ROBERTSON RESEARCH INTERNATIONAL LIMITED

REPORT NO. 6248/Ic

PETROLEUM GEOCHEMISTRY OF THE NORSK HYDRO 7321/8-1 BARENTS SEA WELL: MATURITY AND KEROGEN TYPE OF THE INTERVAL

580m TO 3450m

Ъу

A.G. COLLINS

88-0204-BA 02 FEB. 1988 REGISTRERT OLJEDIREKTORATET

PROJECT NO. RRPC/878/Ic/25564

NORSK HYDRO CONTRACT NO. K01497/OG-U & FoU

. . .

٤

Prepared by Robertson Research International Limited Llandudno Gwynedd LL30 ISA United Kingdom Prepared for: Norsk Hydro a.s. Kanebogen N-9400 Harstad Norway

JANUARY 1988

2 INTRODUCTION

This report presents the results obtained from spore colouration, vitrinite reflectivity and visual kerogen type analysis of ditch cuttings, conventional core and sidewall core samples from the interval 580m to 3450m in the Barents Sea 7321/8-1 well. The work was submitted by Norsk Hydro, Harstad, under Contract No. K01497/0G-U & FoU. The analysis of one sample for total organic carbon and Rock-Eval pyrolysis was agreed with Norsk Hydro during the course of the project.

The group of samples comprised 23 unwashed, wet ditch cuttings, 5 pieces of conventional core and 47 sidewall cores, and were received at Robertson Research International's North Wales laboratories during the month of October, 1987. Preliminary results were sent to Norsk Hydro on 10th November (telex) and 2nd December, 1987 (facsimile message). The analyses carried out are as follows:

No. of samples

Sample preparation	75
Kerogen preparation	73
Spore colouration	37
Vitrinite reflectivity	37
Visual kerogen typing	37
Total organic carbon	1
Rock-Eval pyrolysis	1

Insufficient sample material was available to carry out kerogen preparation on sidewall cores at 1915.3m and 2813m.

Robertson Research personnel involved in the study were:

Alan Collins	-	Project co-ordination, spore colour/kerogen microscopy and
		report writing
Jacqui Milner	-	Vitrinite microscopy
Neil Owen	-	Supervision of chemical analysis
Malcolm Jones	-	Supervision of kerogen preparation

. 1

WELL: 7321/8-1

LOCATION: BARENTS SEA

SAMPLE DEPTH	SAMPLE	GENERALISED	SPORE COLOUR	VITRINITE	KEROGE (by micr	N COMPOSI oscopic exam	TION (%) inetion)	(by c	ROGEN CON alculation fro	POSITION (m pyrałyst d	%) ata)
(METRES)	TYPE	LITHOLOGY	INDEX (1 - 10)	R oil av X	INERTINITE	VITRINITE	SAPROPEL	INERTINITE	VITRINITE	ALGAL SAPROPEL	WAXY SAPROPEL
580	Swc	MDST, med-dk gy		.50(9) .26(1)L .67(3)R .85(20)R							
615	11	MDST, med-dk gy		.46(8) .22(6)L .69(17)R .97(9)R							
825	Ctgs	MDST, med-dk gy + 30% CMT		.58(10) .80(14)R L.02(14)R I.30(14)R							
905	*0	SLTST, med-dk gy + 20% SST, v lt gy+ tr pyr		.59(5) .45(3)C .93(9)R 1.17(4)R							
920	n	SLTST, med-dk gy + 10% SST, v lt gy	6.5		15	75	10				
975	u	SLTST, med-dk gy + 20% SST, v 1t gy+ tr pyr		.59(29) .46(4)L .74(8)R 1.04(13)R							
1020	ti -	SLTST, med-dk gy + 10% SST, v 1c gy+ tr pyr		.62(15) .44(14)C .75(11)R							
1132	Swe	SLTST, med-dk gy + 10% SST, v 1t gy		.65(41) .47(6)L .91(5)R 1.22(3)R							
1201	••	SLTST, med-dk gy		.74(18) .58(9)L .92(6)R l.10(6)R							-
1380	Çtgş	SLTST, med-dk gy + 10% SST, v 1t gy+ Gnr SLTST, gy-red	7.5		5	20	75				
1390	n	SLTST, dk gy+ 10% SST, v 1t gy + mnr SLTST, gy-ræd	7.5		10	30	60				
1400	"	SLTST, dk gy+ mor SST, v lt gy + mnr SLTST, gy-red	8.0		10	25	65				
1410		SLTST, dk gy+ cr LST, v lt gy	8.0		10	35	55				
1415	"	SLTST, dk gy+ tr SST	8.0		10	35	55				
1420	e.	SLTST, dk gy+ tr SST	7.5 - 8.0		10	55	35				
1425	"	SLTST, dk gy+ tr SST	8.0		15	55	30		1		
1430	'n	SLTST, dk gy+ tr SST	8.0		` 10	60	30				
1435	an 1	SLTST, dk gy+ tr SST		.77(24) .42(1)C .94(11)R 1.17(17)R							

Maturity and Kerogen Composition Data

TABLE 1A

Ì

ł

Survey and

WELL 7321/8-1

LOCATION BARENTS SEA

SAMPLE DEPTH	SAMPLE	GENERALISED	SPORE COLOUR		E KEROGEN COMPOSITION (%) (by microscopic examination)		KEROGEN COMPOSITION (%) (by calculation from pyrolysis data)			(i) ats)	
(METRES)	TYPE	LITHOLOGY	INDEX (1 10)	R out av %	INERTINITE	VITRINITE	SAPROPEL	INERTINITE	VITRINITE	ALGAL	SAPROPEL
1470	Core	SLTST, dk gy		.77(8) .94(21)R 1.21(19)R							
1479	*1	SST, dk gy+ 20% SST, yel-gy		.75(6) .59(3)L .98(20)R 1.32(24)R							
1481	••	SST, lt ol-gy+ 40% COAL	7.5 - 8.0	.69(22) 1.24(13)R 1.55(5)R 2.11(2)R	50	40	LO				
	₽	COAL		.68(8) 1.21(30)R 1.75(9)R 2.16(5)R							
1500	Çore	SST, it ol-gy+ 20% COAL+ tr pyr		.77(24) .67(3)L .92(26)R 1.21(2)R							
1527	ıt	SST, lt ol-gy+ tr SST, med gy		.92(17) .68(3)L 1.12(25)R 1.32(8)R					1		
1545.5	Swc	SND+ 10% CLYST, med gy		.90(11) .67(15)L 1.06(7)R 1.27(16)R							
1623	**	CLYST, med-dk gy		.97(1) 1.15(6)R 1.39(15)R	· .						
1810	14	SST, v lt gy+ 10% CLYST, bra-gy		.93(3) .58(1)L 1.15(4)R 1.34(11)R			:				
1830.8	"	SLTST, aed gy	8.0		60	35	5				
1850.9	n	SLTST, med-dk gy	8.0 - 8.5		40	60	Mnr				-
1915.3	11	SLIST, lt ol~gy									
1942.3	4	COAL+ tr SST	7.5 - 8.0		10	90	Mnr				
2117.4	и	SLTST, dk gy	7.5 - 8.0		5	95	*				
2141.2	11	SLTST, dk gy	8.0 - 8.5		5	70	25				
2158.2	"	SH, dik gy	8.0 - 8.5		5	85	10				
2184.5	11	SH, dk gy	8.0		5	90	5				
2213.7	11	SLTST, med-dk gy		1.15(3) 1.35(9)R 1.63(19)R							
2229.1		SLIST, dk gy	8.5		Mnr	90	10				
2276.8		SLTST, dk gy+ tr SST	8.0		15	80	5			1	
2295	••	SLTST, dk gy		1.13(6) 1.31(8)R 1.55(16)R							
2429	"	SLTST, dk gy		1.09(1) 1.49(2)R							
2520	''	SST, lt ol-gy		L.23(13) .90(L)L 1.61(36)R							

Maturity and Kerogen Composition Data

TABLE IB

COMPANY NORSK HYDRO

•

WELL: 7321/8-1

LOCATION. BARENTS SEA

SAMPLE DEPTH	SAMPLE	GENERALISED	SPORE COLOUR	VITRINITE	KEROGEN COMPOSITION (%)		TION (%)	KEROGEN COMPOSITION (% (by calculation from pyrolysis de			ý) atal
(METRES)	TYPE	LITHOLOGY	INDEX (1 10)	REFLECTIVITY	INERTINITE	VITRINITE	SAPROPEL	INEATINITE	VITRINITE	ALGAL SAPROPEL	WAXY SAPROPEL
2520	Ctgs	SLTST, dk gy+ 20% SST, lt ol-gy		1.23(7) .83(2)L 1.53(10)R 1.97(25)R							
2582.5	Swc	SST+ 10% CLYST, med gy	8.5		20	75	5				
2600	Ctgs	SLTST, dk gy+ 40% SST, v lt gy		1.39(17) 1.08(4)C 1.68(23)R 1.97(5)R							
2634	Swe	SST, v lt gy+ mor SLTST, dk gy	8.5		75	25	Mnr				
2650	**	SLTST, med-dk gy + mnr SST, v lt gy	8.0 - 8.5		35	65	Mnr				
2662	11	SLTST, dk gy	8.5		40	55	5				
2681.5	tr	SST, v lt gy+ 10% SLTST, dk gy sndy	*		80	20	*				
2685	71	SLTST, dk gy+ 10% SST, v lt gy	8.0 - 8.5		70	20	10				
2690	••	SLTST, dk gy	8.5 - 9.0		30	65	5	:			
2700	Ctgs	SLTST, dk gy+ 20% SST, v it gy		1.20(18) .92(7)C 1.63(28)R 2.18(2)R							:
2719	Swc	SLTST, dk gy	8.5		50	45	5				
2750	Ctgs	SLTST, dk gy+ 30% SST, v lt gy		1,33(34) .90(7)L 1,86(12)R							
2759	Swc	SST, v lt gy+ 10% SLTST, dk gy	8.5		50	50	Mar				
2778	It	SLTST, dk gy+ tr SST, v lt gy	8.5 - 9.0		15	75	10				
2800	Ctgs	SST, v lt gy+ 30% SLTST, dk gy		1.30(13) 1.08(3)L 1.63(32)R 2.02(6)R							
2813	Swe	SLTST, dk gy+ mnr SST, v lt gy									ļ
283U	t e	SLTST, dk gy+ tr SST, v lt gy	8.5 - 9.0		20	70	10				
2850	Ctgs	SST, v lt gy+ 30% SLTST, dk gy		1.32(27) .95(3)C 1.70(20)R 2.05(3)R							
2900	ŧ	SLTST, dk gy+ 20% SST, v lt gy		1.43(19) 1.09(6)L 1.81(29)R 2.43(1)R							
2910	Swc	SLTST, dk gy+ 20% SST, v it gy	8.5 - 9.0		25	70	5				
2950	* u	SLTST, dk gy+ mnr SST, v lt gy		1.44(7) 1.09(3)L 1.80(25)R 2.35(20)R						-	

Maturity and Kerogen Composition Data

TABLE IC

WELL. 7321/8-1

LOCATION: BARENTS SEA

SAMPLE DEPTH	SAMPLE	GENERALISED	SPORE COLOUR	VITRINITE	KEROGI (by micr	N COMPOSI Oscopic exem	TION (%) mation)	KEI (by ci	ADGEN CON Aculation fro	POSITION () m pyrolysis di	6) Ata)
(MEIKES)	TYPE		100 EX (1 10)	R ail av %	INERTINITE	VITRINITE	SAPROPEL	INERTIAITE	VITRINITE	ALGAL SAPROPEL	SAPROPEL
3000	Swc	SLTST, dk gy+ mnr SST, v lt gy		L.39(8) 1.07(1)L 1.80(34)R 2.42(10)R							
3063		SLIST, dk gy+ mnr SST, v lt gy		L.68(6) L.34(2)L 2.30(25)R 2.87(9)R							
3100	11	SLTST, dk gy+ mnr SST, v lt gy	9.0	1	25	65	10				
3150	н	SLTST, dk gy+ 10% SLTST, v 1t gy, sndy		1.66(11) 1.16(1)L 2.05(28)R 2.47(15)R							
3200	11	SLTST, dk gy+ mar SLTST, v it gy, sndy		1.76(7) 1.28(12)L 2.23(27)R 2.71(9)R							
3269	••	SLIST, dk gy	9.0		Mar	10	90				
3302	28	SLTST, dk gy	9.0		Mor	10	90				
3351	11	SLTST, gy-blk+ tr SST		1.87(5) 1.36(2)L 2.66(18)R						·	
3366	**	SLTST, dk gy	9.0 - 9.5	7	5	10	85				
3373	**	SLTST, dk gy+ manr SST, med gy	9.0		10	10	80				
3396		SLTST, dk gy+ tr SST, med gy	9.0 - 9.5		10	10	80				
3397		SLTST, dk gy+ 20% SLTST, med-lt gy, sndy		1.80(7) .85(1)L 2.22(12)R 2.78(6)R							
3400	Ctgs	SLTST, dk gy+ 10% SST, v 1t gy		1.81(7) 2.80(8)R							
3450	4	DOL, b1k+ 10% SLTST, dk gy+ i0% SST		1.77(7) 2.72(12)R 4.16(4)R							
		•								1	
	1										

Maturity and Kerogen Composition Data

TABLE 1D

Depch	80 X	SCI	Palynomorphs	Vitrinite	Inertinite	Amorphous	Amorphous	Outicle	Revorked	Caved
(metres)						(liptinitic)	(hmic)			
580	0.50									
615	0.46									
825	0.58									
905	0.59			~						
920	0.59	0.0	10	.30	15	Mar	45	Mar	*	MDE
1020	0.62									
1132	0.65									
1201	0,74		•• .				••			
1380		7.5	MD2*	10	5	75	10	*	*	Maar
1400		8	5	15	10	60	10	*	*	*
1410		8	5	15	10	50	20	*	*	*
1415		8	5	15	10	50	20	*	*	Mor
1420		/. .>~8	10	20 30	15	.30 20	35 25	Mar	*	*
1430		8	10	15	10	20	45	*	*	*
1435	0.77									
1470	0.77									
1479 1481 (kan)	0.75	7.5-8	10	40	50	*	*	*	Most	*
1481 ("cos1")	0.68									
1500	0.77									
1527	0.92									
1593.3	0.90									
1810	0.93									
1830.8		8	5	35	60	*	*	*	*	*
1850.9		8-8.5	Marc	60	40	*	+	*	*	*
1915.3	-		-	~	-	-	-	-	:	
2117.4		7.5-8	*	90	5	*	*		*	Â
2141.2		8-8.5	10	70	5	*	*	15	*	*
2158.2		8-8.5	10	70	5	*	15	*	*	*
2184.6		8	5	90	5	*	*	*	*	*
2213.7	1.13	8.5	10	75	More	*	15	*	*	*
2276.8		8	ŝ	70	15	*	10	*	*	*
2295	1.13									
2429	1.09									
2520(SNC) 2520(ctor)	1.23									
2582.5	1,4	8.5	5	75	20	*	*	*	*	*
2600	1.39			-						
2634		8.5	Mar	25	75	*	*	*	*	*
2050		8.5	ene s	55	35 60	*	*	*	*	*
2681.5		*	*	20	ãõ	*	*	*	*	*
2685		8-8.5	10	20	70	*	*	*	*	*
2690	1 20	8.5-9	5	65	35	*	*	*	*	*
2700	1.20	85	5	60	50	*	5	*	*	*
2750	1.33	0.5		~			-			
2759		8.5	Mnr	50	40	*	10	*	*	*
2778	1 20	8.5-9	10	75	15	*	*	*	*	*
2800	1.30	-	_	_	-	-	-	-	_	-
2830		8.5-9	10	70	20	*	*	*	*	*
2850	1.32									
2900	1.43						•	_		•
2950	1.44	0.3-9	2	70	В	•	*	•	~	
3000	1.39									
3063	1.68	• • •								
3100	1 44	• 9 •	10	65	25	*	*	*	*	*
3200	1.00									
3269		9	5	Mar	Mor	85	10	*	*	*
3302		9	5	5	Mar	85	S	*	*	*
3351	1.87		u	-	-	~	10	+		-
3373		y -9.) a	Mar	5 Mare	5	30 90	10	*	*	*
3396		9-9.5	Mnr	Mine	10	80	10	*	*	*
3397	1.80						_			
3400	1.81									
J4DU	1.77									

ł

TABLE 2 Detailed Kerogen Composition Data

APPENDIX 1 ABBREVIATIONS USED IN ANALYTICAL DATA SHEETS

a/a	-	as above	MDST	-	audstone
Ac	-	acritarcha	ned	-	nedium
ADD	-	mud additive	MET	-	metamorphic tocks
11	-	algae	nic	-	Bica/micaceous
10	_	areac	micr.	-	micricic
28.2	_		ata ata	_	minere)
AND	-	abgular		,_	
And	-	annydrite		-	aluor
aren	-	arenaceous	200	-	moderate
arg	-	argillaceous	TT	-	BOLLING
BAS	-	basalt	<u>n</u>	-	normal
bd	-	bedded/bedding	NA	-	not available
B(IT)	-	bitumen/bituminous	nod	-	nodule/nodular
b1	-	blue	NS	-	no semple
bld	*	bleached	000	-	occasional
bik	-	black	01	-	olive
bri	-	brillient	001	-	polític
bra	-	brown	orng	-	orange
calc	-	celcareous	05	-	oil stain
CALT	-	calcita	2	-	nicked lichology
carh	-	carbone cone		-	nale
CON	_		25	_	nhytene
	-	constants	ru eek	-	alab
	-		pak	-	
	-	chert	por	-	porous/porosicy
CLYST	-	claystone	22	-	purpie
CIMT	-	cement	PT	-	pristane
Сотр	-	composite	pred	-	predominantly
cts	-	COATES	Prt	-	present
CSG	-	casing point/shoe	PTR/pyr	-	pyrite/pyritic
Ctgs	-	ditch cuttings	QT2(T)	-	quertz(1te)
Cu	-	cuticle	Re	-	resin
C(vd)	-	caved	R(ev)	-	reworked
decarb	-	decarbonated	rnd	-	round(ed)
Df	-	dinorvete	Seo	-	sapropel
dle	-	dark	shng	-	subangular
DIT	_	datavita	ehrd	-	subrounded
DE1 / 4-1	-	dorette	2014	-	seeve aslout feder
1-1-	-	GOLOMICE/GOLOMICIC	301	-	spore colour index
dex	-	dusky	SI	-	
E x	-	exinite	sit	-	1108
Exs	-	exsudatinite	\$ 8	-	shale
extr	-	extracted	shly	-	shaly
£	-	fine	sil	-	siliceous
fel	-	feldspathic	ska	-	slickenside surface
fer	-	ferruginous	SLA	-	slate
flu	-	fluorescence	SLT(ST)	-	<pre>silt(stone)</pre>
fm	-	formation	slty	-	silty
foss	-	fossils/fossiliferous	SND	-	sand
fr	-	frishle	sndy	-	sandy
free	-		Sp	-	SBOTES
frage			SST	<u> </u>	sendatione
Pm	-	t segmente e		_	stained
ru ata(-	LUBICE		-	
erc/ arc	-	Siauconite/ Slauconitic	SLAS	•	SLIWARS
gn .	-	green	suc	-	SUCFORIC
gra	-	graded/grading to	SULL	-	SUTIACE
grns		grains	SWC	-	Side Vall Core
8 7	-	grey	TD	-	total depth
GTP	-	SADens	TOC	-	total organic carbon
HAL	-	halite	tr	-	trace(s)
hd	-	hard	tras	•	transparent
hor	-	horizontal	v	-	very
H(RV)	•	high reflecting vitrinite	vet	-	variegated
1-	-	isom	Vic	→	vitrinite
Ŧ/ħ	-	(nter-hedded	VD.	-	vein
101	_		VOLC	_	volcenic Tocks
100	_	tgadous rocks	1/2	_	viewinite reflectivity
Tac Taxat	-		**	-	white
THELC	-	laertinife	VAL	-	======================================
140	-	Laminae/idminated	XIN	-	CCYSCALLIDE
LCM	-	lost circulation material	yei	-	Aerrow
LIG/Lig	-	lignite/lignitic			
lns	-	lens(es)	-	-	no analysis carried out
L(RV)	-	low reflecting vitrinite	*	-	analysed but no data obtain
lst		limestone	gy-gn	-	greyish green
It	-	light	gy/gn	-	grey-green (gradation)
2256	-	massive	28-27	-	greenish grey
			Q Q2		• • ·

2

Note: (Maturity data tables only). Number in brackets refers to number of reflectivity values averaged to give quoted result. Preferred values for indigenous phytoclasts are listed first.

APPENDIX 2

ANALYTICAL PROCEDURES AND TECHNIQUES

This appendix summarises the main steps in the analyses carried out in the Robertson Research International Ltd. petroleum geochemistry laboratories. Analytical pathways are shown on the flow chart (Appendix Figure 1) and details of laboratory procedures and techniques are given in the text. These may in certain circumstances be adapted to suit particular samples or conditions. Interpretation guidelines are also defined.

1. Sample Preparation

General

Samples are received into the laboratories in the forms of well-site canned ditch cuttings, bagged ditch cuttings in various stages of preparation from wet, unwashed to dried, washed; sidewall cores, conventional cores, outcrop samples, crude oil samples and gas samples. Each sample is assigned a number which is entered into a computer system to monitor sample selection and progress. Preparation techniques are directed towards obtaining clean samples, free of drilling mud and mud additives, obvious caving contamination and indeterminate fine material. Washing with cold water is standard but further washing with solvent (dichloromethane, DCM) is carried out if oil-based mud is present, after which samples are dried, described and individual lithologies band-picked where practicable. Samples are rough crushed to approximately pee-sized fragments for kerogen preparation or finely milled for chemical analysis.

Kerogen Preparation

Kerogen concentrates for microscopic examination and elemental analysis are prepared using standard palyhological procedures but omitting oxidation or acetolysis. Acid maceration involves the use of hot hydrochloric acid (HCl) to remove carbonates and hot 60% hydrofluoric acid (MF) to remove or break down silicates. Mineral residues are separated from the kerogen by a combination of ultrasonic vibration and sinc browide flotation. Merogen samples for spore calour and kerogen typing are mounted on glass slides in glycerin jelly, those for vitrinite reflectivity are dried and mounted in epoxy resin. Kerogen residues are stored in methanol.

2. Macurity Evaluation

The techniques employed for interpreting maturity and thermal history in these laboratories are based mainly on spore colouration and vitrinite reflectivity measurement, supplemented by data obtained from airapace gas and gasoline analysis, pyrolysis Tmax, and hydrocarbon analysis including gas chromatography and gas chromatography-mass spectrometry.

Spore Colouration

Sporomorph colour is assessed using a >20µ sieved kerogen fraction viewed in transmitted light on a standard pelyhological microscope. Unusual hues are checked using incident blue/UV light fluorescence. Measurement is made by eye against reference sets of single grain spore mounts and trained operators achieve a high degree of accuracy and teproducibility. The 1 to 10 Spore Colour Index (SCI) scale was designed for linearity with increasing depth and temperature and correlates approximately with the following zones of oil generation: 1.0 to 3.5, immature; 3.5 to 5.0, early mature, generation of low gravity oils (28 to 35 "API); 5.0 to 7.0, middle mature, generation of medium gravity oils (35 to 42"API); 7.0 to 8.5, late mature, generation of light oils (>42"API) and condensates; 8.5 to 10, post mature, generation of condensate, wet gas and, ultimately, dry gas. Linearity of scale is of great value in prediction, by extrapolation, of the depth to any part of the oil generation sequence. The value of SCI measurement lies in the objective selection of measured grains, so minimising problems of caving and reworking, and in its more direct correlation against oil generation than vitrinite reflectivity measurement. Limitations in its use concern the difficulty of correlation against other colour scales and the insensitivity of the scale in the late to post mature region. Anomalous colours may result from bleaching or staining during deposition and diagenesis. The correlation of SCI against Thermal Alteration Index (TAI) given on the SCI versus depth plot in the reports was made by direct comparison of Staplin's standard slides with SCI standard slides.

Vitrinite Reflectivity

The majority of preparations examined under reflected light in these laboratories are made using >20µ sieved kerogen, mounted in resin blocks and polished with carborundum and alumina although total kerogen may be used when sample size is

limited. Picked coals, organic-rich shales or limestones containing solid bitumen are mounted directly in resin blocks and polished in the usual way. Measurement is made on a Leitz Orthoplan microscope fitted with an MPV Compact photometer which feeds values direct to a desk top computer for data processing from each sample. The system is calibrated against glass standards and reflectance values are expressed as arithmetic means of measurements taken in oil immersion (R_0 or $R_{m oil}$). R_{max} and R_{min} may be measured and quoted in certain circumstances but the difference is insignificant below about R_0 1.0%. Some operator selection of particles during measurement is essential and obvious contaminants or non-vitrinitic material are noted but not necessarily quoted. The value quoted on data tables is that which is interpreted as most appropriate, but other possibilities may also be given. Plotted figures assume a logarithmic increase of reflectance with depth. R_0 0.5% is a widely accepted threshold value for the onset of oil generation, although as the kinetics of oil generation may not be identical to those of vitrinite reflectivity development this must be seen only as a general guide. The floor for oil generation is characterised by a reflectance value of about 1.3%. Wet gas generation peaks at a value of about 1% and ceases at the 2% level. Dry gas generation peaks at a reflectance of about 1.5% and ceases at the 3% to 4% level. Correlation of reflectance values with other maturity perameters may not be universal because of time-temperature factors and is best made on a local basis.

Reflectivity measurement is a widely used and versatile tool which may be readily calibrated against easily obtained standards. It is applicable over a wide range of maturity stages from immature to post mature (0.2% to 5% $R_{_O}$). High surface intercepts on plotted figures and discordances at faults and unconformities can give realistic estimates of the amount of section missing. It is of limited value in Early Palaeozoic sections where land plant material is absent. although a general guide to maturity may be obtained from chitinous organic matter. Even a skilled operator may have difficulty in distinguishing indigenous vitrinite from some forms of inertinite, anomalously reflecting "pseudovitrinite", cavings and reworked fragments.

Airspace Gas Analysis

Wet cuttings are collected at the well site and sealed in partly full cans containing bectaricide. In the laboratory, the airspace (headspace) gas is extracted using a can piercer fitted with a septum and analysed by gas chromatography. The proportions of methane, ethane, propane, <u>iso</u>- and <u>n</u>-butane are calculated from integrated peak areas by comparison with a standard mixture of these gases. Methane is the dominant gas in immature and post mature sediments, comprising 90-100% of total gas, falling to 30-70% in mature sediments. The onset of maturity for oil generation (SCI 3.5) is characteristically marked by an increase in wet gas ($C_2 \sim C_4$) to between 10 and 20% with further increases in maturity indicated by a decrease in the ratio of <u>iso</u>- to <u>n</u>-butane. Ratios of >1.0 are typical for immature sediments and <0.5 are usual in mature sediments. Departures from composition versus depth trends may be useful in indicating migrant gas at faults, unconformities or reservoir rocks but limit the method as a reliable maturity indicator. Airspace gas analysis is an inexpensive and rapidly executed method of screening samples for further maturity and hydrocarbon content determinations.

Gasoline Analysis and Cuttings Gas Analysis

Cuttings samples received wet, preferably in sealed containers, are suitable for gasoline and cuttings gas analysis. A portion of the washed cuttings sample is retained wet, pulverised in a sealed shaker and warmed to expel the C_1 to C_7 hydrocarbon components into the shaker airspace. A sample of this airspace gas is then removed and analysed by gas chromatography either for cuttings gas $(C_1 \text{ to } C_4)$ or gasolines $(C_4 \text{ to } C_7)$. Up to 28 hydrocarbon components are identified in the C_4 to C_7 range and their relative proportions calculated from integrated peak areas with reference to standard mixtures. Immature source rocks yield low total abundances and limited numbers of components whereas mature source rocks usually contain a full complement of identified hydrocarbons with the onset of maturity indicated by a rapid rise in total gasoline abundances with depth. Anomalous amounts of gasolines may mark the presence of oil stain. Gasolines may be used in oil to oil or oil to source rock correlations but the concentration of some of the measured components is not only a function of source but also depends on maturity, migration and alteration in the reservoir. Using the most stable compounds, pairs with similar chemical structure and boiling points are reduced to pair ratios and compared with the same pair ratios in other oils or possible source rocks. Gasoline analysis is a valuable tool in that it measures directly the hydrocarbons being generated from a sediment but its sensitivity in detecting traces of oil places constraints on its use as a maturity indicator.

Rock-Eval Pyrolysis, Gas Chromatography (GC) and Gas Chromatography-Mass Spectrometry (GC-MS) in Maturity Analysis These three analytical processes measure parameters which are functions of both maturity and kerogen type. Data from them may give a general guide to maturity but if the kerogen types are known, more specific conclusions may be drawn. From Rock-Eval data, the temperature of maximum rate of pyrolysis, Tmax, is the most useful datum; gas chromatograms of alkanes, separated from source rock extracts or oils, yield carbon preference indices (CPI) and isoprenoid ratios; GC-MS quantitative fragmentograms provide abundance ratios for specific compounds which are particularly useful in assessing the level of maturity at which source rock hydrocarbons or oils have been generated. All these supplementary data may be used to confirm results from visual analysis or supplant them if poor or unavailable.

3. Source Rock Evaluation

Total Organic Carbon Content (TOC)

Organic carbon values are obtained by treating 0.1g of crushed rock sample with hot, concentrated HCl to remove carbonates. The washed residue is filtered on to a glass fibre pad and ignited in a Leco carbon analyser. For screening purposes, samples are analysed singly but where further analyses, such as pytolysis or solvent extraction are anticipated, a duplicate sample is run. Blanks and standards are run as routine and where values from duplicated samples do not concur within strict accuracy limits, they are rerun. Where samples are heavily stained with oil, either from natural deposits or drilling mud, TOC is repeated on the dried, solvent extracted sample.

TOC measurement is fundamental in assessing source rock quality since when combined with kerogen type and maturity, a full description of the potential to generate oil may be given. It is found in practice that sediments containing less than 0.3% TOC are unlikely to have any source potential, those containing between 0.3% and 1% may be marginal sources but the better quality sources contain in excess of 1% TOC. Screening by TOC is therefore an inexpensive and rapid method of selection of samples for further analysis in source potential evaluation.

Rock-Eval Pyrolysis

Pyrolysis data are obtained using the IFP-Fina Rock-Eval apparatus. 100 mg of crushed, whole rock either from bulk sample or picked lithology is weighed accurately into a crucible and introduced into a furnace at 250°C. Free hydrocarbons (roughly equivalent to solvent extractable hydrocarbons) are volatilised and quantified by flame ionisation detector (FID) to give Peak 1 (S_1 , ppm). The furnace temperature is increased to 550°C at 25°C/minute and within this range, kerogens crack to give hydrocarbons, measured by FID to give Peak 2 (S_2 , ppm) and carbon dioxide, measured by thermal conductivity detector (TCD) to give Peak 3 (S_3 , ppm). The temperature at the maximum rate of avolution of cracked volatiles (Tmax) is measured automatically but can also be monitored visually. The instrument is calibrated daily using standards both at the beginning of the work period and at regular intervals thereafter and crucible blanks are run as routine. The tabulated data in reports comprise the following parameters:

Tmax *C

- comperature of maximum rate of Peak 2 hydrocarbon evolution.

Hydrogen Index (HI) - S₂/TOC (mg/g) or ratio of released hydrocarbon to organic carbon content. This is a measure of the hydrocarbon generating potential remaining in the karogen as opposed to that of the whole rock.

Oxygen Index (OI) - S3/TOC (mg/g) or ratio of released carbon dioxide to organic carbon content.

Production Index (PI)-- S₁/S₁+S₂, or ratio of the amount of hydrocarbons released in the first stage of heating to the total amount of hydrocarbons released and cracked during pyrolysis.

Potential Yield (PY) - S2 (ppm) or total of hydrocarbons released during cracking of kerogen compared to original weight of rock.

Tmax, hydrogen index and oxygen index are each functions of both maturity and kerogen type. Using published and empirical data, it has been possible to assemble a model to show the relationships of these factors to maturity as measured by spore colouration and vitrinize reflectivity for a selection of pure kerogen types. The kerogen types used are algal sapropel (type I), waxy sapropel (type II), vitrinite (type IIIA) and inertinize (type IIIB) and a computer program has been devised by which the amounts of these components may be calculated from the HI, OI, Tmax and maturity

data for any sample. These are the values expressed in the "kerogen composition by calculation" columns tabulated in the reports.

The hydrogen index is a measure of the hydrocarbon generating potential of the kerogen and is analogous to the atomic H/C ratio. Immature, organically rich source rocks and oil shales give values above 500, mature oil source rocks give values between 200 and 550. For a given kerogen type, these values progressively diminish with increasing maturity.

The temperature of maximum rate of pyrolysis depends partly on the kerogen type but the transition from immature to mature organic matter is marked by temperatures between 415° and 435°C. The maturity transition from oil and wet gas generation to dry gas generation is marked by temperatures between 455° and 460°C. In practice, greater variation than these ideal temperature ranges may be seen, but they are nevertheless useful as general guides to the level of maturity attained by the sediment.

The production index increases with maturity from values near zero for immature organic matter to maximum values of 0.15 during the late stages of oil generation. Anomalously high values indicate the presence of oil or contaminants. The potential yield is an indication of the predicted yield of hydrocarbons from the source rock at optimum maturity and is a measure of the quality of the source rock. For immature sediments, values of 0 to 2000 ppm of hydrocarbon characterise a poor source rock, 2000 to 6000 ppm fair, 6000 to 20 000 ppm good and above 20 000 ppm vary good.

Pyrolysis techniques have in recent years provided a major advance in the assessment of source rock quality and generating potential. Hydrocarbon yields from immature source beds examined on-structure may be translated into actual oil productivity from the same beds in mature basinel, off-structure situations. Models relating maturity and kerogen type may be used to define original source rock quality grades which are of great value in mapping organic facies. Amorphous kerogen types, indistinguishable in microscopic preparations over a wide range of chemical properties, may be readily differentiated by pyrolysis. The problem of analysing bulk samples containing mixed kerogens has been largely overcome by the kerogen type/maturity model and anomalous results arising from the presence of caving contamination and drilling mud additives can usually be explained by imspection. High oxygen indices sometimes occur as a result of the presence of metastable carbonates and in such cases the sample is acid decarbonated and re-run.

Visual Examination of Kerogen Concentrates

All palynological preparations on which SCI determinations are made are also examined for kerogen type. Visual estimations of the relative abundance of the broad groups vitrinite, inertinite and sapropel are made on the total kerogen slide mount but reference is also made to the >20µ sieved fraction to assist in identification. The scheme of identification is shown in Appendix Table 1. Full use is made of incident blue or UV light in distinguishing immature or early mature oil-prone kerogen from gas-prone kerogen.

Extract Analysis

The soluble organic materials present in rocks can be extracted with organic solvents, fractionated and analysed. The type and amount of material extracted depends largely upon the nature of the contained kerogen and its maturity, although the presence of migrant oil or drilling contamination may be the determining factors.

A maximum of 40g of crushed sample is extracted for a minimum of 12 hours in a Soxhlet apparatus using laboratory redistilled DCM. The solvent and the more volatile components (approximately up to $\underline{n}-C_{15}$) are lost by evaporation in an air flow and the resulting total extract is weighed, dissolved in hexane and separated into alkane (saturate) hydrocarbon, aromatic hydrocarbon, resens and asphaltene (polar) fractions by silica adsorption chromatography in the lattoscan process.

Larger fractions, suitable for further analysis, are obtained by column chromatography. The extract is run through a short glass column packed with silica and alumina and eluted with hexane (to give the saturate fraction), (3:1 hexane: toluene mixture (to give the aromatic fraction) and methanol (to give the polar, or resene and asphaltene. fraction). A small proportion of non-eluted polar compounds usually remains on the column.

The data tabulated in reports comprise the following parameters:

 Total extract
 - soluble organic matter, heavier than about n-C15+, expressed as ppm of weight of rock.

 Hydrocarbons
 - sum of alkane and aromatic hydrocarbons, expressed as ppm of weight of rock.

 Extract % of organic
 - total extract ppm; the extractability. TOC x 100

 Hydrocarbons mg/g of organic carbon
 - total hydrocarbons normalised to 1g of organic carbon.

 Hydrocarbons % extract
 - total hydrocarbons as a proportion of cotal extract.

 Alkanes % hydrocarbons - the proportion of alkanes (saturates) in the cotal hydrocarbons. The proportion of aromatics

The extractability of oil-prome sapropelic organic matter increases rapidly in the oil generation zone and diminishes to very low values in post mature sediments. Overall the extractability of sapropelic organic matter is greater than that of gas-prome humic organic matter for similar levels of maturity. Samples with extractabilities of greater than 20% generally contain migrant oil or are contaminated with mud additives.

is (100 minus this value) expressed as a percentage.

As maturation proceeds in the oil generation zone the proportion of hydrocarbons in the total extract increases from less than 20% to a maximum in the most productive horizons of around 60%. This trend is reversed as the oil-condensate zone is entered. The relative proportions of alkanes to aromatics can be used as a check for low levels of contamination. Fractions of the extract, separated by column chromatography are retained for further analysis by gas chromatography or for stable carbon isotope determination.

Capillary Gas Chromatography of C154 Alkanes

A portion of the Soxhlat extract is eluted with hexame through a short silics column to yield the saturate hydrocarbon fraction. This fraction is avaporated in a stream of dry nitrogen at room temperature. A small portion of the fraction is then taken up in hexame and introduced into a 25 metre, wall-coated, open tubular glass capillary column coated with OV-1, or equivalent, mounted in a Carlo Erba gas chrometograph which is temperature programmed from 70°C to 270°C at 3°C/minute.

 C_{15+} chromatograms are inspected for the distributions of <u>n</u>-alkanes, and the presence and abundance of isopremoids (particularly pristane and phytame), sterames and triterpanes and unresolved envelopes of naphthenic compounds. The ratios pristane:phytane and pristane:<u>n</u>-C₁₇ are calculated. Carbon Preference Index (CPI) values quoted are those as defined by Philippi as the ratio $2C_{29}$ to $(C_{28}+C_{30})$ unless otherwise stated. Chromatography may reveal information about the kerogen type of the source rock, its maturity and condition of deposition and, if migrant oil is present, whether this has been water-flushed or biodegraded. Contaminent drilling mud additives may be identified.

Capillary Gas Chromatography of Aromatic and Branched/Cyclic Alkanes

The aromatic portion of the Soxhlet extract is eluted from a short silica/alumina column by a hexane/toluene mixture. The dried fraction is taken up in DCM and introduced into a 25 metre, wall-coated, open tubular glass capillary column coated with 0V-1, or equivalent, mounted in a Carlo Erba gas chromatograph which is temperature programmed from 70° C to 270°C at 3°C/ minute.

Branched chain alkanes are separated from normal alkanes by urea adduction and treated as for total alkanes.

Gas Chromatography-Mass Spectrometry

Mass spectrometry is a technique in which molecules are bombarded with high energy electrons causing ionisation and fragmentation of the molecules into ions of varying mass(m) and charge(z). The way in which a molecule fragments into ions of various m/z value is known as its fragmentation pattern, or mass spectrum and is unique. When linked to a gas chromatograph the mass spectrometer can be used in two different modes:

- 1. Full Scan Mode: A mass spectrum is obtained of each peak eluting from the gas chromatograph and a structural identification of the compound producing that peak can be made.
- 2. Multiple or Single Ion Monitoring Mode: The mass spectrometer is tuned to certain m/z values to detect whether a compound, eluting from the gas chromatograph, fragments to give an ion at that value. Certain fragmentations are indicative of specific compound types and the most commonly monitored fragment ions used in petroleum geochemistry are those with m/z values of 191, 217 and 259 which are the principal fragment ions obtained from groups of alkanes known as triterpanes, regular steranes and rearranged steranes respectively. These are compounds containing 27 to 35 carbon atoms arranged in a polycyclic, normally 4 or 5 ring, structure, occurring in the $n-C_{26}$ to $n-C_{35}$ region of a gas chromatogram. The basic molecular skeletons of these compounds are very similar to those of the original organic matter deposited in the sediment and so these 191, 217 and 259 distribution plots, known as mass fragmentograms or mass chromatograms, form a pattern characteristic of the source material. This technique of "fingerprinting" is also one of the more exact methods of correlating an oil to its source, or to another oil.

Carbon Isotope (13C/12C) Ratio Analysis

Carbon has two stable isotopes, the more abundant ¹²C isotope and the heavier ¹³C isotope, which in nature forms about 1% of carbon. Deviations from the ¹³C/¹²C ratio are extremely small and carbon isotope ratios, as measured by mass spectrometry, are expressed as deviations from a standard, the Pee Des Belemnite carbonate (PDB standard) in parts per thousand (parts per mil; ⁰/oo). Positive deviations indicate ¹³C enrichment and conversely, negative deviations indicate ¹³C impoverishment.

While the carbon isotope ratios of oils and rock extracts can range from -20 to -32 $^{\circ}/\infty$ depending on the source organic matter type, the difference between a specific oil and its source is small. Measurements are usually made on the C₁₅₊ alkane and arometic hydrocarbon fractions separately and there should be no more than 1 $^{\circ}/\infty$ difference between the oil and its source for either fraction. If there is any doubt that the source rock extracts are not indigenous to the source rock kerogen, the carbon isotope ratio of the extracted source rock kerogen can be measured.

Pyrolysis-Gas Chromatography

The hydrocarbon pyrolysate derived from thermal, anhydrous cracking of kerogen is analysed by capillary gas chromatography. A few mg of rock, kerogen or asphaltene is heated to 600°C for 20 seconds in the injector of a gas chromatograph. The chromatograph oven is kept at -30°C during pyrolysis and then raised to 300°C at a programmed rate of 7.5°C/minute. Chromatograms produced this way are often very different from those of source rock extracts or oils in that branched and cyclic isomers are generated freely giving numerous, closely spaced peaks, along with unsaturated, alkene (olefin) hydrocarbons. The "doublet" peaks often observed in these chromatograms comprise alkene-alkane pairs, the first eluting, and usually smaller peak, being the alkene. The chromatograms range from C_1 to C_{30} or above and although variable, are broadly characteristic of source rock type. Gas-prone karogen cracks to give a more limited molecular weight range of products, concentrated towards the light ends, whereas oil-prone karogen gives more prowinent alkene-alkane doublets in the C_{12} to C_{30} region. The largest peak from both types is usually methane.

Elemental Analysis

Total (unsieved) karogen is prepared as described in Section 1. The dried material is combusted in oxygen in an elemental analyser and the oxides of carbon, hydrogen, nitrogen and sulphur are measured. The unburnt residue is the ash content. Oxygen is usually calculated by difference but can be determined separately if required. Results are quoted as percentage weights of C, H, O, N, S and Ash with the atomic ratio H/C and O/C calculated and plotted on the standard van Krevelen diagram. The relative amounts of C, H and O present in organic matter are dependent on both source and maturity. At known maturity levels, some measure of source quality may be determined. Limitations of the method in source rock assessment involve the difficulty of obtaining pure kerogen (in particular, free from pyrite) and the lack of a simple, direct determination of oxygen content.

4. 011 Analysis

RRI laboratories offer a wide range of oil analyses both for geochemical purposes and industrial use. Physical property determinations are based mainly on IP methods and are available for lubricating oils, fuels and greases as well as crudes. Frequently measured properties of crude oils presented in geochemistry reports include: API gravity, pour point, viscosity and contents of water, sulphur, wax, asphaltene, nickel, vanadium and other metals. Chemical analysis of oils involves the following:

Whole oil gas chromatography - using split syringe injection and a temperature programme from -20°C or -30°C up to 270°C at 4°C/minute.
Associated gas - if oil has high gas/oil ratio.
Gasoline analysis - as for gasolines in rock samples but a weighed quantity of oil is used.
Topping of the oil - this is equivalent to the removal of the fraction boiling below about 210°C and gives a more standardised product for comperison of gas chromatograms of the C₁₅₊ fraction.
Column chromatography and - as for solvent extracts. Analysis is carried out on topped oil.

5. Gas Analysis

The hydrocarbon gases, C_1 to C_4 , may be collected from the airspace of sealed canned samples or may be received from well-site tests in a special sealed gas cylinder (gas mouse). Chromatographic separation of the C_1 to C_4 gases is effected as described under airspace gas analysis. In addition, the separated gas components may be analysed for stable carbon and hydrogen isotope composition which may provide valuable clues to the origin of the gas.

6. Solid Bitumen Analysis

In some oil fields, problems are encountered where bitumen developments form continuous or patchy layers within reservoirs, dividing the pay zones and acting as barriers to natural fluid movement or inhibiting enhanced oil recovery techniques. Integrated geochemical and sedimentological studies aim to produce geological models capable of predicting the occurrence of bitumen layers and their likely thickness and ability to act as permeability barriers. Of further concern are the past or present relationships between the bitumen and reservoired oil, their source rocks and the timing of bitumen formation.

Analysis schemes involve screening of samples by assessing the amount of bitumen in polished core pieces using reflected light microscopy, followed by solvent extraction of control samples to estimate the proportion of solvent soluble bitumen. Different phases of bitumen formation are differentiated by reflectance measurement as described for vitrinite reflectance measurement. Soluble extracts are fractionated to give alkane, aromatics, asphaltene and resene components. Separated bitumens may be subjected to elemental analysis.

Kerogen Typing Scheme for Transmitted White and Incident Blue/U.V. Light

General Properties	RRI Report Data Tables	Type *
Sapropelic	Algal Sapropel	Туре I
(Oil-prome gas-prome at high maturity)	Wary Sapropel	Type II
	Vitrinite	Type IIIA
Humic (Gas-prone)	Inertinite	Type IIIB

Amorpho	18	Structured			
Non-Fluorescent	Fluorescent	Non-fluorescent	Fluorescent		
Type I/II at high naturity (SCI >7.5) Soft bitumens		Vitrinite (Type IIIA) brown/black, woody tissue	Cuticle Spores Pollen Dinocysts (Type II)		
Type IIIA/B	mens)	Inertinite (Type IIIB)	Reginite		
fineral (undigested) Grease contamination fud additives		very dark brown/black, woody tissue	Algae (Tasmanites, Botryococcus etc.)		
		Solid bitumen - brown/ black (oil residue) often with crystal imprints	(Type I)		
	-	Microforaminifera, chitinozoa etc. (Not usually important)			
		Spores, cuticle etc. at high maturity levels			
	F	Mud Additives - walnut	etc.		

* Types I, II, III approximately <u>sensu</u> Tissot et al but Type III subdivided into IIIA (vitrinite) and IIIB (inertinite)

APPENDIX TABLE 1

FLOW CHART FOR GEOCHEMICAL ANALYSIS

APPENDIX FIGURE 1

CONTENTS

WELL 7321/8-1

TABLES

)

ł

ı,

)

٦)

)

)

)

)

)

)

6

à

)

)

)

)

1

à

)

)

)

1

)

3

)

ź

)

à,

)

Ŋ

1

1	Standard pyrolysis results - 300°C, 180 secs - extracted samples.
2	Standard pyrolysis results - 300°C, 300 secs - extracted samples.
3	Standard pyrolysis results - 340°C, 300 secs - extracted samples.
4	Rockeval pyrolysis results - cycle 1 - extracted samples.

OLJEDIREKTORATET AVD. KONTOR HARSTAD Journal or 89/9641 -1 **14** JUNI 1989

dato

1 1 JULI 1989 REGISTRERT OLJEDIREKTORATET

TABLE 1

STANDARD PYROLYSIS DATA @300 Deg.C/180 Secs

)	GEOCHEM								
	SAMPLE		ORGANIC	S 0	S1	S2	PRODUCTION	HYDROGEN	Tmax
)	NUMBER	DEPTH	CARBON	(mg/g)	(mg/g)	(mg/g)	INDEX	INDEX	(Deg.C)
`	1606-001A	1383.0	2.42	0.10	0.65	1.91	0.25	78.9	442
}	1606-002A	1384.0	2.45	0.06	0.40	1.99	0.17	81.2	440
2	1606-003A	1385.0	2.09	0.00	0.80	2.85	0.22	136.4	441
)	1606-004A	1387.0	2.39	0.09	0.40	3.27	0.11	136.8	440
~	1606-005A	1388.0	1.76	0.08	0.21	1.15	0.15	65.3	440
,	1606-006A	1389.0	2.34	0.07	0.56	3.58	0.14	153.0	450
	1606-007A	1391.0	2.34	0.12	0.51	3.38	0.13	144.4	444
1	1606-008A	1392.0	2.55	0.13	0.59	3.13	0.16	122.7	445
`	1606-009A	1395.0	2.63	0.05	0.17	2.64	0.06	100.4	452
1	1606-010A	1396.0	2.54	0.11	0.94	3.34	0.22	131.5	445
1	1606-011A	1398.0	2.46	0.00	0.18	2.40	0.07	97.6	448
1	1606-012A	1399.0	2.75	0.07	0.92	3.27	0.22	118.9	446
>	1606-013A	1401.0	3.67	0.10	1.03	5.18	0.17	141.1	447
1	1606-014A	1402.0	3.29	0.14	0.49	3.90	0.11	118.5	443
3	1606-015A	1404.0	3.99	0.14	0.35	4.60	0.07	115.3	444
,	1606-016A	1405.0	3.41	0.00	0.85	4.63	0.16	135.8	453
3	1606-017A	1406.0	3.52	0.05	1.26	6.11	0.17	173.6	442
	1606-018A	1407.0	3.34	0.01	1.24	5.75	0.18	172.2	444
,	1606-019A	1408.0	3.12	0.16	1.06	2.20	0.33	70.5	453
,	1606-020A	1409.0	3.62	0.06	0.27	5.08	0.05	140.3	444
3	1606-021A	1410.0	4.59	0.14	0.39	8.44	0.04	183.9	444
.*	1606-022A	1411.0	3.50	0.08	1.15	5,96	0.16	170.3	447
1	1606-023A	1412.0	3.76	0.03	1.74	6.33	0.22	168.4	444
,	1606-024A	1413.0	4.03	0.09	0.18	6.68	0.03	165.8	446
	1606-025A	1414.0	3.44	0.13	0.80	1,94	0.29	56.4	443
1	1606-026A	1415.0	3.46	0.04	1.75	4.64	0.27	134.1	445
ì	1606-027A	1416.0	3.09	0.09	0.76	3.44	0.18	111.3	448
'	1606-028A	1417.0	7.17	0.13	0.43	9.01	0.05	125.7	448
)	1606-029A	1418.2	0.83	0.11	0.26	0.69	0.27	83.1	440
/	1606-030A	1419.0	1.77	0.01	0.42	1.17	0.26	66.1	442
)	1606-031A	1420.0	1.63	0.01	0.35	0.72	0.33	44.2	439
,	1606-032A	1421.0	1.08	0.00	0.19	0.66	0.22	61.1	429
ļ	1606-033A	1422.0	1.22	0.00	0.18	0.60	0.23	49.2	439
	1606-034A	1423.0	1.15	0.00	0.13	0.59	0.18	51.3	442
)	1606-035A	1424.0	0.62	0.05	0.28	0.67	0.29	108.1	442
	1606-036A	1425.0	0.79	0.04	0.29	0.42	0.41	53.2	441
,	1606-037A	1426.0	0.66	0.00	0.12	0.36	0.25	54.5	433
	1606-038A	1427.0	0.71	0.08	0.64	0.61	0.51	85.9	442
)	1606-039A	1428.0	0.67	0.07	0.29	0.28	0.51	41.8	441
	1606-040A	1429.0	0.69	0.00	0.29	0.75	0.28	108.7	437
)	1606-041A	1430.0	0.66	0.00	0.28	0.85	0.25	128.8	441
	1606-042A	1431.0	0.57	0.00	0.21	0.56	0.27	98.2	450
)	1606-043A	1432.0	0.45	0.00	0.21	0.63	0.25	140.0	434
	1606-044A	1433.0	0.49	0.07	0.32	0.31	0.51	63.3	435
)	1606-045A	1434.0	0.57	0.00	0.12	0.48	0.20	84.2	441
	1606-046A	1435.0	0.41	0.02	0.12	0.42	0.22	102.4	432
)	1606-047A	1436.0	0.55	0.03	0.15	0.44	0.25	80.0	441
	1606-048A	1437.0	0.36	0.01	0.13	0.38	0.25	105.6	425

EXTRACTED SAMPLES

)

Ĵ

)

þ

)

}

1

)

TABLE 2

STANDARD PYROLYSIS DATA @300 Deg.C/300 Secs

)	GEOCHEM								
	SAMPLE		ORGANIC	SO	SI	S2	PRODUCTION	HYDROGEN	Tmax
)	NUMBER	DEPTH	CARBON	(mg/g)	(mg/g)	(mg/g)	INDEX	INDEX	(Deg.C)
2	1606-001A	1383.0	2.42	0.09	0.26	2.18	0.11	90.1	447
)	1606-002A	1384.0	2.45	0.10	0.28	2.21	0.11	90.2	440
	1606-003A	1385.0	2.09	0.04	0.97	3.67	0.21	175.6	442
)	1606-004A	1387.0	2.39	0.09	0.33	2.67	0.11	111.7	445
	1606-005A	1388.0	1.76	0.08	0.31	1.17	0.21	66.5	431
)	1606-006A	1389.0	2.34	0.05	0.33	3.59	0.08	153.4	447
	1606-007A	1391.0	2.34	0.07	0.31	2.72	0.10	116.2	436
)	1606-008A	1392.0	2.55	0.12	0.30	2.72	0.10	106.7	445
	1606-009A	1395.0	2.63	0.09	0.26	2.82	0.08	107.2	431
>	1606-010A	1396.0	2.54	0.07	0.39	3.17	0.11	124.8	445
	1606-011A	1398.0	2.46	0.08	0.42	2.47	0.15	100.4	451
)	1606-012A	1399.0	2.75	0.04	1.47	3.89	0.27	141.5	445
	1606-013A	1401.0	3.67	0.03	1.43	5.50	0.21	149.9	433
)	1606-014A	1402.0	3.29	0.07	0.85	3.67	0.19	111.6	445
	1606-015A	1404.0	3.99	0.09	0.60	4.64	0.11	116.3	450
٦	1606-016A	1405.0	3.41	0.13	0.95	4.71	0.17	138.1	448
	1606-017A	1406.0	3.52	0.09	1.37	6.71	0.17	190.6	444
)	1606-018A	1407.0	3.34	0.04	1.51	5.49	0.22	164.4	445
	1606-019A	1408-0	3.12	0.15	0.51	2.47	0.17	79.2	448
ł	1606-020A	1409.0	3.62	0.02	0.47	5-48	0.08	151.4	444
	1606-0214	1410.0	4.59	0.09	0.37	8.13	0.04	177.1	444
)	1606-027A	1411.0	3.50	0.01	1.25	6.25	0.17	178.6	450
	1606-023A	1412.0	3.76	0.16	1.55	5.03	0.24	133.8	450
)	1606-0254	1413.0	4.03	0.08	0.68	6.68	0.09	165-8	432
	1606-0254	1414 0	3 44	0.02	0.36	2.66	0.12	77.3	432
)	1606-0264	1415 0	3 46	0.04	1.09	4 36	0.20	126.0	428
	1606-020A	1415.0	3 09	0.08	0.51	3 34	0.13	108 1	442
)	1606-0284	1417 0	7 17	0.13	0.41	8 18	0.05	11/ 1	442
	1606-0204	1/18 2	0.83	0.01	0.16	0.48	0.25	57 8	445
)	1606-0304	1419 0	1.77	0.09	0.37	0.78	0.32	44.1	430
	1606-031A	1410.0 1420.0	1.63	0.21	0.39	0.51	0.43	31.3	442
1	1606-0374	1421 0	1.08	0.12	0.35	0.70	0.33	64 8	447
	1606-0334	1422.0	1 22	0.07	0.19	0.58	0.25	47 5	436
)	1606-03/4	1423 0	1 15	0.06	0.27	0.63	0.30	5/ 8	450
	1606-0354	1425.0	0.62	0.05	0.22	0.53	0.30	27.0	430
)	1606→035R	1424.0	0.62	0.03	0.49	0.56	0.47	90.3	439
	1606-0364	1425 0	0.79	0.01	0.15	0.36	0.29	45 6	441
)	1606-037A	1426 0	0.66	0.11	0.33	0.38	0.46	57 6	441
	1606-0384	1420.0	0.71	0.10	0.39	0.70	0.36	98.6	432
3	1606-0394	1428.0	0.67	0.01	0.07	0.22	0.26	32.8	437
	1606-0404	1420.0	0.69	0.07	0.32	0.22	0.48	50 7	432
)	1606-041A	1429.0	0.66	0.03	0.15	0.55	0.40	93.3	457
	1606-0424	1430.0	0.57	0.03	0.18	0.38	0.32	66 7	445
)	1606-0424	1432 0	0.57	0.01	0.10	0.37	0.02	82.2	441
	1606-043A	1432.0	0.40	0.04	0.10	0.37	0.27	02+2 55 1	423
)	1606-0444	1/2/ 0	0.47	0.04	0.10	0.27	0.00	ンノ・L ササ つ	434 772
	1606-0454	1635 0	0.57	0.00	0.10	0.44	0.40	11 + 4	440 770
}	1606-0404	1433.0	0.41	0.03	0.10	U ₄40 ೧೨೨	0 20	112•2 1 0	443
	1606-0474	1/27 0	0.00	0.03	0.14	0.43	0.30	41.0	440
)	1000-040A	143/.0	0.30	0.03	0.14	0.10	0.44	20.0	429

\$

)

;

)

)

)

TABLE 3

STANDARD PYROLYSIS DATA @340 Deg.C/300 Secs

.

)	GEOCHEM								
_	SAMPLE		ORGANIC	S0	S1	S2	PRODUCTION	HYDROGEN	Tmax
)	NUMBER	DEPTH	CARBON	(mg/g)	(mg/g)	(mg/g)	INDEX	INDEX	(Deg.C)
	1606-001A	1383.0	2.42	0.01	0.23	2.34	0.09	96.7	443
)	1606-002A	1384.0	2.45	0.00	0.22	2.52	0.08	102.9	442
	1606-003A	1385.0	2.09	0.00	1,13	3.43	0.25	164.1	445
)	1606-0044	1387.0	2.39	0.00	0.34	2.89	0.11	120.9	448
	1606-0054	1388-0	1.76	0.00	0.35	1,19	0.23	67.6	430
)	1606-0064	1389.0	2.34	0.03	0.33	3.25	0.09	138.9	449
	1606-007A	1391 0	2.34	0.01	0.33	3,13	0.10	133.8	451
2	1606-0084	1392 0	2 55	0.05	0.32	2.76	0.10	108.2	446
	1606-009A	1395 0	2.63	0.03	0.28	2.82	0.09	107.2	449
)	1606-0104	1396 0	2.54	0.06	0.32	3.14	0.09	123.6	448
	1606-011A	1398 0	2.46	0.09	0.52	2.29	0.18	93.1	449
)	1606-0124	1399 0	2.40	0.02	1 37	3 88	0.26	141.1	447
	1606-012A	3401 0	3 67	0.02	1 92	5.62	0.25	152 1	448
1	1606-015A	1401.0	3 29	0.02	1 46	4 19	0.26	127.4	440
	1606-014A	1404 0	3 00	0.07	0.72	4 35	0.14	109 0	447
}	1606-015A	1404.0	3 41	0.04	1 01	5 20	0.14	152 5	449
	1606-017A	1403.0	3 - 41	0.00	1.01	6 71	0.10	190 6	440
}	1606-017A	1400.0	2 24	0.00	1.00	5 10	0.21	150.0	447
	1606-016A	1407.0	J+J4 3 10	0.01	1.34	3.10	0.19	£J2+/ 03 7	443
4	1606-019A	1400.0	2.12	0.01	1 00	2.00	0.16	150 0	440
	1606-020A	1409.0	3.02	0.01	1.09	7 26	0.10	160.2	440
1	1606-021A	1410+0	4.39	0.00	1 00	7.30	0.00	100+3	450
	1606-022A	1411+0	3.50	0.00	1.90	5 97	0.22	202.9	440
)	1606-023A	1412.0	5.70	0.00	0.50	2.07	0.14	160 0	431
	1606-024A	1413.0	4.03	0.06	0.50	0.01	0.19	109.0	447
}	1606-025A	1414.0	3.44	0.05	0.40	2.04	V-18 0 19	29.3	449
	1606-026A	1415.0	3.40	0.07	0.92	4.24	0.10	142.5	445
)	1606-027A	1416.0	3.09	0.05	0.50	3.01	0.12	110.8	440
	1606-028A	1417.0	/ .1/	0.13	0.01	8./3	0.07	121.8	448
)	1606-029A	1418.2	0.83	0.00	0.28	0.50	0.36	60.2	429
	1606-030A	1419.0	1.//	0.04	0.40	0.08	0.37	38.4	430
)	1606-031A	1420.0	1.03	0.11	0.30	0.//	0.28	47.2	436
	1606-032A	1421.0	1.08	0.06	0.24	0.65	0.27	60.2	43/
)	1606-033A	1422.0	1.22	0.08	0.21	0.33	0.39	27.0	447
`	1606-034A	1423.0	1.15	0.04	0.24	0.61	0.28	53.0	433
)	1606-035A	1424.0	0.62	0.01	0.31	0.//	0.29	124.2	439
	1606-036A	1425.0	0.79	0.03	0.23	0.54	0.30	68.4	431
)	1606-037A	1426.0	0.66	0.01	0.22	0.48	0.31	12.1	428
4	1606-038A	1427.0	0.71	0.04	0.35	0.76	0.32	107.0	424
)	1606-039A	1428.0	0.6/	0.04	0.12	0.27	0.31	40.3	422
	1606-040A	1429.0	0.69	0.03	0.11	0.31	0.26	44.9	443
)	1606-041A	1430.0	0.66	0.02	0.32	0.77	0.29	116.7	437
,	1606-042A	1431.0	0.57	0.00	0.20	0.44	0.31	77.2	444
)	1606-043A	1432.0	0.45	0.03	0.20	0.43	0.32	95.6	439
2	1606-044A	1433.0	0.49	0.02	0.14	0.32	0.30	65.3	437
1	1606-045A	1434.0	0.57	0.03	0.17	0.45	0.27	78.9	438
2	1606-046A	1435.0	0.41	0.04	0.12	0.50	0.19	122.0	424
3	1606-047A	1436.0	0.55	0.05	0.15	0.32	0.32	58.2	437
9	1606-048A	1437.0	0.36	0.00	0.15	0.25	0.38	69.4	423
1									

EXTRACTED SAMPLES

)

)

3

)

7

)

)	ROCKEVAL PYROLYSIS DATA									
)	GEOCHEM SAMPLE NUMBER	DEPTH	TOC (%)	S1 (mg/g)	S2 (mg/g)	S3 (mg/g)	PRODUCTION INDEX	HYDROGEN INDEX	OXYGEN INDEX	TMAX (°C)
י ז	WELL: 7321	<u>./8-1</u>								
, _	1606-001A	1383m	2.42	1.46	3.08	1.09	0.32	127.3	45.0	434
)	1600-002A	1305-	2,40	1.10	2+00	0.49	0.43	104 4	20.0	440
	1606-003A	1007-	2.09	1.03	2.01	0.40	0.21	134,4	13.1	446
)	1000-004A	138/m	2.39	1.14	3.50	0.69	0.44	140.4	28.9	443
	1606-004R	1387m	2.39	1.09	3.37	0.37	0.24	141.0	15.5	440
3	1606-005A	1388m	1.70	0.46	1.24	0.30	0.27	70.5	20.5	438
,	1606-000A	1389m 1301-	2.34	1.03	3.01	0.62	0.22	104.3	20.0	441
	1000-007A	13918	4.34	0.09	1.90	0.00	0.20	04.0	43.5	450
1	1606-008A	1392m	2.00	1.00	3.24	0.20	0.24	127.1	10.2	443
	1606-009A	1395m	2.63	1.25	4.84	0.44	0.21	184.0	16.7	443
)	1606-009R	1395m	2.63	1.15	4.55	0.42	0.20	173.0	16.0	440
	1606-010A	1396m	2.54	0.92	3.23	0.50	0.22	127.2	19.7	446
ì	1606-011A	1398m	2.46	0.34	2.15	0.30	0.14	87.4	12.2	450
1	1606-012A	1399m	2.75	1.00	3.20	0.48	0.24	116.4	17.5	446
	1606-013A	1401m	3.67	1.69	4.98	0.45	0.25	135.7	12.3	448
ł	1606-014A	1402m	3.29	1.55	3.47	0.28	0.31	105.5	8.5	446
	1606-014R	1402m	3.29	1.53	3.67	0.25	0.29	111.6	7.6	446
ł	1606-015A	1404m	3.99	1.66	4.22	0.24	0.28	105.8	6.0	447
	1606-016A	1405m	3.41	1.13	5.29	0.60	0.18	155.1	17.6	446
3	1606-017A	1406m	3.52	1.47	5.54	0.69	· 0.21	157.4	19.6	446
	1606-018A	1407m	3.34	1.61	5.69	1.16	0.22	170.4	34.7	444
)	1606-018R	1407m	3.34	1.71	5.32	1.01	0.24	159.3	30.2	444
,	1606-019A	1408m	3.12	3.18	6.30	3.49	0.34	201.9	111.9	445
	1606-020A	1409m	3.62	1.52	5.72	0.69	0.21	158.0	19.1	445
)	1606-020R	1409m	3.62	1.57	5.62	0.62	0.22	155.2	17.1	444
	1606-021A	1410m	4.59	1.52	6.31	0.40	0.19	137.5	8.7	450
)	1606-022A	1411m	3.50	1.50	5.77	0.51	0.21	164.9	14.6	448
	1606-023A	1412m	3.76	1.91	4.57	0.39	0.29	121.5	10.4	450
1	1606-024A	1413m	4.03	1.77	6.12	0.30	0.22	151.9	7.4	;,448
·	1606-025A	1414m	3.44	1.07	4.02	0.95-	0.21	116.9	27.6	442
,	1606-026A	1415m	3.46	1.75	4.79	0.84	0.27	138.4	24.3	443
,	1606-027A	1416m	3.09	1.40	3.51	1.01	0.29	113.6	32.7	447
,	1606-027R	1416m	3.09	1.46	3.49	0.55	0.29	112.9	17.8	446
)	1606-028A	1417m	7.17	0.89	9.70	0.39	0.08	135.3	5.4	451
	1606-029A	1418m	, 0.83	0.28	0.52	0.31	0.35	62.7	37.3	432
1	1606-030A	1419m	1.77	0.73	1.18	0.51	0.38	66.7	28.8	439
	1606-031A	1420m	1.63	0.74	1.03	0.72	0.42	63.2	44.2	443
)	1606-032A	1421m	1.08	0.37	0.39	0.22	0.49	36.1	20.4	428
,	1606-034A	1423m	1.15	0.73	1.07	0.37	0.41	93.0	32.2	444
	1606-035A	1424m	0.62	0.28	0.49	0.36	0.36	79.0	58.1	432
1	1606-036A	1425m	0.79	0.41	0.70	0.79	0.37	88.6	100.0	429
	1606-037A	1426m	0.66	0.48	0.71	0.44	0.40	107.6	66.7	449
)	1606-038A	1427m	0.71	0.33	0.71	0.39	0.32	100.0	54.9	430
	1606-039A	1428m	0,67	0.35	0.54	0.22	0.39	80.6	32.8	, 433
)	1606-040A	1429m	0.69	0.27	0,60	0.28	0.31	87.0	40.6	439
	1606-041A	1430m	0.66	0.33	0.59	0.21	0.36	89.4	31.8	438
a a	1606-042A	1431m	0.57	0.56	1.21	0.40	0.32	212.3	70.2	426
1	1606-043A	1432m	0.45	0.30	0.66	0.37	0.31	146.7	82.2	428
1	1606-044A	1433m	0.49	0.23	0.40	0.15	0.37	81.6	30.6	425
1	1606-045A	1434m	0.57	0.26	0.40	0.20	0.39	70.2	35.1	429
	1606-046A	1435m	0.41	0.30	0.61	0.46	0.33	148.8	112.2	423
)	1606-047A	1436m	0.55	0.30	0.35	0.28	0.46	63.6	50.9	441
	1606-048A	1437m	0.36	0.15	0.19	0.26	0.44	52.8	72.2	439

TABLE 4 ROCKEVAL PYROLYSIS DATA

1

)

)

)

;) γ)) `)) } ^) 1) 3 **BRIEF DESCRIPTION**)) OF ANALYSES) Ì)))))))))))) Ņ 3 \tilde{a})

`}

)

GEOCHEM ANALYSIS SCHEME

BRIEF DESCRIPTION OF ANALYSES PERFORMED BY GEOCHEM

Analyses described in this section include industry standard methods and techniques resulting from more than thirteen years of development by Geochem Laboratories. Analytical methodology arising from collaboration with individual clients or groups of clients (e.g. the Norwegian oil companies) is not necessarily included in these descriptions.

The flowchart illustrates a typical sequence of analyses and their functional relationships.

These analyses may be grouped as follows :

)

)

)

)

)

)

)

3

)

1

)

ì

3

3

3

А	source rock screening
B	source richness and hydrocarbon type
С	source rock thermal maturity
Ď	source rock hydrocarbon characterisation
Е	crude oil characterisation
F	gas characterisation
G	correlation

A. SOURCE ROCK SCREENING

A-1 C -C LIGHT HYDROCARBONS ANALYSIS

The abundance and composition of the C_1-C_7 hydrocarbons in sediments reflects their source richness, maturity and the character of the hydrocarbons they can yield. Most importantly, it is extremely sensitive to the presence of migrated hydrocarbons and is an excellent method for their detection. As it provides the information on most of the critical parameters and is also economical, this analysis is recommended for screening samples to decide which of them merit further analysis.

During the time which elapses between the collection of the sample at the wellsite and its analysis in the laboratory, a variable fraction of the total gas passes from the rock to the air space at the top of the can. For this reason, both the air space and the cuttings are analysed. To minimise loss of air space gases, cans fitted with pressfit lids are stored in the inverted position.

A sample of the headspace gases is withdrawn from the can using a syringe and then analysed by gas chromatography. The can is opened and the head space volume measured. A small portion of the cuttings is homogenised in a sealed blender and the released cuttings gases are analysed by the method used for the headspace gases. 1

ł

)

)

1

3

3

3

3

1

٦

Ì

ţ

ß

3

苔

)

Ì

)

)

3

)

ļ

Concentrations of the individual C_1-C_4 gases, plus the total C_{5+} hydrocarbons for both headspace and cuttings gases, are determined by means of a gas chromatograph equipped with flame detector and calibrated with a standard gas mixture. These data are reported in ppm by volume or in $\mu l/Kg(dry)$ rock - for the headspace and cuttings gas and for the combined headspace and cuttings gas.

A-2 DETAILED GASOLINE RANGE (C -C,) HYDROCARBONS ANALYSIS

The abundance and composition of the C_4-C_7 hydrocarbons in sediments reflects their source quality, level of thermal maturity and kerogen type or, if they are reservoir facies, the strength and nature of hydrocarbon shows. This analysis is particularly useful in evaluating the reservoir history of crude oils and in oil to oil correlation studies.

Selected lithologies are heated and crushed in a sealed blender in order to liberate the C_4 - C_7 hydrocarbons from the rock matrix. A sample of these hydrocarbons is withdrawn by syringe and analysed by capillary gas chromatography to identify the individual hydrocarbons. With crude oils, a sample of the oil is injected directly into the chromatograph.

The gross composition, selected ratios and normalised composition of the individual C_4-C_7 hydrocarbons (including toluene) are tabulated and plotted against depth.

A-3 SAMPLE PREPARATION

All of the analyses described in subsequent sections are run on washed and hand picked samples.

Cuttings are washed to remove the drilling mud, care being taken not to remove soft clays and fine sand during the washing procedure. The lithology of each facies is then described and the presence of caved material noted. Sidewall core material is liberated from any associated drilling mud and then

described. Using the C_1-C_7 hydrocarbon and the organic carbon profiles of the well, electric logs (if supplied) and the lithology and appearance of the cuttings, sidewall cores and cores under the binocular microscope, samples are selected to represent the lithological and geochemical zones penetrated by the well. These samples are then carefully hand picked and it is these samples which are submitted for further analysis.

Sample material remaining after analysis is retained for six months. Unless instructions are received to the contrary, Geochem Laboratories may then destroy the samples.

Our reports incorporate a gross lithological description of <u>all</u> the samples which have been analysed and litho percentage logs. As screen analyses are recommended at narrow intervals, a complete lithological profile is obtained.

A-4 ORGANIC CARBON ANALYSIS

3

)

١

)

)

)

٦)

)

)

7

4

)

Э

)

)

)

)

)

)

The organic carbon content of a rock is a measure of its total organic richness. Combined with the visual kerogen, $C_1 - C_7$, $C_4 - C_7$, pyrolysis and C_{15+} analyses, the organic carbon content is used to evaluate the potential (not necessarily actual) hydrocarbon source richness of the sediment. This analysis is an integral part of any evaluation and is also used as an economical screen analysis for dry samples (when the $C_1 - C_7$ analysis cannot be employed).

Hand picked samples are dried, crushed and then acidised to remove the inorganic calcium and magnesium carbonates. The actual analysis involves combustion in a Leco CS244 carbon/sulphur analyser. Blanks, standards and duplicates are run routinely for purposes of quality control at no extra cost to the client. Sulphur contents are also measured but are not reported routinely.

The organic carbon data are tabulated and presented diagramatically in our reports in a manner which facilitates comparison with the gross lithology of the samples.

B. SOURCE RICHNESS AND HYDROCARBON TYPE

4

B-1 PYROLYSIS

The thermal maturation process is simulated in the laboratory by the pyrolysis analysis. This involves heating the source rock under controlled conditions to produce firstly, a distillate (thermal bitumen) and secondly, a pyrolysate (from the breakdown of the kerogen). The thermal bitumen (S1) content is related to the present potential of a source rock (plus any non-indigenous hydrocarbons) whilst the pyrolysate yield (S2) is a measure of ultimate source potential. 3

'n,

3

2

1

3

ş

3

3

)

3

3

)

)

3

)

)

à

ž

3

3

Industry standard machines made by Leco (Thermolytic Hydrocarbons Analyser, THA) and by Delsi (Rockeval II) are used to automatically measure S1 and S2 and to ascertain the temperature, Tmax, at which maximum S2 evolution occurs. In addition, the Rockeval machine measures S3 - the proportion of oxygen containing species in the kerogen. This latter value is used to calculate the oxygen index (S3/TOC) which, together with the hydrogen index (S2/TOC), is used to identify kerogen types on the van Krevelen diagram. Care must be used in the interpretation of S3 data since they are influenced by inorganic carbonates.

S1, S2 and where applicable S3, values (in mg/g rock) are reported, with production indices [S1/(S1 + S2)], hydrogen indices, oxygen indices and Tmax values for all prospective source units. The pyrolysate yield (S2) is preferred to organic carbon contents as an unambiguous measure of potential source richness.

B-2 KEROGEN TYPE

Kerogen is the insoluble organic matter in rocks. Visual examination of the kerogen ("Visual Kerogen" analysis) directly assesses the composition of the organic matter (organic facies) and indicates the source quality of the sediment - which is confirmed using the pyrolysis, pyrolysis-GC and C₁₅₊ analyses. Thermal maturity is also evaluated from the colour of the spore-pollen material (see below).

The type of hydrocarbons (oil or gas) generated by a source rock is a function of its level of thermal maturation and of the composition of its organic

matter. Both of these parameters are measured <u>directly</u> by this visual kerogen method. Kerogen is separated from the inorganic rock matrix by acid digestion and flotation methods which avoid oxidation of the organic matter. It is then mounted on a glass slide and examined at high and low magnifications with a Leitz microscope. Chemical methods measure the total kerogen population but, with this technique, individual particles can be selected for examination and spurious material identified and avoided. This is particularly valuable in reworked, contaminated and turbodrilled sediments.

The following data are generated: the types of the organic matter present and their relative abundances, an estimate of the proportion of reworked material, the preservation state and the thermal maturity (see below, C-1) of the non-reworked organic matter using the spore colouration technique.

A total of fourteen types of organic matter are sought based upon the major categories of algal, amorphous, herbaceous (spore, pollen, cuticle), wood, inertinite and resin. This detail is essential for a proper understanding of hydrocarbon source potential as the different sub-groups within each category have different properties.

Upon completion of the study, the kerogen slides are sent to the client.

B-3 PYROLYSIS-GC

ł

(``

)

)

ì

)

}

Э

)

)

)

.)

)

Э

)

)

à

ş

ģ

The nature of potential hydrocarbon products is deduced from gas chromatograms of the pyrolysate material (S2, see above). These 'pyrograms' resemble the hydrocarbons generated by the source rock at peak maturity. Thus, for oil prone sediments the chromatograms display a methane peak followed by a series of alkene-alkane double peaks which extend out to $C_{25}-C_{30}$, whereas these doublets are absent in gas-prone source rocks. The gas-oil index (% C_1-C_5 /total pyrolysate) provides a digital representation of the pyrogram and predicts the hydrocarbon product : oil prone sediments have values of less than 20%, 20-35% corresponds to a potential for oil and gas, 35-50% to condensate and values greater than 50% to gas.

Small (1-2 mg) samples of solvent-extracted rock powder are heated by one of two methods to produce a pyrolysate (S2) which is subsequently analysed by capillary gas chromatography. The two methods differ only in the pyrolysate generation mode. In the first 'instantaneous' method a pyroprobe rapidly (10

seconds) generates the pyrolysis products whereas in the second, the pyrolysate is generated over a period of several minutes by programmed pyrolysis. These two methods are referred to as flash and programmed pyrolysis-GC respectively. The actual pyrolysis temperature range is comparable in each case and both methods give similar results, although the light ends are relatively enhanced by flash pyrolysis-GC. ļ

ş

2

N.

3

٦,

¥

Ň

ł

)

)

1

)

3

\$

j,

)

3

)

j,

)

)

}

)

>

ł

è

ð,

. \$

B-4 ELEMENTAL ANALYSIS OF KEROGEN

Kerogen isolated from prospective source rocks is analysed in a Carlo Erba 1106 Elemental Analyser. Carbon, hydrogen, nitrogen, oxygen and sulphur are measured directly by this machine. Hydrogen : carbon ratios have been traditionally used by the oil industry to assess the oil potential of organic matter in source rocks and, in conjunction with the oxygen : carbon ratio permit the use of the Van Krevelen diagram. This assigns the gross organic matter population to Types I, II or III and gives an indication of its ability to generate oil or gas. It is employed in association with the visual kerogen, pyrolysis and pyrolysis-GC analyses.

C. SOURCE ROCK THERMAL MATURITY

C-1 SPORE COLOURATION THERMAL ALTERATION INDEX (TAI)

Organic matter darkens with increasing thermal maturity. The increasing colouration of the spore and pollen material, as observed microscopically using kerogen concentrates, accurately reflects the hydrocarbon generation process and is used to assess thermal maturity. As with the vitrinite reflectance analysis, core and sidewall core material is preferred for this "Visual Kerogen" analysis when available.

Our maturation scale has been developed to digitise small but recognisable changes in organic matter colouration resulting from increasing maturity and to place particular emphasis upon the immature to mature transition. In the absence of a universal colouration scale, the most significant points on our scale have been calibrated against equivalent vitrinite reflectance values.

D

The following maturation stages are recognised, the values referring to the top of each maturity zone:-

	<u>Marginally</u>		Top Oil	Gas	Dry
	Mature	Mature	Window	Condensate	Gas
TAI Scale	2-	2	2 to 2+	3	3+
1-10 Scale	3	4	5	7	8
Vitrinite Reflectance (% Ro)	0.45	0.55	0.72	1.3	2.0
Tmax (°C)	[430]	[435]	[440]	[460]	

The top of the condensate zone corresponds to the base of the oil window.

C-2 VITRINITE REFLECTANCE

3

ì

)

)

٦)

`)

)

3

3

ì

)

)

}

)

)

2

)

)

Vitrinite reflectance is an alternative/confirmatory method for evaluating thermal maturation which is used in conjunction with the <u>visual kerogen</u> analysis. The reflectivity of vitrinite macerals increases in response to thermal alteration and is used to define maturation levels and, by projection, to predict maturity at depth or the thicknesses of section removed by erosion.

Measurements are made upon carefully polished blocks either of kerogen concentrates or of whole rocks depending upon the organic richness of the samples and the preference of the client. In general, this analysis is performed upon the same samples as the visual kerogen analysis, thus facilitating a direct comparison of the two sets of results.

If possible, forty to fifty measurements are taken per sample, although this may not be possible if the sediments are organically lean or vitrinite is sparse. The data are processed using an interactive computer program which allows the operator to select, calculate and plot populations and mean reflectances. Indigenous vitrinite is thus distinguished from possible

reworked or caved material. Comments upon exinite fluorescence (if relevant) and upon the character of the phytoclasts are noted on the histograms. The reports contain the tabulated data, histograms and the reflectivities plotted against depth. à.

Ì

)

Ĩ)

Ŋ

ð,

ş

1

3

٦,

)

)

ş,

)

>

}

ğ

\$

The vitrinite and visual kerogen techniques provide mutually complementary information upon maturity, organic matter type and diagenesis.

C-3 PYROLYSIS TMAX

This is an empirical parameter which can produce a depth related maturity trend. Tmax is also affected by gross kerogen composition, the amount of reworked material etc and must therefore, be used with caution in the assessment of thermal maturity.

The measurement of Tmax has been described under the 'Pyrolysis' analysis (B-1).

D. SOURCE ROCK HYDROCARBON CHARACTERISATION

C₂+ hydrocarbons in source rocks reflect in situ generation, diffusion of migrated hydrocarbons (via microfractures or sand bodies) or contamination from the mud-system. It is important, therefore to identify these hydrocarbons because their abundance is diagnostic of source richness, maturity or, if migrated species, of show strength. Any hydrocarbons detected in reservoir facies merit further investigation. The gasoline range analysis has been discussed above (A-2).

<u>D-1</u> C₁₅ HYDROCARBON EXTRACTION, DEASPHALTENING AND CHROMATOGRAPHIC SEPARATION

Hand picked rock samples are ground and then extracted in a Soxtec machine - a modern version of the soxhlet extractor - employing solvents such as dichloro methane and methanol. Pre-extracted cellulose extraction thimbles are used in conjunction with selected pure solvents to minimise the introduction of extraneous material by the extraction process. The procedures have been designed to avoid loss of the lighter hydrocarbons and to ensure quantitative recovery of the heavy ends.

Asphaltenes are precipitated from the total extract using standard methods (e.g. IP143) and the soluble material is then separated into fractions by liquid chromatography. These fractions comprise the saturated hydrocarbons (paraffin-naphthenes), aromatic hydrocarbons, eluted NSO's (nitrogen, sulphur and oxygen species) and non-eluted NSO's.

Traditional column chromatographic methods, for the separation of source rock extract and crude oil components, have largely been replaced by high performance liquid chromatography (HPLC). This technique gives an optimal separation of the saturated and aromatic hydrocarbon fractions which is important for subsequent GC-MS analyses.

Quantification of the C_{15+} hydrocarbons and non-hydrocarbons is achieved by means of the Iatrascan equipment, in which rods coated with silica are used to separate the fractions by thin layer liquid chromatography. The resolved hydrocarbons are measured by passing the rods through a flame ionisation detector.

Analyses of the C_{15+} fractions are reported either in parts per million (ppm) by weight of rock or as mg/g TOC, as normalised % composition of the C_{15+} fraction and as selected diagnostic ratios. These data are also plotted to facilitate the evaluation of depth-related trends.

Oils and condensates are distilled or 'topped' to give a C_{15+} (210°C+) fraction which is then analysed in the same way as the total soluble extract from source rocks.

D-2 ANALYSIS OF C SATURATED HYDROCARBONS

The distribution of C₁₅₊ saturated hydrocarbons - n-alkanes, iso-alkanes (including the principal acyclic isoprenoids) and cyclo alkanes (naphthenes) is affected by changes in organic facies, maturity and source rock geochemistry, and by the presence of shows. Of most value are the n-alkane configuration which defines crude oil type (waxiness, maturity, gravity etc), the ratios of the odd to even carbon number n-alkanes (CPI) - which approach unity with increasing maturity - and the ratios of the isoprenoids (e.g. pristane and phytane) to the adjacent alkanes, which are affected by source depositional environment.

9

Ì,

)

)

)

)

)

)

1

2

)

3

С

3

}

3

Ì

)

٤

)

)

3

Saturated hydrocarbons, isolated from the source rock extracts or from crude oils by C_{15+} liquid chromatography, are injected into a high resolution gas chromatograph. The individual hydrocarbons separated by the capillary column in this instrument are detected by a flame ionisation detector and quantified (by reference to standard hydrocarbons) using a computerised laboratory data processor. Care is taken to ensure that all of the alkanes including those heavier than C_{30} are quantitatively recorded. Concentrations of each n-alkane in the $C_{15} - C_{35}$ range are reported as normalised percentage of total alkanes or in parts per million of total extract. The principal $C_{15} - C_{20}$ isoprenoids plus the total n-alkanes, isoprenoids and naphthenes are also tabulated.

3

>

ì

3

")

`;

)

3

ţ

ų,

)

3

)

)

)

Ì

)

\$

Ratios reported include:

$$CPI (1) = \frac{1}{2} \left[\frac{(C_{21} + C_{23} + C_{25} + C_{27})}{(C_{20} + C_{22} + C_{24} + C_{26})} + \frac{(C_{21} + C_{23} + C_{25} + C_{27})}{(C_{22} + C_{24} + C_{26} + C_{28})} \right]$$

$$CPI (2) = \frac{1}{2} \left[\frac{(C_{25} + C_{27} + C_{29} + C_{31})}{(C_{24} + C_{26} + C_{28} + C_{30})} + \frac{(C_{25} + C_{27} + C_{29} + C_{31})}{(C_{26} + C_{28} + C_{30} + C_{32})} \right]$$

$$CPI (3) = \frac{2 \times C_{27}}{(C_{26} + C_{28})}$$

$$Pristane : Phytane Pristane : nC_{17}$$

$$Phytane : nC_{18}$$

D-3 ANALYSIS OF C AROMATIC HYDROCARBONS

The C₁₅₊ aromatic hydrocarbons are relatively more resistant to alteration in the reservoir by biodegradation than the corresponding saturates. They are, therefore, of value in correlation studies. Furthermore, ratios of selected methyl-phenanthrenes and of phenanthrene (MPI) are used to ascertain the maturation levels of (inferred) hydrocarbon source rocks.

C₁₅₊ aromatic hydrocarbons are analysed by methods analagous to those used for the saturated hydrocarbons. The gas chromatogram displays the naphthalenes, methyl substituted naphthalenes, phenanthrene, the methyl phenanthrenes and the heavier aromatics. Methyl phenanthrene indices are calculated and included in the reports:

MPI (1) =
$$\frac{1.5 \times (2-MP + 3-MP)}{P + 1-MP + 9-MP}$$

MPI (2) = $3 \times (2-MP)$
 $P = phenanthrene$ MP = methyl phenanthrene
Note : Calculated mean reflectance (Rc)
Rc = 0.6 MPI (1) + 0.40 (Ro <1.35%)
Rc = -0.6 MPI (1) + 2.30 (Ro > 1.35%)

(M. Radke & D.H. Welte, 1981)

)

1

`)

)

)

2

. 🤇

>

À

)

Under certain conditions dibenzothiophenes co-elute with the methyl phenanthrenes (for example 3-MP coelutes with methyldibenzothiophene) and hence GC-MS data are preferred, although the MPI(2) ratio calculated from the gas chromatograms is reliable.

D-4 AMALYSIS OF C 15+ SULPHUR AROMATIC HYDROCARBONS

These compounds are present in the C_{15+} aromatic hydrocarbons fraction and, by substituting a flame photometric detector for the more normal flame ionisation detector in the GC, are detected and measured in the same way as the aromatic hydrocarbons. The sulphur aromatic hydrocarbons produce a characteristic chromatogram which is principally used in correlation studies.

D-5 NORMAL AND BRANCHED/CYCLIC SATURATES CHROMATOGRAMS

By using clathrating agents, such as urea or molecular sieves, the C₁₅₊ saturates fraction is separated into normal (straight chain) and branched/cyclic alkane fractions. These fractions are then analysed by the same techniques as those used for the total saturates fractions.

D-6 THERMAL BITUMEN (C5-C20) ANALYSIS

Powdered rock samples are heated in a thermal desorption cold trap injector and the evolved hydrocarbons are analysed by gas-chromatography. This technique enables us to examine the C_{15-} hydrocarbons which are normally lost and requires only milligram quantities of rock. The resulting chromatogram for the sediment is comparable to the whole oil trace.

A small quantity of powdered rock is heated to approximately 350°C in a helium gas stream and the desorbed hydrocarbons are collected on-column in a cold trap at -130°C. After a pre-determined time interval the furnace is cooled, the cold trap heated and the liberated hydrocarbons are analysed by capillary column gas-chromatography in the usual manner. The high resolution chromatogram displays a full range of hydrocarbons and non-hydrocarbons from C_4 to C_{25+} but is not quantitative beyond C_{20} . This analysis is invaluable for the evaluation of source rocks, for show detection, for correlation purposes and for volumetric yield calculations. Total abundances are reported together with the normalised distribution of the C_5-C_{20} n-alkanes.

ş

3

3

2

à

Υ,

ŧ

3

3

3

à

)

)

Ĵ,

3

)

Jan Star

D-7 ANALYSIS OF SATURATED AND AROMATIC HYDROCARBON BIOMARKERS BY GC-MS

Hydrocarbons representing the skeletal remains of the original biolipids in plant and animal debris survive to advanced levels of thermal maturity and are not seriously affected by normal biodegradation. These 'biomarker' hydrocarbons are therefore invaluable in correlation studies because they are diagnostic of the facies, depositional environment and maturity of the source.

 C_{15+} saturated and aromatic hydrocarbons from crude oils or source rock extracts are separated on a Hewlett Packard 5890 capillary gas chromatograph. The molecular fragments associated with specific biomarkers are monitored as they emerge from the capillary column by a V.G. TS250 double focussing mass spectrometer, coupled to a V.G. 11250 data system. In conjunction with the associated mass-spectra library, this system permits the quantitative identification of all biomarkers. Mass fragmentograms of the steranes (at m/z 217, 218, 231 and 259) and of triterpanes (at m/z 177, 191 and 205) are routinely reported with eleven biomarker ratios plus, if required, peak area data. Similarly, for the aromatic hydrocarbons, the mono- and tri-aromatic steranes (at m/z 253 and m/z 231 respectively) together with the phenanthrene series (m/z 178, 192 and 206) and dibenzothiophenes (m/z 184, 198 and 212)fragmentograms are reproduced in the report. Other fragment ions can be monitored at the client's request. Peak area data from the aromatic steranes and phenanthrenes are used to evaluate thermal maturity and for correlation purposes. The saturates are employed for correlation, maturity and source facies evaluations.
Considerable enhancements in sensitivity and selectivity in biomarker analysis can now be provided by the selective metastable ion monitoring (SMIM) mass spectroscopic technique. This new technique (also known as metastable reaction monitoring, MRM) produces less complex fragmentograms, avoids co-elution problems and permits the detailed investigation of the C_{30} steranes.

D-8 CARBON ISOTOPE RATIOS

}

)

⁻)

)

)

)

)

)

à

The ratio of the stable ¹³C and ¹²C atoms in living organic matter is controlled by biosynthetic pathways and by environment. Thus, plants and animals which develop in fresh-water have different isotopic ratios to similar species growing in seawater. The geothermal history of the sedimentary organic matter has a secondary influence on the isotope values. The principal application of stable carbon isotopic ratios is therefore, in oil-oil and oil-source rock correlation studies, since the generated hydrocarbons retain the isotopic signature of the source kerogen.

Carbon isotope ratios are measured on hydrocarbons and non-hydrocarbons isolated from crude oils and source rocks, from source rock kerogens and from kerogen pyrolysates. The hydrocarbon fraction or kerogen is combusted under controlled conditions (to avoid isotopic fractionation) and the resulting carbon dioxide is analysed by a mass spectrometer. This is a specialised spectrometer (a modified VG 602) fitted with dual collector and micro processor controlled ratio measurement device.

 13 C is approximately 1% of the total carbon in organic matter and the changes in composition are, therefore, only a few parts per million. For this reason the absolute ratios are compared to those of an international standard (the Peedee belemnite, PDB). In practice, a secondary standard (NBS 22 oil) is used in routine measurements and the results expressed as a deviation (δ) in parts per thousand from the PDB standard.

¹³C =
$$\begin{bmatrix} \frac{13}{C} \\ \frac{13}{C} \\$$

The δ values for hydrocarbons, non-hydrocarbons, pyrolysates and kerogens are tabulated and plotted as X-Y or Galimov plots.

13

Oil to source rock correlation studies should involve the analysis of the whole oil, each of the four C_{15+} fractions and of the kerogen and kerogen pyrolysate material. Carbon isotopes are essential in correlation studies involving gases, when each hydrocarbon which is sufficiently abundant is separated for individual analysis.

E. CRUDE OIL CHARACTERISATION

Crude oils and condensates are, if necessary, dehydrated before measuring their bulk properties. Typical analyses by industry standard methods (ASTM, IP) include API gravity, viscosity, sulphur content, wax content, trace metal content, nitrogen content, pour point, flash point, water, sediment and salt contents, total acid content and total base number.

Large liquid samples are distilled, generally to give a 210°C+ fraction, whilst small samples are topped by evaporating under controlled conditions, to give a comparable fraction.

Capillary gas chromatographic analyses of the whole oil and of the gasoline fraction (A-2) provide detailed fingerprints and quantitative data for correlation studies. Crude oils and condensates are further characterised by analyses which are analagous to those performed on source rock extracts (D-1 through D-5, D-7, D-8).

F. HYDROCARBON GAS ANALYSIS

Hydrocarbons and non-hydrocarbons are measured by gas chromatography. Methane and, if possible, the individual C_2-C_4 hydrocarbons are separated by gas chromatography prior to determining their carbon isotope ratios. These data are used to evaluate the nature of the hydrocarbon source rock and its thermal maturity.

G. CORRELATION

Analyses (referred to above) of the gasolines, whole oil, C_{15+} saturates and aromatics by GC and by GC-MS, and of the carbon isotope ratios of the C_{15+} fractions, are performed upon crude oils/condensates and source rock extracts. Correlations between oils and between oils and source rocks are investigated by comparing the two sets of data.

See A-2, D-1 through D-8.

[4

1

>

2

1

`}

1000

)

}

3

)

3

)

)

3

)

Ì

)

)

)

2

)

)

)

G-1 STABLE LIGHT ISOTOPES ANALYSES

ł

)

)

)

-)

à

)

3

3

)

)

)

Ì

)

Sec.

)

ġ

3

Ì

Ì

Stable isotope ratio measurements not only of carbon but also of oxygen, sulphur, nitrogen and hydrogen (deuterium) are used in correlation studies. Carbon and sulphur isotope ratios are applied to the study of kerogen diagenesis whereas oxygen and carbon isotope data are used to investigate carbonate diagenesis. Hydrogen : deuterium and carbon isotope ratios of methane and the heavier gaseous hydrocarbons are sensitive to changes in source type and maturity and are therefore, used in hydrocarbon migration studies. Biosynthetic processes are often accompanied by isotopic fractionation and isotope ratio techniques have therefore a wide application in the field of environmental analysis.

Preparative techniques, determined by the nature of the sample and by the element under investigation, are designed to avoid fractionation. Combustion techniques are generally used for carbon and sulphur whilst chemical methods of isolation are employed for oxygen and hydrogen/deuterium. Measurement of isotopic ratios of these elements is by means of a Sigma 7X mass spectrometer. This fully computer controlled machine uses automatic freeze down for small samples, dual collectors for hydrogen and deuterium and triple collectors for the heavier elements such as carbon, oxygen, sulphur and nitrogen.

Results are reported as delta values by reference to the appropriate international standard.

H-1 INTERPRETATION

Interpretation of the geochemical data obtained from the analytical specification agreed with the client is undertaken by a team of experienced geochemists. In addition to an extensive knowledge of petroleum geochemistry the members of this team are also specialists in areas such as organic petrography, mass spectrometry or data processing and statistical analysis. When required, data from related disciplines such as biostratigraphy are incorporated into the interpretation. Reports are specifically designed to aid the explorationist in prospect evaluation and to solve any particular problems raised by the client. They contain detailed evaluations of the lithological succession, source facies and hydrocarbon potential and source rock maturity in addition to show detection and the characterisation of the shows. Integration of these topics gives the source rock and show character of each formation/interval. The report also contains a concise executive summary for the benefit of senior management.

15

1-1 COMPUTER DATA FILES

Tabulated geochemical data can be supplied on one of several standard magnetic media, including ½ inch 9 track tapes at 1600 BPI, 5.1/4" IBM compatible diskettes or on TK50 DEC tapes. The content and file structure is usually agreed between the client and Geochem. ŝ

ž

J

ŝ

)

>

-

)

)

3

}

)

5

}

3

)

3

à

ģ

2

3

3

>

à

)

)

Ì

)

)

)

)

)

Ì

)

U-552

ROBERTSON RESEARCH INTERNATIONAL LIMITED

BA 88-1006-1 2 1 JULI 1988 OLJEDIREKTORATET

MATURITY AND KEROGEN TYPE OF 48 SIDEWALL CORE SAMPLES FROM THE NORSK HYDRO 7321/8-1 BARENTS SEA WELL: INTERVAL

REPORT NO. 6257/Ic

1383m TO 1437m

A DESCRIPTION OF THE OWNER	
OLJEDIREKTORATET AVD. KONTOR HARSTAD Journal NT: 88 /2676 - (
dato 1 1 FEB. 1988	_

Ъÿ

A.G. COLLINS

PROJECT NO. RRPC/878/Ic/25564

NORSK HYDRO CONTRACT NO. KO1898-00/UP-U003330

Prepared by: Robertson Research International Limited Llandudno Gwynedd LL30 ISA United Kingdom Prepared for: Norsk Hydro a.s. Kanebogen N-9400 Harstad Norway

Robertson Group

JANUARY 1988

1 SUMMARY

Prepared kerogen slides from 48 sidewall cores from 1383m to 1437m have been examined for spore colour and kerogen type. The data are presented in tabular form, with brief text summaries. No geological interpretation has been attempted.

2 INTRODUCTION

This report presents the results obtained from spore colouration and visual kerogen type analysis of 48 sidewall cores samples from the interval 1383m to 1437m in the Barents Sea 7321/8-1 well.

The work was submitted by Norsk Hydro, Harstad, under Contract No. K01898-00/UP-U003330.

The samples comprised 48 prepared kerogen slides, coded 1A to 48A, and were collected on 3rd December, 1987, from Geochem Laboratories of Chester, England, where they had been processed. Preliminary results were sent to Norsk Hydro on 8th January, 1988, by facsimile message.

Our contact at Norsk Hydro throughout the project has been Jan Augustson who provided the list of sample depths and the outline stratigraphy used in the report.

COMPANY NORS

ł

ł

ł

NORSK HYDRO

WELL. 7321/8-1

LOCATION BARENTS SEA

.

,

SAMPLE DEPTH	SAMPLE	GENERALISED	SPORE COLOUR	VITRINITE	KEROGEN COMPOSITION (%)		KEROGEN COMPOSITION (%) (by calculation from pyrolysis data)		%) atal		
(MEIRES)	TYPE .	LITHOLOGY	INDEX (1 10)	R oil av %	INERTINITE	VITRINITE	SAPROPEL	INERTINISE	VITRINITE	ALGAL SAPROPEL	WAXY SAPROPEL
1383	Swe		7.0 - 7.5		25	20	55				
1384			7.0 - 7.5		35	35	30				
1385	**		7.5		35	40	25				
1387	4		7.5		35	40	25				
1388	11		7.5		35	40	25				
1389	30		7.5		15	20	65				
1391	14		7.5		40	40	20				
1392	11		7.5		15	15	70				
1395	It		7.5		40	40	20				
1396	4		7.5		10	35	55				
1398	м		7.0 - 7.5		40	40	20				
i 399	14		7.0 - 7.5		50	30	20				
1401	17		7.5		ιo	10	80				
1402	11		7.5		30	45	25				
1404	u		7.5		20	45	35				
1405	"		7.5		10	20	70				
1406	17		7.5		10	10	80	ļ			
1407	19		7.5		5	15	80				
1408	14		7.5		10	50	40				
1409	"		7.5		15	20	65				
1410	**		7.5		15	20	65				
1411			7.5		25	35	40				
1412	n		7.5		ι٥	30	55				
1413	"		7.5 - 8.0		15	15	70				
1414	19		7.5 - 8.0		10	25	65				
1415	74		7.5 - 8.0		15	15	70				
1416			7.5 - 8.0		10	25	65				
1417			7.5		15	30	55				
1418.2	п		7.5		40	50	10				
1419			7.5		40	50	10				
1420	и		7.5		25	40	35				I [
1421	и		7.0 - 7.5		55	30	15				
1422	11		7.5		40	55	5				
1423	*		7.5		35	25	40				
1424	11		7.5 - 8.0		35	60	5				
1425	ır	j.	7.5 - 8.0		85	10	5				
1425	м		7.5 - 8.0		30	10	60				
1427	14		7.5		40	60	Mor				
1428			7.5 - 8.0		35	60	5				
1429	14		7.5		65	30	5		i		

Maturity and Kerogen Composition Data

TABLE IA

COMPANY: NORSK HYDRO

3

•

WELL: 7321/8-1

.

LOCATION: BARENTS SEA

.

SAMPLE DEPTH	SAMPLE		SPORE COLOUR	VITRINITE	KEROGE (by micr	N COMPOSI oscopic exam	TION (%) Instion	KE {by c	ROGEN CON Iculation fro	POSITION () m pyrolysis da	4) ata) WAVV
(1811120)			110EA (1 - 10)	R oil av X	INERTINITE	VITRIBITE	SAPROPEL	INERTINITE	VITRINITE	SAPROPEL	SAPROPEL
1430	Swc		7.5 - 8.0		•	40	Mnr				
1431		:	7.5		63	35	Mar				
1432			7.5 - 8.0		50	50	Mnr				
1433			7.5 - 8.0		50	50	Mar				
1434			7.5 - 8.0		60	40	Mar				
1435			7.5 - 8.0		60	40	Mor				
14 30			8.0		50	50	Mor				
1437			8.0		65	30	5		1		
											1
			}								
										-	
					:						
					:				Ì		
								,			
											1
										1	
											1 :
	l										
1											

Maturity and Kerogen Composition Data

Depth (metres)	SCI	Palynomorphs	Vitrinite	Inertinite	Amorphous (liptinitic)	Amorphous (humic)	Cuticle	Reworked	Caved
1383	7-7.5	5 sp	10	25	50	10	-	_	-
1384	7-7.5	10 sp	25	35	20	10	-	-	-
1385	7.5	10 sp	25	40	15	10	-	-	-
1387	7.5	10 sp	25	40	15	10	-	-	-
1388	7.5	10 sp	35	40	10	5	-	-	-
1389	7.5	Mnr sp	10	15	65	?10	-	-	-
1391	7.5	5 sp	25	40	15	15	-	-	-
1392	7.5	Mar sp	5	15	70	?10	-	-	-
1395	7.5	5 sp	30	40	15	?10	-	-	-
1396	7.5	Mar sp	10	10	55	25	-	-	-
1398	7-7.5	5 sp	30	40	15	?10	-	-	-
1399	7-7.5	10 sp	20	50	?10	?10	-	-	-
1401	7.5	-	10	10	80	-	-	-	-
1402	7.5	5 510	25	30	20	?20	-	-	-
1404	7.5	Mar sp	15	20	35	?30	-	-	-
1405	7.5	-	10	10	70	?10	-	-	-
1406	7.5	-	10	10	80	-	-	-	-
1407	7.5	-	15	5	80	-	-		-
1408	7.5	5 510	40	10	35	210	_	-	-
1409	7.5	-	10	15	65	710	-	-	-
1410	7.5	-	10	15	65	210	-	-	-
1411	7.5	Mor so	20	25	40	715	_	-	-
1412	7.5	Mar sp	10	15	55	?20	-	-	-
1413	7.5-8	Mar so	5	10	70	715	_	÷	_
1414	7.5-8	i sn	10	10	60	?15	-	-	-
1415	7.5-8	Mar so	10	5	70	215	-	-	-
1416	7.5-8	Mor en	15	10	65	210	_	-	-
1417	7.5	Mor en	20	15	<5	710	_	-	-
1418 2	7.5	10 ep	50	40	-		_	_	-
1419	7.5	10 sp	30	40	_	720	_	-	_
1420	7.5	10 ap 5 ap	15		230	725	_	_	_
1421	7_7 5	25 69	12	55			-	_	_
1477	7 9	is ap	15	20	-	260	-	_	_
1423	7 5	/ sp	20	35	_		-	_	_
1494	7 5-8	40 sp	20	30	_		_	_	_
1425	7 5 9	5 ap	10	95	_		_	_	_
1425	7 5-8	5 sp	10 K	25	-	765	-	-	_
1420	7.5-0	y sy Mar cr	10	20	_	270	_	-	-
1427	75-9	cur sp	10	20	_	255	_	_	_
1420	7.5-0	5 50	15	2.J 65	-	در:	-	_	_
1447	7.5	⊃sp Manaa	30	65	-	-	-	-	-
1430	/.)-0 + =	Anr sp	20	5U 65	-	:20	-	-	-
1491 1699	/.J	mur sp	25	C0	-	10	-	-	-
1432	7.5-8	Mar sp	20	40	-	740	-	-	-
1433	7.5-8	Mnr sp	20	40	-	740	-	-	-
1434	/.)-8	Mur sp	30	50	-	?20	-	-	-
1435	1.5-8	Mnr sp	40	60	-	-	-	-	-
1430	8	Mnr sp	30	50	-	720	-	-	-
143/	â	5 sp	30	65	-	-	-	→	-

sp = spores

,

1

1-552 61 ý 8F. 19522 -- 1 640

GEOCHEMICAL REPORT

NORSK HYDRO NORWAY 7321/8-1

BA-88-1286-(1 5 SEPT. 1988

OLJEDIREKTORATET

REGISTRERT

EXPLORATION LOGGING SERVICES

P.O. Box 72,

Kokstadevien 29,

5061 Kokstad,

Norway.

INTRODUCTION

Geochemical screening using the Oil Shows Analyser was performed on 796 cuttings samples and 128 core samples. The cuttings samples were washed and air dried. The argillaceous lithologies were then selected with the use of a binocular microscope. The selected cuttings were then ground to a fine powder prior to analysis. The core samples were cleaned and also ground prior to analysis.

Five metre composite samples were analysed from 825m to 1400m, two and three metre composite samples from 1400m to 3090m and five or ten metre composite samples from 3090m to 3482m.

APPENDIX A

SAMPLE PREPARATION SAMPLE CONTAMINATION DESCRIPTION OF ANALYTICAL EQUIPMENT PRESENTATION OF RESULTS INTERPRETATION OF OSA DERIVED PARAMETERS

SAMPLE PREPARATION

Small samples of ditch cuttings are taken and thoroughly washed in cold water through a 2.36mm sieve and collected in a 180 micron sieve to remove cavings. Any large quantities of contaminants such as lost circulation material are removed at this stage. The washed material is then examined under a binocular microscope and any further contaminants removed. The samples are then air dried at room temperature to prevent the loss of 'free hydrocarbons' and then ground to a homogenous powder in preparation for pyrolysis.

SAMPLE CONTAMINATION

The effects of contamination, if unrecognized, can lead to misleading geochemical data. The major contaminants usually encountered at the wellsite include paint chips, lost circulation material (mica, nuthulls, etc.), steel fragments, and pipe dope. In the 7321/8-1 well these were removed by picking from the dried sample.

Organic mud additives, especially those used for water loss control, can also cause serious contamination problems.

Another source of contamination to be aware of is caused by migrated hydrocarbons. The presence of migrated oil or bitumen in a rock can give a major response in the vicinity of 300 degrees centigrade on the pyrogram (S1) while solid bitumen and the 'heavy end' fraction of petroleum has been found to produce a measurable response in the region 300-550 degrees centigrade. This is the same temperature range in which kerogen is cracked releasing hydrocarbons during pyrolysis. Thus large quantities of bitumen or migrated petroleum in rocks can affect the size and maximum temperature (Tmax) of the (S2) peak and cause non-source rocks to be falsely identified as source rocks as reported by Clementz (1979)*. The problems encountered as a result of hydrocarbon contamination may be overcome by solvent extraction using a 50:50 solution of trichloroethane and acetone. As a guideline, samples with high S1 values (greater than 1.0 mgHC/g rock) are solvent extracted and reanalysed to obtain more valid values for S2 and Tmax. The S1 value obtained in the first analysis remains a useful indicator of oil accumulations, and degree of contamination.

* Clementz, D. 1979, 'Effect of Oil and Bitumen Saturation on Source Rock Pyrolysis', A.A.P.G. Bull., Vol 62 (12).

Principle of Operation

1

Small quantities of sample (approx. 100 mg) are analysed by programmed pyrolysis in an inert Helium atmostphere. Any evolved hydrocarbons are detected by a Flame Ionisation Detector. The output from this sensor provides the peak data for the SO, S1 and S2 indices. In addition, the temperature, Tmax, for maximum generation of cracked hydrocarbons is measured by a probe monitoring oven temperature.

On completion of the pyrolysis cycle the sample is transferred to a second oven. The sample is heated in air and any carbonaceous material remaining is converted to carbon dioxide, this is detected by a thermal conductivity detector (TCD), the output of which is the S4 peak. The Oil Shows Analyser thus derives the Total Organic Carbon content from the sum of the pyrolysed carbon (S0+S1+S2) and the residual carbon (S4).

The Oil Shows Analyser used the following analytical cycle:-

Pyrolysis:

Carrier gas	:	Helium
Initial Isotherm	:	90 deg. C
Isothermal Hold	:	2 minutes
Second Isotherm	:	300 Deg. C
Isothermal Hold	:	2 minutes
Temperature Ramp	:	30 deg/min
Final Temperature	:	600 deg. C
A		
Uxidation:		
Oxidation Gas	:	Air (after removal of CO2)
Oven Temperature	:	600 deg. C
Oxidation Time	:	5 minutes

The equipment was calibrated using a standard supplied by Exploration Logging Overseas, Inc. A quality control sample was run routinely every ten unknown samples, or every 24 hours if less than ten samples were analysed during this period.

PRESENTATION OF RESULTS

The processed data is expressed in terms of:-

S0	:	Low temperature gas yield (mgHC/g rock)
S1	:	Low temperature oil yield (mgHC/g rock).
S2	:	High temperature hydrocarbon yield (mgHC/g rock).
Tmax	:	Temperature at which maximum emission of hydrocarbons occurs.
T.O.C.	:	Total Organic Carbon (weight percent of whole rock) comprised of
		S4 (residual organic carbon) plus 82% of the quantity S0+S1+S2.
T.P.I.	:	Total Production Index (SO+S1/SO+S1+S2).
H.I.	:	Hydrogen Index (S2/TOC).

APPENDIX B

TABULATION OF ANALYTICAL DATA

FOR : NORSK HYDRO A/S WELL : 7321/8-1

825.0 m TO 1030.0 m

		SOURCE BED EVALUATION				FREE HYDROCARBS			
LITHOLOGY	DEPTH m	TOC Zwe	S2 mg/g	TMAX degC	S2/TOC HI	SO mg/g	S1 mg/g	ŤPI	
Cuttings Sa	mples								
	825.00	.60	•42	439	70	0.00	.17	•29	
	830.00	.72	•55	430	76	0.00	.23	.29	
	835.00	.79	.75	428	95	0.00	•34	.31	
	840.00	•67	•51	431	76	0.00	.28	.35	
	845.00	•76	•53	432	70	0.00	.34	.39	
	850.00	•70	.30	432	43	0.00	•37	.55	
	855.00	•66	.43	428	65	0.00	•29	•40	
	860.00	•82	•57	435	70	0.00	.39	•41	
	865.00	•56	•21	427	38	0.00	•24	•53	
	870.00	•58	•22	427	38	0.00	•29	•57	
L	875.00	•45	.17	430	38	0.00	•17	.50	
	880.00	.92	.81	428	88	0.00	•58	.42	
	885.00	•94	1.14	433	121	0.00	•71	.38	
	890,00	1.06	1.57	432	148	0.00	.95	.38	
	895.00	1.41	3.00	433	213	0.00	1.61	.35	
	900.00	1.27	2.73	434	215	0.00	2.19	.45	
	905.00	1.24	2.62	431	211	0.00	2.12	.45	
********	910.00	1.30	2.81	435	216	0.00	1.88	. 40	
*********	915.00	1.47	3.55	433	241	0.00	3.45	.49	
	920.00	1.46	3.54	430	242	0.00	3.75	.51	
	925.00	1.35	3.35	430	248	0.00	2.88	.46	
	930.00	1.38	3.15	432	228	0.00	3.01	.49	
	935.00	1.88	2.49	437	132	0.00	1.03	.29	
•••	940.00	1.59	2.60	437	164	0.00	1.18	.31	
,,,,	945.00	1.57	2.81	439	179	0.00	1.19	.30	
	950.00	1.43	2.84	437	199	0.00	1.47	.34	
,,	955.00	1.35	2.38	437	176	0.00	.93	.28	
	960.00	1.52	2.67	438	176	0.00	1.12	.30	
	965.00	1.53	2.78	437	182	0.00	1.14	.29	
,,,,,	970.00	1.55	2.96	438	191	0.00	1.40	.32	
,,,,	975.00	1.71	3,10	438	181	0.00	1.39	.31	
,,,	980.00	1.58	3.07	436	194	0.00	1.76	.36	
,,,	985.00	1.56	2.80	436	179	0.00	1.39	.33	
,,	990.00	1.68	2.91	440	173	0.00	1.21	.29	
,	1000.00	1.59	2.62	436	165	0.00	1.25	- 32	
,	1005.00	1.67	3.03	438	181	0.00	1.47	.33	
3	1010.00	1.69	2.89	430	171	0.00	1.38	.32	
,	1015-00	1,31	2.25	422	179	0.00	1.48	10	
***	1020.00	1,23	2.30	400	180	0.00	1,10	. 32	
,,	1025 00	1,37	2.54	437	185	0.00	1.51	.37	
,,,,	1030 00	1.48	2.54	431	172	0 00	1.25	23	
,	1050.00	····	2.J4 	,,,+ ,,	1/ <i>2</i>			•33	

FOR : NORSK HYDRO A/S WELL : 7321/8-1

Printed	:	15:24					
		:	9	Sep	1987		
Format		:	5				

1035.0 m TO 1235.0 m

		SOURC	E BED H	EVALUAT:	ION	FR	EE HYDR	OCARBS	
LITHOLOGY	DEPTH m	TOC %wt	S2 mg/g	TMAX S2/TC degC Hi		SO mg/g	Sl mg/g	TPI	
Cuttings Sa	mples								
-,	1035.00	1.70	3.32	439	195	0.00	1.38	.29	
	1040.00	1.51	2.89	438	191	0.00	1.26	.30	
	1045.00	1.63	2.50	434	153	0.00	1.29	.34	
,	1050.00	1.58	2.89	439	183	0.00	1.06	.27	
	1055.00	1.50	2.65	438	177	0.00	1.22	.32	
	1060.00	1.41	2.44	440	173	0.00	1.26	•34	
	1065.00	1.36	2.33	439	171	0.00	1.11	•32	
	1070.00	1.47	2.53	440	172	0.00	1.03	.29	
	1075.00	1.19	1.95	440	164	0.00	•89	.31	
,,,	1080.00	1.33	2.06	441	155	0.00	1.10	.35	
,,,	1085.00	1.56	2.59	441	166	0.00	1.04	.29	
,,,	1090.00	1.50	2.45	442	163	0.00	.97	.28	
,	1095.00	1.55	2.76	441	178	0.00	1.16	.30	
**	1100.00	1.62	2.59	441	160	0.00	•99	.28	
,	1105.00	1.64	3.12	439	190	0.00	1.71	.35	
,,	1110.00	1.65	2.84	442	172	0.00	1.18	.29	
* *	1115.00	1.60	2.66	442	166	0.00	.97	.27	
* *	1120,00	1.57	2.66	442	169	0.00	•94	•26	
,,	1125.00	1.45	2,29	442	158	0.00	•75	.25	
* * *	1130.00	1.59	2.49	444	157	0.00	•82	•25	
	1135.00	1.62	2.47	443	152	0.00	•81	.25	
,,,,,,	1140.00	1.59	2.72	441	1/1	0.00	•90	•25	
	1145.00	1.16	1,94	442	167	0.00	•91	• 32	
***	1150.00	1.38	2.39	440	1/3	0.00	•92	.28	
,,	1160.00	1.21	2.03	443	168	0.00	•94	•32	
,	1165.00	1.28	2.08	443	163	0.00	.71	.25	
,	1170.00	1.22	1.75	442	143	0.00	•80	.31	
,,,	1175.00	1.25	1.83	44Z	140	0.00	•69	.21	
• •	1180.00	1.02	1.55	443	152	0.00	.87	.36	
3	1185.00	1.19	2.99	439	251	0.00	1.03	•26	
,,,,	1190.00	1.1/	1.14	443	97	0.00	.49	.30	
,,	1195.00	1.12	1.52	442	136	0.00	•65	.30	
,,	1200.00	1.10	1.4/	444	134	0.00	•61	.29	
,	1205.00	1.15	1.55	443	133	0.00	•01	.28	
,,	1210.00	1.01	1.31	444	130	0.00	• 50	.30	
,,	1215.00	+99	1.18	445	119	0.00	•50	.30	
,	1220.00	1.10	1.39	445	120	0.00	•6Z	.31	
	1225.00	1.04	1.40	445	133	0.00	•63	.31	
	1230.00	1.01	1.25	444	124	0.00	•53	• 30	
	1235.00	1.25	1.53	444	122	0.00	•68	•31	

FOR : NORSK HYDRO A/S WELL : 7321/8-1

-

1240.0 m TO 1417.0 m

		SOURCE BED EVALUATION			FREE HYDROCARBS			
LITHOLOGY	DEPTH m	TOC %wt	S2 mg/g	TMAX degC	S2/TOC HI	SO mg/g	Sl mg/g	TPI
Cuttings Sa	mples							
_	1240.00	1.18	1.36	445	115	0.00	•64	•32
	1245.00	1.14	1.42	442	125	0.00	.59	.29
	1250.00	1.27	1.55	444	122	0.00	•71	.31
,	1255.00	.83	•66	438	80	0.00	•56	.46
• •	1260.00	1.10	1.25	444	114	0.00	.65	.34
	1265.00	1.35	1.49	445	110	0.00	•71	•32
	1270.00	1.12	1.22	448	109	0.00	•64	•34
	1275.00	1.65	2.05	442	124	0.00	1.04	.34
	1280.00	1.74	2.12	447	122	0.00	1.10	•34
	1285.00	1.00	1.87	445	187	0.00	1.18	.39
	1287.00	1.46	1.55	443	106	0.00	•85	.35
,	1290.00	1.46	2.11	446	145	0.00	•81	•28
,,,,	1295.00	1.57	1.93	446	123	0.00	.90	•32
,,,	1300.00	1.85	2.55	448	138	0.00	1.16	.31
* * *	1305.00	1.81	3.01	449	166	0.00	1.23	•29
****	1310.00	2.38	2.82	449	118	0.00	1.44	•34
,,,, .	1315.00	2.16	2.83	449	131	0.00	1.57	•36
,:::::	1320.00	2.04	2.82	447	138	0.00	1.33	•32
, ,:	1325.00	1.80	2.77	451	154	0.00	1.26	•31
,,,, :	1330.00	2.01	2.52	449	125	0.00	1.23	.33
	1335.00	1.68	2.73	445	163	0.00	1.19	.30
	1340.00	2.55	3.26	450	128	0.00	1.33	.29
:	1345.00	2.00	2.99	447	149	0.00	1.26	.30
,,	1350.00	2.78	3.54	450	127	0.00	1.21	•25
-	1355.00	3.10	4.09	450	132	0.00	1.24	.23
Z	1360.00	2.23	3.55	449	159	0.00	1.06	.23
	1365.00	2.30	2.80	453	122	0.00	.91	•25
	1370.00	-92	+22	451	24	0.00	•10	.31
	1375.00	.3/	•07	450	19	0.00	•09	• 20
	1380.00	1.70	•14	450	106	0.00	•12	•40 40
	1200.00	1.70	1./0	440	104	0.00	1+49	•42
	1390.00	2.04	3.01 6.27	447	140	0.00	1.//	• 37 27
	1393.00	2.50	4.3/	447	1/2	0.00	2.04	+ 37
	1400.00	2.21	4.00	440	213	.04	3.02	.39
	1402.00	2.04	5.20	443	177	0.00	2.02	•41 /1
	1407 00	2.60	5.3/	440	212	•07 06	2.50U 2.54	•41
	1410 00	2.07	J./I 6 70	440	212	•00 07	0,04 0,00	• J7 26
	1412 00	2.00	6 02	447 /so	230	•07	2.02 2.60	• 20 9 C
	1615 00	2.17	0.02 6 00	430	294 215	•00 0 00	2.00	• 20
	1417 00	3,56	0.04 8 02	440 ///a	213	0.00	J.07 2 72	+00
			0.02	447			J•/J	•JC

FOR : NORSK HYDRO A/S WELL : 7321/8-1

÷

1420.0 m TO 1620.0 m

		SOUR	SOURCE BED EVALUATION		ION	FREE HYDROCARBS			
LITHOLOGY	DEPTH M	TOC %wt	S2 mg/g	TMAX degC	S2/TOC HI	SO mg/g	Sl mg/g	TPI	
Cuttings Sa	mples								
	1420.00	3.52	7.01	447	199	.10	3.72	.35	
	1422.00	3.11	7.71	449	248	•07	3.82	.34	
	1425.00	3.54	6.70	448	189	•08	3.36	.34	
	1427.00	3.65	9.13	449	250	•20	4.50	.34	
	1430.00	3.40	6.40	449	188	•23	3.47	.37	
	1432.00	3.10	9.15	451	295	•20	4.29	.33	
	1435.00	2.93	7.64	449	261	.15	4.13	.36	
::	1437.00	2.56	4.75	448	186	•10	2.60	.36	
::::	1440.00	2.25	4.64	451	206	•08	2.61	.37	
::::::	1442.00	2.25	6.78	448	301	•19	3.78	.37	
:::::::::	1545.00	2.89	9.14	447	316	0.00	3.09	.25	
********	1547.00	2.58	3.10	450	120	0.00	1.40	.31	
::::::::	1550.00	2.32	4.74	447	204	0.00	2.38	.33	
::::::::	1552.00	1,98	5.04	448	255	0.00	2.28	.31	
:::::::::	1555.00	2.62	3.75	444	143	0.00	1.84	.33	
********	1557.00	2.62	5.17	452	197	0.00	2.68	.34	
::::::::	1560.00	1.65	2.60	445	158	0.00	1.20	.32	
::::::::	1562.00	2.07	3.32	450	160	0.00	1.57	.32	
********	1565.00	1.81	2.67	452	148	0.00	1.52	.36	
********	1567.00	1.54	2.19	448	142	0.00	1.28	•37	
********	1570.00	2.59	4.54	450	175	0.00	2.15	.32	
********	1572.00	2.53	2.92	446	115	0.00	1.72	.37	
::::::::	1575.00	1.04	2.30	446	221	0.00	1.76	.43	
,,:::::::	1577.00	1.25	1.53	445	122	0.00	1.16	.43	
,,,,,::::	1580.00	2.19	2.10	450	96	0.00	1.04	.33	
,,,,,::::	1582.00	•60	•48	448	80	0.00	.33	.41	
,,,,,;:::	1585.00	1.35	1.65	454	122	0.00	•89	.35	
,,,,,,:::	1587.00	.73	.50	450	68	0.00	•37	.43	
,,,,,;;;;	1590.00	•77	•64	441	83	0.00	•48	.43	
,,,,::	1592.00	1.31	1.62	442	124	0.00	•76	.32	
,,,,::	1595.00	•83	•74	445	89	0.00	•52	.41	
,,,,::	1597.00	.87	.81	440	93	0.00	.73	.47	
,,,,;::	1600.00	1.35	1.17	451	87	0.00	• 57	.33	
****	1602.00	•94	•81	440	86	0.00	.38	.32	
, , :	1605.00	1.23	1.14	454	93	0.00	.50	.30	
,:	1607.00	1.31	1.06	456	81	0.00	• 50	.32	
,:	1610.00	1.02	.65	449	64	0.00	•44	.40	
,:	1612.00	.92	.78	451	85	0.00	.51	•40	
,,	1615.00	.77	•54	456	70	0.00	.35	.39	
,,	1617.00	.84	•56	453	67	0.00	.33	.37	
	1620.00	.79	•52	456	66	0.00	.35	•40	

FOR : NORSK HYDRO A/S WELL : 7321/8-1

Printed	at	:	15:	:34	
		:	9	Sep	1987
Format		:	5		

.

1622.0 m TO 1722.0 m

		SOURC	E BED H	EVALUAT 1	EON	FR	EE HYDR	OCARBS
LITHOLOGY	DEPTH	TOC	S2	TMAX S	S2/TOC	so ma/a	S1	TPI
	ш 	/wc	шу/у	aegu	пт 	шg/g 	шg/g 	
Cuttings Sa	mples							
-	1622.00	.83	.59	454	71	0.00	.31	.34
	1625.00	1.55	•68	453	44	0.00	•46	.40
::::	1627.00	•79	•49	455	62	0.00	•26	.35
::::::	1630.00	1.02	•68	453	67	0.00	.37	.35
,,:::::	1632.00	•93	.49	455	53	0.00	.20	•29
::::::	1635.00	•86	• 51	457	59	0.00	.21	.29
:::::::	1637.00	•88	•65	452	74	0.00	.24	•27
	1640.00	•76	•44	451	58	0.00	.19	.30
,,,,::::	1642.00	.94	•55	457	59	0.00	•22	•29
,:	1645.00	•87	•47	455	54	0.00	•17	•27
,:::	1647.00	•88	•28	453	66 50	0.00	.18	•24
:::::::	1650.00	•98	•52	458	53	0.00	.20	+28
	1652.00	.95	•53	454	56	0.00	•21	•28
,,,:::::	1655.00	1.00	•54	450	54 77	0.00	•27	.33
	1657.00	+85	•03	458	74	0.00	.23	•27
	1662.00	1.00	•20	402	50	0.00	•20	• 29
	1665 00	1.02	+00	402	04 73	0.00	• 44	• 27
,,,	1667 00	1.42	1.04	440	75	0.00	•47	• 51
,,,	1670 00	•/1	• 24	431	105	0.00	•3/	•41
****	1672 00	•/0	•0U 45	440	105	0.00	.40	• 20
,,	1672.00	• 71	.07	440	114	0.00	•47	•4.2
,,,,,,,,,	1677 00	1 22	1.50	442	114	0.00	-07	• 22
,,	1680 00	1 61	1 21	447	96	0.00	•	• 20
, , · · · · · · · ·	1682 00	1 08	1+21	455	81	0.00	-45	• 41
,,	1685 00	1 01	•00	455	96	0.00	•JI /6	•20
• • • • • • • • • • • • • • • • • • •	1687 00	35	• 77	454	1/3	0.00	32	• JZ 30
	1690.00	1 30	1 49	451	107	0.00	1 28	46
	1692.00	1.24	1.18	452	95	0.00	.46	.28
	1695.00	1.03	1,19	454	116	0.00	39	.25
	1697.00	1.18	1.06	455	90	0.00	.42	.28
	1700.00	1.27	1.70	453	134	0.00	1.04	. 38
	1702.00	1.11	.84	454	76	0.00	.42	.33
	1705.00	.99	.98	453	99	0.00	.53	.35
	1707.00	1.08	.83	448	77	0.00	.51	.38
	1710.00	1.04	1.03	455	99	0.00	.52	.34
	1712.00	.75	.73	454	97	0.00	.39	.35
,,::::	1715.00	1.40	1.93	453	138	0.00	.68	.26
,,,::::	1717.00	.88	.84	453	95	0.00	.47	.36
	1720.00	.93	.81	455	87	0.00	.41	.34
,,,:::::	1722.00	1.05	1.03	450	98	0.00	.50	.33
÷								

FOR : NORSK HYDRO A/S WELL : 7321/8-1

1725.0 m TO 1825.0 m

		SOUR	CE BED I	EVALUATI	LON	FR	ZE HYDR	OCARBS
LITHOLOGY	DEPTH m	TOC %wt	S2 mg/g	TMAX S degC	52/TOC HI	SO mg/g	Sl mg/g	TPI
Cuttings Sa	mples							
,,,,,::::	1725.00	•66	.63	456	95	0.00	.27	.30
,,,,,::	1727.00	.73	•57	452	78	0.00	.27	.32
,,,,:::	1730.00	•57	•49	449	86	0.00	•27	•36
,,,,;	1732.00	•93	• 58	452	62	0.00	.20	.26
,,,,,;	1735.00	•56	.41	454	73	0.00	.33	•45
,,,,,;	1737.00	•53	.31	461	58	0.00	.17	. 35
· · · · · ·	1740.00	•54	.43	454	80	0.00	.15	.26
,,,	1742.00	•38	.22	460	58	0.00	.09	.29
,	1745.00	.49	.23	460	47	0.00	.13	.36
,	1747.00	•35	.18	0	51	0.00	.06	.25
,	1750.00	•36	.18	0	50	0.00	•06	.25
,	1752.00	.30	.21	461	70	0.00	.06	•22
•	1755.00	•41	.21	462	51	0.00	•09	.30
, :	1757.00	•41	.25	458	61	0.00	•08	•24
· · · · ·	1760.00	•42	.22	455	52	0.00	.07	•24
	1762.00	•41	.15	0	37	0.00	.05	.25
,:	1765.00	.30	.13	0	43	0.00	.08	.38
	1767.00	.36	.14	0	39	0.00	.05	.26
	1770.00	.44	.23	455	52	0.00	.10	.30
.:	1772.00	.45	.19	0	42	0.00	.09	.32
, , ,	1775.00	.39	.19	0	49	0.00	.10	.34
	1777.00	.39	.12	0	31	0.00	.07	.37
	1780.00	.33	.17	Ó	52	0.00	.12	.41
	1782.00	.33	.22	449	67	0.00	.11	.33
	-1785.00	.48	.19	0	40	0.00	.12	.39
	1787.00	.46	.24	440	52	0.00	.13	.35
	1790.00	-28	.16	0	57	0.00	.08	.33
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1792.00	.40	.65	444	163	0.00	.26	.29
,,,	1795.00	.29	.40	433	138	0.00	.25	-38
,,,,,	1797.00	.68	- 96	427	141	0.00	.45	-32
,,,;;	1800-00	. 49	.53	438	108	0.00	.39	.42
,,,,.	1802.00	.28	.25	445	89	0.00	.16	.39
,,,	1805-00	.30	.16	0	53	0.00	.09	.36
,,,	1807-00	.35	.24	453	69	0.00	.15	.38
,,	1810.00	.19	.11	0	58	0.00	.05	.31
********	1812.00	.84	.83	ň	99	0.00	.81	. 49
	1815.00	.52	.05	437	92	0.00	. 35	.42
******	1817.00	.52	• • • •	627	106	0.00	• J J 5 2	.40
• • • • • • • • • • • • • • • • • • •	1820.00	_^Q	•30 75	431 712	Q2	0.00	• • • • •	• • •9 .07
· · · · · · · ·	1822 00	449 66	•45 67	440 /// J	94	0.00	+17	•27
******	1825 00	•00 Q4	20. 02	442 //50	74	0.00	•20 10	• J I 21
	1023.00	+ 70	•07	430	12	0.00	•10	• 4 1

FOR : NORSK HYDRO A/S WELL : 7321/8-1

1827.0 m TO 1927.0 m

		SOUR	CE BED I	EVALUAT	ION	FRI	EE HYDR	OCARBS
LITHOLOGY	DEPTH m	TOC %wt	S2 mg/g	TMAX degC	S2/TOC HI	SO mg/g	Sl mg/g	TPI
Cuttings Sa	mples							
,::::::	1827,00	.81	.69	429	85	0.00	• 50	•42
::::::	1830.00	.71	•55	462	77	0.00	.33	.37
,: ::	1832.00	1.70	3.32	460	195	0.00	.51	.13
,,::::::	1835.00	.81	.41	461	51	0.00	.07	.15
,:	1837.00	.53	•40	452	75	0.00	.12	.23
, , :	1840.00	.51	.33	457	65	0.00	. 12	.27
,::	1842.00	2.07	2.91	460	141	0.00	.28	•09
,::	1845.00	1.58	1.02	462	65	0.00	.17	.14
,,::	1847.00	•88	.66	461	75	0.00	•09	.12
,,,::::	1850.00	2.10	2.58	465	123	0.00	.33	.11
,,,,:::	1852.00	1.99	4.76	460	239	0.00	.68	.13
,,,:::	1855.00	3.71	3.54	463	95	0.00	.52	.13
,,,:::	1857.00	2.11	3.08	462	146	0.00	.55	.15
,,,,:::	1860.00	2.82	4.32	463	153	0.00	•61	.12
	1862.00	2.84	3.07	465	108	0.00	.48	.14
	1865.00	3.10	3.58	461	115	0.00	•54	.13
	1867.00	2.26	1.83	464	81	0.00	.28	.13
	1870.00	1.96	1.13	463	58	0.00	.18	.14
.::	1872.00	1.80	1.60	465	89	0.00	.22	.12
. : : : : : : :	1875.00	1.02	.68	460	67	0.00	.11	.14
.:::	1877.00	.79	.61	467	77	0.00	.10	-14
	1880.00	.96	.67	464	70	0.00	.10	.13
	1882.00	.69	-38	464	55	0.00	.06	.14
	1885.00	.93	.91	468	98	0.00	.20	.18
	1887.00	.63	.15	0	24	0.00	.06	.29
	1890.00	. 43	.26	459	60	0.00	-07	.21
,,	1892.00	. 42	.19		45 45	0.00	-08	.30
,,,	1895.00	.50	.58	463	116	0.00	.11	-16
,,,,	1897-00	.89	.57	465	64	0.00	.13	.19
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1900.00	.55	. 42	460	76	0.00	.17	.29
•	1902.00	.38	.18	- ĩõ	47	0.00	.12	. 40
-	1905.00	45	. 27	466	60	0.00	12	.31
•	1907-00	48	.38	516	79	0.00	12	.24
• • •	1910.00	• • •	.54	454	90	0.00	•12 97	. 33
	1912.00	-00 58	- 38	463	66	0.00	14	
•••	1915-00	1.16	• JO Q1	465	78	0.00	•14 20	.24
•••	1917.00	1 22		404	74	0.00	• 2 7	• 24
•••	1920.00	1.43	1.19	405	83	0.00	- 21	•40
•••	1922 00	1.47	1 • 10 7 5	407	76	0.00	10	•41
•••	1025 00	1 20	•/3	401 1,2%	20	0.00	•17	• 40
••	1923.00	1 00	•7/	404	61	0.00	• 44	•20
	1927.00	1.02	•00	407	CQ	0.00	•1/	.20

FOR : NORSK HYDRO A/S WELL : 7321/8-1

1930.0 m TO 2030.0 m

		SOUR	CE BED I	EVALUAT	ION	FR	EE HYDR	OCARBS
LITHOLOGY	DEPTH m	TOC %wt	S2 mg/g	TMAX degC	S2/TOC HI	SO mg/g	Sl mg/g	TPI
Cuttings Sa	mples							
::::	1930.00	1.32	•99	466	75	0.00	.32	.24
::::	1932.00	•65	•38	464	58	0.00	•21	.36
:::	1935.00	•66	•42	465	64	0.00	.15	.26
:	1937.00	.71	•40	468	56	0.00	•14	.26
::::	1940.00	•59	.35	464	59	0.00	•11	.24
:::	1942.00	3.81	5.15	464	135	0.00	1.10	.18
::	1945.00	2.56	2,22	462	87	0.00	•57	•20
::	1947.00	3.17	3.52	461	111	0.00	. 78	.18
::	1950.00	3.04	2,55	460	84	0.00	•76	.23
:::	1952.00	3.66	3,49	462	95	0.00	•88	.20
::::	1955.00	3.36	2,94	461	88	0.00	•88	.23
:::::	1957.00	3.49	4.12	463	118	0.00	1.01	•20
::::::	1960.00	2.83	2.29	461	81	0.00	.59	•20
:::::	1962.00	2.92	2.50	459	86	0.00	•75	.23
::::::	1965.00	1.46	1.33	463	91	0.00	•44	•25
:::::::	1967.00	2.54	1.91	463	75	0.00	.63	.25
:::	1970.00	1.32	•87	465	66	0.00	•46	.35
*******	1972.00	1.37	.97	466	71	0.00	•46	.32
:::::	1975.00	1.74	1.38	466	79	0.00	•46	.25
*******	1977.00	1.46	1.07	464	73	0.00	•56	.34
:::::::	1980.00	1.13	•98	462	87	0.00	•48	.33
******	1982.00	1.23	1.04	467	85	0.00	.45	•30
*******	1985.00	1.15	.91	467	79	0.00	•31	.25
* * * * * * * *	1987.00	.91	.53	471	58	0.00	•26	.33
******	1990.00	1.66	1.41	468	85	0.00	•45	.24
:::::	1992.00	2.68	2.85	465	106	0.00	•79	.22
*******	1995.00	1.74	1.38	466	79	0.00	•46	.25
* * * * * * * *	1997.00	2.27	1.97	464	87	0.00	•67	.25
:::::	2000.00	2,46	3.04	463	124	0.00	•78	.20
******	2002.00	2.12	2.44	463	115	0.00	•83	.25
::::::	2005.00	4.73	7.27	462	154	0.00	1.47	.17
:::::	2007.00	4.07	5.04	466	124	0.00	1.23	.20
* * * * * * * *	2010.00	6.84	19.84	462	290	0.00	2.82	.12
::::::	2012.00	6.51	14.56	464	224	0.00	2.41	.14
:::::	2015.00	3.73	3.80	467	102	0.00	•86	.18
:::::	2017.00	3.73	4.81	467	129	0.00	1.04	.18
:::	2020.00	3.08	2.60	468	84	0.00	.63	.20
::::	2022.00	1.56	1.06	468	68	0.00	.37	.26
:::	2025.00	3.69	3.65	465	99	0.00	1.01	.22
:::::	2027.00	3.20	3.05	465	95	0.00	.78	.20
:::::	2030.00	2.70	2.39	467	89	0.00	.69	•22

FOR : NORSK HYDRO A/S WELL : 7321/8-1

Printed	at	:	15:	:48	
		:	9	Sep	1987
Format		:	5		

2032.0 m TO 2132.0 m

		SOUR	CE BED E	EVALUAT	ION	FR	EE HYDR	OCARBS
LITHOLOGY	DEPTH m	TOC %wt	S2 mg/g	TMAX degC	S2/TOC HI	SO mg/g	Sl mg/g	TPI
Cuttings Sa	mples							
:::::::	2032.00	2.94	2.94	466	100	0.00	.82	.22
*******	2035.00	1.77	1.55	469	88	0.00	.41	.21
:::::::	2037.00	2.50	2.37	468	95	0.00	.62	.21
:::::::	2040.00	1.84	1.34	467	73	0.00	.43	.24
::::::	2042.00	3.94	6.32	460	160	0.00	2.40	.28
::::::	2045.00	2,72	3.94	463	145	0.00	•88	.18
::	2047.00	1.23	.82	462	67	0.00	.23	.22
:::	2050.00	1.39	1.44	460	104	0.00	•34	.19
	2052.00	1.56	1.45	463	93	0.00	•38	.21
	2055.00	1.86	1.72	465	92	0.00	•46	.21
:::::	2057.00	1.60	1.65	468	103	0.00	•52	.24
:::::	2060.00	1.55	1.25	473	81	0.00	•35	.22
::::::	2062.00	1.94	1.65	467	85	0.00	.44	.21
::::	2065.00	1.39	.95	469	68	0.00	.33	.26
:::	2067.00	.82	.55	467	67	0.00	.21	.28
::	2070.00	.98	.70	471	71	0.00	.25	.26
L ::	2072.00	.97	.63	460	65	0.00	.38	.38
L ::	2075.00	.72	.40	474	56	0.00	.18	.31
L ::	2077.00	.80	.48	474	60	0.00	.19	.28
::	2080.00	•69	.39	473	57	0.00	.18	.32
:	2082.00	.63	.37	473	59	0.00	•14	.27
::	2085.00	.85	.58	470	68	0.00	.21	.27
:	2087.00	.97	.65	473	67	0.00	.21	•24
:	2090.00	3.01	3,62	471	120	0.00	.80	.18
:	2092.00	2.80	2,65	470	95	0.00	.63	.19
:	2095.00	3.40	3.61	469	106	0.00	.94	.21
:	2097.00	2.46	3.03	470	123	0.00	1.03	.25
:	2100.00	4.70	8.56	468	182	0.00	1.70	.17
:	2102.00	4.37	6.97	469	159	0.00	1.38	.17
::	2105.00	3.74	6.34	471	170	0.00	1.20	.16
:::	2107.00	2.04	3.74	471	183	0.00	.83	.18
:::	2110.00	2.81	2.90	475	103	0.00	.66	.19
:::::	2112.00	2.02	1.63	466	81	0.00	•42	.20
:::	2115.00	4.73	7.87	471	166	0.00	1.31	.14
:::	2117.00	4.25	8.88	471	209	0.00	1.54	.15
::::::	2120.00	4.47	12.07	471	270	0.00	1.80	.13
:::::::	2122.00	2.77	3.43	474	124	0.00	.69	.17
111	2125.00	4.33	4.92	473	114	.01	1.02	.17
11	2127.00	4.61	6.69	471	145	0.00	1.06	.14
	2130.00	2.27	1.63	474	72	0.00	.41	.20
	2132.00	2.23	.86	472	39	0.00	.30	.26

FOR : NORSK HYDRO A/S WELL : 7321/8-1

1

ş

2135.0 m TO 2237.0 m

			SOUR	CE BED H	EVALUAT	ION	FR	EE HYDR	OCARBS
LITH	IOLOGY	DEPTH m	TOC %wt	S2 mg/g	TMAX degC	S2/TOC HI	SO mg/g	Sl mg/g	TPI
Cutti	ngs Sa	mples							
L	:	2135.00	2.15	1.65	472	77	0.00	.40	.20
L	:	2137.00	3.13	2.69	473	86	0.00	.59	.18
L	:::	2140.00	3.03	2.53	475	83	0.00	.57	.18
L	:::::	2142.00	4.65	12.70	472	273	.01	1.50	.11
L	:::	2147.00	3.52	2.25	471	64	0.00	•54	.19
L	::	2150.00	4.28	4.01	471	94	•01	1.01	.20
L	::	2152.00	1.59	1.00	473	63	0.00	.30	.23
L	:	2155.00	2.28	1.30	473	57	0.00	.34	.21
L	::	2157.00	2.80	2.01	471	72	0.00	.47	.19
L	::	2160.00	4.05	4.13	470	102	0.00	.97	.19
L	::	2162.00	2.45	2.78	471	113	0.00	•68	•20
L	::	2165.00	2.40	1.64	473	68	0.00	.49	.23
L	::	2167.00	2.71	1.77	473	65	0.00	.48	•21
LLL	:	2170.00	2.75	1.76	470	64	0.00	•50	•22
LLL	:	2172.00	2.17	1.51	471	70	0.00	.40	.21
LLL	::	2175.00	1.31	•81	471	62	0.00	•30	.27
\mathbf{LLL}	::	2177.00	1.08	•66	471	61	0.00	.25	•27
$\mathbf{L}\mathbf{L}$::::	2180.00	1.25	• 59	471	47	0.00	.23	.28
LL	:::	2182.00	2,79	3.07	471	110	0.00	•56	.15
LL		2185.00	2,56	4.08	449	159	0.00	3.96	.49
L		2187.00	1.73	2.17	447	125	0.00	1.05	•33
	:	2190.00	1.30	.64	448	49	0.00	.44	.41
	::	2192.00	1.18	.70	452	59	0.00	•53	.43
	:	2195.00	1.11	.74	463	67	0.00	•38	.34
L	::	2197.00	.91	.40	459	44	0.00	.30	.43
L	:	2200.00	•85	.34	441	40	0.00	.31	•48
L		2202.00	.97	.34	461	35	0.00	.33	.49
L.	::	2205.00	.87	.37	461	43	0.00	.25	.40
L,	::	2207.00	.95	•35	463	37	0.00	•26	.43
LLLL	::	2210.00	.68	.18	463	26	0.00	.17	.49
LLLL	::	2212.00	.85	.31	468	36	0.00	.19	.38
LLLL	::	2215.00	.93	•45	473	48	0.00	•21	.32
LLLL	:	2217.00	2.49	1.52	474	61	0.00	•42	•22
LLL	::::	2220.00	1.28	.84	474	66	0.00	.26	•24
LL	:::	2222.00	1.20	•80	475	67	0.00	.21	.21
LL	::	2225.00	2.67	1.69	479	63	0.00	.46	.21
LL	::::	2227.00	2.82	2.10	473	74	0.00	.42	.17
LL	:::	2230.00	4.56	4.86	473	107	0.00	.82	.14
L	:::	2232.00	4.31	5.83	475	135	.04	.85	•13
L	:::::	2235.00	2.48	1.51	478	61	0.00	.32	. 17
	::::	2237.00	3.40	3.54	479	104	.02	.55	.14

•

FOR : NORSK HYDRO A/S WELL : 7321/8-1

Printed	at	:	16:	:01	
		:	9	Sep	1987
Format		:	5		

2240.0 m TO 2337.0 m

			SOUR	SOURCE BED EVALUATION				FREE HYDROCARBS		
LI	THOLOGY	DEPTH m	TOC %wt	S2 mg/g	TMAX S degC	2/TOC HI	SO mg/g	S1 mg/g	TPI	
Cut	tings Sa	mples								
L	:::	2240.00	3.19	2.22	478	70	•01	• 50	.19	
	:::	2242.00	1.89	1.61	478	85	0.00	.34	•17	
	:::::	2245.00	2.21	1.48	478	67	.01	•31	.18	
	:::::	2247.00	1.14	•62	483	54	0.00	.17	•22	
	:::::	2250.00	1.23	.73	475	59	0.00	.23	•24	
L	*****	2252.00	1.61	1.26	477	78	0.00	.34	.21	
L	::::	2255.00	1.47	.91	479	62	0.00	•23	•20	
L	::::	2257.00	1.03	•28	479	27	0.00	.13	.32	
L	:::	2260.00	•50	•11	0	22	0.00	•08	•42	
$\mathbf{L}\mathbf{L}$:::	2262.00	•86	•45	484	52	0.00	.15	•25	
ZŻ	:::	2265.00	•51	•11	0	22	0.00	.09	•45	
ZZ	::	2267.00	1.11	.79	472	71	0.00	•24	•23	
Z	::	2270.00	1.31	.51	479	39	0.00	•14	•22	
Z	::	2272.00	1.55	•64	478	41	0.00	.19	.23	
ZZ	:	2275.00	2.43	1.75	446	72	0.00	•41	.19	
ZŻ	::	2277.00	2.30	1.41	479	61	0.00	.28	•17	
ZZ	:::	2280.00	1.57	.73	481	46	0.00	.26	.26	
Z	::	2282.00	1.16	•55	478	47	0.00	.21	•28	
ZZ	::	2285.00	•76	•24	459	32	0.00	•20	.45	
LL	::	2287.00	1.05	• 42	448	40	0.00	•24	•36	
Z	::	2290.00	1.27	1.04	443	82	0.00	.49	•32	
	:::	2292.00	•80	• 44	464	55	0.00	•17	.28	
	::::	2295.00	1.11	.77	474	69	0.00	•21	.21	
	******	2297.00	•86	.53	464	62	0.00	.17	•24	
-	::	2300.00	•77	.37	4/9	48	0.00	.13	•26	
Z	:	2302.00	•92	•47	483	51	0.00	.14	•23	
		2305.00	1.12	•58	4//	52	0.00	.16	•22	
	::::::	2307.00	1.08	•75	4//	69	0.00	•16	•18	
	******	2310,00	1.31	1.07	4/3	82	0.00	.18	•14	
	:::::::	2312.00	.79	•45	486	57	0.00	.10	•18	
	:::	2315.00	•68	.22	492	32	0.00	.07	•24	
	::::	2317.00	.79	•28	489	35	0.00	.08	•22	
	:::	2320.00	•/4	•24	490	32	0.00	.09	.27	
	:::	2322.00	•74	•38	4/6	51	0.00	•14	•27	
	:::	2325.00	•84	•4/	465	50	0.00	•28	•3/	
	::::	2327.00	•74	•26	493	35	0.00	•08	•24	
	::::	2330.00	•/3	•26	487	36	0.00	.10	.28	
	::::	2332.00	•6/	•28	489	42	0.00	•10	•36	
	::	2335.00	•59	•20	496	34	0.00	.13	•39	
	:::::::	2337.00	•59	•21	448		0.00	•11	• 34	

FOR : NORSK HYDRO A/S WELL : 7321/8-1

Į

2340.0 m TO 2442.0 m

		SOURC	CE BED H	VALUATI	LON	FR	EE HYDR	OCARBS
LITHOLOGY	DEPTH m	TOC %wt	S2 mg/g	TMAX S degC	S2/TOC HI	SO mg/g	Sl mg/g	TPI
Cuttings Sa	mples							
::::	2340.00	.96	•58	478	60	0.00	.15	.21
:::::	2342.00	•55	•18	0	33	0.00	•09	.33
******	2345.00	•41	.13	0	32	0.00	•06	.32
******	2347.00	•45	.16	0	36	0.00	•08	.33
:::::	2350.00	•52	.17	0	33	0.00	. 07	•29
:::::	2352.00	•52	.15	0	29	0.00	•05	•25
::	2355.00	•64	•27	477	42	0.00	.12	•31
::	2357.00	.70	•22	490	31	0.00	.12	•35
:::	2360.00	1.10	.35	487	32	0.00	•11	•24
::	2362.00	•76	.25	488	33	0.00	.11	.31
:	2365.00	•97	•38	477	39	0.00	. 16	•30
:::	2367.00	•67	•22	490	33	0.00	•11	.33
:	2370.00	1.27	1.00	416	79	0.00	1.00	.50
::	2372.00	1.04	•87	423	84	0.00	•51	•37
::	2375.00	1.14	•58	480	51	0.00	•27	•32
::	2377.00	•96	•69	430	72	0.00	.49	•42
::	2380.00	1.45	1.14	421	79	0.00	1.03	•47
:	2382.00	1.50	1.26	422	84	0.00	1.01	•44
	2385.00	.93	•54	443	58	0.00	.19	.26
:	2387.00	.97	•54	438	56	0.00	•26	•33
:	2390.00	.95	•46	445	48	0.00	•16	•26
:	2392.00	.8/	•33	494	38	0.00	•11	•25
:	2395.00	•/9	•31	452	39	0.00	•13	•30
::	2397.00	1.09	+47	485	43	0.00	•15	•24
::	2400.00	•95	•41	480	43	0.00	.13	•24
::	2402.00	.8/	• 31	495	36	0.00	•12	.28
::::	2405.00	•/3	•19	501	20	0.00	.07	•27
::	2407.00	•00	.32	500	30	0.00	.00	•10
:	2410.00	•10	• 20	200	32	0.00	+07	• 4 4
::	2412.00	.00	•20	400	20	0.00	.09	• 20
:	2413.00	•/1	• 24	4/0	24 20	0.00	•11	• 31
:	2417.00	•/0	• 24	497	26	0.00	.09	•27
:	2420.00	•01	• 2.9	400	20	0.00	.07	•19
	2422.00	•00	•20	400 A	33 10	0.00	•07	•21
	2423.00	.03	•10	527	20	0.00	.07	• 20
	2427.00	•07	• 24	502	20	0.00	.09	•21
	2430.00	•01 70	•23	501	20	0.00	.07	•25
•	×2432+00	•/3	• 4 3	701	32 97	0.00	•U9	• 20
••••	2433.00	00. مت	01.	502	21	0.00	•05	•44 05
;;;::	2437.00	•/ð	• 24	202	20	0.00	•Uð	• 40 E 1
;;;;;	2440.00	•8U 40	• 24	201	50 77	0.00	•23	• J I
;;::	Z442.0U	.02	•1/		<i>21</i>	U.UU	•04	• 1 7

FOR : NORSK HYDRO A/S WELL : 7321/8-1

2445.0 m TO 2545.0 m

		SOUR	CE BED I	EVALUAT	FREE HYDROCARBS			
LITHOLOGY	DEPTH m	TOC %wt	S2 mg/g	TMAX degC	S2/TOC HI	SO mg/g	Sl mg/g	TPI
Cuttings Sa	mples							
;;:::	2445.00	.70	.17	0	24	0.00	.03	.15
;;:::	2447.00	•62	•14	0	23	0.00	.05	•26
;;::	2450.00	•61	.16	0	26	0.00	•04	•20
;;::	2452.00	.70	.16	0	23	0.00	•04	.20
;;:::	2455.00	•83	•24	506	29	0.00	•06	•20
;;;:::	2457.00	.79	.30	496	38	0.00	.06	.17
;;;:::	2460.00	.72	.90	434	125	0.00	.23	.20
;;;:::	2462.00	.57	.42	439	74	0.00	.15	.26
;;;:::	2465.00	.60	.61	436	102	0.00	.22	.27
;;:::	2467.00	.53	.36	437	68	0.00	. 17	.32
;;:::	2470.00	.59	.69	427	117	0.00	.25	.27
;;;:::	2472.00	.87	.47	441	54	0.00	.18	•28
;;::::	2475.00	1.09	.81	442	74	0.00	.31	•28
:::::::	2477.00	1.09	.77	444	71	0.00	.28	.27
	2480.00	.78	.45	459	58	0.00	.20	.31
	2482.00	.96	.45	458	47	0.00	.15	.25
	2485.00	.79	.35	443	44	0.00	.14	.29
:::::::::	2487.00	.83	.46	442	55	0.00	.21	.31
:::::::	2490.00	.42	.12	0	29	0.00	.07	.37
	2492.00	.57	.16	Ō	28	0.00	.10	.38
	2495.00	.57	.11	Ō	19	0.00	.07	.39
	2497.00	.87	.22	504	25	0.00	.11	.33
,,,,	2500.00	.78	.24	497	31	0.00	.06	20
	2502.00	.59	.14	0	24	0.00	.07	.33
	2505.00	.55	.16	ň	29	0.00	.08	.33
	2507.00	.72	.14	ň	19	0.00	.09	.39
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2510 00	55	.11	ň	20	0.00	-05	.31
,,,,	2512.00	1.11	- 46	480	41	0.00	. 21	.31
,,,,,	2515.00	.64	.18	 0	28	0.00	.09	.33
****	2515.00	50	11	ň	22	0.00	.07	.39
*****	2520 00	• JO 50	10	ň	17	0.00	.07	. 41
****	2520.00	1 02	+10 62	483	41	0.00	17	20
\$ 7 5 * • • • •	2525 00	1+02	•44	405	77	0.00	•17	•29 39
,,, ,	2527 00	•70	• 4 1	471	30	0.00	10	• 50
;;+ ;	2520.00	•/4	• 4 4	474	25	0.00	•10	• 3 3
;;;	2532 00	1 04	• 44	401	125	0.00	•11	• J J 21
**	2535 00	1.00	1+34	4J0 797	145	0.00	00∙ 01	- 1C •
*	2537.00	1 24	1.1/	43/	71	0.00	•49 00	• JU 25
,	2557.00	1.20	•82	445	0) 70	0.00	•28	• 40
•	4340 ·UU	.99	•/ð	438	19	0.00	•21	•21
:	2042.UU	1.05	•67	445	04	0.00	•21	• 24
:	2545.00	•00	.23	444	35	0.00	•08	.20

FOR : NORSK HYDRO A/S WELL : 7321/8-1

2547.0 m TO 2652.0 m

	SOURC	E BED F	CVALUATI	FREE HYDROCARBS				
LITHOLOGY	DEPTH m	TOC %wt	S2 mg/g	TMAX S degC	52/TOC HI	SO mg/g	S1 mg/g	TPI
Cuttings Sa	mples							
;	2547.00	•60	.21	441	35	0.00	•09	.30
::	2550.00	.64	.24	448	38	0.00	•09	.27
::	2552.00	.68	.19	0	28	0.00	.05	.21
:	2555.00	•64	.13	0	20	0.00	.05	.28
,::	2557.00	•57	.11	0	19	0.00	.06	.35
,	2560.00	.70	.15	0	21	0.00	.02	.12
,	2562.00	•68	.12	0	18	0.00	•02	•14
,,	2565.00	•49	.13	0	27	0.00	•04	•24
****	2567.00	•68	.15	0	22	0.00	.09	.38
,,:::::	2570.00	.67	.22	462	33	0.00	.16	.42
,,,:::::	2572.00	.63	.18	0	29	0.00	.09	•33
,,:::::	2575.00	.61	.13	0	21	0.00	.11	.46
	2577.00	.68	.18	0	26	0.00	.10	.36
	2580.00	.95	.15	0	16	0.00	.07	.32
::::::	2582.00	1.09	.21	524	19	0.00	.07	.25
:::::*	2585.00	4.06	2.19	496	54	0.00	.15	.06
	2587.00	1.59	.27	519	17	0.00	.04	.13
*	2590.00	3.09	1.11	503	36	0.00	.12	.10
	2592.00	3.44	1.46	501	42	0.00	.28	-16
	2595.00	3.46	1.16	504	34	0.00	.08	-06
	2597.00	4.37	5.12	493	117	0.00	.35	-06
	2600.00	2.35	.66	502	28	0.00	.20	.23
	2602.00	1.48	.37	511	25	0.00	.05	.12
•••••••••••	2605 00	1 98	50	513	25	0.00	.11	.18
	2607.00	2 42		507	33	0.00	09	.10
	2610 00	2.442	19		22	0.00	05	21
	2612 00	1 18	26	515	22	0.00	-05	.16
	2617 00	1.10	• - 0	<u>, 11</u>	18	0.00	•05 04	20
	2620 00	•00 05	.10	526	27	0.00	-04	•20
,	2622.00	•75	•20	520	10	0.00	•00	•19
	2622.00	1 26	•1J 21	522	25	0.00	•04	• 2 1
T	2023.00	1.40	.51	510	27	0.00	•04	•11
1,::::::::::::::::::::::::::::::::::::	2627.00		•40	517	2.2	0.00	.02	.0.5
P11111111111	2030.00	1.04	• 20	522	22	0.00	•04	.05
,	2032.00	1.00	• 31	524	23	0.00	.04	•11
,	2035.00	2.30	•03	210	27	0.00	.02	+03
,,,,, ¹¹¹¹	2037.00	2.10	.65	509	30	0.00	•U2	•07
,,,::::*	2040.00	3.13	1.20	507	38 00	0.00	•10	٥ 0 •
,,:::	2042.00	2.34	.68	508	29	0.00	•05	.07
,::::*	2645.00	3.02	•88	504	29	0.00	•09	.09
,::::*	264/.00	2.95	.95	508	32	0.00	.09	.09
:::::	2650.00	2.36	• 72	511	31	0.00	•06	•08
:::::	2652.00	2.32	•65	50 9	28	0.00	.04	.06

FOR : NORSK HYDRO A/S WELL : 7321/8-1

.

Printed	at	:	16:	:16	
		:	9	Sep	1987
Format		:	5		

2655.0 m TO 2762.0 m

		SOUR	SOURCE BED EVALUATION			FREE HYDROCARBS			
LITHOLOGY	DEPTH m	TOC %wt	S2 mg/g	TMAX degC	S2/TOC HI	SO mg/g	Sl mg/g	TPI	
Cuttings Sa	mples								
::::	2655.00	1.75	.43	511	25	0.00	•04	.09	
:::::	2657.00	1.13	.19	0	17	0.00	•01	•05	
::::	2660.00	1.39	.28	519	20	0.00	•02	•07	
::::	2662.00	1.65	•38	517	23	0.00	.01	.03	
,:::*	2665.00	3.09	1.47	503	48	0.00	•11	.07	
,::::	2667.00	1.54	•24	523	16	0.00	•04	.14	
,:::::	2670.00	2.07	1.22	503	59	0.00	.18	.13	
,,,,,,,	2680.00	1.06	•42	462	40	0.00	.19	.31	
:::::*	2682.00	5.12	8.46	497	165	.06	•90	.10	
,,,,,::::*	2685.00	5.60	4.02	503	72	.12	•48	.13	
,,,,,,;;	∽ 2687 .00	2.40	1.36	514	57	.01	.14	.10	
, ,,,,,:	2690.00	2.37	•28	519	24	0.00	.05	.08	
,,,,,	2692.00	2.82	•77	517	27	0.00	.06	.07	
,,,,,;;	2695.00	1.70	•26	530	15	0.00	.01	.04	
,,,,,,,;; :	2697.00	1.34	•26	531	19	0.00	0.00	0.00	
,,,,,;	2700.00	1.21	• 20	533	17	0.00	.01	.05	
********	2702.00	1.11	•19	0	17	0.00	.01	.05	
*****	2705.00	1.72	.21	527	12	0.00	.02	.09	
::::::	2707.00	3.30	1.67	502	51	0.00	.08	.05	
,,:::	2710.00	1.48	.40	509	27	0.00	.04	•09	
,,:::	2712.00	3.21	1.14	507	36	0.00	.09	.07	
,,,::::	2715.00	1.97	1.50	501	76	0.00	.15	•09	
,,::::	2717.00	2.21	•89	504	40	0.00	.11	.11	
,,::::	2720.00	4.40	2.22	494	50	0.00	.18	.08	
,,:::	2722.00	2.04	• 52	509	25	0.00	.03	.05	
,,:::	2725.00	2.44	1.32	499	54	0.00	.13	•09	
,::::	2727.00	1.37	•23	522	17	0.00	.01	.04	
,::::	2730.00	1.26	•23	522	18	0.00	.01	.04	
,::::	2732.00	1.19	•24	526	20	0.00	0.00	0.00	
,:::	2735.00	1.13	•18	0	16	0.00	.01	.05	
,::	2737.00	1.02	•14	0	14	0.00	.02	.13	
,::	2740.00	1.21	.25	517	21	0.00	.03	.11	
,:	2742.00	1.08	.20	519	19	0.00	.02	.09	
,:	2745.00	.72	•08	0	11	0.00	.05	.38	
,,::::	2747.00	1.14	•23	525	20	0.00	.02	•08	
,,,::	2750.00	.75	•11	0	15	0.00	•02	. 15	
,:::::::	2752.00	•85	•17	0	20	0.00	.05	.23	
::::::::	2755.00	.72	.09	0	13	0.00	•04	•31	
,:::::	2757.00	.90	•13	0	14	0.00	.02	.13	
,:::::	2760.00	1.06	.16	0	15	0.00	.07	.30	
,,:::::	2762.00	.83	•10	0	12	0.00	.04	.29	

FOR : NORSK HYDRO A/S WELL : 7321/8-1

-

2765.0 m TO 2870.0 m

		SOURC	SOURCE BED EVALUATION			FREE HYDROCARBS			
LITHOLOGY	DEPTH m	TOC %wt	S2 mg/g	TMAX S degC	2/TOC HI	SO mg/g	Sl mg/g	TPI	
Cuttings Sa	mples								
,:::::	2765.00	•84	.12	0	14	0.00	.04	.25	
,,,,:::	2767.00	.87	.13	0	15	0.00	•04	•24	
,,,,::::	2770.00	1.00	•16	0	16	0.00	.02	.11	
,,,,:::	2772.00	.93	•14	0	15	0.00	.01	.07	
,,,,,;::	2775.00	.93	.17	0	18	0.00	•02	.11	
,,,,,,;;	2777.00	•95	.13	0	14	0.00	.01	.07	
,,,,::::::	2780.00	1.03	.14	0	14	0.00	.03	.18	
,,,,,::::	2782.00	•75	.07	0	9	0.00	0.00	0.00	
,,,,:::::	2785.00	1.30	•24	531	18	0.00	•09	•27	
L,,,,,::::	2787.00	.94	•12	0	13	0.00	.01	•08	
,,,,:::	2790.00	.99	.18	, O	18	0.00	•03	.14	
,,,,:::::	2792.00	1.33	.15	0	11	0.00	•07	.32	
,,,,::::::	2795.00	•88	•11	0	13	0.00	•01	•08	
,,,:::::::	2797.00	.61	.12	0	20	0.00	•01	•08	
:::::::	2800.00	.71	.12	0	17	0.00	.01	•08	
,,,::::::	2802.00	1.00	•22	527	22	0.00	.03	.12	
,,::::::	2805.00	.72	.08	0	11	0.00	.01	.11	
,,::::::	2807.00	• 57	.13	0	23	0.00	•02	.13	
,,,,::::	2810.00	2.36	•56	524	24	0.00	•07	.11	
,,,,::::	2812.00	1.87	.33	536	18	0.00	.03	•08	
,,,,:::	2815.00	1.40	.32	531	23	0.00	•02	.06	
,,,,;;;;	2817.00	1.06	.11	0	10	0.00	0.00	0.00	
,,,,;;;;	2820.00	1.20	.13	0	11	0.00	.02	.13	
,,,:::	2822.00	.92	.12	0	13	0.00	•06	.33	
,,::	2825.00	1.05	.12	0	11	0.00	.01	•08	
,,:	2827.00	1.16	.16	0	14	0.00	.03	.16	
,,:	2830.00	1.06	.18	0	17	0.00	•07	.28	
,::	2832.00	•97	.14	0	14	0.00	•03	.18	
,::::	2835.00	.93	.12	0	13	0.00	.03	•20	
::::::	2837.00	.93	•09	0	10	0.00	.02	.18	
::::::	2840.00	.93	.11	0	12	0.00	.02	.15	
	2847.00	1.03	.16	0	16	0.00	•09	.36	
::::::	2850.00	.73	•21	425	29	0.00	•09	.30	
,,::::::	2852.00	2.27	1.68	415	74	0.00	1.20	•42	
,,,::::::	2855.00	1.82	•60	535	33	0.00	.05	•08	
,,::::::::	2857.00	1.52	.20	543	13	0.00	.01	.05	
, : : : : : : : : : :	2860.00	1.34	•21	543	16	0.00	.03	.13	
, : : : : : : : : : :	2862.00	1.42	•20	546	14	0.00	.01	.05	
,,:::::::	2865.00	1.14	.15	0	13	0.00	0.00	0.00	
,:::::::	2867.00	1.59	•45	518	28	0.00	.05	.10	
,:::::::	2870.00	1.30	.21	544	16	0.00	•02	.09	

FOR : NORSK HYDRO A/S WELL : 7321/8-1

.

Printed at : 16:24 : 9 Sep 1987 Format : 5

2872.0 m TO 2970.0 m

		SOUR	SOURCE BED EVALUATION			FREE HYDROCARBS			
LITHOLOGY	DEPTH m	TOC %wt	S2 mg/g	TMAX degC	S2/TOC HI	SO mg/g	Sl mg/g	ŤPI	
Cuttings Sa	mples								
,::::::::	2872.00	1.40	.17	0	12	0.00	.04	. 19	
,::::::::	2875.00	1.05	•14	0	13	0.00	.01	•07	
,::::::::	2877.00	1.41	• 32	522	23	0.00	•04	.11	
,:::::::	2880.00	1.29	.17	0	13	0.00	0.00	0.00	
,::::::::	2882.00	1.25	.16	0	13	0.00	•01	•06	
,::::::::	2885.00	1.20	.15	0	13	0.00	0.00	0.00	
******	2887.00	1.26	.16	0	13	0.00	•01	•06	
,,,,:::::	2890.00	•90	.12	0	13	0.00	.03	•20	
,,,,,:::	2892.00	•74	•08	0	11	0.00	0.00	0.00	
,,,,,;;;;	2895.00	.93	.10	0	11	0.00	•02	•17	
,,,,,,:::	2897.00	1.00	•14	0	14	0.00	.01	•07	
,,,::	2900.00	1.26	.14	0	11	0.00	0.00	0.00	
,,,;	2902.00	1.25	•14	0	11	0.00	0.00	0.00	
, , ;	2905.00	1,16	.12	0	10	0.00	0.00	0.00	
, , :	2907.00	1.27	.14	0	11	0.00	•01	•07	
,:	2910.00	1,06	•14	0	13	0.00	•02	.13	
,,,,÷	2912.00	•96	•11	0	11	0.00	•01	•08	
****	2915.00	1.04	.01	U O	1	0.00	•01	.43	
,,,,, ::	2917.00	1.21	.13	U	11	0.00	•01	•07	
,,,,, ; ;;	2920.00	1.02	•14	U	14	0.00	•04	•22	
,,,,,;;;	2922.00	1.21	•13	U	11	0.00	•03	•19	
,,,,;	2925.00	1.22	.10	0	13	0.00	.02	•11	
,,,,;	2927.00	1.30	.15	U	12	0.00	.01	.06	
,,,,,;	2930.00	1.11	•19	0	17	0.00	0.00	0.00	
,,, ;	2932.00	1.12	.13	0	12	0.00	•02	•13	
,,,, :	2935.00	1.12	•1/	0	15	0.00	•04	.19	
,,,,	2937.00	1.14	•14	U	12	0.00	•03	•18	
,,,, :	2940.00	1.07	•12	0	11	0.00	.03	•20	
,,,,	2942.00	1.30	•10	U	12	0.00	0.00	0.00	
***	2945.00	1 10	•1/ 1E	0	12	0.00	•04	•19	
* * *	2947.00	1+19	•10	0	13	0.00	•02	•12	
>>>	2950.00	1.10	•13	0	11	0.00	.02	•13	
****	2952.00	1 14	•12	0	14	0.00	.01	.08	
,,,	2955.00	1 10	•10	0	14	0.00	.02	.11	
,, :	2957.00	1.10	•11	0	12	0.00	0.00	0.00	
,,,	2900.00	1 10	+17 10	0	13	0.00	•01	•U0 17	
,,	2902.00 2065 00	1 20	•10 10	0	10	0.00	.03	•17	
• •	2903.00	1.29	•10 1 h	0	14	0.00	.03	•1/	
,,	290/.00	1 17	•14	0	10	0.00	.02	.13	
,	2970.00	1.1/	•14	U	10	0.00	•03	• 20	

÷

FOR : NORSK HYDRO WELL : 7381/8-1

Ì

ł

2972.0 m TO 3072.0 m

		SOURCE BED EVALUATION			FREE HYDROCARBS			
LITHOLOGY	DEPTH m	TOC %wt	S2 mg/g	TMAX S degC	2/TOC HI	SO mg/g	Sl mg/g	TPI
Cuttings S	amples							
	2972.00	1.39	.16	0	12	0.00	.07	.30
	2975.00	1.28	.13	0	10	0.00	.02	.13
	2977.00	1.33	•17	0	13	0.00	.09	.35
	2980.00	1.26	.13	0	10	0.00	.03	.19
	2982.00	1.33	.14	0	11	0.00	.03	.18
	2985.00	1.26	.13	0	10	0.00	.02	.13
	2987.00	1.26	.14	0	11	0.00	.02	.13
	2990.00	1.22	.13	Ó	11	0.00	.01	.07
	2992.00	1.29	.14	Ö	11	0.00	.01	.07
	2995.00	1.24	.14	Ö	11	0.00	.01	.07
_	2997.00	1.25	.12	Õ	10	0.00	.06	.33
,	3000.00	1.18	.12	Ő	10	0.00	.01	.08
	3002.00	1.23	.13	Ő	11	0.00	0.00	0.00
	3005.00	1.24	.12	Ō	10	0.00	0.00	0.00
	3007.00	1.28	.13	Ō	10	0.00	.02	.13
	3010.00	1.19	.15	Õ	13	0.00	.02	.12
	3012.00	1.26	.16	Õ	13	0.00	.01	.06
	3015.00	1.26	.14	Ő	11	0.00	-01	.07
	3017.00	1.18	.13	õ	11	0.00	0.00	0.00
د	3020.00	1,17	.16	õ	14	0.00	.01	.06
	3022.00	1.12	.16	Õ	14	0.00	.01	.06
	3025.00	1.24	.13	Õ	10	0.00	0.00	0.00
	3027.00	1.13	.10	Õ	- ğ	0.00	0.00	0.00
	3030.00	1.12	.11	õ	10	0.00	0.00	0.00
	3032.00	1.03	.11	ň	11	0.00	0.00	0.00
, ,	3035.00	1.13	.10	ň	<u> </u>	0.00	0.00	0.00
,,,,	3037 00	1 05	10	ň	ió	0.00	0.00	0.00
,,	3040 00	1.07	12	ň	1)	0.00	.01	.08
,,,,,	3042.00	1 02	13	ő	13	0.00	.02	.13
***	3045 00	1 01	12	ň	12	0.00	0 00	0.00
,,,	3047.00	1 17	•12	0	10	0.00	0.00	0.00
* 1	3050 00	1 01	•12	ň	12	0.00	0.00	.08
1	3052 00	1 01	•12	ň	12	0.00	-01	-00
:	3055 00	1.01	•14	Ň	12	0.00	0 00	0.00
,	3057.00	1.40	+U7 10	0	å	0.00	0.00	0.00
,	3060 00	1 26	•14	0	9 Q	0.00	0.00	00.00
,	3062 00	1 94	+11 10	0	0	0.00	10.	00
بن . ۲	3065 00	00	-14	0	7	0.00	0.00	0.00
ц ÷	3067 00	•77 1 01	•U9 10	0	7 10	0.00	12	6.00
,		10.1	•10	U A	10	0.00	•13	•42
	3070.00	•07 1 01	.07	0	0	0.00	.01	•13
,:: 			•10	U			.UZ	• 1 /
FOR : NORSK HYDRO WELL : 7381/8-1

Printed	at	:	17:	:11	
		:	9	Sep	1987
Format		:	- 5		

3075.0 m TO 3315.0 m

		SOURCE BED EVA		VALUAT	ION	FREE HYDROCARBS		
LITHOLOGY	DEPTH m	TOC %wt	S2 mg/g	TMAX degC	S2/TOC HI	SO mg/g	Sl mg/g	TPI
Cuttings Sa	mples				•			
,::	3075.00	1.02	.13	0	13	0.00	•02	.13
::	3077.00	.96	•08	0	8	0.00	•02	•20
:::	3080.00	•79	.05	0	6	0.00	0.00	0.00
,:	3082.00	1.05	•16	0	15	0.00	.01	•06
,:	3085.00	1.05	•09	0	9	0.00	.01	.10
,:	3087.00	.93	•09	0	10	0.00	.01	.10
,:	3090.00	1.18	•20	466	17	0.00	•03	•13
:	3095.00	1.19	.14	0	12	0.00	•01	.07
,:	3100.00	1.19	•14	0	12	0.00	.01	•07
,:	3115.00	1.56	•22	563	14	0.00	.03	.12
******	3120.00	1.21	.13	0	11	0.00	.01	•07
,:	3125.00	1.15	. 15	0	13	0.00	.01	.06
:::::	3130.00	1.32	.13	0	10	0.00	.01	•07
,::::	3135.00	1.26	.36	427	29	0.00	.08	•18
,:::::	3140.00	1.46	.14	0	10	0.00	.02	.13
******	3145.00	1.61	.73	418	45	0.00	•21	.41
::	3150.00	1,28	•09	0	7	0.00	.05	.36
::::	3155.00	1.36	.12	0	9	0.00	.03	.20
:::	3160.00	1.23	.16	0	13	0.00	.03	.16
:::	3165.00	1.15	.16	0	14	0.00	.03	.16
:	3170.00	1.28	.12	0	9	0.00	•02	.14
:	3175.00	1.32	•12	0	9	0.00	•02	.14
:	3180.00	1.43	.12	0	8	0.00	•02	.14
:	3185.00	1.24	.10	0	8	0.00	.01	•09
::	3190.00	1.22	•09	0	7	0.00	0.00	0.00
:	3195.00	1.25	. 15	0	12	0.00	•06	.29
:	3200.00	1.14	•09	0	8	0.00	.02	.18
:	3205.00	1.13	•09	0	8	0.00	.03	•25
	3210.00	.95	.13	0	14	0.00	.05	.28
	3215.00	1.08	.11	0	10	0.00	•05	.31
	3220.00	1.10	.08	0	7	0.00	•04	.33
	3225.00	•98	.07	0	7	0.00	•02	.22
	3230.00	•92	•07	0	8	0.00	.05	.42
	3245.00	•97	.09	0	9	0.00	.05	.36
	3255.00	.99	•07	0	7	0.00	.06	•46
	3265.00	•93	•08	0	9	0.00	•05	.38
	3275.00	•93	.08	0	9	0.00	.05	.38
	3285.00	1.03	.09	0	9	0.00	•04	.31
	3295.00	.98	.05	0	5	0.00	•01	.17
	3305.00	1.05	.07	0	7	0.00	.03	.30
	3315.00	.98	.07	0	7	0.00	.05	.42

FOR : NORSK HYDRO WELL : 7381/8-1

2

Printed at : 17:16 : 9 Sep 1987 Format : 5

3325.0 m TO 3482.0 m

		SOUR	CE BED	EVALUAT	ION	FH	REE HYDR	OCARBS
LITHOLOGY	DEPTH m	TOC %wt	S2 mg/g	TMAX deg(S2/TOC : НІ	SO mg/g	Sl mg/g	TPI
Cuttings S	amples							
	3325.00	1.10	.05	0	5	0.00	.03	•38
	3335.00	1.20	.05	0	4	0.00	.04	•44
	3345.00	1.25	.05	0	4	0.00	•01	•17
	3355.00	1.38	.03	0	2	0.00	•04	•57
	3365.00	1.25	.01	0	1	0.00	.01	.50
	3375.00	1.50	•24	0	16	0.00	.10	•29
	3385.00	1.65	•04	0	2	0.00	•04	•50
	3395.00	.99	.01	0	1	0.00	.05	.83
	3405.00	.95	•02	0	2	0.00	•02	•50
	3415.00	•65	0.00	0	0	0.00	0.00	0.00
	3425.00	.47	0.00	0	0	0.00	0.00	0.00
~^	3435.00	•26	.02	0	8	0.00	.09	•82
~^	3445.00	.29	.04	0	14	0.00	.11	.73
	3455.00	•23	.05	0	22	0.00	•04	•44
~	3465.00	.18	.09	0	50	0.00	.02	.18
	3475.00	.16	.01	0	6	0.00	.01	• 50
~	3482.00	.14	0.00	0	0	0.00	0.00	0.00

.

FOR : NORSK HYDRO A/S WELL : 7321/8-1

T

_

1443.0 m TO 1484.0 m

		SOUR	CE BED E	EVALUAT	ION	FR	EE HYDR	OCARBS
LITHOLOGY	DEPTH M	TOC %wt	S2 mg/g	TMAX degC	S2/TOC HI	SO mg/g	Sl mg/g	TPI
Core Sample	s							
	1443.50	0.00	.04	0	0	0.00	.15	.79
:::::::::	1444.50	0.00	.08	0	0	0.00	.34	.81
:::::::::	1445.50	.37	•70	0	189	0.00	.39	.36
::::::::	1446.50	0.00	•06	0	0	0.00	.18	.75
	1447.50	0.00	•08	0	0	0.00	.39	•83
::::::::::	1448.50	0.00	.05	0	0	0.00	.26	•84
:::::::::	1449.50	.70	•90	445	129	0.00	.73	.45
::::::::::	1450.50	0.00	•07	0	0	0.00	.32	.82
	1451.50	0.00	.21	0	0	0.00	.29	.58
	1452.50	0.00	0.00	0	0	0.00	.09	1.00
	1453.50	0.00	0.00	0	0	0.00	.08	1.00
	1454.50	0.00	.04	0	0	0.00	.59	.94
	1455.50	.49	.22	0	45	0.00	.14	.39
:::::	1456.50	-84	1.45	452	173	0.00	.60	.29
	1458.50	.94	2.40	447	255	0.00	.78	.25
	1459.50	0.00	.16	0	0	0.00	.12	.43
	1460.50	0.00	.07	Õ	õ	0.00	.15	.68
	1461.50	0.00	0.00	ŏ	õ	0.00	.05	1.00
	1462.50	0.00	0.00	õ	õ	0.00	.10	1.00
	1463.50	.95	1.86	453	196	0.00	.71	.28
	1464.50	0.00	.27	0	0	0.00	.18	.40
	1465 50	0.00	.14	ň	ň	0.00	.06	.30
	1466 00	0.00	0 00	0	ň	0.00	12	1 00
	1467 00	0.00	0.00	0	ŏ	0.00	05	1.00
	1407.00	70	1 10	450	157	0.00	-05	1.00
	1400.00	÷/0	1,10	433	51	0.00	- 23	• 54
	1409.00	1.02	•27 1 6/	403	150	0.00	•27	•44
	1470.00	1.05	1.04	4)/	122	0.00	-0-2	• 54
	14/1.00	•/4	•91	400 454	140	0.00	.10	•43
	1472.00	.90	1+1/	430	120	0.00	•00 ೯/	• 37
	1473.00	./9	1.09	437	100	0.00	• 74	• • • •
	1474.00	.01	•81	464	133	0.00	• 27	+41
	1475.00	0.00	• 22	0	0	0.00	• 4.5	• 21
::::::::::	14/6.00	0.00	•31	0	0	0.00	.20	•39
::::::::::	14//.00	0.00	.27	0	0	0.00	•27	.50
::::::::::	1478.00	0.00	0.00	0	0	0.00	.19	1.00
,,,,,:::::	14/9.00	•41	•43	456	105	0.00	•/8	•64
:::::::::	1480.00	0.00	•19	0	0	0.00	•08	.30
	1481.00	•58	•84	456	145	0.00	.47	.36
********	1482.00	4.33	20.17	458	466	.03	7.11	.26
::::::::::	1483.00	0.00	•10	0	0	0.00	•38	.79
:::::::::::	1484.00	.77	•84	459	109	0.00	•60	•42

FOR : NORSK HYDRO A/S WELL : 7321/8-1

ļ

-

1485.0 m TO 1523.0 m

		SOURCE BED EVALUATION				FREE HYDROCARBS		
LITHOLOGY	DEPTH m	TOC %wt	S2 mg/g	TMAX degC	S2/TOC HI	SO mg/g	Sl mg/g	TPI
Core Sample	s							
********	1485.00	2.57	4.02	457	156	0.00	1.85	.32
	1486.00	2.09	3.81	460	182	0,00	1.66	.30
::	1487.00	2.14	1.70	460	79	0.00	.93	.35
::::::::::	1488.00	0.00	•04	0	0	0.00	•35	•90
	1489.00	1.63	1.53	457	94	0.00	•71	.32
*******	1490.00	• 59	•63	467	107	0.00	•36	•36
::::::::	1491.00	•26	.31	0	119	0.00	1.17	.79
	1492.00	0.00	•42	0	0	0.00	1.40	.77
	1493.00	0.00	•17	0	0	0.00	.79	.82
*******	1494.00	0.00	•27	0	0	0.00	1.18	.81
********	1495.00	•61	•80	459	131	0.00	1.36	.63
*********	1496.00	0.00	.11	0	0	0.00	•78	•88
::::::::::	1497.00	0.00	.13	0	0	0.00	1.03	.89
	1498.00	0.00	.05	0	0	0.00	•71	.93
::::::::::	1499.00	0.00	.18	0	0	0.00	•74	.80
:::::::	1500.00	3.99	16.70	453	419	0.00	6.74	.29
******	1501.00	0.00	•09	0	0	0.00	•52	.85
*********	1502.00	.72	•95	462	132	0.00	•75	.44
::::::::::	1503.00	0.00	•04	0	0	0.00	•53	.93
:::::::::	1504.00	0.00	•04	0	0	0.00	•49	.92
*********	1505.00	0.00	•09	0	0	0.00	•62	.87
*********	1506.00	0.00	.05	0	0	0.00	•78	.94
	1507.00	0.00	•03	0	0	0.00	•69	•96
	1508.00	.29	•17	0	59	0.00	1.12	.87
::::::::::	1509.00	0.00	•11	0	0	0.00	1.12	.91
::::::::::	1510.00	0.00	•16	0	0	0.00	•98	•86
	1511.00	0.00	•09	0	0	0.00	.70	.89
*********	1512.00	0.00	•06	U	0	0.00	.80	.93
*********	1513.00	0.00	.05	0	0	0.00	.81	.94
*********	1514.00	0.00	•03	0	0	0.00	•90	.97
*********	1515.00	0.00	•04	U	0	0.00	.93	•96
*********	1516.00	0.00	.03	U	0	0.00	.86	.97
	1516.40	0.00	•07	0	0	0.00	.99	.93
:::::::::	1517.00	0.00	.01	0	0	0.00	•86	.99
::::::::	1518.00	0.00	•05	0	0	0.00	•94	.95
::::::::::	1519.00	0.00	.04	0	0	0.00	.84	.95
::::::::::	1520.00	0.00	.11	0	0	0.00	•96	.90
,,,,,,,,,,,,	1521.00	1.59	2.12	461	133	0.00	1.09	• 34
:::::::::::	1522.00	0.00	•10	0	0	0.00	.85	.89
::::::::::	1523.00	0.00	.12	0	0	0.00	.95	.89

FOR : NORSK HYDRO A/S WELL : 7321/8-1

Printed	at	:	17:	:24	
		:	9	Sep	1987
Format		:	- 5		

1524.0 m TO 2846.2 m

		SOUR	CE BED F	VALUAT	ION	FR	EE HYDR	OCARBS
LITHOLOGY	DEPTH m	TOC %wt	S2 mg/g	TMAX degC	S2/TOC HI	SO mg/g	S1 mg/g	TPI
Core Sample	:\$							
	1524.00	0.00	.03	0	0	0.00	•75	.96
	1525.00	0.00	.10	0	0	0.00	•78	.89
::::::::::	1526.00	0.00	•20	0	0	0.00	1.01	.83
,,,,::::::	1527.00	•58	•73	454	126	0.00	1.12	.61
****	1528.00	1.21	1.65	460	136	0.00	•82	.33
*********	1529.00	0.00	.10	0	0	0.00	.97	.91
	1530.00	0.00	•07	0	0	0.00	.65	.90
*********	1531.00	0.00	.18	0	0	0.00	•74	-80
	1532.00	0.00	.02	0	0	0.00	•72	.97
::::::::::	-1533.00	0.00	•04	0	0	0.00	•82	.95
:::::::::::	1534.00	0.00	.06	0	0	0.00	.80	.93
*********	1535.00	0.00	•08	0	0	0.00	1.02	.93
	1536.00	0.00	.14	0	0	0.00	1.19	.89
::::::::::	1537.00	0.00	.24	0	0	0.00 ·	1.08	.82
	1538.00	0.00	.07	0	0	0.00	1.00	.93
:::::::::	1539.00	•54	.80	445	148	0.00	1.39	.63
*********	1540.00	•35	.36	455	103	0.00	1.01	•74
*********	1541.00	0.00	.01	0	0	0.00	.73	.99
:::::::::	1542.00	•77	1.00	457	130	0.00	1.33	•57
	1543.00	0.00	.04	0	0	0.00	1.00	•96
::::::::::	1544.00	0.00	0.00	0	0	0.00	1.06	1.00
::::::	1544.70	•99	1.04	458	105	0.00	1.23	•54
*****	2670.75	1.15	.17	0	15	0.00	.02	•11
****	2671.00	1.57	.30	528	19	0.00	.01	•03
,,,,,,,,,,,	2672.00	3.46	.98	507	28	0.00	.05	•05
,,,,,,,,,,,,	2673.00	1.46	.22	531	15	0.00	•01	₊ 04
,,,,,,,,,,,,	2674.00	1.21	.22	526	18	0.00	•03	.12
· · · · · · · · · · · · · · · · · · ·	2675.00	•99	.15	0	15	0.00	.01	•06
*******	2676.00	.99	.16	0	16	0.00	•02	•11
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2677.00	.96	.17	0	18	0.00	.02	•11
,,,,,,,,,,,,	2677.90	.15	0.00	0	0	0.00	0.00	0.00
	2840.00	.11	.01	0	9	0.00	•04	-80
********	2841.00	.16	.01	0	6	0.00	.08	•89
::::::::::	2842.50	.10	.05	0	50	0.00	.03	•38
	2843.43	3.09	.50	543	16	0.00	•02	.04
::::::::::	2844.00	.05	.03	0	60	0.00	•06	.67
	2845.50	2.20	.43	53 9	20	0.00	•06	.12
=====:::::	2846.23	1.06	•14	0	13	0.00	•01	•07

FOR : NORSK HYDRO WELL : 7381/8-1

4

Printed at : 17:20 : 9 Sep 1987 Format : 5

3430.0 m TO 3431.4 m

		SOUR	CE BED I	EVALUATI	ON	FR	EE HYDR	OCARBS
LITHOLOGY	DEPTH m	TOC %wt	S2 mg/g	TMAX S degC	2/TOC HI	SO mg/g	Sl mg/g	TPI
Core Sample	s							
Ā.	3430.00	.16	•07	0	44	0.00	•08	.53
~~	3430.17	.47	.04	0	9	0.00	.05	•56
~~	3430.70	.16	. 04	0	25	0.00	•07	.64
~~	3431,10	1.31	.15	0	11	0.00	•24	.62
~~ 	3431.40	.20	.01	0	5	0.00	.05	.83

FOR : NORSK HYDRO WELL : 7321/8-1 (CHECKS) Printed at : 15:58

WINDSOR LABORATORY QUALITY CONTROL CHECKS

		SO	URCE B	ED EVA	LUATION			FREE	HYDROCARBS
DEPTH m	TOC %wt	S2 mg/g	T Max deg C	S2/S3 H:O	S2/TOC HI	S3/TOC OI	S3 mg/g	Sl mg/g	S1/(S1+S2)
Cuttings	Samples								
825.0	0.00	.87	421	•2	0	0	1.66	•23	•38
895.0	0.00	3.03	430	3.2	0	0	•94	1.67	•36
945.0	0.00	2.29	436	•8	0	0	2.73	1.17	•34
1000.0	0.00	2.43	436	•9	0	0	2.70	1.35	•36
1055.0	0.00	2.30	436	•8	0	0	2.92	1.37	.37
1105.0	0.00	3.10	432	.9	0	0	3.34	1.21	•28
1145.0	0.00	1.86	438	.8	0	0	2.32	.91	•33
1210.0	0.00	1.15	440	1.0	0	0	1.19	.73	.39
1260.0	0.00	1.27	435	.7	0	0	1.91	.87	•41
1295.0	0.00	1.76	444	.7	0	0	2.65	1.22	.41
1345.0	0.00	2.75	445	4.7	0	0	.59	1.44	.34
1395.0	0.00	4.43	444	12.0	0	0	.37	2.07	.32
1420.0	0.00	6.91	445	30.0	0	0	.23	3.23	• 32
1570.0	0.00	5.46	443	5.7	0	0	.96	2.50	.31
1592.0	0.00	1.98	435	1.2	0	0	1.72	1.09	.36
1617.0	0.00	.77	437	1.1	0	0	•68	•47	•38
1645.0	0.00	•98	435	3.5	0	0	,28	•86	•47
1675.0	0.00	1.33	440	1.0	0	0	1.31	.59	.31
1700.0	0.00	1.52	441	2.3	0	0	.65	.59	.28
1725.0	0.00	1.06	433	1.5	0	0	.73	•56	.35
1750.0	.51	.18	431	.2	35	152	.78	.13	•42
1775.0	.45	.29	426	.7	65	92	.41	.26	•47
1800.0	.63	.86	432	1.5	138	94	.59	.45	.34
1825.0	0.00	.96	436	1.7	0	0	.57	.34	.26
1852.0	0.00	4.56	457	7.0	Ó	0	.65	.94	•17
1877.0	0.00	1.08	436	1.6	Ó	0	.68	.49	.31
1900.0	.72	.51	440	.4	70	169	1.22	.29	.36
1925.0	0.00	1.02	452	1.8	0	0	.57	.38	.27
1952.0	0.00	2.45	461	3.1	Ō	Ō	.79	.66	.21
1977.0	0.00	1.15	446	2.2	Õ	Ō	.52	.42	.27
2000.0	0.00	2.70	462	4.2	ō	Ō	.65	.88	•25
2025-0	0.00	2.80	464	2.8	ŏ	ò	1.00	.78	.22
2050.0	1.70	1.56	443	2.9	92	31	.53	.62	.28
2077.0	.91	_ 59	438	.7	65	ĝĢ	.90	_30	.34
2560.0	0.00	.56	415	. 8	้ก	Ń	.71	.18	. 24
2587.0	0.00	.76	421	2.3	ň	ň	.33	. 20	.21
2625.0	0.00	•63	429	1.8	ŏ	õ	.35	.16	.20

INSUFFICIENT SAMPLE MATERIAL WAS AVAILABLE TO TOC ALL SAMPLES

: 22 Sep 1987

FOR : NORSK HYDRO WELL : 7321/8-1 (CHECKS)

÷ċ-

.

Printed at : 16:25 : 22 Sep 1987

WINDSOR LABORATORY QUALITY CONTROL CHECKS

		SO	URCE B	ED EVA	LUATION			FREE	HYDROCARBS
DEPTH m	TOC %wt	S2 mg/g	T Max deg C	S2/S3 H:O	S2/TOC HI	S3/TOC OI	S3 mg/g	Sl mg/g	\$1/(\$1+\$2)
Cuttings	Samples								
2650.0	0.00	.70	507	4.4	0	0	.16	.16	.19
2695.0	0.00	.59	423	2.8	0	0	.21	.16	.21
2717.0	0.00	.95	504	19.0	0	0	.05	.16	. 14
2745.0	0.00	.23	0	4.6	0	0	.05	.13	•36
2777.0	0.00	•68	420	2.1	0	0	.32	.21	•24
2810.0	0.00	•59	511	6.6	0	0	.09	•14	•19
2837.0	0.00	•46	400	•6	0	0	.72	.28	•38
2865.0	0.00	•50	423	3.6	0	0	.14	.19	.28
2922.0	0.00	.50	424	1.9	0	0	.27	.21	.30
2947.0	0.00	•28	409	•6	0	0	.45	.16	.36
2975.0	0.00	•52	416	.9	0	0	.59	.29	.36
3002.0	1.23	.37	409	1.5	30	20	.24	.23	•38
3030.0	0.00	•42	0	•8	0	0	•54	.28	.40
3060.0	0.00	.65	414	3.0	0	0	.22	.25	.28
3087.0	1.06	•52	400	1.2	49	42	•44	.29	.36
3115.0	0.00	.59	416	.9	0	0	•64	.25	.30

INSUFFICIENT SAMPLE MATERIAL WAS AVAILABLE TO TOC ALL SAMPLES

FOR : NORSK HYDRO WELL : 7321/8-1 (CHECKS) Printed at : 16:28 : 22 Sep 1987

WINDSOR LABORATORY QUALITY CONTROL CHECKS

		SC	URCE B	ED EVA	LUATION			FREE	HYDROCARBS
DEPTH m	TOC %wt	S2 mg/g	T Max deg C	S2/S3 H:O	S2/TOC HI	S3/TOC OI	′S3 mg/g	Sl mg/g	\$1/(\$1+\$2)
Core Samp	les								
1448.5	0.00	•24	407	3.4	0	0	•07	.22	•48
1460.5	0.00	.16	436	•2	0	0	.35	.13	• 45
1471.0	.75	1.06	454	21.2	142	7	•05	•56	.35
1485.0	3.15	3.03	458	1.1	96	87	2.75	1.44	.32
1503.0	.13	.06	422	.2	45	188	.25	•08	• 57
1510.0	•14	.25	0	.6	185	311	.42	.15	.37
1521.0	1.83	1.84	456	•4	100	227	4.16	.97	.35
1528.0	1.40	1.38	456	.3	98	292	4.09	.73	.35
1542.0	.85	.90	448	1.1	106	99	•84	.53	.37
2673.0	0.00	.41	419	3.2	0	0	.13	.16	•28

INSUFFICIENT SAMPLE MATERIAL WAS AVAILABLE TO TOC

ALL SAMPLES

.

· · ·

APPENDIX E

1

LITHOLOGY DATA SHEETS

	GEOCH	EMIC NOR	AL I SK H	RNALYSIS SAMA IYDRO A⁄S WEL	PLE LITHOLOGY DATA L # 7321/8-1
DEPTH	PRE-PIC	KED LI	тн	ANALYSED LITH	RNALYSED LITHOLOGY DESCRIPTION
		\$⊥t&T	cuyst		
820				100 % CMT	NO ANALYSIS
825			100%	CLAYSTONE	DK GRY, FRM - HD, BLKY, NON CALL
830			100%	CLAYSTONE	A/A
835			100%	CLAYSTONE	Ala
840			100%	CLAYSTONE	DK - M/LT GY, OCC GRNGY, SFT-FRM
845 .			100%	CLAYSTONE	Ala
850			100%	CLAMSTONE	A/A
855			100%	CLAYSTONE	Ala
860			100%	CLAUSTONE	ALA BEMG CALE
865			100%	CLAYSTONE	AIA
870			100%	CLAYSTONE	ALA PRED MATGY
875		TR	100%	CLAYSTONE	ATA , OCC SLTY, TR BRN STN
880		100%	TR	SILTSTONE	M BRN 64, MICROMIC, OCC SHOWS
885		100%	TR	SILTSTONE	A/A
890		50	50	SILTSTONE CLAYSTONE	A/A
895		100%	TR	SILTSTONE	R/A
900		100%	TR	SILTSTONE	A/A
920		100%		SILTSTONE	A (A
925		100%		SILTSTONE	n/A
930		100%		SILTSTONE	LT-M BRN, OCC BRN 64, BLK4, MICRON
935		40	60	SILT STONE CLAMSTONE	A(A
940		30	70	SILTSTONE CLAYSTONE	AA
945		20	80	SILTSTONE CLAUSTONE	AA
950		20	80	siltstone/clanstone	A/A
955		30	70	SILTSTONE/CLAYSTONE	AAA
960		30	70	SILTSTONE CLAYSTONE	CLYST - BRNGY, DSKY BRN, SFT-FRA, BLKY, USLTY, GROG TO SLTST
965		40	60	SILTSTONE KLAUSTONE	AIA
970		40	60	SILTSTONE CLAYSTONE	AIA
975		30	70	SILTSTONEKLAYSTONE	A/A

GEOCHEMICAL ANALYSIS SAMPLE LITHOLOGY DATA NORSK HYDRO A/S WELL # 7321/8-1 DEPTH ANALYSED LITH PRE-PICKED LITH ANALYSED LITHOLOGY DESCRIPTION SLTST CLUST 100% 905 SILTSTONE A/A A/A 100% 910 SILTSTONE A/A 915 100% SILTSTONE SILTY CLAYSTONE 980 30 70 A/A 985 SILTY CLAYSTONE A/A 20 80 BRN 64- OLV 64, SFT, BLKY, 90 990 CLAYSTONE 10 LOC SATY & MICROMIC NON CALL 945 90 CLAYSTONE 10 A/A 1000 90 10 CLAYSTONE AIA 1005 In 90 A/A CLAYSTONE 10 90 A/A 1010 CLAYSTONE LT - MGY, OCC M BRN, FRM, SUBFISS, 1015 30 70 SILTY CLAYSTONE SLTY 1020 80 20 A/A SILTY CLAYSTONE 1025 30 70 SILTY CLAYSTONE AIA 1030 90 A/A 10 SILTY CLAYSTONE 1035 10 SILTY CLAYSTONE A/A 90 (040 100% CLAYSTO NE A/A LOC SLTY A/A 1045 CLAYSTONE 100% DUSKY YEL BRN-BRN BLK, LOC DUSKY 100% 1050 CHAYSTONE YEL BAN - OLN GY, SFT-MOD HD, TR CARB 1055 (00% CLAMSTONE AIA 100% CLAYSTONE 1060 A/A 1065 100% A/A CLAMSTONE 100% (070)A/A CLAYSTONE 1075 100% CLAYSTONE A/A 1080 100% CLAMSTONE A/A A /A 1085 30 70 SILTY CLAYSTONE CLYST, GY BRN- PUSKY YEL BRNI 1090 30 70 SILTY CLAYSTONE V SLTY, SL CALC. SLTST, DR - MGY, FR- HD, BLKY, MICROMIC, SI CARB. 70 SILTY CLAYSTONE 1095 30

SILTY CLAYSTONE

SILTY CLAYSTONE

A/A A/A

EX • G

1100

1105

20

10

80

90

 EXAGE

 GEOCHEMICAL ANALYSIS SAMPLE LITHOLOGY DATA NORSK HYDRO A/S WELL # 7321/8-1

 DEPTH PRE-PICKED LITH

 NARLYSED LITH

•

1

-

1120		20	80	SILTY CLAYSTONE	A/A
1125		20	80	SILLY CLAYSTONE	CLYST BCMG V SLTY
1130		70	30	SILTY CLAYSTONE	V CALC IN PTS
1135 .	[60	40	SILTY CHAYSTONE	A/A
1140		40	60	SILTY CLAYSTONE	A/A
1145		30	70	SILTY CLAYSTONE	A/A
1150	 	30	70	SILTY CLAYSTONE	A/A
1155				LAGGED AFTER TR	IP - NO ANALYSIS
1160		20	80	SILTY CLAYSTONE	DK GY, FRA-HD, BLKY, MOD CALC
1165		10	90	SILTY CLAYSTONE	AIA
1170		10	90	SILTY CLAYSTONE	A/A
1175		30	70	SILTY CLAYSTONE	A/A
1180		20	80	SILTY CLAYSTONE	SLIST - DK GY, FRN - MOD HD,
1185		10	90	CLAYSTONE	PABAN-PAGY, SFT, SL CALC
11 90		30	70	SILTY CLAYSTONE	Ala
1195		20	80	SILTY CLAYSTONE	ala
1200		20	80	SILTY CLAYSTONE	A/A
1205		10	90	SILTY CLAYSTONE	A/A
1210		20	80	SILTY CLAMSTONE	AlA
1215		20	80	SILTY CLAYSTONE	Ala
1220		10	90	SILTY CLAYSTON	Ala
1225			100	CLAYSTONE	A/4
1230			100	CLAYSTONE	OLV OM - DUSKY YEL BEN, SFT-FRM, MICROMIC, TR CARB.
1235			100	CLAYSTONE	A/A
1240			100	CLAYSTONE	A/A
1245			100	CLAYSTONE	A/A
1250			100	CLAYSTONE	A/A
And the second se					

EX.•G

	GEOCHEMICAL ANALYSIS SAMPLE LITHOLOGY DATA NORSK HYDRO A/S WELL # 7321/8-1										
DEPTH	PRE-PICKED LITH			тн	ANALYSED LITH	ANALYSED LITHOLOGY DESCRIPTION					
	MARL	SST	SLTST	CLYST							
1255		-	10	90	SILTY CLAYSTONE	CLYST. M GY BRN- DUSKY YEL BRN, AMOR-BLKY, LOC GRDG TO SLTST.					
1260			20	80	SILTY CLAYSTONE	SLTST DK GY - DUSKY YEL BRN, BLKY FRM-HD, CARB, VMILROMK, V CALL IN PTS.					
1265				100	CLAYSTONE	AIA					
1270				100	CLAYSTONE	Ala					
1275			10	90	CLAYSTONE	A/A					
1280 .				100	CLAMSTONE	A/A					
12.85				100	CLAYSTONE	A/A					
1287				100	CLAYSTONE	A/A					
1290			10	90	SILTY CLAYSTONE	9/A					
1295			40	60	SILTY CLAYSTONE	a/a					
1300			30	70	SILTY CLAYSTONE	A/A					
1305			30	70	SILTY CLAYSTONE	Ala					
1310			40	60	SILTY CLAYSTONE	A/A					
1315		10	40	50	SILTY CLAYSTONE	Ala					
1320		10	40	50	SILTY CLAYSTONE	A/A					
1325		10	40	50	SILTY CLAHSTONE	A/A					
1330		10	40	50	SILTY CLAYSTONE	A/A					
1335				100	CLAYSTONE	M-DR 64, FRM-HD, ARG-BLKY, SL MICROMIC, NON CALC					
1340				100	CLAYSTONE	Ala					
1345		10		90	CLAYSTONE	A /A					
1350		20		80	CLAYSTON E	DK GRY- GY BUC, OCC DK BRN BLK SUBFISS, NON CALC					
1355				100	CLAMSTONE	A/A					
1360		10		90	CLAYSTONE	AIA					
1365	20			80	CLAYSTONE	A/A					
1370	40			60	CLAYSTONE	RD BRN, V SFT, RNDED CTNS, SL SLTY, MOD CALC					
1375	10			90	CLAMSTONE	Ala					
1380	80			20	CLAYSTONE	PKGY-GYBLK-GENAIA.					
1385	30			70	CLAYSTONE	Ala					
1390	40			60	CLAYSTONE	A/A					

	GEOCHEMICAL ANALYSIS SAMPLE LITHOLOGY DATA NORSK HYDRO A/S WELL # 7321/8-1									
BEPTH	PRE-PICKED LITH			ITH	ANALYSED LITH	ANALYSED LITHOLOGY DESCRIPTION				
		SST	SETST	cust						
1395	·····	1		100	CLAYSTONE	64 BLK - BRN BLK, FISS, SL CALL, MICROMIC, OCC GREASH,				
1400				100	CLAYSTONE	AIA				
14 02				100	CLAYSTONE	Ala				
1405				100	CLAYSTONE	AIA				
14 07				100	CLAYSTONE	AIA				
1410 .				100	CLAYSTONE	A/A				
1412				100	CLAMSTONE	Ala				
1415				100	CLAYSTONE	A/A				
1417				100	CLAYSTONE	Ala				
1420				100	CLAYSTONE	PIA				
1422				100	CLAYSTONE	A/A				
1425				100	CLAYSTONE	A/A				
1427				100	CLAYSTONE	A/A				
1430				100	CLAMSTONE	OLV BLK - 64 BCK, FRM, PLATY SUBFISS, MICROMIC, SICTY IN PTS, CALC				
1432				100	CLAYSTONE	A/A				
1435				100	CLAUSTONE	A/A				
1437				100	CLAYSTONE	AlA				
1440		40		60	C-A4STONE	A/A				
1442		50		50	CLAYSTONE	AlA				
	Co	RE :	# 1	C	JT 1443.5 -	1485.58 100% RECOVERY				
1443.5		100			SANDSTONE	LT OLV GY, LT GY, VE-F, HD-V HD SILLC CAT, MICROALL, NO - V SL SHOWS				
1444.5		100			SANDSTONE	AIA				
1445.5		100			SANDSTONE	Ala				
1446.5		100			SANDSTONE	A/A				
14475		100			SANDSTONE	AA				
1448.5		(00			SANDSFONE	A/A				
1449.5		90		10	CHAYSTONE	BLK - DR 64, MICROMIC, LAM				
1450.5		100			SANDSTONE	A/A				
1451.5		100			SANDSTONE	AA				

GEOCHEMICAL ANALYSIS SAMPLE LITHOLOGY DATA NORSK HYDRO A/S WELL # 7321/8-1 DEPTH PRE-PICKED LITH ANALYSED LITH ANALYSED LITHOLOGY DESCRIPTION SHALE SST SLIST CLUST GEN A/A 1452.5 100 SANDSTONE CALC CAT, NO SHOWS 1453.5 100 A/A SANDSTONE AlA 1454.5 SANDSTONE 100 A/A OLC BNDED W/ BIOTITE 1455.5 100 SANDSTONE BRN BLUE- BRN 64, MICROMIE, SL SLTY, NON CALL 1456.5 50 50 CLAMSTONE 1458.5. 50 50 AA CLAMSTONE BAN BLK-BLK, CARB, MICROMIC, INTERBED W/ SD. BAN 1459.5 CLAYSTONE 90 10 1460.5 SANDSTONE A/A 100 1461.5 SANDSTONE 100 A/A A/A F-M, TR KAOL, SLO STRAG DULL BL WH CUT, WHYEL FLU RESID. 1462.5 SANDSTONE 100 SANDSTONE WITH 50 1463.5 50 A/A CLAMSTONE LAM. 1464.5 SANDSTONE 100 A/A W/ OCC CHAY LAM 1465.5 SANDSTONE A/A 100 Cut 1463.58 - 1493.7 REC 98.9 % CORE # 2 1466 SANDSTONE 100 AIA LT BRN, VF, HD, SILL CMT, MIC, SANDSTONE 1467 100 SATH SET W/ BRN BLK CLAST LAM & MIC BNDS . SANDSTONE 1468 100 MIC DR GM SH W/ SD FILLED BURROWS 1469 100 SHALE BRN BLK, MOD HD, FISS, CARB, HIC, 1470 20 80 CLAYSTONE SLTM, W/ THIN SO LAM. 90 SANDSTONE 1471 10 ALA W/ THIN SO LAM INTERLAMINATED A/A 1472 50 50 SANDSTONE YCLAMSTONE 1473 A/A W/ THIN SH LAM SANDSTONE (00 1474 SANDSTONG 100 A/A LT BRN, F, HD, SILIC CMT, MIC, TR CARB, TR KAO, GEN CLEAN. SL SHOWS SANDSTONE 1475 100 1476 100 SANDSTONE A/A SANDSTONE A/A 1477 100 SANDSTONE 1478 100 A/A BANDED SILTY CLAMSTONE . 1479 50 A/A 50 1480 A/A SANDSTONE 100 1481 CLAYSTONE 100 a/a

EXOG

EX.•G

	GEOCHEMICAL ANALYSIS SAMPLE LITHOLOGY DATA NORSK HYDRO A/S WELL # 7321/8-1									
DEPTH	PRE		(ED L.)	СТН	ANALYSED LITH	ANALYSED LITHOLOGY DESCRIPTION				
	SHALE	CAHST		SST						
1482	100	· -··			SHALE	BLK, Vhd, BRIT, MICROXLN, FISS, CORB				
1483				100	SANDSTONE	LT OLU M, F, UHD, WENTD, CLEAN.				
1484				100	SANDSTONE	GEN A/A - V SLTY & CARB LAM				
1485		10		0	SANDSTONE	A/A W/ CARB LAM Y FRAGS				
1486		100			CLAYSTONE	BRN BLK- DK 64, MIC, SLTY, FISS				
1487 .		80		20	CLAYSTONE	AIA W/ OCL SO LAM, LENT BED				
1488				100	SANDSTONE	SD - A/A RR CARB LAM				
1490				100	SANDSTONE	A/A				
1491				100	SANDSTONE	A A SPOTTY DULL YEL WH FLU				
1492				100	SANDSTONE	Ala				
1493				100	SANDSTONE	A/A MOD SHOWS				
1489		100			CLAYSTONE	BRN BLK, BLKM, MOD ND, MICROALC,				
C01	¢∈ #	3	د	₽ى	1493.7 - 1516.6	D RECOVERY 99.1%				
1494				100	SANDSTONE	BRN 64, HD, VF-F, CARB BLK GRS, SILIC CMT, V WEAK CUT				
1495				100	SANDSTONE	ALA W/ BLK CARB LAM				
1496				100	SANDSTONE	Ala				
1497				100	SANDSTONE	Ala				
1498				100	SANDSTONE	ALA CALC CAT				
1499				100	SANDSTONE	ALA CALL CMT				
1500		30		70	SANDSTONE WITH CLAYSTONE LAM	SST A/A W/ BLIC CARB CLUSTLAM				
1501				100	SANDSTONE	F-M, CALL CMT, TR SPOT SHOWS				
1502				100	SANDSTONE	A/A ABUND CARB MAT				
1503				100	SANDSTONE	AIA				
1504				100	SANDSTONE	A/A) TR SPOTTY YEL WH FLU				
1505				100	SANDSTONE	A/A & WK SLOW BL WH CUT				
1506				100	SANDSTONE	n/n /				
1507		-		100	SANDSTONE	A/A				
1508				100	SANDSTONE	A/A 2 SHOWS A/A				
1509				10D	SANDSTONE	n/n)				

	GEOCHEMICAL ANALYSIS SAMPLE LITHOLOGY DATA NORSK HYDRO A/S WELL # 7321/8-1								
BEPTH	PRE-PICKED LITH				ANALYSED LITH	ANALYSED LITHOLOGY DESCRIPTION			
ļ			SATST	SST					
1510				100	SANDSTONE	AIA			
1511			·	100	SANDSTONE	A/A 3 SHOWS A/A			
1512				100	SANDSTONE	A/A /			
1513			 	100	SANDSTONE	A/A			
1514				(00)	SANDSTONE	A/A) SPOTTY SHOWS A/A			
1515				(00	SANDSTONE	A/A 3			
1516				(00)	SANDSTONE	ALA			
1516.4				100	SANDSFONE	A/A			
			co	RE =	= 4 CUT 1516	6 - 1544.8 RECOVERY 100%			
1517				(00	SANDSTONE	LT BRN-OLU GY, F-M, HD, SILIE CMT, TR CARB, TR MIC, WK PET OBOUR, POOR FW			
1518				100	SANDSTONE	A/A			
1519				100	SANDSTONE	A/A OCC LARG FRAGS.			
1520				100	SANPSTONE	A/A NO SHOWS			
1521			100		SILTSTONE	BRN BLIC, OLU BLIC, MOD HD, NON CALL TR CARB, MIC, NO SHOWS			
152-2				100	SANDSTONE	A /A			
1523				100	SANDSTONE	AlA			
1524				100	SANDSTONE	Ala			
1525				100	SANDSTONE	#IA			
1526				100	SANDSTONE	AIA			
1527			40	60	SANDSFONE Y SILTSTONE	SST, GENALA LT BRN, MOD PET ODOUR SLT ALA			
1528			100		SILTSTONE	AIA			
1529				100	SANDSTONE	A/A - TR CARB FRAGS			
1530				100	SANDSTONE	Ala			
1531				100	SANDSTONE	Ala			
1532				100	SANDSTONE	Ala			
1533				100	SANDSTONE	AA			
1534				(00	SANDSTONE	A/A			
1635				100	SANDSTONE	GEN VE-F, MOD PET ODOUR			
1536				100	SANDSTONE	AA			
					·····				

	GEOCHEMICAL ANALYSIS SAMPLE LITHOLOGY DATA NORSK HYDRO A/S WELL # 7321/8-1									
лертн	PR		(CTD 1 1		BNOIYCED 1 TH					
		C.0197	SATST	SST	INVIETOLA LITT					
1537	 			100	SANDSTONE	Ala				
1538			-	100	SANDSTONE	AIA				
1539		10		90	SANDSTONE W/ V THIN CLYST LAM	SST, VF, V HD W/ THIN CARE, MIC, CLYST LAM.				
1540		10		90	SANDSTONE	A/A - LESS CLUST LAM				
1541				100	SANDSTONE	A/A TR SPTY WHYEL FLU				
1542		10		90	SANDSTONE W/ THIN CLYST LAM	A/A				
1543				100	SANDSTONE	V.F., V.HD , CALL CMT				
1544				(00	SANDSTONE	GEN A/A NO CALCENT, OCE CARB				
1544.7		40		60	INTERLAMIN ATED SANDSTONE CLAMSTONE	CLYST - DK 64, LAM, V MIC, SLTY				
1545				100	100% SST	NO ANALYSIS				
1547				100	100°10 55T	NO ANALYSIS				
1550		10		90	CLAYSTONE	Ala				
1552		10		90	ala	A/A				
1555		10		90	a/a	Ala				
1557		10		90	ala	A/A				
1560		10		90	a/a	A/A NO SHOWS				
1562		10		90	ala	MLT - MGY, OLV GY, HD, BLUY-OLG FISS, MIC, CARB, NON CALC				
1565		10		90	a/a	A/A				
1567		10		90	a/a	A/A				
1570		10		90	ala	A/A				
1572		10		90	a/a	ALA BEMG SLTY				
1575		10		90	a/a	A/A				
1577		10	20	70	SILT / CLAYSTONE	SLTST OLU GY - GY BRN, MICROMIC, V CARB IN PTS, GROG TO SST				
1580		10	50	40	SILT/CLAYSTONE-	A /A				
1582		10	50	40	afa	Ala				
1585		10	60	30	ala	Ala				
1587		10	70	30	SILT W/CLAYSTONE	Ala				
1590		20	50	30	a/a	A/A				
1592		40	40	20	ala	A/A				

	GEOCHEMICAL ANALYSIS SAMPLE LITHOLOGY DATA NORSK HYDRO A/S WELL # 7321/8-1									
DEPTH	PRI	PICI I	KED LI	ITH	ANALYSED LITH	RNALYSED LITHOLOGY DESCRIPTION				
		SLIST	CUIST	55T	i 					
1595		40	40	20		A/A				
1597		40	40	20		A /A				
1600		50	30	20		AA				
1602		50	50			A/A				
1605		20	70	10		NON CALC, CARB,				
1607 .		10	80	10		Ala				
1610		10	80	10		A/A				
1612		10	80	10		A/A				
1615		20	80			A/A				
1617		20	80			A/A				
1620			100		CLAYSTONE	ala				
1622			100		a/a	a/a				
1625			100		ala	a/a				
1627			60	40	ala	a/a				
1630			40	60	a/a	a/a				
1632		20	20	60	SLT/CLAYSTONE	SLTST - mgry, Frm-vhd, biky, ang, wh mat ent, non calc.				
1635		(0	20	70	a/a	0/9.				
1637			30	70	CLAYSTONE	CLYST- pred dkgry, ndkgry, SFF-Fim, stky, blky-plty, sl slty, tr micronic.				
1640			30	70	afa	a/a				
1642		20	40	40	SILT/CLAYSTONE	SLTST - V. calc, It - VH gry, Hri, arg.				
1645		10	80	10	CLAYSTONE	a/a				
1647		10	60	30	a/a WESHT	en/en				
1650			30	70	CLAYSTONE	ala				
1652			20	80	a/a	ala				
1655		30	20	50	SILT/ CLAYSTONE	ala				
1657			50	50	CLANSTONE	ala				
1660			60	40	ala	ala				
1662			60	40	a/a	a/a				
1665		30	50	20	SILT / CLAYSTONE	a/a				

	GEOCHEMICAL ANALYSIS SAMPLE LITHOLOGY DATA NORSK HYDRO A/S WELL # 7321/8-1									
рертн	PRE-PICKED LITH				ANALYSED LITH	RNALYSED LITHOLOGY DESCRIPTION				
		SLTST	CLYST	SST						
1667		30	50	20	SILT / CLAYSTONE	ShTST - malk gry - brn, gry - olu gry, billy, Frm - mod hd, acc criting sst non cale				
1670		40	50	10	ala	v. ang.				
(672		20	40	40	a/a	CLYST - brn blK - olv blK, occ offwh, v. sft sol, amor, steky, occ bindd, non cale				
1675		20	30	50	a/a	ala				
1677		20	20	60	a/a	a/a				
1680.		20	20	60	a/a	ala				
1682		20	R	80	a/a	a/a				
1685		20	FR.	80	a/a	ala				
1687		10	10	80	ala	ala				
1690		10	10	80	a/a	a/a				
1692		10		90	a/a	ala				
1695		10	10	80	ala	a/a				
1697		10	30	60	ala	ala				
1700		20	20	60	a/a	ala				
1702		20	20	60	ala	ala				
1705		30	20	50	a/a	ala				
1707		30	20	50	aja	ala				
1710		40	40	20	ala	ala				
1712,		30	20	50	a/a	ala				
1715		20	40	40	ala	a/a				
1717		30	30	40	a/a	ala				
1720		30	40	30	ala	a/a				
1722		30	20	50	a/a	a/a				
1725		30	50	30	ala	SLTST - m gry, mod - V. hd, blky, homog, and interlam, with gry clust, ording V. F. set in prt.				
1727		40	30	30	afa	CLYST- (Ta?) kaplinite, v.stt, stilly, amor; non calk, wh.				
1730		50	40	10	afa	CLYST - may - Hay, from - set, sthy, anor, and ches, occl ut bloc spots, non cale, an				
1732		50	40	10	a/a	ron sity a/a				
1735		60	30	10	ala	ala				
1737		60	30	10	a/a	da				

	GEOCHEMICAL ANALYSIS SAMPLE LITHOLOGY DATA NORSK HYDRO A/S WELL # 7321/8-1									
DEPTH	PR	E-PICH	ED L	t TH	ANALYSED LITH	ANALYSED LITHOLOGY DESCRIPTION				
	MARL	CLUST	SLTST	SST						
1740		50	50		CLAYSTONE/SILTSTONE	cust - It gry, ang, v. frm, brt ip.				
1742		70	30		a/a.	setst- mgry m-vhal, birty, homog, ang, non cale.				
1745		90	10		CLAY STONE WTE SILT.	a/a				
1747		90	10		a/a	a/a				
1750		90	10		a/a	civer- many, It gry, v. Stt, Stky, amor, md etgs, Hon-st sity, loc si cale.				
1752 .		90	10		ala.	<u>a/a</u>				
1755		90	10		ala	<u>a/a</u>				
דפדו		80	10	10	ala	ala				
1760		60	30	10	ala	SLTST- It any, nod hol - fri, blky, homog.ccc w/blk Juspecs, mod ang, hon calc.				
1762		70	20	10	enfer	ala				
1765		60	30	10	ala	enta				
1767		70	20	10	ala	crist - varicol: mak gry It-vitary mary pred v. sft. stky, col. sec mod from				
סרדו		100			CLAYSTONE	subbling, ptty, then-statty, specs bill mast				
1772		80	10	10	CLAUSTONE W TE SILT	a/a				
דרו		80	20		CLAYSTONE WE SILT,	a/a				
דרדו	10	50	20	20	CLYST W TR SILT+ MARL	MARL- Wh, V. Sft, amor, stay, to hadinite.				
1780	10	50	20	20	নাম	ala				
1782		60	20	20	CLAYSTONE W TE SILT	a/a				
1785		20	30	50	CLAYSTONE + SILTSTONE	a/a				
דפרו		70	20	10	CLAYSTONE W SILT	a/a				
0971		60	20	20	ala	a/a				
1792		60	20	20	ala	clyst - pred It of gry, brn bilk, sft, plas, stky, amor, sty, sdy, non cute.				
1795		60	30	10	a/a	a/a				
1797		60	30	10	a/a	ala				
1800		60	20	20	ala	a/a				
1802		50	30	20	ala	ala				
1805		70	30	TR	a/a	leuthings homog, non sity, non culc				
1807		80	20		en/a	ala				
1810		30		70	CLAYSTONE	a/a				

	GEOCHEMICAL ANALYSIS SAMPLE LITHOLOGY DATA NORSK HYDRO A/S WELL # 7321/8-1										
BEPTH	PRE-PICKED LITH			ITH ISST	RNALYSED LITH	ANALYSED LITHOLOGY DESCRIPTION					
1812		10		90	CLAYSTONE	clist - V. Hgry-mgry, v. stt, stky, amor, non situ, non-mod cake, carb specs in prt.					
1815		40	20	40	CLAYSTONE W/SILISTONE	a/a					
1817		30	R	70	CLAYSTONE	a/a					
1820		30		70	ala	. a/a					
1822		30		70	a/a	a/a					
1825		40		60	ala	a/a					
1827	·	20		80	a/a	ala					
1830		40	Tz	60	ala	a/a.					
1832		60	10	30	CLAYSTONE W/SILISTONE	SLTST Olv blK, fim-hal, occ blk lans. CLIST - ala					
1835		20	20	60	a/a	ala					
1837		80	10	10	ala	a/a					
1840		70	20	10	a/a	ala					
1842		70	10	20	ala	ala					
1845		70	10	20	ala	aja					
1847		60	20	20	ala	a/a					
1850		30	30	40	ala	ala					
1852		30	40	30	a/a	aja					
1855		40	30	30	ala	aja					
1857		40	30	30	a/a	a/a					
1860		30	40	30	a/a	ala					
1862		50	30	20	ak	ala					
1865		70	30	T e.	ap	chyst - alk olv any, sfit stky, cumor, sity, non calc.					
1867		50	30	20	ala	ala					
1870		40	30	30	ala	a/a					
1872		70	10	20	ala	ala					
1875		30	10	60	a/a	a/a					
18T1		Ð	10	30	aja	ala					
1880		20	10	70	ala	a/a					
1882		20	20	60	a/a	a/a					

	GEOCHEMICAL ANALYSIS SAMPLE LITHOLOGY DATA NORSK HYDRO A/S WELL # 7321/8-1									
DEPTH	PRE-PICKED LITH				ANALYSED LITH	RNALYSED LITHOLOGY DESCRIPTION				
	CLYST	SLIST	<u> </u>							
1885	20	20	60		CLYST /W SILTSTONE	occ soly groting V.Fsst. non calc				
1887	60	10	30		ala	CLYST - m- Itgry, frm, blky, acc subfiss				
1890	50	20	30		ala	<u>a/a</u>				
1892	50	20	30		a/a	a/a				
1895	70	20	ю		ala	a/a				
1897 .	80	10	10		a/a	a/a				
19:00	90	TR	10		CLAYSTONE	ala				
1902	90	Þ	10		ala	a/a				
1905	90	Æ	10		ala	ala				
1907	90	Fe	10		aja	a/a				
1910	80	R	20		a/a	ala				
1912	80	臣	20		ala	ala				
1915	70	Fe	30		ala	ala				
1917	80	R	20		afa	ala				
1920	70	瓦	30		a/a	CLYST - Oh blk, fim, blky, v. sty, noncak.				
1922	80	辰	20		da	ala				
1925	80	Te	20		ala	ala				
1927	70	R	30		ala	a/a				
1930	60	Te.	40		ala	a/a				
1932	60	Fr	40		a/a	a				
1935	70	ħ	30		ala	ala				
1937	90	ħ	10		a/a	a/a				
1940	60	Te	40		a/a	ala				
1942	70	Æ	30		ak	a/a				
1945	80		20		a/a	ia/a				
1947	80		20		ala	ala				
1950	80		20		a/a	ci/a				
1952	70		30		a/a	a/a				
1955	60		40		ala.	er/a				

	GEOCHEMICAL ANALYSIS SAMPLE LITHOLOGY DATA NORSK HYDRO A/S WELL # 7321/8-1									
DEPTH	PRE-PI	CKED L	ітн	ANALYSED LITH	ANALYSED LITHOLOGY DESCRIPTION					
	CLYSI	SKITST	557							
1957	40		60	CLAYSTONE	CHST - brn blk, occ olv blk, frm, blky, v. slty. non cale.					
1960	40		60	ak	ala					
1962	40		60	afa	ala					
1965	40		60	ala	ala					
1967	30		70	ala	CLYST- brn blk, occ dk gm, sft-frm, sika, hydraled, badd, non culc					
1970 ·	30		70	ala	ala					
1972	30		70	ala	ci/a					
1975	50		50	ci/a	a/a					
1977	30		70	ofa .	ala					
1980	30		70	ala	ala					
1982	20		80	a/a	ala					
1985	20		80	a/a	ala					
1987	30		70	a/a	a/a					
1990	30		70	a/a	ala					
1992	40	>	60	afa	chist - dk olv gry, andr-blky, sft, alas, non call					
1995	20		80	ala	ala					
1997	30	•	70	a/a	ala					
2000	50		50	ala	a/a					
2002	30	,	70	ala	cla					
2005	30		70	ala	cla					
2007	50	Tr	50	CLAYSTONE WITH TR coaly claystone.	centsi - bro blk, blky, ang, coal like. coal - blk, vit, sl from croubly, blky.					
2010	30	, Fr	70	a/a (coaly CLANSTONE)	afa					
2012	40	ħ	60	a/a	clist - brn blk 61ky, ang, crimbly, non cak. (coal like.)					
2015	60	, Fr	40	a/q	0/a					
2017	50) Fr	50	ala	ci/a					
2020	70	> 5.	30	ala	aja					
2022	60) E	40	a/a	a/a					
2025	70	Ŧz	30	ak	ala					
2027	50	Fr	50	a/a	ala					

GEOCHEMICAL ANALYSIS SAMPLE LITHOLOGY DATA NORSK HYDRO A/S WELL # 7321/8-1										
BEPTH	PR	E-PIC	(ED L.:	 I ТН I	ANALYSED LITH	RNALYSED LITHOLOGY DESCRIPTION				
	DOL	৫৸গ্ৰ	<u> </u>	CLYST						
2030	<u> </u>	40	Fe	60	CLAYSTONE	CLAYSTONE - Ern BIR, SI trim, Diky, ecc and, erundy, non celc.				
2032	<u> </u>	30	<u> </u>	70	ala	cr/a				
2035		20		80	c/a	a/a				
2037		20		80	a/a	da				
3040	ħ	20	ħ	80	ala	ala				
2042 ·	丙	40	E	60	a/a	a/a				
2045	ħ	80	FZ	20	a/a	a/a				
2047	ħ	80	FE	20	ala	ala				
2050	ħ	70	Fe	30	ala	CLAYSTONE - brobk, ov blk, frm-hd, blk., stty, non calo				
2052	ħ	30	た	70	a/a	ala				
2055	Th	40		60	a/a	ala				
2057	Ta	50	Fz	50	ala	ala				
2000	Τį	50	臣	50	ala	ala				
2062	TE	40	ħ	60	ala	a/a				
2065	দ	50	ħ	50	ala	o√a				
2067	ħ.	60	Fe	40	ala	ala				
2070	न्र	70	Ŧŧ	30	ala	a/a				
2072	k	80	ħ	20	ala	a/a				
2075	FC	70		20	ala	ala				
2077	TR	70		20	a/a	ala				
2080	ħ	80		20	a/a	ala				
2082	Ta	90		10	a/a	ala				
2085	FQ	४०		20	ala	c/a				
2087	TE	90		10	a/a	alc.				
2090	র	90		10	ala	KLYST - dk grylern, spittry, v. frm				
2092	TR	90		10	a/a	ala				
2095		90		10	ala	ala				
2097		90	··· <u></u>	10	a/a	ala				
2100		90		10	a/a	ala				

	GEOCHEMICAL ANALYSIS SAMPLE LITHOLOGY DATA NORSK HYDRO A/S WELL # 7321/8-1									
DEPTH	PR	E-PIC	KED L	тн	ANALYSED LITH	ANALYSED LITHOLOGY DESCRIPTION				
	CALC	COAL	CLYST	%T		· · ·				
2102		阪	90	10	CLANSTONE W/TA	CLANSTONE - Old blk, Frm, blky, sity, non cale coal like, coal, uit, blk, and, non cale.				
2105		Æ	80	20	a/a	ala				
2107		म	70	30	ala	ala				
2110		ħ	60	40	ala	a/a				
2112	Ŧĸ	Æ	50	50	a/a	a/a				
2115		Fz	50	50	a/a	a/a				
2117		F	70	30	ara	a/a				
2120	FR	Fe	HO	60	CLAYSTONE W/9000 TR	a/a				
2122	Te	Ŧ	30	70	CLANSTONE W/TR	ala				
2125	Ī	Th.	70	30	enfa	a/a				
2127		Te	80	20	ala	ala				
2130	Te		70	30	CLAYSTONE	a/a				
2132	Te		50	20	ala	a/a				
2135	10		80	10	a/a	Q/a				
2137	10	Fe	70	20	CLAYSTONE W/TR COOL	ala				
2140	10	R	60	30	CLAYSTONE W/- TR COLL.	a/a				
2142	10	Tr.	40	50	ofa w/ good to	a/a				
2145	10	F	50	40		a/a				
2147	10	ħ	60	30	CLAYSTONE W/ TR coul.	ala				
2150	10	Tz	70	20	ala	ala				
2152	10	FR	70	20	CLAYSTONE	a/a				
2155	10	Te	80	10	ala	a/a.				
2157	10	Te.	70	20	ala	CLAYSTONE - It brn, hd, blky, sty, non culc.				
2160	10	R	70	20	apa bec. coal like.	۵/۵				
2162	10	Fe	60	30	CLAYSTONE	ala				
2165	10	Æ	70	20	ala	c/a				
2167	20	Tz	60	20	a/a	CLAYSTONE - dk gmy, Frm-hel, blky, Splky sub Ats				
2170	30	Ŕ	60	10	a/a	a/a				
2172	30	Ł	60	10	ala	c/a				

-- -

	GEOCHEMICAL ANALYSIS SAMPLE LITHOLOGY DATA NORSK HYDRO A/S WELL # 7321/8-1									
DEPTH	PRE-PICKED LITH			тн	ANALYSED LITH	RNRLYSED LITHOLOGY DESCRIPTION				
]	CALL	COAL	CLIST	SD.						
2175	30		50	20	CLAYSTONE	CLYST olk gry, from -mod hod, blky, non cull.				
202	30		50	20	orla	ala				
2180	20		40	40	a/a	ala				
2182	20	TR	50	30	CLAYSTONE WAR coal.	ala				
2185	20	Ŕ	80	ĪR	a/a	a/a				
2187	10	Te	90	F.	a/a	chist- mak gry, frm, biky, sl cak.				
2190	F R		90	10	CLAYSTONE	ala.				
2142	দ		80	20	ala	α/α				
2195	ħ		90	10	ala	ala				
2197	10		70	20	ala	ala				
2200	10		80	10	a/a	ala				
2202	10		90	FR	ala	aja				
2205	10		70	20	ala	a/a				
2207	10		70	20	ala	aja				
2210	40		40	20	ala	afa				
2212	40		40	20	ala	a/a				
2215	40		40	20	ala	ala				
2217	40		50	10	ala	CLYST- olv blk, Drn blk, Chy plas,				
2220	30		30	40	ala	a/a				
2222	20		50	30	ala	a/a				
2225	20	ħ	60	20	cula w pr TR cont.	a/a				
2227	20		40	40	ala	a/a				
2230	20	হ	50	30	cifa is good to coal.	a/a				
2232	10	হ	60	30	ala.	ala				
2235	10	F	40	50	CLAYSTONE (coul like)	a/a				
2237	হ	1ar	60	40	cufa.	ala				
2240	10	ħ	60	30	_ a/a	afa				
2242	72	F 2	70	30	CLAYSTONE	afa				
2245	Ę	Æ	40	60	afa.	a/a				

	GEOCHEMICAL ANALYSIS SAMPLE LITHOLOGY DATA NORSK HYDRO A/S WELL # 7321/8-1									
DEPTH	PRE-PICKED LITH				ANALYSED LITH	RNALYSED LITHOLOGY DESCRIPTION				
2247	Te		40	60	CLANSTONE	chist - alk bra ey, ac blk, blky, bd, ards to mart of ort mod calc				
2250	Te		50	50	0/a	a/a				
2252	10	ħ	30	60	a/a wpr the coul	a/a				
2255	10	ŦŔ	50	40	afa	a/a				
2257	ю		50	40	CLAYSTONE	aja				
2260 .	10		60	30	afa	a/a				
2262	20		50	30	ala	a/a				
2265	DOL. 20		50	30	a/a	ala				
2267	20		60	20	ala	ala				
2270	10		70	20	ap	ala				
2272	10		70	20	ala	ala				
2275	20		70	10	a/a	ala				
2277	20		60	20	ala	a/a				
2280	20		50	30	aja	ala				
2282	10		70	20	a/a	ala				
2285	20		60	20	ala	a/a.				
22.87	20		60	20	a/a	a/q				
2290	10		60	30	ala	ala				
2292	Tr		70	30	a/a	a/a				
2295	Īr		60	40	ala	ala				
2297			40	60	ala	a/a				
2300	ιο		80	10	ala	a/a				
2302	10		80	10	a/a	CLYST - mgy, olv brn, v stt, hydrtil, amor, sl situ, non-sli colc				
2305	Tr		30	70	ala	ala				
2307	Tr		40	60	ala	· a/a				
2310	Tr-		40	60	a/a	a/a				
2312	Tr		30	70	ala	ala				
2315	٦r		70	30	ala	ala				
2317	Tr		60	40	a/a	ala				

	GEOCHEMICAL ANALYSIS SAMPLE LITHOLOGY DATA NORSK HYDRO A/S WELL # 7321/8-1										
BEPTH	PRI	E-PICI COAL	CED LI	ITH SST	ANALYSED LITH	ANALYSED LITHOLOGY DESCRIPTION					
2.320	Tr		70	30	a/a	ala					
2322	Tr		70	30	ala	ala					
2325	Tr		70	30	ala	CLYST, mgy - alv gy, occ it gy, v att, hudebt amor al site non calc.					
2327	Tr		60	40	a/a	a/a					
2330	Tr		50	50	ala	ala					
2332 .	- Tr		60	40	a/a	ala					
2.335	T,		30	70	ala	a/a					
2337	Tr		30	70	a/a	ala					
2340	Tr		60	40	ala	ala					
2342	Tr		50	50	ala	ala					
2345	Tr		30	70	a/a	ala					
2347			30	70	ala	ala					
2350	Tr		50	50	a/a	ala					
2352	Tr	<u> </u>	50	50	ala	ala					
2355	Tr	l	80	20	ala	CLYST, m gy -olu gy, occ it gy, v st v frm, spity hydra, amor vsita					
2357	Tr		80	20	a/a	ala					
2360	Tr		70	30	ala	ala					
2362	T.		80	20	a/a	ala					
2365	Tr.		90	10	ala	ala					
2367	Tr		70	30	ala	ala					
2370	Tr		90	١D	ala	ala					
2372	Tr		80	20	ala	ala					
2375	T.		80	20	ala	ala					
2377	Tr		80	20	ala	ala					
2380	ļ		80	20	a/a	ala					
2382			90	10	ala	a/a					
2385	Í		100	Tv	ala	o/a					
2387			90	10	a/a	ala occ grdg sltst.					
2390			90	10	ala	ala					

- -

GEOCHEMICAL ANALYSIS SAMPLE LITHOLOGY DATA NORSK HYDRO A/S WELL # 7321/8-1									
DEPTH	PRI	E-PIC	KED L	ІТН	ANALYSED LITH	ANALYSED LITHOLOGY DESCRIPTION			
	CALC OOL	COAL	CLY'ST	50		<u></u>			
2392	Te		90	10	CLAYSTONE	amov_6/by occ ply non calc			
2395	Tr		90	10	ala	ala			
2397			80	20	a/a	ala			
2400			20	20	a/a	ala			
2402			80	20	ala	a/a			
2405			60	40	ala	ala			
2407		Tr	80	20	ala	a fa w to coal			
2410		Tr	90	10	a/4	ala			
2412		Tr	80	20	a/a	ala			
2415	1		90	10	ala	a/a			
2417			90	10	a/a.	a/q			
2420	1		80	20	ala	ala			
2422	1		90	10	ala	ala			
2.425			100	Tr	a/a	ala			
2.427			100	Tr	ala	ala			
2430			80	20	ala	ala			
2432			90	10	ala	ala			
2435		SUTST	80	20	ala	ala			
2437		30	50	20	CLAYSTONE SILTSTONE	SLTST, m dk gy, frm - hd, blkg, v			
2440	†	30	50	20	ala	CLYST. gy, brn, st. frm. blkg, amor,			
2442		20	60	20	ala	ala			
2445	1	20	60	20	ala	ala			
2447	1	20	50	30	ala	a/q			
2450		20	60	20	a/a	ala			
2452		20	60	20	ala	ala			
2455		20	50	30	a/a	ala			
2457		30	40	30	ala	ala.			
2460		40	30	30	ala	ala			
2.462		40	30	30	a/a	ala			

	GEOCHEMICAL ANALYSIS SAMPLE LITHOLOGY DATA NORSK HYDRO A/S WELL # 7321/8-1									
DEPTH	PRE-PICKED LITH				ANALYSED LITH	ANALYSED LITHOLOGY DESCRIPTION				
		CLY	SLT	55						
2465		40	30	30	a/q	a/a				
2.467		50	20	30	a/q	ala				
2470		50	20	२०	a/a	ala				
2472		ኇ	30	30	ala	ala				
2475		40	20	40	ala	ala				
2477 .		20	10	70	ala	a/a				
2480		10	٦r	90	a/a	a/a				
2482		10		90	ala	ala				
2485		10	10	80	ala	ala				
2487		10	10	80	ala	ala				
2490		30	20	50	CLAYSTONE SILTETONE	SLIST, gy. blk, frm, occ v hd, blky sucr, occ v any gulg v f 35				
2492		30	20	50	ala	CLYST og ben, sit fin , amor, bløg,				
2495		20	20	60	alq	ala				
2497		20	30	50	ala	ala				
2500		220	20	60	a/a	ala				
2502		20	20	60	ala	ale				
2505		30	20	50	ala	ala				
2507		40	50	10	<u>a/a</u>	alq				
2510		40	50	10	a/a	ala				
2512		20	50	30	a/a	a/a				
2515		50	30	20	a/a	ala				
2517		50	40	10	a/a	a/a				
2520		50	40	10	a/a	ala				
2522		60	30	10	a/a	ala				
2525		60	30	10	a/a	ala				
2527		70	20	10	a/a	ala				
2530		70	30	-	a/a	a/a.				
2532		70	30		ala	s/a				
2535		70	30		a/a	ala				

.

EX

	GEOCHEMICAL ANALYSIS SAMPLE LITHOLOGY DATA NORSK HYDRO A/S WELL # 7321/8-1										
DEPTH	PR	E-PICH	(ED L.: SLTST	ітн 557	ANALYSED LITH	RNALYSED LITHOLOGY DESCRIPTION					
2537		80	20	Ћ	CLAYSTONE	CLYST - M-DK GY, OCC DK GY OLV, SFF, GEN FRM, LOC MOD HD SK- VSLTY NO PM					
2540		80	10	10	ala	a/a					
3542		90	Te	10	a/a	a /a					
2545		90	T2	10	a/a	. a/a					
2547		90	Æ	10	ala	CLYST - ala, grding to stist in prt.					
1550 .		80	72	20	a/a	0/4					
1552		80	Te	20	ala	a/a					
2555		90	Te	10	a/a	a/a					
2557		70	10	20	ala	ala					
2560	 	90	10	Fr.	ala	ala					
2562		90	10	Fe.	ala	a fa					
2565		80	20	Tz	a/a	a/a					
2567		40	50	10	CLAYSTONE/SILTSTONE	CLYSTONE - gy blk, hd, blky, ang, so liss					
2570		30	20	50	ala	SLTSTONE - med gy, hd, blky, ang					
2572		20	30	50	ala	afa					
2575		30	20	50	a/a	a/a					
2577		30	20	50	a/a	ala					
1580		40	R	60	CLAYSTONE						
2582	Ŧę	<u>40</u>	Fe	60	ala						
2585	Ę	40	Tr_	60	CLAYSTONE W COAL	CLAYSTONE - Gyblk, or dk bra blk, mod hd occ from occ hd blky,					
2587	Ŧ	40	た	60	CLAYSTONE	ala					
1590	TR	50	Te	50	CLAYSTONE W/COAL	COAL - blk, hd, blky, ang, vit histre.					
2592	•	60	R	40	a/a	a/u					
2595		60	Fe	40	a/a	ala					
2597	দ্	10	20	70	CLAYSTONE W/COAL	a/a					
2600	ħ	10	10	80	CLAYSTONE/ SILTSTONE	CLYST- bec more slfy					
2602	Te.	ħ	10	90	ala	e.(a					
2605		ħ	۲ ۲	100	CLANSTONE SILTSTONE	ala					
2607		Te	Te l	100	afa	<u>ala</u>					

	GEOCHEMICAL ANALYSIS SAMPLE LITHOLOGY DATA NORSK HYDRO A/S WELL # 7321/8-1									
DEPTH	PRE-PICKED LITH				ANALYSED LITH	RNALYSED LITHOLOGY DESCRIPTION				
	COAL	(LYST	SLTST	55T						
2610			k	100	SILSTONE	SILISTONE - m-dk gry, hd, blky, ang				
2612			Fz.	100	ala	ula				
2615	<u> </u>	T2	10	90	a/a	ala				
2617	<u>`</u>		ħ	100	a/a	a/a				
2620	<u>-</u>		10	90	ala	a/a				
2622 .	-		Tz	100	ala	a/a				
2625		15T 10	Ta	90	ala	ala				
2627	ъ.	10	Tr	90	a/a w Te coal	a/a				
2630	Ta	4.45T 10	10	80	CLAUSTONE /SILTSTONE	CLAYSTONE - Sry brn, gy blk, hd-v hd,				
2632	た	10	10	80	a/a	ala				
2635	Tz	10	10	80	a/a	a/a				
2637	Te	10	50	40	SILTSTONE .	aja.				
2640	10	30	20	40	SILTSTONE W COAL.	SLTST- gy blk, brn blk, oc. clkolugy, i mod hof-hd, blky, grd clust in pro				
2642		20	50	30	CLAYSTONE KILTSTONE	a/a.				
2645		30	10	60	CLAUSTONE	ala				
2647		40	10	50	a/a	a/a				
2650		50	瓦	50	ala	a/a				
2652		50	Tz	50	ala	a/a				
2655		60	Th	40	a/a	ala				
2657	 	50	Fz	50	ala	ala				
2660		60	Tz	40	ala	۵/۵				
2662		60	k	40	a/a	a/a				
2665		50	10	40	a/a	a/a				
2667		50	10	40	ala	ala.				
2670.15			100		SILISTONE	strst - m gy - mak gry, h - v hd, blky, ang sb fiss, non calc, arg, sl mic				
267.1			100		ala	ala				
2672			100		a/a	ala w carb specs.				
2673			100		ala	a/a				
2674			100		a/a	a/a				

EX.•G

GEOCHEMICAL ANALYSIS SAMPLE LITHOLOGY DATA NORSK HYDRO A/S WELL # 7321/8-1									
DEPTH	PR	E-PICH	(ED L.) SLTST	(TH 557	ANALYSED LITH	ANALYSED LITHOLOGY DESCRIPTION			
2675			100		ala	ala			
2676			100		ala	ala			
2677			100		ala	ala.			
26789			100		ala	ala.			
2630		30	70		CLAYSTONE	CLAUSTONE - gy blk, hot vhd, blky, sb fiss			
2682.	10	40	50	· · · ·	er/a w coal	coal - gy blk, blk, vhd, brit, vit, sb conc.			
2685	友.	30	60	10	ala	a/a			
2687		20	70	10	SILTSTONE W/CLAYSTON	skist - dk gy, gy blk, blky, crab,			
2690		30	60	10	ala	a/a			
2692		50	50	Fe	ala	ala			
2695		20	70	10	a/a	a/a			
2697		10	80	10	ala	ala			
2700		30	70		ala	a/a			
2702			100		SILTSTONE	aja			
2705		30	70		CLANSTONE SILTSTONE	ala			
2707	Fr.	40	60		ala	ala			
2710		50	30	20	<i>a</i> /a	ala			
2712	Fr	50	20	30	a/a	ala			
2715		30	30	40	a/a	ala			
2717	Fe	40	20	40	ala	ala			
2720	Fe	40	20	40	ala	<i>a/</i> a			
2722	Fe	50	20	30	ala	ala			
2725	15	50	20	30	a/a	a/a			
2727		50	10	40	ala	cla			
1730		50	10	40	ala	aia			
2732		50	10	40	ala	ala			
2735		60	10	30	CLAYSTONE	clyst- dk brn gy, sft-mad hd, blky, rr amor. sl slku in ort. non calc."			
2737		60	10	30	cla	a/a			
2740		70	10	20	a/a	a/a			

ı. L

}

)

GEOCHEMICAL ANALYSIS SAMPLE LITHOLOGY DATA NORSK HYDRO A/S WELL # 7321/8-1									
DEPTH	PRE-PICKED LITH				ANALYSED LITH	ANALYSED LITHOLOGY DESCRIPTION			
		ernet.	SLIST	557.					
2742		70	10	20	CLAYSTONE	CLAYSTONE - brn blk, olv blk, nod hd,			
2745		80	10	10	ala	ala			
2747		80	10	10	ala	a/a			
2750		40	20	40	a/a	ala			
2752		50	30	20	a/a	ala			
2755 .		20	10	70	CLAYSTONE SILISTONE	SILTSTONE - necl-dk qy, occ qy blk,			
2757		20	Tz	80	ala	hel blky, sb Fiss			
2760		30	10	60	a/a	ala			
2762		30	20	50	ola	a/a			
2765		20	10	60	a/a	ala			
2767		20	50	30	ala	a/a			
2770		20	40	40	ala	a/a			
2772		30	40	30	ala	ala			
2775		20	60	20	ala	a/a			
2777		20	70	10	SILTSTONE	ala			
2780		ħ	40	60	ala	ala			
1782		10	50	40	a/a	ala			
2785		10	40	50	ala.	ala			
2787	LST 10	TZ	50	40	ala	a/a.			
2790		30	40	30	ala	ala			
2792		10	40	50	ala	ala			
2795		ħ	50	50	ala	aja			
2797		5	40	60	ala	ala			
2900		k	30	70	ala	ala			
2802		10	30	60	ala	ala			
2805		20	20	ω	ala	ala			
2807		20	20	60	ala	ala			
2810		20	40	40	ala	ala			
2812		20	40	40	ala	<i>م(0.</i>			

____**...**

¥

GEOCHEMICAL ANALYSIS SAMPLE LITHOLOGY DATA						
NURSK HYDRU H/S WELL # /321/8-1						
DEPTH	PRI	PRE-PICKED LITH		стн 	ANALYSED LITH	ANALYSED LITHOLOGY DESCRIPTION
		CLYST	SLIST	551		craterials - dk bro ou, bro blk from -
2815		30	40	30	CLAYSTONE SILTSTONE	med had blky Wrr amor
2817		20	50	30	ala	silistant dk bra, brabik, gen fra- mod ha oft Fri.
2820		30	40	30	ala	a /a
2822		40	30	30	aja	<u>a/a</u>
2825		60	20	20	a/a	ala
1827		70	20	10	a/a_	ala
1930		70	20	10	a/a	<u>a/a</u>
2832		70	10	20	a/a	ala
2835		40	10	50	a/a	a/a
2837	SHALE	40	R	60	CLAYSTONE	ala
2840				100	SANDSTONE	sst- It gay, he when, ang, v.f-f, well sit loc mice del cont.
2841				100	ala	ala
2842.5			:	100	બવ	ala
2943.43	100				SHALE	Sh- brn blk, hd, blky-subfis, non celc, slty, v. carb, mices
1844				100	SANDSTONE	0 ala (2842.5)
2945.5	100				Shale	ala (2843·43
2846.23				100	SANDSTONE	ala (2842·5)
2847		7.0		30	CLAYSTONE	WST- med dk gry. sft-Fm, amor-sb blky, sity non calc
1850		טר		30	a/a	aja
2852		20	20	60	CLAYSTONE WSILTSTONE	SLTSTONE - brn blk, mod hd-hd, fri, blky
2855		ĸ	30	60	ala	plty, arg occ w/blk carb specs.
2857			20	80	SILTSTONE	ala
2860			10	90	ala	aja
2862			10	90	ala	ala
2865		6	20	70	CLAYSTONE W/SILISTONE	ara
2867		20	10	70	ala	a/a
2870	!	10	10	80	a/a	cia
2872		10	10	80	afa	ala
2875			10	90	SILTSTONE	a/a.

----- **-**

GEOCHEMICAL ANALYSIS SAMPLE LITHOLOGY DATA NORSK HYDRO A/S WELL # 7321/8-1							
DEPTH	PRE-PICKED LITH			тн	ANALYSED LITH	RNALYSED LITHOLOGY DESCRIPTION	
	<u> </u> +	YST	SUTST	SST			
2877			10	90	SILTSTONE	SLTSTONE - dk ay blk, mod hd - v hd, blky, sub Ciss. loc carb mat.	
2880			10	90	ala	0/6	
2882		10	10	80	o/a w claystone	CLAYSTONE and dik gy, SCT-Frm, amor-sub bility,	
2885			10	90	SILTSTONE	sity, non cele.	
2887				100	SILTSTONE W/CLANSTONIE	ala	
2890 ·		10	40	50	SILTSTONE	aka	
2892		20	50	30	ala	ala	
2895		20	60	20	ala	ala	
2897		10	60	30	ala	ala	
2900		50	30	20	CLAYSTONE	a/a	
2902		60	30	10	ala	ala	
2905		70	20	10	a/a	ala	
2907		70	20	10	a/a	ala	
2910		80	10	10	a/a ·	a/a	
2912		50	40	10	a/a	a/a	
2915		20	60	20	SILTSTONE	aja	
2917		20	60	20	a/a	ala	
2920		20	60	20	ala	ala	
2922		30	50	20	ala	ala	
2925		40	40	20	ala	ala	
2927		40	50	10	a/a	ala	
2930		<u>30</u>	60	10	ala	ala	
2932		60	30	10	CLAUSTONE	ak	
2935		50	40	10	a/a	aja	
2937		60	40	দ	a/a	ala	
2940		50	40	10	ala	ak	
2942		60	40		ap	ala	
2945		40	30		a/a	a/a	
2947		70	30		ala	ala	

GEOCHEMICAL ANALYSIS SAMPLE LITHOLOGY DATA NORSK HYDRO A/S WELL # 7321/8-1						
DEPTH	PRE-PI		ITH SST	ANALYSED LITH	ANALYSED LITHOLOGY DESCRIPTION	
2950	60	, 40	Te	CLAVSTONE	chilst - dk gy, dk gy brn, ecc dk dv gy, frm mod bd, prc. stt - frm. bilk. occ tr	
2952	60	40	Þ	ala	subfiss, pred graing sitst, de tramic.	
2955	70	30	Þ	aja	ala	
2957	70	20	10	ala	ala	
2960	70	> 30	F	ala	ala	
2962	80	20	ħ	ula	ala	
2965	>	20	Fz	afa	ala	
2967	80	> 20	Fe	ala	ala	
1970	90	0 10	Tz	aja	clyst - vak gy, v. occ blk, from-med hd, blkn, bltn occ subfiss non calc.	
2972	90	10	ち	ala	a/a	
2975	80	20		aja	a/a	
2977	90	10	Fe	ak	a/a	
2980	10) 万	ħ	afa	chust - brn blk - d blk, gen med hd, erc med frm, blk, - ottu, ana, sub fiss	
2982	100) F	Tz	ala	carb specs in Uprt, Ust childy, m mod silly, non cale.	
2985	100	> Fe	Fz	ala	ala	
2987	Ia	<u>با</u> (ala	ala	
2990	100) TE	万	ak	a/a	
2992	100) E		ala	a/a	
2495	100	> 万		afa	ala	
2997	90	10		aja	ala	
3000	100) Fr		ala	a/a	
3002	loc	E,		cife	a/a	
3005	10	7 12	丙	aja	a/a	
3007	100	TE	Fe	aja	a/a	
3010	ıət) Te	Fz	afa	aja	
3012	100	Te		aja	ala	
3015	IOC	1 72	ħ	aja	ala	
3017	90	10	ħ	ala	ala	
3020	10) Tz	E.	ak	ala	

GEOCHEMICAL ANALYSIS SAMPLE LITHOLOGY DATA NORSK HYDRO A/S WELL # 7321/8-1 DEPTH PRE-PICKED LITH ANALYSED LITH ANALYSED LITHOLOGY DESCRIPTION KLYST SLTST SST 2 chyst-dk gy-gy blk, oee blk, v. Frm-hd, blky, pity occ subfiss, com grdy sitst () non calk. 3022 瓦 CLAYSTONE 100 ħ c/a 3025 亿 100 Tz ak た a/a 3027 72 100 a/a ala 10 3030 40 10 a/a 3032 10 70 20 ala 3035 20 20 a/a a/a 60 30 ala a/a 50 20 3037 50 ala 3040 20 30 a/a CLYST , dk gy, occ m gy, v. frm - v. hd, blky 3042 a/a 60 30 10 bec v. dol. 3045 ala 70 30 FŻ a/c 3047 a/a 80 20 R ak a/a 90 3050 F 10 ħ a/a a/a 3052 90 10 a/a 3055 -70 10 20 a/a 3057 10 a/a 80 10 a/a 70 ala aja 3060 20 10 CLYST- dkgy, gy blk, brn blk, v. frm - mod hd occ v. hd, blky, plty, sl-occ v. slfy non calc. ala 3062 70 20 10 10 20 ala 3065 70 ħ a/a 万 FZ 20 ala 3067 80 a/a a/a 20 3070 80 FL ala ala 307Z 70 20 10 a/a a/a 3075 70 a/a 20 10 80 20 ala a/a 3077 瓦 70 30 ala Fe 3080 ala a/a 3082 W を 20 a/a ala 3085 80 10 10 a/a ala a/a 3087 80 10 10 a/a a/a 80 10 10 3090 F 90 3095 10 ala a/a

EX.G

ì	·								
· •	GEOCHEMICAL ANALYSIS SAMPLE LITHOLOGY DATA NORSK HYDRO A/S WELL # 7321/8-1								
	D€РТН	PRI	PRE-PICKED LITH			ANALYSED LITH	ANALYSED LITHOLOGY DESCRIPTION		
ļ	3245		100			CLAYSTONE	CLYST - BRN BLK - OI BLK, GEN MOD FRM, OCC MOD HD, RESET, BLKI, PLTY, DCC SUBFIS		
	3255		100			ala	CALL.		
ļ	3265		100			ala	ala		
1	3275	:	100			ala	ala		
-	3285		100			afa,	a/a bee sl calc		
	3295 ·		100			ak	a/a		
I	3 305		100			ala	ala		
	3315		100			ala	a/a		
1	3325		100			aja	ala		
;	3335		100			ala	a/a		
	3345		100			ala	a/a bec mod calc. sity in prt.		
	3355		100			ala	alq		
,	3365	•	100			alq	ala		
	3375		100			ala ·	ala		
,	3385		100			aja	ala		
	3395		100			ala	ala		
;	3405		100		:	ala	ale		
ļ	3415		100			ala	ala		
ŧ	3425	10	80	10		alq	alq		
>	3430	-	100			ala	ala		
Core 17	3430.17	[100			CLAYSTONE	CLAST, V AR GT, V HD, OCC BELL, RYLO, SILLC, W/ PTR, CALLITE YLS. QT2 VNG.		
-00-40 8	3430.7		100			a/q	alq		
1	3431.1		100			ala	a/a		
I	3451.4		100			a/q	a/a		
, , ,	3455		100			ala	ata		
	3445		100			ala.	a/a		
	3455		100			a/9	a/a		
•	3465	10	90			a/a	a/a ·		
)	3475		100			a/a	a/a		

EX.

EX

APPENDIX F

ŧ

1

Ĵ

Ì

PYROLYSIS INSTRUMENTATION TEMPERATURE/TIME GRAPHS

1

