DEFOAM MILPOLYMER 302 DRISPAC REG DRISPAC SUPERLO PERMALOSE	(1) (Kg) (Kg) (Kg) (Kg)	324 4225 2141 2173 3875	
Hole size: 12.25			
BARITE BENTONITE CAUSTIC SODA SOLTEX LIQUID DEFOAMER Others:	(Mt) (Mt) (Kg) (Kg) (1)	59 7 4650 3723 81	
DRISPAC REG DRISPAC SUPERLO MILPOLYMER 302	(Kg) (Kg) (Kg)	10390 5063 5475	
Hole size: 0			
BARITE Others:	(Mt)	1	
DRISPAC REG	(Kg)	69	

44 -

_

TABLE B-7 TOTAL MUD MATERIAL CONSUMPTION

Product	No. units	Size of unit
_		
Barite	303	Mt
Bentonite	97	Mt
Caustic Soda	7400	Kg
Lime	100	Kg
Soda ash	2250	Kg
KC1	50000	Kg
KCl brine	400	m ³
Sodium bicarbonate	400	Kg
Soltex	7083	Kg
Liquid defoamer	162	1
Miltemp	50	Kg
SAPP	50	Kg
W021	1000	Kg
Milpolymer 302	10975	Kg
Drispac reg	13144	Kg
Drispac superlo	7826	Kg
Permalose	7875	Kg
Pro-defoamer	432	1

U-528

ADDRESS TELEPHONE TELEX TELEFAX	KJELLERHALDN-2007 Kjeller, NorwayN-17+47 6 812560 - 813560+4774 573 energ n76 3+47 2 815553	EN 51 Halden, Norway 31 83100 35 energ n	AVAILABILITY Private Confidential		
REPORT TYPE	REPORT NO. IFE/KR/F-87/101		DATE 1987-09-07		
	REPORT TITLE		DATE OF LAST REV.		
	REPORT ON STABLE ISOTOPES (ON NATURAL GASES FROM WELL	С, Н, О) 25/1-9	REV. NO.		
	CLIENT Norsk Hydro a.s		NUMBER OF PAGES 7		
	CLIENT REF. KO 1596-00/OG-PROSJEKTTJ. ANALYSE TESTGASSER BRØNN 25	/1-9	NUMBER OF ISSUES 15		
SUMMARY		DISTRIBUTION			
See pag	87-1363 130KT. 198 REGIS TISS OLJEDIREKTOR	Hydro (8) Andresen, B. Brevik, E.M. Throndsen, T. Råheim, A.			
KEYWORDS					
	NAME	DATE	SIGNATURE		
PREPARED	BY Bjørg Andresen Einar M. Brevik	1987-09-07 1987-09-07	Bjørg Andreen Lina M. Breito		
REVIEWED	BY Torbjørn Throndsen	1987-09-07	Vort- Otwind		
APPROVED	ВҮ				

3

SUMMARY

•

The gas components $C_1 - C_4$ and CO_2 have been separated from natural gases of well 25/1-9, and the $\delta^{1\,3}C$ values of these components have been measured. The isotopic composition of hydrogen from CH_4 has also been measured.

1. INTRODUCTION

F

Two gas samples from well 25/1-9 were received and analyzed in August 1987.

On the samples $C_1 - C_4$ and CO_2 are quantified, and the $\delta^{13}C$ value is measured on methane, ethane, propane, the butanes and CO_2 and the δD value is also measured on methane.

2. ANALYTICAL PROCEDURE

The natural gases have been quantified and separated into the different gas components by a Carlo-Erba 4200 instrument. This gas chromatograph is equipped with a special injection loop in order to concentrate the samples, in the case of low concentration of the gas components. The hydrocarbon gas components were oxidized in separate CuO-ovens in order to prevent cross contamination. The combustion products CO_2 and H_2O were frozen into collection vessels and separated.

The water was reduced with zinc metal in a sealed tube to prepare hydrogen for isotopic analysis. The isotopic measurements were performed on a Finnigan Mat 251 and a Finnigan Mat delta mass spectrometer. Our δ^{13} C value on NBS 22 is -29.77 ± .06 o/oo PDB.

3. <u>RESULTS</u>

The composition of the samples are given in Table 1. The results have been normalized to 100%. The stable isotope results are given in Table 2.

Our uncertainty on the $\delta^{13}C$ value is estimated to be \pm 0.3 o/oo and includes all the different analysis step. The uncertainty on the δD value is likewise estimated to be \pm 5 o/oo.

1

Sample	IFE no.	с ₁ %	с ₂ %	с ₃ %	i-C ₄ %	n-C ₄ %	°22 %	ΣC ₁ -C ₄	$\frac{\Sigma C_2 - C_4}{\Sigma C_1 - C_4}$	$\frac{i-C_4}{n-C_4}$
34 barg	6723	95.8	2.0	0.48	0.19	0.14	1.5	98.5	0.03	1.36
35 barg	6724	95.9	1.9	0.48	0.19	0.12	1.4	98.6	0.03	1.58

<u>Table 1</u> Volume composition of gas samples from well 25/1-9

.

Table 2	2	Isotopic	composition	of	gas	samples	from	well	25/	1-9
Name and Address of the Owner, which the		-	-		-	-				-

Sample	IFE	C ₁ C		С ₂	c ₃		n-C ₄	CO ₂	
	по.	δ ¹³ C PDB	óD Smow	δ ¹³ C PDB	δ ¹⁸ 0 PDB				
34 barg	6723	-44.3	-196	-25.6	-18.3	-24.9	-21.6	11.9	- 8.6
35 barg	6724	-44.5	-206	- 25.3	-15.7	-28.7	-22.6	9.5	-12.9