RFT RESULTS
WELL: 30/9-6

Run/ Test no.	Depth (m RKB)	IHP (bar)	FP (bar)	FHP (bar)	Permeability/ Remarks
2A/1	2591.80	310.816	-9999.000	-9999.000	Seal failure
2A/2	2592.50	310.885	281.435	310.885	V good perm
$2 A / 3$	2595.50	311.229	-9999.000	311.229	Tight
2A/4	2611.50	313.160	282.424	313.181	Fair-poor perm
$2 A / 5$	2615.50	313.608	-9999.000	313.608	Seal failure
$2 A / 6$	2616.00	313.642	283.649	313.677	V good perm
$2 A / 7$	2619.00	313.987	283.832	313.987	V good perm
$2 A / 9$	2640.00	316.538	285.963	316.538	Good perm
$2 A / 10$	2643.00	316.780	286.146	316.849	V good perm
$2 A / 11$	2662.50	319.193	287.133	319.193	V good perm
$2 A / 12$	2678.00	321.041	288.548	321.020	V good perm
$2 A / 13$	2687.00	321.944	289.359	321.951	Excellent perm
$2 A / 14$	2694.00	322.813	290.058	322.806	V gd-exc.perm
$2 A / 15$	2986.00	356.776	346.173	356.824	Fair-good
$2 A / 16$	2996.00	357.927	347.122	357.962	Fair perm
$2 A / 17$	3002.50	358.734	347.954	358.803	V gd-exc.perm

All pressures from HP-gauge, units bar.
Value -9999.000 indicates missing data.

$\xlongequal[(!)]{(I)}$ HYDRO

	RFT RESULTS			WELL: 30/9-6	
Run/ Test no.	$\begin{aligned} & \text { Depth } \\ & \text { (m RKB) } \end{aligned}$	$\begin{aligned} & \text { IHP } \\ & \text { (bar) } \end{aligned}$	$\begin{aligned} & \text { FP } \\ & \text { (bar) } \end{aligned}$	$\begin{aligned} & \text { FHP } \\ & \text { (bar) } \end{aligned}$	Permeability/ Remarks
2B/1	2592.50	311.009	282.471	310.967	V good perm
2B/2	2611.50	313.256	283.395	313.208	Good perm
2B/3	2616.00	313.691	283.657	313.691	Fair-good perm
2B/4	2619.00	314.091	283.871	314.049	V good-exc. perm
2B/5	2640.00	316.552	-9999.000	-9999.000	Tight
2B/6	2640.50	316.593	285.981	316.566	V good perm
2B/7	2643.00	316.849	286.167	316.849	\checkmark good perm

All pressures from HP-gauge, units bar.
Value -9999.000 indicates missing data.
! ! IINHYRO

DST RESULTS
WELL: 30/9-6

DST \# 2
Main Flow period
Interval:
2591.5-2596.5 mRKB (2590.9-2595.9 mTVD)

Choke Size, mm(inch)
7.94 (20/64")

Oil flowrate $\mathrm{Sm}^{3} / \mathrm{D},(B / D)$ 166 (1044)
Gas flowrate $\mathrm{Sm}^{3} / \mathrm{D}$, (Scf/D) 16980 (599649)
Gas oil ratio $\mathrm{Sm}^{3} / \mathrm{Sm}^{3}$ 102.3

Oil density $\mathrm{g} / \mathrm{cc}\left({ }^{\circ} \mathrm{API}\right)$ 0.856 (33.8)

Gas density (air=1) 0.698
WHP, bar (psia)
91.4 (1326)

Flowing BH Pressure,bar (psia) 254.64 (3693)

Initial BH Pressure,bar (psia) 276.7 (4013)
WHT, ${ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right)$
18.1 (65)
$\mathrm{BHT},{ }^{\circ} \mathrm{C}$ ($\left.{ }^{\circ} \mathrm{F}\right) \quad 100 \quad$ (212)
$\mathrm{CO}_{2} \%$: 1.0
$\mathrm{H}_{2} \mathrm{~S}$, ppm
0
B S \& W (\%) 0

Separator P (bar) 35
Separator $T\left({ }^{\circ} \mathrm{C}\right) \quad 55$
Flowing time:
22 hours 16 minutes
Build up time: 20 hours 45 minutes

6.5 Mud report

36" hole

Drilled to $213,5 \mathrm{~m}$ with high viscous pills pumped on each connection. At $T D$, a $10 \mathrm{~m}^{3} \mathrm{high}$ viscous pill was circulated around prior to make a wiper trip. Back on bottom another 10 m^{3} pill was pumped around before the hole was displaced with $65 \mathrm{~m}^{3}$ high viscous mud. The $30^{\prime \prime}$ casing was then run and cemented.

17 1/2" hole

The cement, shoe $+5,5 \mathrm{~m}$ new formation was drilled with a 17 1/2" bit + 26" holeopener. Tripping in with a new bit, drilling continued to 597 m with high viscous pills on every second connection. At this stage the hole was displaced with $60 \mathrm{~m}^{3}$ of 1.20 rd mud. A wiper trip to the $30^{\prime \prime}$ shoe proved a slick hole. Drilling continued to $T D$ of the section at 970 m with high viscous pills on every connection. The hole was displaced with $120 \mathrm{~m}^{3} 1,20$ rd mud before making a wiper trip to the shoe. During this trip, no hole problems were experienced. The hole was then displaced with $150 \mathrm{~m}^{3}$ of 1,20 rd before pulling out. Casing was then run and cemented.

12 1/4" hole

Cement and shoe was drilled using seawater. While drilling new formation, the hole was displaced to $1,34 \mathrm{rd} \mathrm{KCl} / \mathrm{polymer}$ mud. Drilling continued to 1345 m where the bit was pulled. Maximum overpull of 131 kN was recorded at 1223 m .3 m fill was recorded when running back in. Drilling continued then to 1512 m where the bit was pulled.

No hole problems were encountered during the trip out. When running back in, the hole was washed and reamed from 1480 m to 1512 m . After having drilled through extremely hard silicious sandstone, the bit was pulled at $1516,5 \mathrm{~m}$. No hole problems during the trip. The next bit drilled to 1902 m and no hole problems was observed during the trip. Drilling continued to 2181 m where the ROP dropped. The bit proved to be balled up with claystone. At this stage all the processing equipment were running at their optimum to control the increasing build up of fine solids. Tight spots at $2027 \mathrm{~m}-2064 \mathrm{~m}$ and $2146 \mathrm{~m}-2181 \mathrm{~m}$ were washed and reamed through when running back in. The new bit drilled to 2400 m with occasional bit balling which was cured with a $25 \mathrm{~kg} / \mathrm{m}^{3}$ Wallnut pill. The round trip indicated no hole problems and the next two bits drilled to $T D$ at 2587 m . A wiper trip and trip out of hole at TD indicated no hole problems and the hole was logged and cased off.

8 1/2" hole

The first bit drilling the shoe, was pulled after only one metre of new hole to 2588 m . The next bit hit sand at 2593,5 m and was pulled for coring. The mud weight in this section was cut back from 1,40 to 1,21 using unweighted premix to reduce the gradual increase of solids being built up in the previous section. Coring was performed from 2604 m to 2686 m in four runs. Minor problems on trips were experienced. The hole was reamed through the coring section when running in with the next bit and then drilled to 2721 m . POOH caused no problems. Another two bit runs were necessary to reach $T D$ which was 3034 m . No problems were seen when $P O O H$. The hole was then logged and $7^{\prime \prime}$ liner was successfully run and cemented. The well was then plugged back and tested.

$\begin{aligned} & (() \\ & \text { (000) } \end{aligned}$	$\begin{gathered} \text { Mud consumption } \\ \text { System : Boredata Sandnes } \end{gathered}$	Date $14 / 10-1987$
Norsk Hydro	System : Boredata Sandnes Well: 30/9-6 Mud company: Dresser Magcobar	13

Hole size: 36

BENTONITE	(Mt)	18
CAUSTIC SODA	(Kg)	110
SODA ASH	(Kg)	100

Hole size: 17.5

BARITE	(Mt)	55
BENTONITE	(Mt)	25
CAUSTIC SODA	(Kg)	410
LIME	(Kg)	504
SODA ASH	(Kg)	80

Hole size: 12.25

BARITE		(Mt)	95
CAUSTIC SODA		(Kg)	2710
POTASSIUM CL. (KCl)		(Kg)	38984
POTASSIUM CL. (KCl)	Brine	(m3)	212
SODA ASH		(Kg)	720
SODIUM BICARBONATE		(Kg)	860
PAC POLYMER REG		(Kg)	3613
PAC POLYMER SUPER		(Kg)	3643
XANTAN POLYMER		(Kg)	538

Hole size: 8.5
BARITE
CAUSTIC SODA
GYPSUM

(Mt)	24
(Kg)	40
(Kg)	1605
(Kg)	222
(Kg)	3152
$(\mathrm{~m} 3)$	65
(Kg)	2476
(Kg)	1975
(Kg)	932
(Kg)	278

Hole size: 1
BARITE
GYPSUM
SODIUM BICARBONATE
(Mt) 3
SODIUM BICARBONATE
(Kg) 409

PAC POLYMER SUPER
(Kg)452

LIME
(Kg)
(Kg)222

POTASSIUM CL. (KCl)

Brine
(Kg)
65
SODIUM BICARBONATE
(Kg) 1975
PAC POLYMER SUPER
XANTAN POLYMER
(Kg)
278
BARITE
GYPSUM
SODIUM BICARBONATE
PAC POLYMER SUPER
(Kg) 358

Hole size: 2

POTASSIUM CL. (KCl)	(Kg)	3132
POTASSIUM CL. (KCl)	(Krine	$(\mathrm{m} 3)$
PAC POLYMER SUPER	(Kg)	558

