Formation Pressures

• F • • •	Hydrosta	tic mud	Forma	tion	
	press	ures	press	ures	Comments
	Before	λfter			
m RKB)	(psia)	(psia)	(psia)	(bar)	
<u>un 11</u>					
2086.5	4209.1	4207.8	3294.6	227.15	. *
2088.5	4210.8	4208.8	3296.6	227.29	
2108.5	4250.3	4248.5	3300.8	227.58	
2109.5	4252.1	4251.1	3302.6	227.71	
2113.5	4259.6	4258.6	3306.3	227.96	
2150.0	4332.6	4329.6	3357.1	231.46	
2177.0	4385.1	4382.1	3395.3	234.10	
2109.0	4243.1	4247.5	3301.0	227.60	Segregated sample*
2127.0	-	-	-	-	Bad seal
2127.5	-	-	-	-	Bad seal
2138.0	-	-	-	-	Bad seal
<u>un 3B</u>					
3340.0	7120.3	7120.3	6696.1	461.68	
3425.0	7295.1	7295.2	6825.6	470.61	
3737.0	7942.3	7942.8	7404.1	510.49	Super charge?
3838.0	8154.1	8153.2	7620.8	525.43	
3863.0	8205.6	8204.5	7660.4	528.17	
EMARKS:					
P-crysta	al gauge				
emperatu	ire correc	ted pressu	Ires		
	n				

Formation Pressures

Well 2/2-4

Depth	Hydrosta	tic mud	Forma	tion			
	press	ures	press	ures	Comments		
	Before	After					
(m RKB)	(psia)	(psia)	(psia)	(bar)			
Run 3C							
3327.5	6923.8	6923.8	6681.3	460.66			
3340.0	6949.3	6949.5	6694.3	461.55			
3425.0	7127.1	7125.8	6825.1	470.57			
3480.0	7238.6	-	6910.1	476.43			
3520.0	7321.3	7321.4	6972.6	480.74			
3659.5	-	-	-	-	No seal		
3597.0	7482.6	7480.8	7123.1	491.12	Super charge?		
3737.0	7770.6	7768.8	7402.4	510.38	Super charge?		
3775.0	-	-	-	-	No seal		
3776.0	7848.4	7847.4	7538.8	519.78	Super charge?		
3826.0	7951.3	7951.5	7596.4	523.75			
3831.0	7961.6	7961.5	7604.1	524.28			
3838.0	7977.1	7976.5	7618.0	525.24			
3863.0	8029.3	8027.8	7657.0	527.93			
3868.0	8039.8	8038.4	7665.8	528.54			
3593.0	7477.6	7476.8	7112.4	490.38	Super charge?		

HP-crystal gauge Temperature corrected pressures KB = 26 m

Fluid Analyses

Well 2/2-4

	mol %	weight %
N₂ CO₂ C₁ C₂ C₃ i-C₄ n-C₄ i-C₅ C₅ C₅	mol % 1.16 0.37 96.75 0.73 0.45 0.14 0.05 0.06 0.02 0.03 0.05	weight % 1.91 0.97 91.85 1.31 1.17 0.48 0.19 0.26 0.07 0.12 0.29
C ₈ C ₉ C ₁₀ +	0.07 0.05 0.07	0.41 0.34 0.63

Average molecular weight	:	16.9
Molecular weight of C ₁₀ +	:	156
Gas gravity	:	0.583

Table 5.3Gas Composition, Well 2/2-4FMT sample 2109 m RKB

11.08.88 ToK/EPR AMJo

SAGA PETROLEUM A.S.

6.2.1 MUD PROPERTIES, DAILY REPORT

Well no: 2/2-4

Date	Hole size	Hole depth	Mud weight	PV	YP	Gel strength	рН	Alkalinity Pf / Mf	Ca++ mg/1	Cl- mg/l	KCL ppb	Sand %	Solids %	Mudtype
880416	36	123.0	1.05					<u></u>					····	SPUD MUD
880417	36	207.0	1.05											SPUD MUD
880418	26	207.0	1.05	4	27	19/20	9.5							SPUD MUD
880419	17-1/2	400.0	1.13	4	25	18/21	8.6	0.1/0.2		14000				SPUD MUD
880420	17-1/2	770.0	1.12	4	25	18/21	8.1	0.1/0.1		16000				SPUD MUD
880421	•	770.0	1.12	5	21	17/21	8.1	0.0/0.1		16000				SPUD MUD
880422	26	915.0	1.15	4	20	16/25	8.0	0.0/0.1		18000				SPUD MUD
880423	26	915.0	1.15	4	20	16/25	8.0	0.0/0.1		18000				SPUD MUD
880424	17-1/2	915.0	1.15			•		,						KCL MUD
880425	17-1/2	1059.0	1.16	20	18	2/3	8.5	0.5/0.8	400	63000	40			KCL MUD
880426	17-1/2	1405.0	1.23	22	19	2/3	8.1	0.1/0.5	360	63000	44		11.0	KCL MUD
880427	17-1/2	1730.0	1.40	24	16	2/5	7.8	0.1/0.6	320	68000	44		18.0	KCL MUD
880428	17-1/2	1764.0	1.42	31	16	2/7	7.8	0.0/0.6	360	68000	45		18.0	KCL MUD
880429	17-1/2	1925.0	1.42	29	14	3/20	7.8	0.0/0.5	720	63000	43		18.0	KCL MUD
880430	17-1/2	2035.0	1.42	26	13	3/30	7.6	0.0/0.5	800	63000	45		18.5	KCL MUD
880501	17 - 1/2	2064.0	1.42	27	12	3/32	7.8	0.1/0.5	680	63000	43	0.1	18.5	KCL MUD
880502	17-1/2	2209.0	1.42	24	11	4/38	7.7	0.0/0.5	680	63000	44	0.3	19.0	KCL MUD
880503	17-1/2	2245.0	1.42	23	12	4/40	7.7	0.0/0.5	720	63000	44	0.3	19.0	KCL MUD
880504	17 - 1/2	2319.0	1.42	18		3/25	7.8	0.0/0.5	600	62000	43	0.2	18.5	KCL MUD
880505	17 - 1/2	2319.0	1.42	17	8	3/27	7.8	0.1/0.5	600	62000	42	0.1	19.0	KCL MUD
880506	17 - 1/2	2319.0	1.42	17	8	3/27	7.8	0.0/0.5	600	62000	42	0.1	19.0	KCL MUD
880507	17 - 1/2	2319.0	1.42	16	9	3/26	7.8	0.0/0.5	680	60000	44	0.1	19.0	KCL MUD
880508	12-1/4	2319.0	1.42	16	9	3/26	7.8	0.1/0.5	680	60000	44	0.1	19.0	KCL MUD
880509	12-1/4	2450.0	1.42	17	11	2/15	8.8	0.8/3.1	80	39000	28	0.1	18.0	KCL MUD
880510	12-1/4	2598.0	1.45	21	15	$\frac{2}{37}$	8.5	0.2/1.7	140	49000	30	0.1	18.5	KCL MUD
880511	12-1/4	2703.0	1.45	18	16	7/41	8.4	0.2/1.3	140	51000	32	0.1	19.0	KCL MUD
880512	12 - 1/4	2793.0	1.45	19	16	6/45	8.2	0.1/1.2	240	48000	30	0.1	18.5	KCL MUD
880513	12-1/4	2856.0	1.45	16	10	3/18	8.2	0.0/1.1	160	48000	30	0.1	18.5	KCL MUD
880514	12 - 1/4	2932.0	1.50	15	10	$\frac{3}{25}$	8.2	0.0/0.8	280	46000	29	0.1	20.5	KCL MUD
880515	12-1/4	3086.0	1.50	15	10	3/22	8.0	0.1/0.6	400	45000	30	0.1	19.5	KCL MUD
880516	12-1/4	3157.0	1.50	16	9	3/13	7.9	0.1/0.7	440	46000	29	0.1	20.0	KCL MUD

95 -

SAGA PETROLEUM A.S.

6.2.1 MUD PROPERTIES, DAILY REPORT

Well no: 2/2-4

Date	Hole size	Hole depth	Muđ weight	PV	YP	Gel strength	рН	Alkalinity Pf / Mf	Ca++ mg/1	C1- mg/1	KCL ppb	Sand *	Solids %	Mudtype
880517	12-1/4	3177.0	1.50	16	9	3/13	7.9	0.1/0.7	440	46000	29	0.1	20.0	KCL MUD
880518	12-1/4	3226.0	1.52	18	13	3/18	7.9	0.1/0.7	280	53000	28	0.1	21.0	KCL MUD
880519	12-1/4	3283.0	1.52	19	11	3/24	7.9	0.0/0.8	560	57000	25	0.1	21.5	KCL MUD
880520	12-1/4	3310.0	1.52	21	12	4/26	7.7	0.0/0.8	680	58000	25	0.1	22.0	KCL MUD
880521	12-1/4	3310.0	1.52	20	11	3/22	7.7	0.0/0.8	680	58000	24	0.1	22.0	KCL MUD
880522	12-1/4	3310.0	1.52	22	10	3/21	7.7	0.0/0.8	680	58000	23	0.2	22.0	KCL MUD
880523	12-1/4	3310.0	1.52	21	12	4/25	7.7	0.0/0.8	680	58000	23	0.2	22.0	KCL MUD
880524	8-1/2	3321.0	1.48	15	11	2/27	8.6	0.2/1.2	680	35000		0.3	20.0	GEL MUD
880525	8-1/2	3538.0	1.48	22	13	5/28	8.9	0.1/1.2	400	36000		0.2	21.5	GEL MUD
880526	8-1/2	3709.0	1.48	30	17	4/31	9.4	0.1/1.4		25000		0.1	21.5	GEL MUD
880527	8-1/2	3859.0	1.48	32	17	4/32	9.8	0.3/1.8		22000		0.3	21.0	GEL MUD
880528	8-1/2	3902.0	1.48	32	19	5/38	8.9	0.1/1.1		19000		0.3	21.0	GEL MUD
880529	8-1/2	4009.0	1.48	29	15	4/32	9.0	0.1/1.4		20000		0.3	21.0	GEL MUD
880530	8-1/2	4020.0	1.48	23	11	3/19	9.0	0.1/1.5		21000		0.3	21.0	GEL MUD
880531 .	- 8-1/2	4020.0	1.48 -	22	13	3/20	9.1	0.2/1.8		21000		0.3	21.0	GEL MUD
880601	8-1/2	4020.0	1.48	22	13	3/20	9.1	0.2/1.8		21000		0.3	21.0	GEL MUD
880602	8-1/2	4020.0	1.46	21	13	3/22	9.2	0.2/1.9		20000		0.3	20.0	GEL MUD
880603	8-1/2	4020.0	1.46	17	9	2/12	7.8	0.0/0.6		20000		0.3	20.0	GEL MUD
880604	PB	3295.0	1.46	20	11	5/38	10.8	0.3/2.2		21000		0.3	20.0	GEL MUD
880605	PB	3146.0	1.46	15	9	1/11	10.9	0.3/2.3		21000		0.3	20.0	GEL MUD
880606	PB	120.0	1.46	15	9	1/11	10.9	0.3/2.3		21000		0.3	20.0	GEL MUD

SAGA PETROLEUM A.S.

6.2.2 MUD MATERIALS USED

Well no: 2/2-4

Materials	Unit	36 in hole	26 in hole	17-1/2 hole	12-1/4 hole	8-1/2 hole	Total
SAPP	50 KG	0	0	6	26	0	32
BARITE	M/T	Ō	25	275	430	183	913
BICARBONATE	50 KG	0	0	0	90	54	144
CAUSTIC SODA	25 KG	4	11	1	0	57	73
Antisol FL 30	25 kg	0	0	204	273	117	594
Magconol	25 I	0	0	0	1	1	2
Resinex	50 lb	0	0	0	0	160	160
Oilex	GALLO	0	0	1	3	2	6
Polysal	25 kg	0	0	0	293	102	395
DRILLING DETE	DRUM	0	0	0	15	0	15
POT.BICABONAT	50 kg	0	0	50	50	0	100
CF DESCO	25 1Ē	0	0	0	6	80	86
HEC	25 kg	9	0	0	0	0	9
HYDROCLORIC A	liter	0	0	0	200	0	200
SODA ASH	50 KG	2	5	0	0	0	7
BENTONITE	M/T	11	27	1	0	5	44
BENTONITE SX	50 KG	25	56	54	24	0	159
ANTISOL FL 30	25 KG	0	0	329	87	10	426
KCL - SXS	50 KG	0	0	246	104	0	350
KCL - BRINE	BBL	0	0	3748	1000	0	4748
XP-20	50 LB	0	0	0	0	160	160

- 97 -

ADDRESS TELEPHONI TELEX TELEFAX	KJELLER N-2007 Kjeller, Norway E +47 6 812560 - 813560 74 573 energ n +47 6 815553	HALDEN N-1751 Halden, Norway +47 31 83100 76 335 energ n	AVAILABILITY Private Confidential
REPORT TYPE	REPORT NO. IFE/KR/F-88/114		DATE 1988-10-10
	REPÖRT TITLE		DATE OF LAST REV.
	VÎTRINITE REFLECTANCE, OFFSHORE NORWAY	WELL 2/2-4	REV. NO.
	CLIENT Saga Petroleum A.S		NUMBER OF PAGES
	CLIENT REF.		NUMBER OF ISSUES
	N. Mills		13
SUMMARY			DISTRIBUTION
			Saga Petroleum (10) Throndsen, T. File (2)
KEYWORDS			
	NAME	DATE	SIGNATURE
PREPARED	BY Torbjørn Throndsen	1988-10-10 <i>L</i>	Dorkj - Huronda
REVIEWED	ВҮ		
APPROVED	BY Henning Qvale	1988-10-10	Flering auch

1. INTRODUCTION

This report gives the results of a vitrinite reflectance study performed on 15 samples covering the depth interval from 1000 mrkb to 3900 mrkb in well 2/2-4 offshore Norway.

1

The most important aim of the study was to establish a reliable vitrinite reflectance versus depth profile of the well section. It was difficult to satisfy the aim due to extremely bad sample quality with respect to abundance and quality of vitrinite.

2. MATERIAL

ſ

The data being used in this study were obtained from analyses of 15 samples. The samples subjected for analyses were sidewall cores. The sample lithologies were mainly claystones and siltstones. All the samples proved to be extremely poor in vitrinite, and the vitrinite was of poor quality both with respect to particle size and particle surface quality.

3. ANALYTICAL TECHNIQUES

3.1 Vitrinite reflectance

Vitrinite reflectance is a standard parameter to assess the rank of coal, and it is widely used in petroleum exploration in geochemical studies as a reference indicator of organic maturity (Tissot and Welte, 1984) and in mathematical basin modelling as a calibration parameter for paleotemperature reconstruction (Lerche et al., 1984; Tissot and Welte, 1984; Yukler and Kokesh, 1984; Welte and Yalcin, 1986).

In this report the term 'vitrinite reflectance' is used throughout although strictly vitrinite, is defined only for the bituminous coal range for reflectance values above approximately Rm=0.50. The vitrinite precursor in the lower reflecting brown coal range is called 'humunite'.

Some of the samples being analysed for vitrinite reflectance in this study were not treated with any acid prior to further preparation; bulk rock material was embedded in a cold setting epoxy resin to make briquettes. These were subsequently ground flat and polished using 0.25 μ m diamond paste and magnesium oxide as the two final steps. For other samples it was necessary to treat the material with hydrochloric and hydrofluoric acids prior to further preparative steps. These samples are marked * in Table 1.

The analytical equipment being used was a Zeiss MPM 03 photometermicroscope. Viewing and measurements were made through a Zeiss Epiplan Neofluoar 40/0.90 oil objective using immersion oil with refractive index n=1.518. The measurements were made through a green filter with peak transmission at 546 nm, and with a photometer sensitive field of about 2.5 μ m in diameter. For photometer calibration two standards were used with reflectance in oil of Rm=0.588 and Rm=0.879 respectively. The readings were performed without a polarizer and using a stationary stage. This has become more or less standard in vitrinite reflectance studies where clastic samples are to be analysed. This procedure is called measurement of random reflectance (Rm). This technique permits smaller particles to be measured which is important for clastic samples, and the results do not deviate significantly in precision from those obtained using a rotating stage technique. The reader is referred to Davis (1978), Ting (1978), Stach et al. (1982) and Bustin et al. (1985) for further information on these topics, and to Bostick (1971) and Bostick and Alpern (1977) for topics related to measurements on clastic samples. On each sample normally as many particles as possible up to 25 were measured. A representative population was selected among the readings based on observations made during measuring, and an arithmetic mean was calculated for this population. The principles for particle selection followed that of Bostick (1971, 1979) and Bostick and Alpern (1977).

4. RESULTS

The vitrinite reflectance results and interpretations are given in Table 1 (analytical data), Table 2 (interpreted vitrinite reflectance versus depth trend) and Figure 1. All the raw data including histograms are given in Appendix.

The vitrinite reflectance sample results are sufficiently reliable to indicate a vitrinite reflectance versus depth trend for the interval from 1000 mrkb to 3900 mrkb. It should, however, be kept in mind that the sample quality is extremely bad with respect to abundance and quality of the vitrinite, and that the number of samples included in the study is sparse. These factors of course affects the precision of the established trend.

5. CONCLUSION

The results from this study show that it has been possible to establish a vitrinite reflectance versus depth trend in well 2/2-4 from 1000 mrkb down to 3900 mrkb. However, the exact precision of the trend should be considered in light of the poor sample quality and the few samples subjected for analysis.

6. REFERENCES

BOSTICK, N. H. (1971) Thermal alteration of clastic organic particles as an indicator of contact and burial metamorphism in sedimentary rocks. Geosc. man. III, 73-92.

BOSTICK, N. H. (1979) Microscopic measurement of the level of catagenesis of solid organic matter in sedimentary rocks to aid exploration for petroleum and to determine former burial temperatures - a review. SEPM Spec. Publ. 26, 17-43.

BOSTICK, N. H. and ALPERN, B. (1977) Principles of sampling, preparation and constituent selection for microphotometry in measurement of maturation of sedimentary organic matter. J. Microscopy 109, 41-47.

BUSTIN, R. M., CAMERON, A. R., GRIEVE, D.A. and KALKREUTH, W.D. (1985) Coal petrology. Its principles, methods, and applications. Geol. Ass. Can. Short course notes volume 3, 230 pp.

DAVIS, A. (1978) The reflectance of coal - In C. Karr (ed.), Analytical methods for coal and coal products volume 1, Academic Press, New York, 27-81.

LERCHE, I., YARZAB, R. F. and KENDALL, C. G. St. C. (1984) Determination of paleoheat flux from vitrinite reflectance data. AAPG Bulletin 68, 1704-17.

STACH et al. (1982) Stach's textbook of coal petrology, Gebruder Borntraeger, Berlin-Stuttgart, 535 pp.

TING, F. T. C. (1978) Petrographic techniques in coal analysis - In C. Karr (ed.), Analytical methods for coal and coal products volume 1, Academic Press, New York, 3-26.

TISSOT, B. P. and WELTE, D. H. (1984) Petroleum formation and occurrence, 2nd edn. Springer-Verlag.

WELTE, D. H. and YALCIN, M. N. (1986) Formation and occurrence of petroleum in sedimentary basins as deduced from computer-aided basin modeling - In R. B. Kumar et al. (eds.), International conference on petroleum geochemistry exploration in the Afro-Asian region, november 25-27 1985, KDM Institute of Petroleum Exploration, Oil and Gas Commission, Dehra Dun, India, 1-21.

YUKLER, M. A. and KOKESH, F. (1984) A review of models used in petroleum resource estimation and organic geochemistry - In J. Brooks and D. Welte (eds.), Advances in organic geochemistry. Volume 1, Academic Press, 69-114. Table 1. Vitrinite reflectance data, well 2/2-4.

WELL 2/2-4

sample code IFE	sample depth mrkb	sample type	i lithology	vitrinite reflectance Rm (N)	sample quality
SA 266	1000.0	swc	clst	0.33 (9)	-00
SA 267	1300.0	swc	clst	0.24 (18)-	-0
SA 268	1505.0	SWC	clst	0.26 (7)-	-0
SA 269*	1640.0	swc	coal MA?	0.31 (25)	00-0-
SA 270*	1807.0	SWC	clst	0.39 (1)-	-00
SA 271*	2000.0	SWC	clst	0.38 (2)-	-00
SA 272*	2197.0	swc	clst	0.26 (4)-	
SA 273*	2279.0	SWC	clst	0.44 (14)-	0-+
SA 274*	2430.0	SWC	clst	0.38 (5)-	
SA 275*	2608.0	SWC	clst	0.42 (11)	00-00
SA 276	2823.0	SWC	clst	0.58 (3)	00000
SA 277	3218.0	swc	rd clst		barren
SA 278	3465.0	SWC	sst/coal MA	0.37 (3)	MA
SA 279	3717.0	SWC	slst	0.70 (7)	00000
SA 280	3900.0	SWC	clst	0.74 (12)	-0000

```
LEGEND
```

+++++

Rm : mean random reflectance in oil Ν : number of readings + : very good sample -: poor sample - -: not vitrinite M.A. : mud additive : sample treated with HCl and HF * clst : claystone : siltstone slst CODE FOR DATA QUALITY

The sample quality is characterised by five items as follows:

particle surface quality — particle size - type of vitrinite - identification of vitrinite - abundance of vitrinite

+ : may give a too high vitrinite reflectance value \boldsymbol{o} : have no effect on the resulting vitrinite reflectance value - : may give a too low vitrinite reflectance value

An ideal sample is characterised as follows: ooooo

	U-574 GEOLAB OR NOR GEOCHEMICAL LABORATORIES OF NORWAY AND
	OLJEDIREKTORATET
	Journal nr.: /
GEOCHEMICAL ANALYSI NOCS WELL 2/2-4	dato
Client : Saga Petro	oleum
Authors: Kjell Arne Rita Løber	e Bakken rg
Geolab Nor A/S Hornebergveien 5 7038 TRONDHEIM Norway	BA 88-1067-1 -5 AUG. 1988 REGISTICENT OLJEDIREKTORATET

Date : 22.07.88

INTRODUCTION

Geochemical analysis was performed for Saga Petroleum A/S on well 2/2-4 from the Norwegian Continental Shelf of the North Sea, in the Central Graben area to the north east of Torand Ekofisk. The block 2/2 is shown on Figure 1.

A total of 35 cutting samples was washed and lithologies described in the interval 2130 - 3911 m. In addition the following analyses were performed:

Composition of Headspace Gas	25	samples
Carbon Isotope Analysis of Headspace Gas	26	samples
Total Organic Carbon Content	23	samples
Rock-Eval Analysis	23	samples
Liquid Extraction/Medium Pressure Liquid		
Chromatography/Saturated and Aromatic		
Fraction Gas Chromatography	2	samples

Fraction Gas Chromatography

No information on the Formation Tops/Geological Ages for the samples were supplied from Saga Petroleum A/S and the interpretation is therefore done on a lithological basis. The analytical programme was requested by Nigel Mills. The data is shown in Tables 1 - 7 and Figures 1 - 3. The gas chromatograms are enclosed at the back of the report.

-2-

2. ANALYSIS RESULTS AND DISCUSSION

The analysis results are described on a lithological/Total Organic Carbon content basis below.

2.1 Lithological Description and Total Organic Carbon Content

A total of 35 cutting samples was washed and described lithologically. The well appears to have been turbodrilled between 3767 m and 3875 m.

<u>Interval A</u> (2060 - 2130 m)

A total of 8 samples was analysed from this interval. The sequence consists of olive-grey to dusky yellowish brown claystone with generally good organic carbon content (1.39 - 1.76 %), one having a rich organic carbon content (TOC = 2.12 %) at 2060 m. Towards the bottom of the interval traces of dolomite and grey-brown sandstone were observed.

Interval B (3302 - 3314 m)

The dominant lithology in the interval is medium grey claystone which becomes darker, more organic-rich and stained towards the bottom of the interval. Variously coloured sandstone and white to pale red chalk is also observed. The organic carbon content is generally fair for the uppermost samples analysed (0.54 - 0.59 %) and rich for the lowermost samples (3.50 - 3.96 %).

EXPERIMENTAL PROCEDURES

Headspace gas analysis

The analysis is performed using a gas chromatograph with a 50 m capillary column, loop injector and flame ionisation detector. Helium is used as carrier gas.

Two cm³ of headspace gas are removed from each sample can for chromatographic analysis of the C_1 to C_7 range of hydrocarbons.

Occluded gas analysis

The analysis is performed using a gas chromatograph with a 50 m capillary column, loop injector and flame ionisation detector. Helium is used as carrier gas.

The canned samples are washed in thermostatted water to remove drilling contaminants and sieved on a 2 mm mesh sieve to remove large, caved rock fragments. An aliquot (ca 25 mg) of sieved sample is crushed with 25 cm³ water in an airtight ball mill. After crushing, 2 cm³ of the released gas are removed from the ball mill for gas chromatographic analysis.

Total organic carbon (TOC) and total carbon analysis

This analysis is performed using a LECO CS244 Carbon Analyser.

Hand-picked lithologies from cutting samples are crushed with a mortar and pestle and approximately 200 mg (50 mg for coals) are accurately weighed into LECO crucibles. The samples are then treated three times with dilute hydrochloric acid, to remove oxidised (carbonate) carbon, and washed four times with distilled water. The samples are dried on a hotplate at 60-70°C before analysis of total organic carbon. Total carbon is analysed on the same instrument using approximately 200 mg of untreated crushed whole rock. Oxidised (carbonate) carbon is calculated by difference.

Extractable Organic Matter (EOM) Analysis

Samples are selected for extraction on the basis of screening analysis. 10 - 20 g of whole rock are accurately weighed.

Extraction is carried out in a Tecator Soxtec HT extractor using 7% (v/v) methanol in dichloromethane as extraction solvent. Samples are boiled for 1 h and rinsed for 2 h. Samples with TOC greater than 10% are extracted a second time and the extracts combined. After filtration into a tared flask the solvent is removed by rotary evaporation at 200 mB and 35° C. The residue, dried to constant weight, is weighed to give the amount of EOM.

Separation of Asphaltenes

The EOM is dissolved in 1:3 (w:v) tetrahydrofuran in an tared flask and pentane added to precipitate asphaltenes. A minimum of 40 volumes of pentane per 1 volume of THF/EOM is used and the solution allowed to stand 8 h at room temperature in the dark. The solution is filtered and the precipitated asphaltenes returned to the original flask by dissolution in methanol (7% v/v)/dichloromethane. The asphaltene solution is evaporated to constant weight.

Liquid chromatographic separation

Chromatographic separation is performed using an MPLC system developed by the company. The EOM (after removal of asphaltenes) is injected into the MPLC and chromatographed using hexane as eluent. This effects a separation into saturated and aromatic fractions which are collected and concentrated on a rotary evaporator, at 35°C and 200 mB, to remove the bulk of the hexane. The fractions are then transferred to small tared vials and evaporated to dryness in a stream of nitrogen. The vials are re-weighed to obtain the weights of both fractions. The weight of the NSO fraction, which is retained on the chromatography column, is obtained by difference.

Gas chromatographic analyses

Saturated fraction

The instrument used for this analysis is a gas chromatograph with a 25 m OV1 column, split injector and FID detector. The carrier gas is helium and the temperature program runs isothermally at 60° C, for 2 minutes and then rises to 290° C at a rate of 4° C/min.

The sample of saturated fraction is diluted by 1:20 with hexane and a 1 microlitre aliquot of this is injected into the instrument.

Aromatic fraction

The instrument used is a gas chromatograph with a 25 m SE-54 capillary column, split injector and effluent splitter leading to FID and FPD detectors, allowing simultaneous analysis of hydrocarbons and sulphur compounds. The carrier

gas is helium and the temperature program runs from 60° C to 300° C at a rate of 4° C/min.

The sample of aromatic fraction is diluted by 1:20 with hexane and a 1 microlitre aliquot of this is injected into the instrument.

Whole Oil

Whole oil chromatograms are determined on а qas chromatograph fitted with a split injector, SE54 25m capillary column and effluent splitter connected to FID and mode FPD detectors allowing sulphur simultaneous determination of hydrocarbons and sulphur compounds. Approximately 0.1 microlitres of whole oil are injected and the temperature program on the chromatograph runs from -10°C to $300^{\circ}C$ at $4^{\circ}C/min$.

Rock Eval pyrolysis

This analysis is performed using a ROCK EVAL II Pyrolyser into which approximately 100 mg of crushed whole rock are loaded. Analysis involves heating the sample, from 300[°]C to 600°C, in an inert atmosphere (helium) to release naturally generated hydrocarbons (S1 peak) and then pyrolytically hydrocarbons (S2 peak), both of which are generated detected by an FID. In the temperature interval between 300°C and 390°C, the released gases are split and a proportion passed through a carbon dioxide trap, which is connected to a thermal conductivity detector (TCD). The value obtained from the TCD corresponds to the amount of oxygen contained in the kerogen of the sample and is reported as the S3 peak. The temperature corresponding to the maximum of the S2 peak, Tmax, is also recorded.

Thermal extraction/pyrolysis gas chromatography

The instrument used for this analysis is a gas chromatograph connected to a pyrolysis oven. A very small amount (2 mg) of whole rock sample is loaded into the oven and heated isothermally, at 300° C, for 3 minutes, during which time thermal extraction of the generated hydrocarbons occurs (equivalent to the S1 peak of Rock Eval). The released gases pass to a 15 m OV1 column with a nitrogen-cooled trap.

After 3 minutes the pyrolysis oven heats up to 510° C, at a rate of 40° C per minute, causing bound hydrocarbons to be released from the kerogen of the sample (equivalent to the S2 peak of Rock Eval). These gases are passed through a 25m DB1 capillary column with a nitrogen-cooled trap.

The temperature program for the chromatographic oven, in which both columns are situated, rises from $0^{\circ}C$ to $290^{\circ}C$ at a rate of $4^{\circ}C/min$. Both columns are linked to FID detectors.

Vitrinite reflectance analysis

Samples, in the form of small granules, are mounted in a fast setting resin. The resin blocks are ground on coarse corundum paper to expose the rock granule surfaces and then on three finer grades of corundum paper to improve these surfaces and reduce scratches. The resin blocks are finally polished on a rotating Selvyt-covered lap using two grades of polishing alumina. Isopropyl alcohol is used to lubricate the entire grinding and polishing process except in the case of coal samples, when water is used.

Reflectance measurements are taken under oil immersion (n =1.518) using a ZEISS MPM03 microscope photometer with a 546nm interference filter. The polished blocks are mounted on the microscope stage and scanned manually in order to locate and measure particles of vitrinite. An attempt is

made to obtain readings from 20 individual particles per sample but this is not always possible in samples with low amounts of phytoclasts.

Spore fluorescence colour

Samples are also analysed microscopically in U.V. light, using an exciter filter with a band pass of 400 - 440 nm and a barrier filter with a long pass of 470 nm, and the colour of the spore fluorescence is determined. This is used as an alternative maturity parameter to verify the result obtained from vitrinite reflectance and is reported on a numerical scale from 1 to 9:

Fluorescence	Colour	Corresp. Vitrinite
Colour	Index	Reflectance
Green	1	0.2%
Green/Yellow	2	0.2/0.3%
Yellow	3	0.3%
Yellow/Orange	4	0.4%
Light Orange	5	0.5%
Mid-Orange	6	0.6%
Dark Orange	7	0.8%
Orange/Red	8	1.0%
Red 9	1.1%	

NB. This table only provides a rough correlation asvitrinite reflectance and spore fluorescence colour are both independently affected by factors such as depositional environment and catagenic history.

Preparation of Kerogen Concentrates

Samples are stirred for 16 h with 25 cm^3 concentrated hydrocloric acid at 35 - 40°C. The acid is decanted and the residue washed by stirring for 3 h with 25 cm^3 distilled water. The washing is repeated twice more.

If the concentrate is not being prepared for slides the residue is washed, rapidly, at this point, with 25 $\rm cm^3$ dichloromethane.

25 cm³ hydrofluoric acid are then added to the residue and the mixture stirred for 16 h at room temperature. The acid is decanted and the residue washed by stirring for 3 h with distilled water. The water washing is repeated three times with fresh aliquots of distilled water each time. The water is then decanted and the residue either dried in an oven at $40 - 50^{\circ}$ C to constant weight, or, if slides are to be made, it is transferred to a microscope cover slip and dried on a hot bench at $40 - 50^{\circ}$ C.

Preparation of Slides

The dry kerogen concentrate is mounted on a slide in glycerine/gelatine and left to dry at room temperature overnight.

GEOLAB NOR GEOCHEMICAL LABORATORIES OF NORWAY A/S

List of (sorted	ab al	breviations used for lithology description phabetically)
ang	=	angular
bar	**	Baryte (mud additive)
D1	-	blue/blueisn
DIK	***	DIACK
brn	_	brown /brownich
	_	Carbonate (Limestone/Chalk/Dolomite/Siderite)
calc		calcareous
carb	_	carbonaceous
Cem	=	cement used as additive (under "Cont") or to describe
0011		cemented S/Sst
Chert	=	Chert
chk	Ħ	Chalk/chalky
cly	=	clayey/shaley
cngl	-	conglomeratic
Coal	æ	Coal
Coal-ad	=	Coal-like additive (e.g. chromlignosulfonate)
Congl	=	Conglomerate
Cont	=	Contamination
crs	=	coarse grained
cvd	Ξ	caved
dd	1	dried drilling mud
dol	-	Dolomite/dolomitic
drk	33	dark (colour)
ask	_	dusky (colour) Salt (Curraum (Valita (natural "Other" or an additive
evap		"Cont")
Í C'h	-	fine grained
IID fin	=	fibres (mud additive/contamination)
for	=	foggiliforoug
alauc		Clauconite / alauconitic
grauc	_	green/greenish
av		arev/arevish
hd	=	hard
ign	=	Igneous (material derived from igneous source)
int	-	percentage interpreted from logs
Kaolin	-	Kaolin(ite)
kln	æ	kaolinitic
1	=	loose
lam	=	laminated/laminae
lt	=	light (colour)
m	=	medium (colour or grain size)

-29-

List of	ab	previations used for lithology description
(sorted	ar	phabetically)
	-	
Marl	=	Marl (calcareous claystone/mudstone)
mic	=	micaceous
Mica-ad	=	Mica used as mud additive
mrl	=	marly
No Mat.	=	No material left after washing
ns	=	nutshells (mud additive)
ol	=	olive
001	==	Oolite/oolitic
or	=	orange
Other	=	Other lithology/mineral, specified after this word
pi	=	pink/pinkish
pl	Ħ	pale (colour)
prp	Ħ	<pre>paint/rust/plastic contamination/additives</pre>
pu	=	purple
pyr	=	Pyrite/pyritic
red		red/reddish
rnd	=	round/rounded
S	=	sandy
S/Sst	=	Sand and/or sandstone
Sh/Clst	=	Shale and/or claystone
sid	-	Siderite/sideritic
sil	==	siliceous/cherty
slt	=	silty
Sltst	=	Siltstone
st	=	<pre>stained (with natural oil or oil-like additive)</pre>
tar-ad	=	Tar-like additive (e.g. "Black Magic")
Tuff	-	Tuff
tuff	==	tuffaceous
v col	-	Various colours
w	-	white
wx	-	waxy
У	=	yellow/yellowish

GEOLAB NOR

Table 1 : Lithology description for well NOCS 2/2-4 Depth unit of measure: m Trb Sample Depth туре ___ _____ Int Cvd TOC% % Lithology description _____ 2060.00 001 2.12 100 Sh/Clst: ol gy to dsk y brn 001-1L 2070.00 002 1.68 100 Sh/Clst: ol gy to dsk y brn 002-1L 2080.00 003 003-1L 003-2L 1.63 100 Sh/Clst: ol gy to dsk y brn tr Cont : prp 2090.00 004 1.56 100 Sh/Clst: ol gy to dsk y brn 004-1L tr Cont : prp 004-2L 2100.00 005 1.39 100 Sh/Clst: ol gy to dsk y brn 005-1L 2110.00 006 1.64 100 Sh/Clst: ol gy to dsk y brn tr Ca : dsk y brn, dol 006-1L 006-2L 2120.00 007 1.76 100 Sh/Clst: ol gy to dsk y brn tr S/Sst : lt gy, cem 007-1L 007-2L

- 1-

Table 1 : Lithology description for well NOCS 2/2-4

Depth unit of measure: m										
Depth	Туре		Trb	Sample						
Int Cvd	TOC%	% Lithology descripti	.on							
2130.00				008						
	1.49	100 Sh/Clst: ol gy to d tr S/Sst : lt gy to d	lsk y brn Irk y brn, cem	008-1L 008-2L						
3302.00				009						
	0.54	90 Sh/Clst: m gy, calc 10 Ca : w to pl re tr Sh/Clst: gy red	d, chk	009-1L 009-2L 009-3L						
3305.00				010						
	0.59	80 Sh/Clst: m gy, calc 10 Ca : w to pl re 10 S/Sst : v col, l tr Sh/Clst: gy red	, st d, chk	010-1L 010-2L 010-4L 010-3L						
3310.00				011						
	3.96	80 Sh/Clst: m gy to dr 15 S/Sst : v col, l 5 Ca : w to pl re tr Sh/Clst: gy red	k gy, calc, st d, chk	011-1L 011-4L 011-2L 011-3L						
3314.00				012						
	3.50	55 Cont : cem 40 Sh/Clst: m gy to dr 5 S/Sst : v col, l tr Ca : w to pl red tr Coal : blk	k gy, calc, st d, chk	012-4L 012-1L 012-3L 012-2L 012-5L						

Table 1 : Lithology description for well NOCS 2/2-4

Depth	Туре		Trb	Sample
Int Cvd	TOC%	<pre>% Lithology description</pre>		
3317.00				013
		55 S/Sst : v col, l 40 Coal : blk 5 Sh/Clst: m gy to drk gy, calc, st tr Ca : w to pl red, chk tr Cont : cem	:	013-33 013-53 013-13 013-23 013-43
3320.00				014
		70 S/Sst : v col, l 20 Coal : blk 5 Sh/Clst: m gy to drk gy, calc, st 5 Cont : cem tr Ca : w to pl red, chk	:	$\begin{array}{c} 014-31 \\ 014-51 \\ 014-11 \\ 014-41 \\ 014-21 \end{array}$
3323.00				015
		80 S/Sst : v col, l 5 Sh/Clst: m gy to drk gy, calc, st 5 Cont : cem 5 Coal : blk 5 Sh/Clst: lt gy, s tr Ca : w to pl red, chk		015-31 015-11 015-41 015-51 015-61 015-21
3326.00				036
		55 S/Sst : v col, l 35 Coal : blk, brn blk 5 Sh/Clst: m gy to drk gy, calc, st 5 Sh/Clst: lt gy, s		036-11 036-41 036-21 036-31
3758.00			trb	016
		90 S/Sst : w, l 5 Kaolin : w 5 Sh/Clst: lt gy to drk gy tr Coal : blk tr Cont : prp		016-11 016-21 016-31 016-41 016-51

- 4-

Table 1 : Lithology description for well NOCS 2/2-4

Depth unit of measure: m

Depth	Туре		Trb	Sample
Int Cvd	TOC%	% Lithology description	سن جد عد جي جد حد ندر جد چه که	
3767.00)		trb	017
		60 S/Sst : w, l 20 Kaolin : w to m gy 15 Coal : blk 5 Sh/Clst: lt gy to drk gy tr Cont : prp		017-1L 017-2L 017-4L 017-3L 017-5L
3776.00)		trb	018
		50 S/Sst : w, l 30 Kaolin : w to m gy 10 Sh/Clst: lt gy to drk gy 10 Coal : blk tr Cont : prp		018-1L 018-2L 018-3L 018-4L 018-5L
3785.00)		trb	019
		45 S/Sst : w, l 35 Kaolin : w to m gy 15 Sh/Clst: m gy to drk gy 5 Coal : blk tr Cont : prp		019-1L 019-2L 019-3L 019-4L 019-5L
3794.00)		trb	020
	0.53	40 S/Sst : w, l 35 Kaolin : w to m gy 20 Sh/Clst: m gy to drk gy 5 Coal : blk tr Cont : prp		020-1L 020-2L 020-3L 020-4L 020-5L
3803.00			trb	021
	0.63	45 S/Sst : w 35 Sh/Clst: drk gy 15 Kaolin : w to m gy 5 Coal : blk tr Cont : prp		021-1L 021-3L 021-2L 021-4L 021-5L

Table 1 : Lithology description for well NOCS 2/2-4 Depth unit of measure: m

Depth	Туре		Trb	Sample
Int Cvd	TOC%	<pre>% Lithology description</pre>		
3806.00)		trb	034
		50 S/Sst : w 35 Sh/Clst: drk gy 10 Other : w, hd, br 5 Kaolin : w to m gy tr Coal : blk tr Cont : prp		034-1L 034-3L 034-6L 034-2L 034-4L 034-5L
3812.00			trb	022
	0.62	50 S/Sst : w 40 Sh/Clst: drk gy 10 Kaolin : w to m gy tr Coal : blk		022-1L 022-3L 022-2L 022-4L
3821.00			trb	023
	0.77	60 Sh/Clst: gy blk to drk gy 20 S/Sst : w 20 Kaolin : w to m gy tr Coal : blk tr Cont : prp		023-3L 023-1L 023-2L 023-4L 023-5L
3830.00			trb	024
	0.86	50 Other : w to lt gy, hd, br 45 Sh/Clst: gy blk to drk gy 5 S/Sst : w tr Coal : blk tr Cont : prp		024-2L 024-3L 024-1L 024-4L 024-5L
3839.00			trb	025
	0.94	40 Other : w to lt gy, hd, br 30 S/Sst : w 30 Sh/Clst: gy blk to drk gy tr Coal : blk tr Cont : prp		025-2L 025-1L 025-3L 025-4L 025-5L

Table 1 : Lithology description for well NOCS 2/2-4Depth unit of measure: m

Depth	Туре	Trb	Sample
Int Cvd	TOC%	<pre>% Lithology description</pre>	
3848.00		trl	026
		65 Other : w to lt gy, hd, br 20 S/Sst : w 15 Sh/Clst: gy blk to drk gy tr Coal : blk tr Cont : prp	026-2L 026-1L 026-3L 026-4L 026-5L
3857.00		trb	027
		45 S/Sst : w 45 Other : w to lt gy, hd, br 10 Sh/Clst: gy blk to drk gy tr Coal : blk tr Cont : prp	027-1L 027-2L 027-3L 027-4L 027-5L
3866.00		trb	028
		80 S/Sst : w 10 Other : w to lt gy, hd, br 10 Sh/Clst: gy blk to drk gy tr Coal : blk	028-1L 028-2L 028-3L 028-4L
3875.00		trb	029
	1.46	40 S/Sst : w 40 Sh/Clst: gy blk to drk gy 10 Other : w to lt gy, hd, br 10 Coal : blk tr Cont : prp	029-1L 029-3L 029-2L 029-4L 029-5L
3884.00			030
	2.58	45 Sh/Clst: gy blk to brn blk to drk gy, mic 45 S/Sst : w, calc, cem 5 Coal : blk 5 Kaolin : w to m gy tr Cont : prp	030-1L 030-2L 030-3L 030-4L 030-5L

Table 1 : Lithology description for well NOCS 2/2-4

Depth	Туре	Tr	b Sample
Int Cvd	TOC%	 ۶ Lithology description 	
3893.00			031
	3.45	85 Sh/Clst: ol blk, mic, st 10 S/Sst : w, calc, cem 5 Kaolin : w to m gy tr Coal : blk tr Cont : prp	031-1L 031-2L 031-4L 031-3L 031-5L
3902.00			032
	70.60	50 Coal : blk 30 S/Sst : w to lt gy, calc, cem 20 Sh/Clst: ol blk to dsk y brn, mic tr Kaolin : w to m gy tr Cont : prp	032-3L 032-2L 032-1L 032-4L 032-5L
3911.00			033
	27.60	80 Sh/Clst: ol blk to m brn to dsk y brn 10 Coal : blk 5 S/Sst : w to lt gy, calc, cem 5 Cont : prp tr Kaolin : w to m gy	033-1L 033-3L 033-2L 033-5L 033-4L

Table	2	:	Tabula	ntion	of	headspace	e gas	data	for	well	NOCS	2/2-4.	,

Depth m	methane	ethane	propane	i-butane	n-butane	pentanes	hexanes	C1/(C2+C3)	C2/C1	C1/sumCn	iC4/nC4
2060.00	95.38	1.64	1.18	0.38	0.17	0.82	0.44	33.88	0.01	0.95	2.24
2070.00	95.49	1.51	1.09	0.53	0.12	0.57	0.67	36.56	0.02	0.96	4.42
2080.00	81.76	6.11	5.72	1.39	0.89	3.31	0.81	6.90	0.07	0.81	1.56
2090.00	88.30	4.08	2.80	1.00	0.66	2.43	0.71	12.82	0.04	0.88	1.52
2100.00	83.49	5.69	4.74	1.36	0.88	3.19	0.64	8.00	0.06	0.83	1.55
*2109.00	97.95	0.99	0.60	0.23	0.06	0.12	0.01	60.99	0.01	0.98	3.62
2110.00	73.99	9.13	8.17	3.15	1.36	3.20	0.96	4.27	0.12	0.74	2.32
2120.00	89.94	2.21	2.70	0.95	0.54	3.13	0.50	18.28	0.02	0.89	1.76
2130.00	78.91	6.76	6.74	2.24	0.96	3.30	1.05	5.83	0.08	0.78	2.33
3758.00	30.75	11.74	16.67	1.94	13.35	21.96	3.56	1.08	0.38	0.30	0.15
3767.00	32.59	12.77	11.24	1.87	10.31	17.61	13.57	1.35	0.39	0.32	0.18
3776.00	35.45	12.52	15.68	1.80	11.51	19.33	3.67	1.25	0.35	0.35	1.16
3785.00	33.07	9.08	13.00	2.15	10.77	20.05	11.82	1.49	0.27	0.33	0.20
3794.00	29.76	8.98	13.88	2.19	13.16	27.75	4.24	1.30	0.30	0.30	0.17
3803.00	Contain	ner broken	n during ti	cansport							
3812.00	24.06	6.83	11.12	2.16	13.95	32.25	4.43	1.34	0.28	0.24	0.15
3821.00	31.10	10.06	12.33	1.04	11.43	20.37	13.64	1.38	0.32	0.31	0.09
3830.00	24.94	8.83	14.72	2.61	15.21	29.76	~ 3.89	1.05	0.35	0.25	0.17
3839.00	31.57	9.39	14.09	2.57	13.94	26.05	2.34	1.34	0.29	0.31	0.18
3848.00	Very l	ow amount	of gas								
3857.00	Very 1	ow amount	of gas								
3866.00	23.74	10.67	23.66	3.48	17.16	17.48	3.78	0.69	0.44	0.23	0.20
3875.00	14.47	6.39	19.94	4.01	21.45	28.47	5.23	0.54	0.44	0.14	0.19
3884.00	13.20	9.16	25.22	5.42	20.03	22.67	4.27	0.38	0.69	0.13	0.27
3893.00	11.30	10.74	29.53	5.44	19.57	20.11	3.28	0.28	0.95	0.11	0.28
3902.00	64.07	18.67	10.34	1.45	3.00	1.82	0.63	2.20	0.29	0.64	0.48
3911.00	58.53	18.75	11.52	2.47	5.30	3.09	0.31	1.93	0.32	0.58	0.47

*2109 = Gas sample

30

Table 3 : Rock-Eval table for well NOCS 2/2-4

Depth unit of measure: m

-

Depth	Тур	Lithology	S1	S2	S3	S2/S3	TOC	HI	OI	PP	PI	Tmax	Sample
2060.00	cut	Sh/Clst: ol gy to dsk y brn	0.04	2.63	0.70	3.76	2.12	124	33	2.7	0.01	432	001-1L
2070.00	cut	Sh/Clst: ol gy to dsk y brn	0.06	1.91	0.77	2.48	1.68	114	46	2.0	0.03	434	002-1L
2080.00	cut	Sh/Clst: ol gy to dsk y brn	0.03	1.62	0.58	2.79	1.63	99	36	1.6	0.02	434	003-1L
2090.00	cut	Sh/Clst: ol gy to dsk y brn	0.06	1.66	0.72	2.31	1.56	106	46	1.7	0.03	434	004-1L
2100.00	cut	Sh/Clst: ol gy to dsk y brn	0.05	1.35	0.80	1.69	1.39	97	58	1.4	0.04	433	005-1L
2110.00	cut	Sh/Clst: ol gy to dsk y brn	0.02	1.57	0.65	2.42	1.64	96	40	1.6	0.01	434	006-1L
2120.00	cut	Sh/Clst: ol gy to dsk y brn	0.02	1.43	0.64	2.23	1.76	81	36	1.4	0.01	435	007-1L
2130.00	cut	Sh/Clst: ol gy to dsk y brn	0.04	1.62	0.63	2.57	1.49	109	42	1.7	0.02	435	008-1L
3302.00	cut	Sh/Clst: m gy	0.10	0.34	2.01	0.17	0.54	63	372	0.4	0.23	425	009-1L
3305.00	cut	Sh/Clst: m gy	0.21	0.53	2.78	0.19	0.59	90	471	0.7	0.28	417	010-1L
3310.00	cut	Sh/Clst: m gy to drk gy	1.12	19.04	2.09	9.11	3.96	481	53	20.2	0.06	434	011-1L
3314.00	cut	Sh/Clst: m gy to drk gy	0.66	15.89	1.28	12.41	3.50	454	37	16.6	0.04	432	012-1L
3794.00	cut	Sh/Clst: m gy to drk gy	0.06	0.15	0.74	0.20	0.53	28	140	0.2	0.29	436	020-3L
3803.00	cut	Sh/Clst: drk gy	0.06	0.06	0.26	0.23	0.63	10	41	0.1	0.50	450	021-3L
3812.00	cut	Sh/Clst: drk gy	0.05	0.35	0.22	1.59	0.62	56	35	0.4	0.13	439	022-3L

GEOLAB NOR

🖌 The second second the second second

Table 3 : Rock-Eval table for well NOCS 2/2-4

Depth unit of measure: m

Depth Typ Lithology S1 S2 **S**3 S2/S3 TOC HI OI PP ΡI Tmax Sample 3821.00 cut Sh/Clst: gy blk to drk gy 0.07 0.05 0.29 0.17 0.77 6 38 0.1 0.58 447 023-3L 3830.00 cut Sh/Clst: gy blk to drk gy 0.10 0.45 0.27 1.67 0.86 52 31 0.6 0.18 439 024-3L 3839.00 cut Sh/Clst: gy blk to drk gy 0.13 0.66 0.37 1.78 0.94 70 39 0.8 0.16 436 025-3L 3875.00 cut Sh/Clst: gy blk to drk gy 0.33 2.17 0.41 5.29 1.46 149 28 2.5 0.13 440 029-3L 3884.00 cut Sh/Clst: gy blk to brn blk to drk 1.01 7.18 0.77 9.32 2.58 278 30 8.2 gy 0.12 437 030-1L 3893.00 cut Sh/Clst: ol blk 1.57 10.97 0.95 11.55 3.45 318 28 12.5 0.13 437 031-1L 3902.00 cut Coal : blk 16.48 114.81 8.51 13.49 70.60 163 12 131.3 0.13 446 032-3L 3911.00 cut Sh/Clst: ol blk to m brn to dsk y 5.24 174.44 0.90 193.82 27.60 brn 632 3 179.7 0.03 451 033-1L

Table 3b : Rocke-Eval standards and calibration.

		S1	S2	S 3	Tmax
STD0	:	0.13	12.40	1.82	429
STD1	:	0.13	12.38	1.79	430
STD2	:	0.14	12.21	1.76	429

STD0 = Calibration "Standard as standard", first run in sequnce. STD1 = Standard "Standard as sample", run after sample "3884" STD2 = Standard " Standard as sample", run after all samples.

Table 4 : Tabulation of carbon isotope data and C2+ data in headspace gas for well NOCS 2/2-4.

Depth m	d 13C C1	d 13C C2	d 13C C3	d 13C iC4	d 13C nC4	C2+ in %	del D Cl
2060.00	-62.9					5	
2070.00	-64.9					4	
2080.00	-64.5					19	
2090.00	-64.1					12	
2100.00	-64.6					17	
*2109.00	-64.77	-38.8	-31.5	-27.9	-29.3	2	-188.7
2110.00	-64.7					26	
2120.00	-62.2					11	
2130.00	-64.1					22	
3758.00	-33.7	22.2	22.6		<u> </u>	70	
3767.00	-34.4	-30.2	-29.6	-28.8	-28.6	68	
3776.00	-33.5					65	
3785.00	-34.2	<u> </u>				67	
3/94.00	-34.5	-29.4	-29.3	-31.5	-29.1	70	
3803.00	Contain	er broke	en during	g transpo	ort		
3812.00	-36.4	-29.9	-29.8	-27.5	-28.9	76	
3821.00	-36.0					69	
3830.00	-35.1					71	
3839.00	-35.8		_			69	
3848.00	-29.2	Very	low amou	int of ga	as		
3857.00	-27.2	Very	low amou	int of ga	as		
3866.00	-28.2					77	
3875.00	-33.0					86	
3884.00	-41.6	-33.4	-30.9	-30.5	-30.8	87	
3893.00	-43.0					89	
3902.00	-43.3	-31.6	-28.1	-28.8	-28.7	36	
3911.00	-42.9					42	

Calculation of C2+ :

C2+ (%) = (1- C1/Sum Cn) * 100

*2109 = Gas sample

The sample from 2109 was analysed three times with the following delta 13C results for methane : -64.77/-64.77/-64.84

Table 5 a: Weight of EOM and Chromatographic Fraction for well NOCS 2/2-4

Depth unit of measure: m

Depth Typ Lithology	7	Rock Extracted (g)	EOM (mg)	Sat (mg)	Aro (mg)	Asph (mg)	NSO (mg)	HC (mg)	Non-HC I (mg)	ЮС(е) (१)	Sample	\$
3310.00 cut Sh/Clst:	m gy to drk gy	3.3	12.4	1.2	1.2	1.1	8.9	2 4	10.0	2 06	011 17	•
3821.00 cut Sh/Clst:	gy blk to drk gy	2.5	3.3	0.2	0.3	1.4	1.5	0.5	2.8	5.90 0 77	022 27	•

Table 5 b: Concentration of EOM and Chromatographic Fraction (wt ppm rock) for well NOCS 2/2-4 Depth unit of measure: m

Depth	Тур	Lithology	EOM	Sat	Aro	Asph	NSO	HC	Non-HC	Sample
_										
3310.00	cut	Sh/Clst: m gy to drk gy	3815	369	369	338	2738	738	3076	011-1L
3821.00	cut	Sh/Clst: gy blk to drk gy	1330	60	120	564	584	181	1149	023-31

Table 5 c: Concentration of EOM and Chromatographic Fraction (mg/g TOC(e)) for well NOCS 2/2-4Depth unit of measure: m

Depth	Typ Lith	ology	EOM	Sat	Aro	Asph	NSO	HC	Non-HC	Sample
										
3310.00	cut Sh/Cl	lst: m gy to drk gy	96.35	9.32	9.32	8.55	69.15	18.65	77.70	011-1L
3821.00	cut Sh/C	lst: gy blk to drk gy	172.81	7.86	15.71	73.31	75.93	23 57	149 25	023_31

Table 5 d: Composition of material extracted from the rock (%) for well NOCS 2/2-4

Page: 1

Depth unit of measure: m

		Sat	Aro	Asph	NSO	HC	Non-HC	Sat	HC	
Depth	Typ Lithology	EOM	EOM	EOM	EOM	EOM	EOM	Aro	Non-HC	Sample
3310.00	cut Sh/Clst: m gy to drk gy	9.68	9.68	8.87	71.77	19.35	80.65	100.00	24.00	011-1L
3821.00	cut Sh/Clst: gy blk to drk gy	4.55	9.09	42.42	43.94	13.64	86.36	50.00	15.79	023-3L

Table 6 : Saturated Hydrocarbon Ratios for well NOCS 2/2-4

Depth unit of measure: m

	Pristane	Pristane	Pristane + Phytane	Phytane				
Depth Typ Lithology	nC17	Phytane	nC17 + nC18	nC18	CPI	CPI2	Sample	
3310.00 cut Sh/Clst: m gy to drk gy	1.01	1.75	0.87	0.70	1.25	0.96	 011-1L	
3821.00 cut Sh/Clst: gy blk to drk gy	0.66	2.30	0.49	0.31	1.25	1.06	023–3L	

.

Table 7 : Aromatic Hydrocarbon Ratios for well NOCS 2/2-4

Depth unit of measure: m

Depth Typ Lithology	MNR	DMNR	BPhR	2/1MP	MPI1	Rc	MPI2	DBT/P	4/1MDBT	(3+2)/1MDBT	Sample
3310.00 cut Sh/Clst: m gy to drk gy	-	-	-	0.74	0.76	0.86	0.65	0.22	0.71	-	011-1L
3821.00 cut Sh/Clst: gy blk to drk of	- YE	-	-	0.80	0.60	0.76	0.59	0.27	1.86	0.94	023-3L

