6.3 Mud report.

36" hole, 30" csg.: The 36" hole was drilled from 189 m to
313 m using seawater with returns to the
sea bed. High viscous pills were circulated
around as necassary to clean the hole. At
313 m the hole was displaced with 63 m3 high
viscous mud and a wiper trip made. Prior to
run the 30" casing the hole was displaced with
119 m3 high viscous mud of 1.20 r.d.

Materials used in this section: Baryte, Bentonite, Caustic Soda, Soda Ash and Lime.

26" hole, 20" csg.: The riser was run and the 17-1/2" pilot hole was drilled to 515 m using a bentonite-seawater system. At T.D. the mud was conditioned and a wiper trip was made prior to logging.

The hole was opened to 26", using underreamer down to 506 m where the mud was conditioned and the riser pulled. A 26" bit was run in the hole to 480 m. The hole was reamed to 506 m and opened from 17-1/2" down to 515 m. The hole was displaced with 1.14 r.d. mud prior to run the 20" casing.

Materials used in this section: Baryte, Bentonite, Caustic Soda, Soda Ash and CMC EHV.

17-1/2" hole, 13-3/8" csg.:

The 17-1/2" hole section was drilled to 1724 m using a bentonite/lignosulfonate/seawater system. Severe problems were encontered with gumbo type clays during the interval from about 800 m to 1400 m. The shakers and flowline were packed off several times, mud was lot due to screen blinding and new mud had to be built, using bentonite and chemicals to maintain reasonable mud parameters.

The mud weight was increased to 1.18 r.d. at 1430 m wich helped to ease the shale problems. At 1724 m the mudweight was increased to 1.26 r.d. prior to logging and to 1.30 r.d. prior to running the 13-3/8" casing. The 13-3/8" casing was cemented without returns and new mud volume had to be built.

Materials used in this section: Baryte, Bentonite, Caustic Soda, CMC EHV, CMC LV and Soda Ash.

12-1/4" hole, 9-5/8" csg.:

The 12-1/4" hole was drilled to 3116 m using the same system as for the 17-1/2" hole section. The 13-3/8" casing was drilled out using 1.30 r.d. mud. At 1888 m the mudweight was increased to 1.36 r.d. and at 3116 m to 1.53 r.d. due to increased pore pressure prior to running the 9-5/8" casing. The logs over this section were run without hole problems. The mud properties were maintained within specifications throughout the interval and the solids kept within the optimum range by means of dilution and use of the solids control equipment on board.

Materials used in this section: Baryte, Bentonite, Spersene, XP-20, Caustic Soda, Soda Ash, CMC LV, CMC EHV, Magcolube, Al. Stearate and Lime.

8-3/8" hole:

The 8-3/8" hole was drilled with the existing mud system. The 9-5/8" casing was drilled out using 1.59 r.d. mud. Later on the mudweight was increased gradually to 1.89 r.d. at 3850 m and to 1.93 r.d. at 3977 m due to increase in pore pressure. The logs throughout this interval were run without experiencing hole problems. The mud properties were maintained within the required parameters, and the only problem was mud aeration in the latter part of the hole section. This was brought under control by chemical treatment,

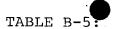
A leak in the riser occured at T.D. and 12.7 m3 mud was lost and a lost circulation material pill was circulated round.

Materials used in this section:
Baryte, Bentonite, Spersene, XP-20, Caustic
Soda, Lime, Soda Ash, CMC LV, Resinex,
Magcolube, Magconol, AL. Stearate, Mica
Fine and Nut Plug Fine.

TABLE B-5:

AILY ML

MUD



Well: Norsk Hydro, 7120/12-2

PAGE___1___

			VIS	C	ORR.	GE	LS	рН	FLUID		ł	×	ALK	ALINI	TY		RE	TOR	Т		V.G. MI	ETER RE	ADING	@ 115	0	1b/ вы	4	\$
1981 DATE	Meters	R.D.	SEC.	Pa	^{15°F} \$ca YP			BECK (2)	100 PSI API	500 PSI 300 °F HT-HP	CACL NACL	- 1	PF	РМ	MF	CA	% OIL	% SOL	% WATER	600 R.P.M.	300 R.P.M.	200 R.P.M.	100 R.P.M.	6 R.P.M.	3 R.P.M.	CEC	I	OTAL D COST
April				-	-	 	T	 	<u> </u>													1,11, 11,1						
14	RKB	1 04	130	-	+		├	 				\dashv															395	59- 8
15	202		130		†																l							<u>, , , , , , , , , , , , , , , , , , , </u>
16	228	1.04					1							-														
17	241	1.04		_																								
18	284	1.04		_															_								795	57-2
19	313	1.20	170	3	43															89	86							82 <i>-</i> ′
20	313	1.04	120														•										1337	70-7
21	413	1.08		6		+	18		j																		2220	
22	515	1.12			39							_								94	86	72	_66_	_48	47 28		2899	
23	506	1.12	66		31	15		10.3				_								74	68	53	47	31			3581	
24	515	1.14			31	16	19	10.1												79	72	57	50	33	30		4202	
25	515		60±		1			10.5				_															4838	
26	515		60					10.5		 		_								42	34	31	_28	_23_	22		4838	_
_27	_515_							10.5			200	00								47	_36	34	_30_	_26	24		5120	
28	515	1.12		_		-		10.5			200									47	36	34	30	26	24		5120	
29	515	1.12	51	11		10		10.5			200					<u></u>				47	36	34	30	26	24		5120	
30	515	1.12	51	11	12	10		10.5			200									47	36	34	30	26	24		5120	
<u>y 1</u>	515	1.12	51	11	12	10		10.5			200									47	36	34	30	26	24		<u> </u>	
2	515	1.12	51	11	12	10	4	10.5		ļ	200									47	36	34	30	26	24		5190	
3	701	1.12	61	11	14	12		10.1	19		260									52	41	38	33	26	25		5652	
4	930	1.12	62	11	17			9.8		<u> </u>	140					ļ				_58_	47	42	38	28	27		6429	
5_	1169	1.12			20			9.8		<u> </u>	140									61	51	37	33	25	25		6886	
6	1341			9				9.5			130									39	30	28	24	17	17		7462	
	1429	1.15						9.8		<u> </u>	130	_			0 4	400		4.0	00	47	37	35	_31	_22	22	00	8270	
8_	1532							9.4					0.1	0.8		120		12	88	68	55	47	39	34	29	30	9172	
9	1625	1.19		_	18					ļ	160			0.4				13	87	54	45	42	35	26	24	22.5	9837	
10	1625	1.18	65	12	120	21	123	9.2	118.2	1	1160	uul	LK.	0.3	LU.4	240	E T.D.:	13	87	64	52	_36_	32 cost	26	24	25	9947	9-1
	ALEBROD:															DATE							COST	•				

MUD PI

PROPERTIES

CONT'D

Well: Norsk Hydro, 7120/12-2

			VIS	COR	R.	GELS	pН	FLUID	LOSS	CL 0	AL	KALIN	ITY		RE	TOR	T		V.G. MI	ETER RE	ADING	@ 115	0	Вы	
981 DATE	Meters DEPTH	WT.	SEC.		· 1	cals	BECK STRIP	*	500 PSI 300 °F HT-HP	CACL E	ı	PM	MF	CA ppm	% OIL	% SOL	% WATER	600 R.P.M.	300 R.P.M.	200 R.P.M.	100 R.P.M.	6 R.P.M.	3 R.P.M.	CEC	TOTAL MUD COST
lay																									
11	1724	1.19				2627		816.4		16000		1.3	1.1	80		13	87	62	52	47	42	_33	32	25	 103739
12	1724	1.26					10.0			16000		1.0		120		14	86	74	64	59	53	_47	45	25	 108309
13	1724	1.30		12		1729		217.8		16000	0.2	0.5	0.5	200		14	86	60	48	43	38	28	27	25	 111864
14	1724	1.30					ING (117265
15	1710		FAB	<u>RI¢</u>	ATI	NG N	EW V	OLUME	S																 122715
16	1710	1.30	42										<u> </u>												 124288
17	1729	1.30	43	10	6		11.	9	24.0	12000	1.6	5.0	2.3	TR.		15	85	32	22	16	11	4	3	22.5	 132851
18	1835	1.30	43	126	5.5	5 29	111.6	5, 2	18.2	12000	b. 8	3.8	1.7	TR	TR	15	85	37	25	18	12	5	4	25	140240
19	1888	1.36		16	8	9 36	10.9	9 4.8	17.6	12000	0.6	3.0	1.4	120	TR	87	83	48	32	24	17	7	6	25	151558
20	1908	1.36	44	15	5	4 19	11.	0 4.6	17.6	11000	0.9	3.3	1.7	160	TR	15	85	40	25	18	12	4	3	22.5	 152590
21	1978	1.36	41	14	5	3 16	11.2	2 4.6	17.8	11000	1.3	3.2	2.5	TR	TR	15	85	38	24	18	12	3	3	25	158897
22	2003	1.36	49	18 7	7.2	5 21	11.4	4 4.2	14.8	11000	1.1	2.8	2.3	TR	TR	16	84	51	33	25	17	_ 6	5	25	160005
23	2032	1.36	48	16	9	7 21	11.	3 5.0	16.2	11000	1.1	2.9	2.2	TR	TR	15	85	51	35	27	21	6	5	25	162327
24	2050	1.36	67	19	11	9 23	111.0	5.0	16.2	11000	9	3.1	2.1	140	TR	15	85	61	42	36	26	8	7	25	 163060
25	2128	1.36	47	16	14	10 17	11.2	2 4.8	13.2	13000	1.2	3.1	2.6	140	TR	15	85	.62	46	41	33 ·	24	21	27.5	 165739
26	2165	1.36	48	14	10	8 15	10.9	9 4.8	13.4	13000	1.1	2.6	2.5	180	TR	15	85	49	35	29	22	11	10	22.5	167855
27	2179	1.36	48	14	10	9 16	11.0	0 4.8	15.4	13000	1.3	3.1	2.9	180	TR	15	85	48	34	28	20	8	8	22.5	168516
28	2247	1.36	48	14	10	6 25	11.	1 5.2	17.4	13000	1.2	2.4	2.4	200	TR	15	85	48	34	28	21	7	6	22.5	170149
29	2311	1.36	49	18	10	4 22	10.	7 4.8	16.2	13000	1.0	2.4	2.2	180	TR	15	85	56	38	31	22	5	4	26.0	173228
30	2354	1.36	48	18	9	4 16	10.	3 4.6	16.4	13000	.9	2.0	1.8	160	TR	15	85	54	36	28	18	5	4	24	174116
31	2366	1.36	50	18	.8			3 5.4	-	13000	.8	1.9	1.9	160	TR	15	85	52	34	27	19	4	3	22	 174116
ne 1	2366	1.36	50	18	10	6 32	9.8			13000	.8	1.9	1.9	160	TR	15	85	46	28	22	16	5	4	22	174116
2	2366	1.36		15		6 30			17.4		.8	1.7	1.8	160	TR	15		49	34	28	20	6	5	22	174116
3	2368	1.36	54	17		4 20				13000	1.0	2.0	1.7	120	TR			54	36	28	20	-6-	- 5	23	174847
4	2429	1.36		16	8	7 26				13000	1.0	1.9	1.7	200	TR	15	85	48	32	25	16	7	5	24	 179549
5	2516	1.36	46	14	5		11.2	2 8.4	14.8	13000	0.8	5.0	1.5	200	TR	16	84	39	25	20	14	6	4	21	181086
6	2606	1.36	45	14	5	7 34	11.7	2 8.4	14.2	13000	0.7	4.6	1.5	280	TR	15	85	38	24	19	13	4	3	25	 183123
	DATE SPUD:													DAT	ET.D.:				*		COST	:			

TABLE B-5:

DAILY

MUD

PROPERTIES

ONT'D

Well: Norsk Hydro 7120/12-2

			vis	co	RR.	GE	LS	рН	FLUIC	LOSS	CL (X	ALI	KALIN	ITY		RE	TOF	T		V.G. MI	ETER RE	ADING	@ 115	0	Įb/ Bbi		
1981	Meters	R D		l	5°F		_	веск 🛭	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		CACL					%	%	%									\$
				1	Pas	ı		STRIP	API		FNACL [CA				600	300	200	100	6	3			TOTAL
DATE	DEPTH	WT.	SEC.	PV	YP	0	10			HT-HP		PF	PM	MF	pprn	OIL	SOL	WATER	R.P.M.	R.P.M.	R.P.M.	R.P.M.	R.P.M.	R.P.M.	CEC		MUD COST
June																			<u> </u>	<u></u>							
7	2640	1.36				3	17	11.2			12500	0.7	2.9	1.5	200	TR	16		38	24	17	10	4	_3	25 25		184380-38
8	2678	1.36		14	5	4	21	11.0	7.6	18.4	12000	0.5	3.2	1.3	320		16		38	24	18	11	4	3	25		86953-88
9	2701	1.36		14	5	4	19	11.2	7.6	18.6	12500	0.5	3.8	1.5	200		17	83_	38	24	18	11	3	2	25	·	87034-68
10	2709	1.36	46	15	5	4	18	11.1	7.0	17.4	12000	0.5	3.6	1.5	240	TR	17	83	40	25	19	12	4	_3	25		87034-68
11_	2777	1.36	48	13	4	4	18	10.7	7.4	18.4	12000	0.4	2.8	1.2	240	TR	17	83	34	21	16	· 10	3	2	27		87681-28
12	2853	1.36	46	13	4	3	15	11.3	6.6	18.0	13000	0.8	3.6	2.0	160	TR	17	83	35	22	16	10	3	2	27.5		91214-88
13	2929	1.36	50	14	4	3	16	11.2	5.6	17.6	12000	0.7	3.4	210	160	TR	17	83	37	23	17	11	3	2	27.5		191954-13
14	2966	1.36	52	15	4	3	19	11.1	6.8	18.6	12000	0.7	3.1	2.3	100	TR	17	83	39	24	18	11	3	2	27.5		92075-33
15	2985	1.40	48	15	4	3	19	11.3	7.2	18.8	14000	0.7	3.2	2.3	120	TR	18	82	39	24	18	12	3	2	27.5		95197-83
16	3066	1.40	51	16	5	3	24	11.2	6.8		13000	0.7	3.3	2.4	120		18	-	43	27	21	14	3	2	32		95899-83
17	3117	1.44		16	5	3	17	11.1			14000	0.7	3.1	2.0	120		20	80	41	25	19	12	3	2	30		201218-33
18	3117	1.51	49	17	6	3	19	11.3	6.6		14500	4.1	2.9	2.7	100		20	80	46	29	22	13	3	2	30		209693-93
19	3117	1.53		20	6	4	18	11.3		4177	15000	1.0	2.4	3.0	180		22	78	52	32	24	15	3	3	27.5		209693-93
20	3117	1.53		21	7	3	13	11 1			15000	1.0	2.6	3.0	180		23		62	38	29	18	4	3	27.5		212200-93
21	3117	1.53	-	21	7	3	13	11 1	7 8		15000	1 0	2 6	3 0	180			77	62	38	29	18	4	3	27.5		212311-63
22	3117	1.53		20		3	12	11.2	 	حمسبه	15000	1 1	2.6	3.1	180		22	78	53	33	25	16	3	3	27.5		212459-23
23	3117	1.53		20		3	12	11 2			15000	1 1	2.6	3.1	180		22	78	53	33	25	16	3	3	27.5		212000-63
24	3117	1.54		20	6	3	12	11 3			15000	1 1	1.4	3.1	160			78	52	32	24	16	4	3	27.5		213259-68
25	3126	1.59		19	1	6	20	11.3	1		15000	1 7	3.8	4.3	100		_	76	48	29	22	14	4	3	25.0		223360-68
26	3170	1.59		17	3	3	14	11.3		47.4.4	14000	1.2	3.3	2.8	100	+	25	75	41	24	18	12	3	3	27.5		228527-98
27	3246	1.50	_	17	6	1	16	11 1	7 6	17.0	14500	1 2	3.3	2 7	140	TR	27	73	46	29	23	15	4	3	27.5		230288-28
28	3296	1.59	~ ·	19	-	3	12	11 1	7 0	316.2	14000	1 3	2 1	3.2	120		24	76	47	28	21	13	3	3	27.5		236088-03
29	3344	1.59		18	 	3	14	11 2	6.6	412.	15000	1 3	1 5	3 0	100		25	75	47	29	22	14	3	3	25.0		237638-49
30	3379	1.50	_			3	13	11 0			15000	1 1	2 6	3 2	130	 1.1.2	24	76	46	29	23	15	1	3	25.0		243231-09
	1 3398	1.59			_	3	12	10 3			15000	11-1	2.3	2 7	100		23	_	44	27	21	14	3	3	25.0		245778-21
JnJÄ	2439	1.59	q <u></u>			3	13	11.0			15000			3.4	130	 	23		46	29	22	15	3	3	25.0		252041-14
3	3532							10.7			15000			2.4		1 1 1	23		53	33	26	16	3	2	25.0		260559-30
3-	DATE SPUD:	11.59	1 49	IZU	ı.b	1.1	ПĎ	111./	14.1	ם.כעכ	TOUD	4.4.	14.11	12.4		LLIK. ET.D.:	123	1//		1 33	LZD	COST			125	L	700553-30
1	DATE SPUD:														UAI	E 1.D.:						CUST	•				1
L																											

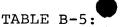
LY MUI

PROPER

חיידואר

Well: Norsk Hydro 7120/12-2

			VIS	со	IRR.	GELS	pН	FLUIC	LOSS	CL	×	ALK	ALINI	TY		RI	ETO	₹T		V.G. MI	TER RE	ADING	6 @ 115	0	1b/	
1981	Motors	R.D.		11!	5°F		веск 🔀	100 PSI	500 PSI	CACL	ㅁ尴					%	%	%								\$
11		- 1			Pa	scals	STRIP	API	300 °F	NACL					CA				600	300	200	100	6	3		TOTAL
DATE	DEPTH	WT.	SEC.	PV					HT-HP			PF	PM	MF	ppm	OIL	ļ	WATER	R.P.M.	R.P.M.	R.P.M.	R.P.M.	R.P.M.	R.P.M.	CEC	MUD COST
July	4 3595	1.59	53	16	9	4 20	10.7			1500				2.8	100	TR	23	77	50	34	28	20	4	3	25	268554-40
5	3667	1.59	53	14	11	4 22	10.8	4		1600	_	-2		2.6	80	IR	23	77_	50	36	30	24	7	6	25	278923-26
6	3673	1.65	_52	17	7	4 18	11.3	3.0		1700		-31	3.9	4.0	80		25		48	31	27	20	4	3	22	287014-26
	3095	1.70	54	18	4	4 15	11.4	2.6		1650		.4	4.2	4.2	80		26	74	43	25	18	10	_3	3	22	290725-26
88_	3744	1.80	_71_	18	12	9 25	11.1	2.6	4	1600	_	.2	3.0	3.8	100	TR	30	70	61_	43	32	26_	10	8	22.5	\$10436.46
9	3814	1.87				7 23	11.2	2.2	411.6	1700	0 2	.2	2.6	4.4	100	TR	32	68	57_	37	29	21_	6	4	20	322371-51
10	3816	1.87	54	20	8.5	8 22	11.2	2.0	11.2	1700	0 2	.4	2.7	4.2	100	LTR.	32	68	57	37_	30	21	5	4	22	\$24755-31
11	3838	1.87	57	18		10 23	11.0			1700			3.8	3.5	100		31	69	57	39	32	25	6	5	20	\$27513-76
12	3884	1.89	54	18	8.5	5 20	11.2			1600		.4	3.4	3.0	80		32	68	53	35	28	21	7	5	20	\$38579-56
13	3900	1.89	56	20	10	6 22	11.1	2.6		1600		.5	3.0	4.7	100	TR	32	68	60	40	32	21	5	4	21	\$43556-66
14	3916	1.89	54	22	9	6 22	10.8	2.8	311.8	1600	0 1	.7	2.6	3.1	80	TR	32	68	62	40	32	22	4	3	22	349857-61
15	3923	1.89	55	21	10	6 23	11.0	2.8	311.8	1600	0 1	.6	2.5	3.2	80	TR	32	68	62	41	31	22	5	4	22	\$55385-56
16	3934	1.89	54	22	9		10.8	2.6	12.6	1600	0 1	.4	2.4	2.7	120	TR	32	68	62	40	31	23	5	4	22	359708-06
17	3988	1.93	56	23	11	6 24	10.9	2.0	10.8	1600	0 1	.7	2.0	5.0	80	TR	34	66	68	50	38	27	9	5	22.5	368732-58
18	3999	1.93	55	26	10	6 21	11.3	2.4	12.0	1700	0 1	.5	2.8	32	120	TR	33	67	72	46	36	21	7	4	21	\$73371-96
19	4024	1.93	54	25	9.5	5 21	11.4	2.6	12.4	1400	0 1	.6	3.6	32	40	TR	33	67	69	44	33	22	6	9	22	318091-71
20	4064	1.93	54	25	9	6 25	11.1	2.6	12.2	1400	0 1	.6	3.0	3.8	60	TR	34		68	43	33	26	8	5 .	22	337337-26
21	4085	1.93	55	26	11	7 25	10.8	3.0	12.0	1500	0 1	.4	3.0	3.6	80	TR	34	66	44	48	44	39	10	7	24	389168-21
22	4103	1.93	54	25	11	6 21	10.8	3.0	12.2	1600	0 1	.5	3.0	3.5	100	TR	33	61	72	47	38	27	11	7	22	345123-01
23	4124	1.93	54	26	16	7 20	10.8	2.8	311.8	1600	0 1	.6	2.9	3.7	80	TR	34	66	70	46	38	26	11	6	23	346609-01
24	4142	1.93	54	24	10	6 18	11.0	3.0	12.0	1500	0 1	.8	3.1	4.0	60	TR	33	61	68	44	36	29	11	7	21	399211-51
25	4176	1.93	53	23	12	4 14	11.0	3.2	12.0	1500	0 2	.2	3.3	4.0	40	TR	33	67	70	47	40	32	12	8	21	406116-01
26	4216	1.93	55	23	9.5	5 18	10.4	3.4	12.2		$\overline{}$.1	3.9	4.0	40	+	33		65	47	32	23	10	5	22	409193-01
27	4263	1.93		23			11.1	3.6	13.8	<u> </u>		.2	4.1	4.4	80		34		67	44	37	26	10	5	24	414769-01
28	4302	1.93			11	6 19	11.2			1500			4.3	4.8		TR		67	70	46	39	28	11	6	21	419452-01
29	4308	1.93		23	10	5 18	11.0	3.7	13.2	1400			5.8	4.1		TR	_	67	66	43	34	25	3	5	22	420357-51
30	4351	1.93			11.5					1400				4.3		TR		65	71	47	38	26	11		21	424262-31
31	4413	1.93		27		9 31	10.9		12.4					3.8		TR	35		82	55	47	33	11	9	23	426988-61
	DATE SPUD:				 .					×××.			 			ET.D.:					 -	COST	:	<u> </u>	· - Z	
L																										J


karajan karan da 1900 mengan 1900 dalamat ba<mark>jan kabatan karan</mark> 1900 mengan belaran baharan beraran beraran berara

Well: Norsk Hydro, 7120/12-2

PAGE_

	!		VIS	CORR.	.	GELS	рH	FLUID	LOSS	CL	×	ALK	ALINI	TY		RE	TOR	т		V.G. MI	ETER RI	ADING	@ 115	0	1b/		
1981	Mata.aa			115°F			BECK Z	100 PSI	500 PSI	CACL	ᇚ				'			~								\$,
1901	Meters		ļ	Į P.	a\$(cals	STRIP	⊳	300 °F	NACL					CA	9%	%	%	600	300	200	100	6	3		ТОТА	AL
DATE	DEPTH	WT.	SEC.	PV YI	Р	0 10			нт-нр		_[.	PF	PM	MF	ppm	OIL	SOL	WATER	R.P.M.	R.P.M.	R.P.M.	R.P.M.	R.P.M.	R.P.M.	CEC	MUD CO	:OST
01/8	4420	1.93	54	26 1	2 8	8 29	11.0	4.0	12.2	1500	00	2.6	3.6	4.0	80	TR	35	65	76	50	43	29	10	8	23	430849	9-11
02	4434	1.93	54	20 10	2.5	6 24	11.1	3.8	11.0	1550	00	3.6	4.8	6.0	80		35	65	_61	41	33	23	_5_	4	23	44166	7-21
03	4457	1.93	47	20 9.	5 8	8 24	11.3	Tele	13.2	1500	00	4.0	5.4	6.4	80	TR	35	65	60	40	32	22	5	4	25	456986	6-31
04	4476	1.93	46	197.	.5 (6 17	10.6	3.8	11.0	1300	00	3.3	4.0	5.4	100	TR	34	66	63_	34	27	20	_5_	4	25	467374	4-8
05	4507	1.93	48	22 9.	5	7 23	11.2	4.4	11.8	1100	0	3.1	3.8	4.3	60	TR_	35	65	63	41_	34	23	4	4	25	480118	8-96
06	4513	1.93	49	22 1	0 8	8 23	11.1	4.0	12.0	1100	00	3.2	3.9	4.3	60	TR	85	65	64	42	35	24	5	4	25	48346	5-56
07	4537	1.93	47	22 8.	.5	6 21	11.1	3.8	11.8	1100	00	3.7	5.0	4.9	240	TR	34	66	61	39	31	21	4	3	25	495127	
08	4549	1,93	49	217.	5 (6 20	10.8	3.0	10.5	1100	10	1.9	4.8	3.9	320	TR	34	66	57	36	29	19	4	3	25	505178	
09	4579	1.93	49	23 1	1 8	8 23	10.8	2.6	9.6	1000	00	3.4	4.9	4.0	240	TR	34	66	68	45	37	26	5	4	26	51872	
10	4617	1.93	47	21 7.	.5	5 19	11.2	2.8	9.8	1100	10	3.7	5.0	6.1	140	TR	35	65	57	36	29	19	4	3	26	528631	1-06
11	4645	1.93	44	22 5.	.5	4 21	11,4	2.8	11.4	1100	00	4.4	6.4	5.0	280	TR	35	65	55	33	24	20	4	2	23	541159	
12	4674	1.93	46	22 3.	. 5	3 14	12.0	3.8	15.6	1100	00	4.9	6.1	5.7	200	TR	35	65	51	29	21	16	3	2	20	56070	
13	4674	1.93	46	23 3		3 8	11.5	2.8	13.4	950	00	2.8	6.1	3.6	160	TR	33	67	52	29	20	15	3	3	21	567386	6-95
14	4674	1.93	47	24 3		3 9	11.7	2.6	13.8	900	0	2.8	6.1	3.6	160	TR	33	67	53	29	20	15	3	3	20	56974	
15	4674	1.93	52	18 2	7;	3 7.	11.5	3.2	14.2	800	0	3.4	3.6	55	640	TR	33	67	40	22	14	8	2	2	20	577166	
16	4674	1.93	53	20 3		2 5	11.3	3.4	13.8	750	00	3.1	3.3	4.9	400	TR	33	67	. 45	25	17	10	2	2	20	580523	
17	4676	1.93	53	21 4		2 5	10.2	3.0	14.2	800	0	2.0	2.9	4.6	360	TR	32	68	50	29	19	11	2	2	22.5	587596	
18	4675	1.93	53	21 4		2 5	10.7	3.0	 	800	00	1.9	2.8				32	68	50	29	19	11	2	2	22.5	593074	
19	4680	1.93	55	22 3		2 5	10.2	2.8	9.2	800	00	1.4	2.0	4.0	320	TR	33	67	50	28	18	10	2	2	22.5	596179	
20	4680	1.93	65	22 3		2 5	10.2	2.8	9.2	800	00	1.4	2.0	4.0	320	TR	33	67	50	28	18	10	2	2	22.5	598118	
21	4680	1.93	65	22 3		2 5	10.2	2.8	9.2	800	0	1.4	2.0	4.0	320	TR	33	67	50	28	18	10	2	2	22.5	597867	
22	4680	1.93		22 3		2 5	10.3		9.2	800		1.4	2.0		320		33	67	50	28	18	10	2	2	22 5	593358	
23	4680	1.93		22 3		2 5	10.3		9.2	800	_	1.4	2.0		320		33	67	50	28	18	10	2	2	22 5	600158	_
24	4680	1.93		22 4		3 12	10.7	2.8	9.2		_	2.0	2.2		360	+	33	67	33	31	20	12	3	3	22.5	601348	
25	4680	1.93		22 4		3 10	10.6		9.2			2.0	2.2		360			67	53	31	20	12	_ 3_	3	22.5	601348	
		STIN	G PF	OCED	URI	EAND	PLU	G AN	D AB	ANDON	IME	NT									-			-		- 001010	
26	4680	1.29					9.2		13.2				0.6	1.1	200	TR	10	90	30	16	12	8	3	3	17.5	601888	8-52
27	4680	1.26	43	14 2	1	4 11	9.2	8.8	+	1100	10	0.4	0.6		200		10	90	30	16	12	8	3	3	17.5	604116	
	DATE SPUD:														DAT	ET.D.:				, ,		COST	:				

MUD

ONT'D

Well: Norsk Hydro, 7120/12-2

28/8 4 29 3 30 3 31 3 01/9 2 02 2 03 2 04 2	3055 3055 3055 2006 2006 2006 2006 2006 2006	WT. 1.26 1.26 1.27 1.27 1.27 1.27 1.27 1.27	51 48 48 46 47 44 46 46	13 12 12 12 12 11 12 11	Pas YP 6 5 4 5 4	4 1 3 1 4 1 3	S 9 10 11 12 11 11 11 11 11	9.1 9.0 9.8 10.8	10.2 9.8 9.6 6.2 8.2	300°F HT-HP 16.2 15.6 15.6		0.35 0.35 0.35	0.6 0.6 0.5	1.0	CA PPM 240 200	TR TR	% SOL V	% NATER 89	600 R.P.M. 38	300 R.P.M. 25	200 R.P.M. 20	100 R.P.M. 16	6 R.P.M. 7 4	3 R.P.M. 4	14 16		\$ TOTAL MUD COST 604116-92 605231-12 605231-12
28/8 4 29 3 30 3 31 3 01/9 2 02 2 03 2 04 2	ФЕРТН 4680 3055 3055 2006 2006 2006 2006 2006 2006	WT. 1.26 1.26 1.27 1.27 1.27 1.27 1.27 1.27	51 48 48 46 47 44 46 46	13 12 12 12 12 11 12 11	5 5 4 5 4	5 1 4 1 4 1 3 1 4 1 3 3	10 3 1 2 0 1	9.0 9.1 9.0 9.8 10.8	10.2 9.8 9.6 6.2 8.2	16.2 15.6 15.6 11.4	11000 10000 10000 11000	0.35 0.35 0.35 0.4	0.6 0.6 0.6	1.0 1.0	240 200	TR TR	11	89	я.р.м. 38	п.р.м. 25	R.P.M.	R.P.M. 16 14	п.р.м. 7 4	R.P.M.	14 16		мир совт 604116-92 605231-12
28/8 4 29 3 30 3 31 3 01/9 2 02 2 03 2 04 2	4680 3055 3055 3055 2006 2006 2006 2006 2006 2006	1.26 1.26 1.27 1.27 1.27 1.27 1.27	51 48 48 46 47 44 46 46	13 12 12 12 12 11 12 11	6 5 4 5 4 4	5 1 4 1 3 1 4 1 3 3	3 1 2 0 1	9.1 9.0 9.8 10.8	10.2 9.8 9.6 6.2 8.2	16.2 15.6 15.6 11.4	10000 10000 11000	0.35 0.35 0.35 0.4	0.6 0.6 0.6	1.0 1.0	240 200	TR TR	11	89	38	25	20	16 14	7 4	4	14 16		604116-92 605231-12
29 3 30 3 31 3 01/9 2 02 2 03 2 04 2	3055 3055 3055 2006 2006 2006 2006 2006 2006	1.26 1.27 1.27 1.27 1.27 1.27 1.27	48 48 46 47 44 46 46	12 12 12 11 12 11	5 4 5 4 4	4 1 3 1 4 1 3 3	1 2 0 1 9	9.1 9.0 9.8 10.8	9.8 9.6 6.2 8.2	15.6 15.6 11.4	10000 10000 11000	0.35 0.35 0.4	0.6 0.6 0.5	1.0	200	TR						14	4	<u> </u>	16		605231-12
30 3 31 3 01/9 2 02 2 03 2 04 2	3055 3055 2006 2006 2006 2006 2006 2006	1.26 1.27 1.27 1.27 1.27 1.27	48 46 47 44 46 46	12 12 11 12 11	5 4 5 4 4	4 1 3 1 4 1 3	0 1 9	9.0 9.8 10.8 10.8	9.6 6.2 8.2	15.6 11.4 -	10000 11000	0.35	0.6	1.0													
31 3 01/9 2 02 2 03 2 04 2	3055 2006 2006 2006 2006 2006 2006	1.27 1.27 1.27 1.27 1.27 1.27	46 47 44 46 46	12 11 12 11 11	4 5 4 4	3 1 4 1 3 3	0 1 9	9.8 10.8 10.8	6.2 8.2	11.4 -	11000	0.4	0.5			IIK	11	89	34	22	18	14	5	3	16		コカロケス・チェーン
01/9 2 02 2 03 2 04 2	2006 2006 2006 2006 2006 2006	1.27 1.27 1.27 1.27	47 44 46 46	11 12 11 11	5 4 4	4 1 3 3	1 9	10.8 10.8	8.2	_				11.	160	TR	11	89	32	20	16	15	3	3	16	-	607814-57
02 2 03 2 04 2	2006 2006 2006 2006 2006	1.27 1.27 1.27	44 46 46	11 11	4	3	9	10.8				10, 45	0.8			TR	12	88	32	21	17	16	4	3	18		607916-57
03 2 04 2	2006 2006 2006	1.27 1.27	46 46	11 11						_	11000			0.7	200	TR	12	88	32	20	17	15	4	3	18		607916-57
04 2	2006 2006	1.27			FT			10.6	7.2	-	11000				160	TR	11	89	30	19	16	15	3	3	18		608698-02
05 2	2006		51				0	10.8	7.4	_	11000			1.0	1	TR		89	32	21	17	16	4	_3	18		609113-52
		1 26		12	6			10.8		-	11000						12	88	_36_	24	20	18	6	_4	18		609113-52
				10				10.9			10000						11	88	_28_	18	16.	14	3	_2	17		609499-12
07 1	1989	1.26	43	10	4	3	9	10.7	8.0		11000	0.45	1.2	0.9	120	1	11	88	_28_	18	_16_	14	3	2	17		609499-12
							_					<u> </u>	<u> </u>		ļ	<u> </u>											ļ
					_		_																				
					_				ļ	,					ļ		-+										-
																-	-										· · · · · ·
						-+	\dashv					 	·		 	 					·						
					-+		\dashv				! 	-			├	 											
					-		\dashv					 				 -											1
						-								-													+
						\dashv						 		_										·			
	·····											 			-	-											
-				 								 			 	-											
															 	-		 									
	-				\dashv	\dashv		·	 						<u> </u>	1											+
						$\neg \dagger$																					
															†												1
			·			\neg																					
DAT	TE SPUD:														DAT	ET.D.:						COST				, ,	

			RF	T RESULT	S				Well:
·				-		,			7120/12-2
NO	DEPTH (MRKB)	H.P. (PSI)	F.P. (DSI)	PERM.	NO	DEPTH (MRKB)	H.P. (PSI)	F.P. (DS	
		RUN	1		7/2 8/2	2362.5 2363.5		_	Tight Tight
1/1	1888.5	3587	3085	Very good	9/2	2514.5	5470	4233	Very low
2/1	1893.5	3596	3087		10/2	2556.6	5559	4185	Fair
3/1	1903	2615	3090		11/2	2561	5570	4174	
4/1	1909.5	3626	3091	>>	12/2	2563.5	5575	4174	Good
5/1	1920	3648	3096	···· >> · ···	13/2	2567	5582	4175	»
6/1	1928	3662	3099	Good	14/2	2569	5586	4176	Fair
7/1	1936	3676	3101	·········	15/2	2810	6109	4639	
8/1	1943.5	3690	3102	Excellent	16/2	2943	6395	6034))
9/1	1947.5	3698	3102		17/2	2977	6472	6072))
10/1	1954.4	3712	3103		18/2	3004	6523	6256	Very low
11/1	1960.5	3722	3109	Fair	<u> </u>				
12/1	1967	3735	3107	Good			RUN	3	
13/1	1972	3745	3110	Fair	1/3	3555.3	9494		Tight
14/1	1978	3758	3111	Good	2/3	3666	9785	9542	Very low
15/1	1982	3762	3112	Very good	3/3	3696.5	9880	9255	Fair
16/1	1987.5	3775	3121	· • • • • • • • • • • • • • • • • • • •	4/3	3699	9878	9257	
17/1	1991	3780	3126	Excellent	5/3	3717	9932	9728	Very low
18/1	2002	3800	3144	Fair	6/3	3720	9941	9665	>>
19/1	2014.5	3823	3160	Good	7/3	3726	9964	9794	
20/1	2034.5	3861	3193	Fair	8/3	3757	10036	9974	Seal failure?
21/1	2074.5	3936	3251	Very good	9/3	3766.5	10066	9426	Fair
22/1	2090.5	3967	3276	Good	10/3	3775.5	10090	9781	Very low
23/1	2112	4007	3307	Very good	11/3	3783	10110	9586)
24/1	2148.5	4073	3362	. >>	12/3	3800	10148	9886	Fair
0671	1070	Table 03	-1		13/3	3805.5	10168	9525	
25/1	1978		al sample and cm gas (0.66 g		14/3	3813	10199	10008	Seal failure?
			ices of conden		15/3	3823.5	10215	9614	Fair
06/4	1040 5	Table 4 and			16/3	3844	10266	9519	low
26/1	1943.5		sample and re gas. (0.660 gra		17/3	3859.4	10303	9503	Very low
		1.86 cd	cm condensate 141603 scf/bbl	e (61° API)	18/3	3696.5			ple and recorered of mudfiltrate.
							RUN	4	
					1/4	3141	8395		Tight
					2/4	3202	8575	7612	Very low
		RUN	2		3/4	3240	8672		Tight
1/2	2165	4705	3386	Very good	4/4	3272	8740	7254	Very low
2/2	2198	4781	3443	Fair	5/4	3281.5	8769	7140	·»
3/2	2219.5	4827	3473	. 11			DUN		·
4/2	2265	4927	3541	>>			RUN	5	
5/2	2292.5	4986	3583		1/5	3780.7	Attempted	sample an	d recorered only
6/2	2309.5	5022	3618	Very low	2/5	3766.5	minor amo	unts of mu	dfiltrate.
				DST RI	ESUI	LTS			
		DST	1				DST	3	
Pe	rforated interval:			1/2"	Per	forated interval:			60/64
Flo	ow rates: 14.75 mm scf/c 158.0 bbl/d col DR: 93350 sct/bb	d gas. grav.: 0 ndensate. gra	.62	Α	Flo	w rates: 26.77 mm scf/d 330.5 bbl/d con R: 81000 scf/bbl	gas. grav: 0.6 densate. grav	626	
		DST	2						
Pe	rforated interval:	1985 - 1991 :	n. choke size:	172/64				Chec	ked: B.To
Flo	ow rate: 1008 bbl	/d water.						Date	18.3.82
					L	 			

3.2 Production Test Summary

On August 25th. the BOP was pulled and the upper and lower pipe rams changed to 3-1/2" before rerunning and testing the stack. The well was perforated from 2562 m to 2568 m on August 28th and the test string was run in the hole. (Fig. B-5). When testing the sub sea test tree after landing same, the ball valve was found leaking. Hence, the test tree was pulled, replaced and rerun.

The test string was tested to 290 bar against the APR-N valve before the well was opened for flow. The test was carried out as follows: 10 min initial flow, 1 hrs initial shut in, 6-3/4 hrs main flow and 6-1/4 hrs main shut in.

The well was then killed, the test string pulled and the perforations squeezed off through a squeeze packer at 2550 m.

On September 1st. the well was perforated at 2010 m, a squeeze packer set at 2006 m and an annulus squeeze cement job was performed in order to improve the cement bond over the interval of test no. 2 and 3. A subsequently run CBL log showed that an acceptable bond over the interval had been achieved.

The well was then perforated from 1985 m to 1991 m for test no. 2. The test string was run and tested to 220 bar against the APR-N valve prior to opening the well for flow. The test was successfully carried out as follows: 4 hrs flow and 3 hrs shut in.

The well was killed, the test string pulled and the perforations were squeezed off through a squeeze packer set at 1980 m.

On September 4th the well was perforated from 1944 m to 1950 m for test no. 3. The test string was run and tested to 220 bar against the APR-N valve prior to opening the well for flow. The test was successfully carried out as follows: 5 min. initial flow, 1 hrs. initial shut in, 8 hrs main flow, 14 hrs main shut in, 15 hrs three stage flow and 6 hrs final shut in.

The well was killed, the test string pulled and the perforations were squeezed off through a squeeze packer set at 1939 m on September 7th. This concluded the production test programme.

2 PRODUCTION TESTS

2.1 Summary and results

3 Production tests were conducted in the following intervals (mRKB) to evaluate the productivity and to obtain fluid samples.

Test no. 1 2562 - 2568 (Gas test)
Test no. 2 1985 - 1991 (Water test)
Test no. 3 1944 - 1950 (Gas test)

The test operations are summarized in chapter 2.3 and the recorded bottomhole-pressure vs. time is plotted in figs. 2.4-1 to 2.4-4.

Summarized test results are:

Test no.	1	2	3			
Gas rate (MMSCF/D)	14.75	-	23.665	9.3	17.53	26.77
Condensate rate (bbl/D)	158.0	-	365.0	101.6	148.5	
Water rate (bbl/D)	_	1008	-	_	- .	-
GOR avg (SCF/bbl)	93350	_	64150	91500	118050	81000
WHP (Psia)	2444	30	1770	2517	2250	1436
Choke size (1/64")	32	172	48	24	36	60
Condensate gravity (OAPI)	55.92	-	64.4	64.4	64.4	64.4
Gas gravity (Air = 1)	0.62	_	0.626	0.626	0.626	0.626
B.S. & W. (%)	Nil	Nil	Nil	Nil	Nil	Nil
Sep. press. (psig)	495	_	535	930	880	390
Sep. temp. (°F)	57	-	38	97	64	56

Table 2.1-1

2.2 Fluid data

Reservoir and well characteristics:

Producing zone	1944 - 1950 mRKB
Static pressure	3117 psig
Bottom hole temperature	151° F

Sampling conditions

Choke	48/64"
Wellhead pressure	1768 psig
Separator pressure	535 psig
Separator temperature	37° F
Gas rate (separator)	23.665 mmSCF/d
Compressibility factor	0.842
Gas gravity (air = 1)	0.626
Liquid rate (separator)	463.3 bbls/d

COMPOSITION OF RESERVOIR FLUID

COMPONENT	RECOMBINED RESERVOIR FLUID (MOLE PERCENT)	MOL WEIGHT
Nitrogen Carbon dioxide Hydrogen sulphide Methane Ethane Propane I-Butane N-Butane I-Pentane N-Pentane Hexanes Heptanes Octanes Nonanes Decanes Undecanes Dodecanes plus	1.52 0.84 0.00 89.59 3.59 1.63 0.38 0.60 0.26 0.22 0.30 0.37 0.32 0.16 0.09 0.05 0.08	193
TOTAL	100.00	

86-5561-BA

2 0 AUG. 1986

REGISTRERT

OLJEDIREKTORATET

SOURCE ROCK ANALYSES OF WELL 7120/12-2

Norsk Hydro A/S

RESPONSIBLE SCIENTIST/ PROSJEKTANSVARLIG

Malvin Bjorøy

AUTHORS/ FORFATTERE

Bjorøy, M., Knarud, R., Vigran, J.O. and Berg, T.

DATE/ DATO

18.12.81

REPORT NO/RAPPORT NR. NO. OF PAGES/ ANT. SIDER NO. OF ENCLOSURES/ ANT. BILAG

INSTITUTT FOR KONTINENTALSOKKELUNDERSØKELSER

CONTINENTAL SHELF INSTITUTE

Håkon Magnussons gt. 1B - N-7000 Trondheim - Norway - Telephone (075) 15660 - Telex 55548

Co	nfi	den	t i	al
		UCII		uı

INSTITUTT FOR KONTINENTALSOKKELUNDERSØKELSER

CONTINENTAL SHELF INSTITUTE

Håkon Magnussons gt. 1B — N-7000 Trondheim — Telephone (075) 15 660 — Telex 55548

REPORT TITLE/TITTEL SOURCE ROCH	K ANALYSES OF	WELL 7120/12	-2			
CLIENT/ OPPDRAGSGIVER						
Norsk Hydro A/S						
RESPONSIBLE SCIENTIST/ PROSJEKTANSVARLIG						
Malvin Bjorøy						
AUTHORS/ FORFATTERE						
Bjorøy, M., Knarud, R., Vigran, J.O. and Berg, T.						
DATE/ DATO	REPORT NO./RAPPORT NR.	NO. OF PAGES/ ANT.SIDER	NO. OF ENCLOSURES/ ANT. BILAG			
18.12.81	0-353	100				

Canned samples from the interval 1485-4575 m were analysed and the following interpretation given:

Zone A; 1485-1650 m: Immature, good potential as a source rock for gas.

Zone B; 1650-1875 m: Immature, rich potential as a source rock for oil and gas.

Zone C; 1875-2450 m: Moderate mature, turbodrilling affecting results. Good potential as a source rock for gas and paraffinic oil

below 2100 m. Indications of free HC between 1950 and

2100 m, approximately.

Zone D; 2450-2715 m: Moderate mature. Sandstone. Indications of free HC

between 2450-2600 m.

Zone E; 2715-2910 m: Moderate mature, rich potential as a source rock for

gas.

KEY WORDS/ STIKKORD	

Summary continued:

Zone F; 2910-3105 m: Moderate mature, good potential as a source rock for gas.

Zone G,H,J and K; 3105-3960 m: Moderate mature increasing to oil window maturity.

Zone L; 3960-4065 m: Oil window maturity.

Zone M; 4065-4485 m: Oil window maturity. Turbodrilling have affected the results. Possibly free HC in upper part.

Zone N; 4485-4575 m: Oil window maturity, fair potential as a source rock for gas.

EXPERIMENTAL AND DESCRIPTION OF INTERPRETATION LEVELS

Headspace Gas Analysis

One ml. of the headspace gas from each of the cans was analysed gas chromatographically for light hydrocarbons. The results are shown in Table 1a. The canned samples were washed with temperated water on 4, 2, 1 and 0.125 mm sieves to remove drilling mud and thereafter dried at 35°C .

Total Organic Carbon (TOC)

Picked cuttings of the various lithologies in each sample was crushed in a centrifugal mill. Aliquots of the samples were then weighed into Leco crucibles and treated with hot 2N HC1 to remove carbonate and washed twice with distilled water to remove traces of HC1. The crucibles were then placed in a vacuum oven at 50° C and evacuated to 20 mm Hg for 12 hrs. The samples were then analysed on a Leco E C 12 carbon analyser, to determine the total organic carbon (TOC).

Extractable Organic Matter (EOM)

From the TOC results samples were selected for extraction. Of the selected samples, approximately 100 gm of each was extracted in a flow through system (Radke et al., 1978, Anal. Chem. 49, 663-665) for 10 min. using dichloromethane (DCM) as solvent. The DCM used as solvent was distilled in an all glass apparatus to remove contaminants.

Activated copper fillings were used to remove any free sulphur from the samples.

After extraction, the solvent was removed on a Buchi Rotavapor and transferred to a 50 ml flask. The rest of the solvent was then removed and the amount of extractable organic matter (EOM) determined.

Chromatographic Separation

The extractable organic matter (EOM) was separated into saturated fraction, aromatic fraction and non hydrocarbon fraction using a MPLC system with hexane as eluant (Radke et al., Anal. Chem., 1980). The various fractions were evaporated on a Buchi Rotavapor and transferred to glassvials and dried in a stream of nitrogen. The various results are given in Table III-VI.

Gas Chromatographic Analyses

The saturated and aromatic hydrocarbon fractions were each diluted with n-hexane and analysed on a HP 5730 A gas chromatograph, fitted with a 25 m OV101 glass capillary column and an automatic injection system. Hydrogen (0.7 ml/min.) was used as carrier gas and the injection was performed in the split mode (1:20).

Vitrinite Reflectance

Samples, taken at various intervals, were sent for vitrinite reflectance measurements to Geoconsultants, Newcastle-upon-Tyne. The samples were mounted in Bakelite resin blocks; care being taken during the setting of the plastic to avoid temperatures in excess of 100° C. The samples were then ground, initially on a diamond lap followed by two grades of corundum paper. All grinding and subsequent polishing stages in the preparation were carried out using isopropyl alcohol as lubricant, since water leads to the swelling and disintegration of the clay fraction of the samples.

Polishing of the samples was performed on Selvyt cloths using three grades of alumina, 5/20, 3/50 and Gamma, followed by careful cleaning of the surface.

Reflectance determinations were carried out on a Leitz M.P.V. microphotometer under oil immersion, R.I. 1.516 at a wavelength of 546 nm. The field measured was varied to suit the size of the organic particle, but was usually of the order of 2 micron diameter. The surface of the polished block was searched by the operator for suitable areas of vitrinitic material in the sediment. The reflectance of the organic particle was determined relative to optical glass standards of known reflectance. Where possible, a minimum of twenty individual particles of vitrinite was measured, although in many cases this number could not be achieved.

The samples were also analysed in UV light, and the colour of the fluorescing material determined. Below, a scale comparing the vitrinite reflectance measurements and the fluorescence measurements are given.

VITRINITE REFLECTANO R.AVER. 54		0.20 1516) (0.30	0.40	0.50	0.60	0.70	0.80	0.90	1.00	1.10
% CARBON CONTENT DA	۱F.	57		62	70	73	76	79	80.5	82.5	84	85.5
LIPTINITE FLUOR nm		725	750	790	820	840		860	890	g	940	
EXC. 400 nm BAR. 530 nm colour G G/ $_{\Upsilon}$ Y Y/ $_{0}$ L.0 M.0. D.0. O/ $_{R}$ R						R						
	zone	1	2	3	4	5	6	*************************************	7		8	9

<u>NOTE</u>: Liptinite NM = Numberical measurements of overall spore colour and not peak fluorescence wavelength.

Relationship between liptinite fluorescence colour, vitrinite reflectance and carbon content is variable with depositional environment and catagenic history. The above is only a guide. Liptinite will often appear to process to deep orange colour and then fade rather than develop O/R red shade. Termination of fluorescence is also variable.

Processing of Samples and Evaluation of Visual Kerogen

Crushed rock samples were treated with hydrochloric and hydrofluoric acids to remove the minerals. A series of microscopic slides contain strew mounts of the residue:

T-slide represents the total acid insoluble residue.

<u>N-slide</u> represents a screened residue (15 μ mesh).

0-slide contains palynodebris remaining after flotation (${\rm ZnBr_2}$) to remove heavy minerals.

<u>X-slides</u> contain oxidized residues, (oxidizing may be required to remove sapropel which embeds palynomorphs, or where high coalification prevents the identification of the various groups).

T and/or 0 slides are necessary to evaluate kerogen composition/-palynofacies which is closely related to sample lithology.

Screened or oxidized residues are normally required to concentrate the larger fragments, and to study palynomorphs (pollen, spores and dinoflagellates) and cuticles for paleodating and colour evaluation.

So far visual evaluation of kerogen has been undertaken from residues mounted in glycerine jelly, and studied by Leitz Dialux in normal light (halogene) using x10 and x63 objectives. By x63 magnification it is possible to distinguish single particles of diameters about 2 and, if required, to make a more refined classification of the screened residues (particles $>15\mu$).

The colour evaluation is based on colour tones of spores and pollen (preferably) with supporting evidence from colour tones of other types of kerogen (woody material, cuticles and sapropel). These colours are dependant upon the maturity, but are also influenced by the paleoenvironment (lithology of the rock, oxidation and decay processes). The colours and the estimated colour index of an individual sample may therefore differ from those of the neighbouring samples. The techniques in visual kerogen studies are adopted from Staplin (1969) and Burgess (1974).

In interpretation of the maturity from the estimated colour indices we follow a general scheme that is calibrated against vitrinite reflectance values (R_o).

Ro	0.45	0.6	0.9	1.0	1.3
colour	2-	2	2+	3-	3
index					
Maturity	Moderate	Mature (oil window)		Condensate
intervals	mature				window

Rock-Eval Pyrolysis

100 mg crushed sample was put into a platinum crucible whose bottom and cover are made of sintered steel and analysed on a Rock-Eval pyrolyser.

Pyrolysis-GC

Instrumentation: CDS Pyroprobe 120 interfaced to a Varian 3700 GC

Pyrolysis conditions: 600° C in nitrogen for 5 sec.

GC conditions:

Column: 30m OV-1 glass capillary.

Carrier gas: Nitrogen with inlet pressure 3 psi; 0.7 ml/min.

Oven program: 38°C/1 min.; to 260 at 4°C/min.

Split: 1:20.

Kerogen concentrates for visual kerogen examination were used for

pyrolysis gas chromatography.

RESULTS AND DISCUSSION

Light Hydrocarbons

Head space gas analysis was performed on canned samples from 1485 m to 4575 m. Based on the results from these analyses together with the lithological examination, the analysed section of the well is divided into fourteen different zones.

- A: 1485-1680 m
- B: 1680-1875 m
- C: 1875-2440 m
- D: 2440-2715 m
- E: 2715-2910 m
- F: 2910-3105 m
- G: 3105-3315 m
- H: 3315-3405 m
- I: 3405-3510 m
- J: 3510-3705 m
- K: 3705-3960 m
- L: 3960-4065 m
- M: 4065-4485 m
- N: 4485-4575 m

Zone A; 1500-1680 m: Only a few samples from this zone were analysed. The analysed samples are mainly found to contain claystone while one sample 1575-90 m has a mixture of claystone and sandstone. All the analysed samples in this zone have a good abundance of C_1 - C_4 hydrocarbons and a poor abundance of C_5 + hydrocarbons. This, together with the low wetness of the gas and the high i C_4 /n C_4 ratio indicates that the samples are immature, and the gas encountered is mainly biogenic gas. The sample from 1575-90 m, which contained some sandstone shows a higher abundance of C_1 - C_4 hydrocarbons than the other samples in the zone, indicating that this sandstone lense contains migrated biogenic gas.

Zone B; 1680-1875 m: This zone consists of claystone as zone A, but all the light hydrocarbon data is significantly different to that for

zone A. Both the abundance of C_1 - C_4 and C_5 + hydrocarbons are significantly higher than zone A (good and fair respectively), while the wetness of the gas shows an increase and the iC_4 /n C_4 ratio shows a decrease. This indicates that the claystone in this zone is richer in organic matter than zone A and with a type of kerogen which is capable of producing hydrocarbons at this low maturity.

Zone C; 1875-2440 m: Only a few samples from this zone were analysed, and these consist of variable lithologies; mainly sandstone and claystone together with some coal. A large part of the zone is turbodrilled and this very often affects the light hydrocarbon results due to the high temperatures produced during drilling. The levels are extremely variable throughout the zone probably due to the turbodrilling.

Zone D; 2445-2715 m: This zone consists of sandstone with an increasing amount of claystone and siltstone towards the base of the zone. The light hydrocarbon data is again found to be very variable, especially the $\rm C_1$ - $\rm C_4$ results, while the $\rm C_5$ + are relatively uniform. The abundance of $\rm C_1$ - $\rm C_4$ hydrocarbons is good throughout the zone with a relatively high i $\rm C_4/nC_4$ ratio indicating immaturity. The abundance of $\rm C_5$ + hydrocarbons is poor throughout the zone.

Zone E; 2715-2910 m: Another zone which is almost completely turbodrilled, and has therefore affected the light hydrocarbon results. The abundance of $\rm C_1-\rm C_4$ hydrocarbons is lower than in Zone D.

Zone F; 2910-3105 m: This zone consists mainly of claystone, with some turbodrilled material around 2950 m. The abundance of both $\rm C_1$ - $\rm C_4$ and $\rm C_5$ + hydrocarbons are significantly higher than in zone E while the wetness of the gas is still low. This together with the relatively high i $\rm C_4/nC_4$ ratio indicate that the samples are immature.

Zone G; 3105-3315 m: This zone consists mainly of sandstone with variable amount of claystone. The abundance of C_1 - C_4 hydrocarbons is significantly lower than in zone F, and the abundance of C_5 + hydrocarbons is higher. This, together with the significantly higher

wetness of gas in this zone indicate that the zone might contain small amounts of migrated heavy hydrocarbons.

Zone H; 3315-3405 m: The percentage of claystone in this zone is variable, but on the whole higher than in zone G. The abundance of C_1 - C_4 hydrocarbons is approximately the same as in zone G while the abundance of C_5 + hydrocarbons is variable. The most significant difference from zone G is found in the wetness of the gas and in the iC_4/nC_4 ratios. The percentage wetness is very high, indicating high maturity. The iC_4/nC_4 ratio is also significantly higher than in zone G. Such an increase in iC_4/nC_4 ratio could indicate bacteriological activity. Presently the true stratigraphy is not known.

Zone I; 3405-3510 m: Again a zone which has been turbodrilled and the abundance of C_1 - C_4 and C_5 + shows a decrease compared with zone H. The wetness of the gas also shows a decrease at the top of the zone compared with zone H then increases with increasing depth. The iC_4/nC_4 ratio drops significantly compared to zone H.

Zone J; 3510-3705 m: This zone is also turbodrilled, but is distinct from zone I because of the large differences in the light hydrocarbon data. The abundance of both $\rm C_1$ - $\rm C_4$ and $\rm C_5$ + hydrocarbons show a general increase with increasing depth, and the wetness of the gas is significantly higher than in zone I, almost similar to zone H.

Zone K; 3705-3960 m: The upper 60 m of this zone is also turbodrilled while the rest of the zone consists mainly of claystone down to 3915 m, then chert down to 3960 m. Because of this, the zone might have been divided into two, but due to only minor variations in the light hydrocarbon data, it was decided to keep it as one zone. The abundance of C_1 - C_4 hydrocarbons varies slightly throughout the zone, but is generally found to be slightly higher than zone J. The abundance of C_5 + hydrocarbons is slightly higher at the top of the zone compared with zone J, while the lower part of the zone has a similar abundance to zone J. The greatest difference between zone J and K is found in the wetness of the gas which shows a general decrease with increasing depth.

Zone L; 3960-4065 m: This zone consists mainly of sandstone. The upper samples of this zone shows a significant increase in the abundance of light hydrocarbons compared with the lowermost samples in zone K, but the wetness of the gas is low. This indicates that this part of the zone contains migrated dry gas.

Zone M; 4065-4485 m: The upper part of this zone consists of claystone, and most of the samples from 4100 m down to 4450 m contains turbodrilled material. The abundance of light hydrocarbons decreases significantly in this zone compared with zone L. This might be due to turbodrilling.

Zone N; 4485-4575 m: This zone consists mainly of claystone and chert. It is distinct from zone M, because of the increase in the wetness of the gas found at the top of zone N. This decreases rapidly towards the base of the zone.

Total Organic Carbon (TOC)

Where shales/claystones constitute more than 10% of a sample, they were analysed. Occasionally shales/claystones of different colours were picked and analysed separately. Similarly siltstones, where prominent, were picked and analysed separately. Limestones and shaly or silty sandstone were also picked and analysed where they comprised greater than 10% of a sample. Clean sands and sandstones were not analysed.

Zone A: The claystones in this zone are mainly grey-green and are found to have a uniform TOC value of 1.2% throughout the zone. Two samples, 1485-1500 m and 1620-1635 m contain a mixture of grey-green and dark grey claystone. The dark grey claystone is found to have a significantly higher TOC value and is classified as having a rich abundance of organic carbon.

Zone B: Zone B consists mainly of dark grey claystones which show increasing TOC values with increasing depth. The whole zone is found to have a rich abundance of organic carbon.

Zone C: Only a few samples of this zone were organic geochemically analysed, and of these a large number of them consisted of turbodrilled material. This material was not analysed, while small percentages of dark claystone found in the samples were analysed and found to have a rich abundance of organic carbon. Later analyses indicate that these samples are most probably cavings. A few samples also contain some grey-green claystone which is found to have a good abundance of organic carbon.

Zone D: This zone consists mainly of sandstone which was not analysed for organic carbon, together with small percentages of claystone and siltstone. Where these exceeded 10% they were analysed, and the siltstone is found to have a good abundance of organic carbon.

Zone E: Only the upper part of this zone which consisted of grey-brownish to grey claystones were analysed for organic carbon, and found to have a rich abundance. The lower part was affected by turbodrilling and not analysed.

Zone F: The lithology is similar to the upper part of zone E while the abundance of organic carbon is significantly lower. The decrease in the abundance of organic carbon with increasing depth is also seen in the analysed samples in zone E and the results found for zone F therefore fit the general pattern for the grey, brownish grey claystone in these two zones.

Zone G: This zone consists of a mixture of sandstone and greenish-grey to grey claystone. The claystone in the upper three samples has TOC values close to 1% while the samples below 3135 m have TOC values around 0.3%.

Zone H: The claystones are mostly grey in this zone and the TOC values of the claystone are low; 0.15-0.2% showing a slight increase with increasing depth.

Zone I: The cuttings from zone I are affected by the turbodrilling; they consist almost entirely of sandstones with variable TOC values (0.2-0.7%).

Zone J: The lithologies in this zone are similar to the zone above, and have similar TOC values.

Zone K: This zone consists mostly of grey claystones with variable TOC values, probably due to turbodrilling. The samples generally have a fair abundance of organic carbon.

Zone L: This zone consist of some claystone but mainly limestone and silicified limestone. The latter is found to be barren while the claystone has approximately 0.3% organic carbon. The siltstone found in some of the samples has rather high abundances of organic carbon (0.5-1.5%).

Zone M: This zone consists mostly of light grey to dark grey claystone with a fair abundance of organic carbon, with generally uniform values (0.4-0.5%) throughout the zone, and a 'mudstone' looking cokey due to turbodrilling. The mudstones is found to have TOC values of 1-1.9% throughout the upper 270 m of the zone with a distinct decrease from approximately 4370 m. The lowermost samples with this lithology have TOC values of 0.2-0.8%.

Zone N: This zone consists mainly of grey to dark grey claystone with variable TOC values (0.3-0.8%). A few samples contain some limestone with relatively high TOC values (0.5-0.8%).

Extraction and Chromatographic Separation

Zone A: Two samples, 1485-1500 m and 1665-80 m, from this zone were extracted and found to have a fair abundance of extractable hydrocarbons. The organic carbon-normalized results show, however, a poor extractability of extractable hydrocarbon. This discrepancy is probably due to the low maturity so that the organic matter in the sample has not reached the maturity level for producing significant amounts of hydrocarbons. The gas chromatograms of saturated hydrocarbon fractions of the two samples vary significantly. The sample from 1485-1500 m shows a large input of high molecular weight n-alkanes together with steranes and triterpanes. The CPI is high for these samples indicating low maturity. At this low maturity only the geochemical fossils will

be extracted from the sample. This chromatogram therefore indicates that there has been a significant input of higher plant lipids etc. The sample from 1665-1680 m has a large isoprenoid component and medium molecular weight hydrocarbons rather than high molecular weight n-alkanes are dominant. This suggests that this sample contains organic matter of marine origin.

Zone B: Four samples from this zone were extracted. The abundance of extractable hydrocarbons increases with increasing depth, from a good abundance for the sample from 1710-25 m to a rich abundance for the two lowermost samples. A slight decrease in abundance is found for the sample from 1845-60 m. A similar trend is found for the organic carbon-normalized values. However extractability values were low which suggests that these samples are of low maturity.

The gas chromatograms of the saturated hydrocarbon fractions of the four samples are similar with a large abundance of isoprenoids and approximately equal amounts of medium weight and heavy n-alkanes. The abundance of steranes and triterpanes was also high. The hydrocarbons present are mostly geochemical fossils at this low maturity level, and the results indicate a mixed input of terrestrial and marine organic matter.

Zone C: Nine samples; four cutting samples and five core samples from this zone were analysed. The cutting samples from 1980-95 m and the four uppermost core samples have a rich abundance of extractable hydrocarbons. There is a significant difference in the abundance of extractable hydrocarbons between the core sample from 2041.2 m and 2044.2 m. The latter has a significantly lower abundance of extractable hydrocarbons, while the abundance of extractable organic matter vary slightly. The three analysed cutting samples from the lower part of the zone show a decreasing abundance of extractable hydrocarbons with increasing depth. The organic carbon normalised values show similar trends to those of the extractable hydrocarbons.

The gas chromatograms of the saturated hydrocarbon fractions vary in the different samples. The gas chromatograms of the saturated hydrocarbons of the cuttings sample from 1980-95 m exhibits a large

abundance of medium molecular weight hydrocarbons typical for a condensate or possibly a diesel, if this was used as a mud additive. There is also a small amount of high molecular weight n-alkanes with a high CPI value and a significant amount of steranes/triterpanes, typical for an immature sample of terrestrial material. The gas chromatography results indicate that the analysed sample is contaminated with either a migrated condensate, or diesel from the drilling mud. The gas chromatograms of the saturated hydrocarbon fractions of the two core samples from 1983 and 1983.2 m exhibit unimodal front-biased n-alkane distributions typical of mature hydrocarbon distributions. The gas chromatograms of the saturated hydrocarbon fractions of the next three core samples 2026.8, 3041.2 and 3044.2 m are all different from those encountered higher up in the well with a large abundance of high molecular weight n-alkanes, typical of terrestrial material. Sample 2041.2 m is slightly different from the two others in that pristane is quite prominent in this sample. Otherwise only minor differences are found in the general pattern. The gas chromatograms of the saturated hydrocarbon fractions of the three remaining, cutting samples from the lower part of this zone are different from those already discussed. All three have a bimodal distribution with maxima at ${\rm nC}_{16}$ and ${\rm nC}_{27}$ with a high CPI value for the $\mathrm{C}_{23}\text{-}\mathrm{C}_{32}$ hydrocarbons. In two of the samples the pristane/nC₁₇ ratio is slightly above 1.0 while in the third it is slightly below 1.0. The bimodal pattern would indicate an input from well mature hydrocarbons, possibly of marine origin together with an input of hydrocarbons from moderate mature terrestrial material.

Zone D: Four samples from this zone were analysed. The sample 2445-60 m is found to have a poor abundance of extractable hydrocarbons while the samples from 2610-25, 2625-40 and 2685-2700 m have good abundance. The organic carbon normalised results are in good agreement with this. The gas chromatograms of the saturated hydrocarbon fractions vary slightly. The main variation is found in the abundance of the high molecular weight n-alkanes which is found to be quite significant in the sample from 2445-60 m but are only minor constituents for the three other samples. This would indicate that the input from terrestric material is far less in the samples from 2610-25 m,

2625-40 m and 2685-2700 m while it is quite significant in the sample from 2445-60 m.

Zone E: Two samples from this zone were extracted and found to have a good/rich abundance of extractable hydrocarbons in good agreement with the extractability found by normalizing the results to organic carbon. The gas chromatograms of the saturated hydrocarbon fractions show bimodal distributions with maxima at nC_{15} and nC_{25} indicating an input of hydrocarbons both from terrestrial and marine material.

Zone F: Two samples from this zone were extracted and both found to have a good abundance of extractable hydrocarbons. The gas chromatograms of the saturated fraction of the sample from 2925-40 m is similar to those from zone E. The gas chromatogram of the saturated fraction of the sample from 2970-85 m has a more prominent content of high molecular weight n-alkanes with low CPI, typical for mature hydrocarbons of terrestrial origin.

Zones G, H, I, J and K: No samples from these zones were extracted.

Zone L: One sample, 4005-4020 m was extracted and found to have a good abundance of extractable hydrocarbons. The gas chromatogram of the saturated hydrocarbon fraction shows a smooth unimodal n-alkane pattern with a maximum at nC_{17} , typical for mature hydrocarbons.

Zone M: Six samples, including four cuttings samples from this zone were extracted and all found to have a good abundance of extractable hydrocarbons. The gas chromatograms of the saturated hydrocarbon fractions show only minor variations. All the samples have a smooth unimodal n-alkane distribution, typical for well mature hydrocarbons. The sample from 4125 m shows a larger input of high molecular weight n-alkanes than the other samples, indicating a larger input of terrestrial material.

Zone N: No samples from this zone were analysed.

Examination in Reflected Light

K-7762, 1485-1500 m: Shale and Siltstone, Ro=0,45(6)

The sample shows a of light bitumen staining with some wisps. It has a low to moderate phytoclast content. There are some reworked and inertinite particles with subordinate vitrinite wisps. UV light shows no fluorescence and the eximite content is nil.

K-7774, 1665-80 m: Shale, Ro=0,42(22)

The sample has an overall moderate bitumen staining. It has a moderate content of inertinite. Particles which are reworked are dominant with a good content of vitrinite particles and wisps. UV light shows yellow/orange and light orange fluorescence from spores and a moderate exinite content.

K-7777, 1710-25 m: Shale and Carbonate, Ro=0,44(22)

The sample has an overall heavy bitumen staining. It has a low content of vitrinite particles and wisps with a trace only of inertinite and reworked particles. UV light shows yellow/orange fluorescence from spores and a moderate to rich eximite content.

The sample has an overall heavy bitumen staining. It has a low to moderate content of vitrinite particles and wisps. There is a trace only of inertinite. UV light shows yellow and yellow/orange fluore-scence from spores and hydrocarbon specks and a low to moderate exinite content.

\ K-7784, 1815-30 m: Shale, Ro=0,43(21)

The sample has an overall heavy bitumen staining. It has a moderate content of vitrinite wisps and particles with subordinate inertinite and reworked particles. UV light shows yellow/orange fluorescence from spores and a low to moderate exinite content.

K-7786, 1845-60 m: Shale and Siltstone, Ro=0,44(22)

The sample has an overall heavy bitumen staining. It has a moderate phytoclast content containing vitrinite particles and wisps with about an equal proportion of reworked and inertinite particles. UV light shows yellow/orange and light orange fluorescence from spores and a trace only of eximite.

K-8793, 1983.0 m: Coal and Shale, Ro=0,39(21)

The sample is vitrinitic with resin wisps and spores and contains a little inertinite in the coal. It has abundant phytoclasts in the shale. UV light shows light orange fluorescence from spores and a moderate exinite content.

K-8794, 1993.0 m: Coal and Shale, Ro=0,44(25)

The sample is vitrinitic with resin globules and with a trace only of inertinite in the coal. The shale has plentiful inertinite and vitrinite particles. UV light shows light to mid orange fluorescence from spores and algae and has a rich exinite content.

K-7797, 1980-95 m: Shale, Ro=0,47(16)

The sample has a few bitumen wisps and light staining with a moderate phytoclast content. It contains vitrinite wisps with subordinate inertinite and reworked particles. UV light shows light orange fluorescence from spores and hydrocarbon specks and a low exinite content.

K-8795, 2026.8 m: Coal and Shale, Ro=0,57(20)

The sample consists of coal which is wholly vitrinitic and shale with a few vitrinite wisps, stringers and particles. There are no other macerals. UV light shows light and mid orange fluorescence from spores and a moderate to rich eximite content.

K-8796, 2041.2 m: Coal and Shale, Ro=0,44(17)

The sample consists of coal where vitrinite is dominant, together with resin bands and globules and a little inertinite. There are plentiful vitrinite wisps and particles in the shale. UV light shows light and mid-orange fluorescence from spores and cuticles and a moderate exinite content.

\ K-8797, 2044.2 m: Carbargillite, Ro=0,83(21)

The sample consists of a mass of inertinite fragments in heavy bitumen stained matrix with a few vitrinite wisps. UV light shows deep orange fluorescence from spores and a moderate eximite content.

K-7809, 2160-75 m: Shale, Ro=0,44(20)

The sample consists of a variable bitumen staining with a moderate content of inertinite and reworked particles with about an equal proportion of vitrinite particles and wispy particles. UV light shows yellow/orange fluorescence from spores and hydrocarbon specks and a moderate exinite content.

K-7834, 2265 m: Shale, Ro=0,51(10)

The sample contains bitumen wisps and light staining. It has a moderate phytoclast content and reworked and inertinite particles with a trace of vitrinite wisps. UV light shows light to deep orange fluorescence from spores in a few cuttings and a low exinite content.

K-7837, 2310 m: Shale, Siltstone and Sandstone, Ro=0,45(8)

The sample contains light bitumen staining and wisps. It has a low to moderate phytoclast content and reworked and inertinite particles with subordinate vitrinite wisps. UV light shows light orange fluorescence from spores and a low to moderate exinite content.

K-7847, 2446-60 m: Shale, Siltstone and Carbonate, Ro=0,50(21)

The sample has a few bitumen stained cuttings and a low content of inertinite and reworked particles with a trace only of vitrinite particles and wisps. UV light shows yellow/orange fluorescence from hydrocarbon specks and spores and a moderate exinite content.

 $\sqrt{K-7921}$, 2610-25 m: Shale and Carbonate, Ro=0,45(21)

The sample has a variable bitumen staining and a moderate content of inertinite and reworked particles with subordinate vitrinite particles and wisps. UV light shows yellow/orange fluorescence from spores and hydrocarbon specks and a moderate exinite content.

\ K-7922, 2625-40 m: Shale, Ro=0,45(20)

The sample has a moderate bitumen staining and wisps. It has a moderate content of vitrinite wisps and particles with subordinate inertinite and reworked particles. UV light shows light orange fluorescence from spores and a moderate exinite content.

 $\sqrt{K-7926}$, 2685-2700 m: Mixed Shale Lithologies, Ro=0,47(21)

The sample contains bitumen wisps. It has a moderate content of phytoclasts but mostly vitrinite wisps and particles with subordinate inertinite and reworked material. UV light shows yellow/orange and light orange fluorescence from spores and a moderate exinite content.

K-7928, 2715-30 m: Shale, Ro=0,45(20)

The sample has a variable strong bitumen staining. It has a low to moderate content of inertinite and reworked particles with a trace only of vitrinite as wispy particles. UV light shows yellow/orange and light orange fluorescence from spores and a moderate exinite content.

K-7931, 2760-75 m: Shale, Ro=0,48(21)

The sample has a heavy bitumen staining with a low to moderate content of inertinite and reworked particles with about an equal proportion of vitrinite wispy particles. UV light shows yellow/orange and light orange fluorescence from spores and a moderate exinite content.

K-7942, 2925-40 m: Shale, Ro=0,44(23)

The sample has a variable strong bitumen staining and wisps. It has a low to moderate content of inertinite and reworked particles with plentiful vitrinite wisps and particles. UV light shows light and mid orange fluorescence from spores and a low eximite content.

\ K-7945, 2970-85 m: Shale and Sandstone traces, Ro=0,59(21)

The sample contains bitumen wisps and light staining. It has a low to moderate content of inertinite and reworked particles with subordinate vitrinite wispy particles. UV light shows mid orange fluorescence from spores and a low eximite content.

K-7971, 3030-45 m: Siltstone, Calcareous Shale, Ro=0,55(11)

The sample has a moderate bitumen staining and a few wisps. It has a moderate phytoclast content. Reworked and inertinite particles are dominant. There are some vitrinite wispy particles present. UV light shows mid orange fluorescence from spores and a moderate exinite content.

 \times K-7975, 3090-105 m: Shale and Calcareous Shale, Ro=0,57(6)

The sample shows light bitumen staining and some wisps. It has a low to moderate phytoclast content. Reworked and inertinite particles dominate over vitrinite wisps. UV light shows light orange fluorescence from spores and a moderate exinite content. \times K-8005, 3405-20 m: Shale, Ro=0,54(2) and 1,04(1)

The sample contains a few bitumen wisps. It has a very low content of inertinite and reworked particles. Only a couple of possible vitrinite particles are located which give possible true values. UV light shows light to mid orange fluorescence from spores and hydrocarbon specks and a low to moderate exinite content.

K-8013, 3525-40 m: Shale, Ro=0,57(3)

The sample contains some bitumen wisps. It has a low organic content with almost wholly inertinite and reworked particles. Only three vitrinite wisps were located. UV light shows mid orange fluorescence from spores and a low exinite content.

K-8019, 3615-30 m: Shale, Ro=0,59(7)

The sample contains bitumen wisps. It has a very low phytoclast content and a few particles of inertinite and reworked material. There are only a handful of poor vitrinite particles. UV light shows mid to deep orange fluorescence from spores and a moderate eximite content.

 \times K-8025, 3705-20 m: Shale, Ro=0,55(7) and 0,91(1)

The sample contains bitumen wisps and a trace only of phytoclasts. It has a few inertinite particles and a handful of poor vitrinite wispy particles. UV light shows light orange fluorescence from spores and a low eximite content.

K-8030, 3780-95 m: Shale, Ro=0,57(5)

The sample contains bitumen wisps and a very low content of phytoclast. It has only a handful of vitrinite specks. Inertinite and reworked particles are dominant. UV light shows light and mid orange fluorescence from spores and a low exinite content.

 \times K-8061, 3825-40 m: Shale, Ro=0,37(1) and 0,68(4)

The sample contains bitumen wisps with a trace only of phytoclasts. It has a few inertinite and reworked particles and only a handful of poor vitrinite specks. UV light shows mid orange fluorescence from spores and a low exinite content.

K-8067, 3915-30 m: Shale, Ro=0,69(7)

The sample contains bitumen wisps with a very low content of phytoclast. It has some inertinite and reworked particles with a trace of vitrinite particles. UV light shows orange to red fluorescence from spores and a low to moderate eximite content.

K-8072, 3990-4005 m: Siltstone, Ro=0,67(20)

The sample contains bitumen wisps and staining. It has a low to moderate content of gnarled and corroded inertinite and reworked particles with subordinate vitrinite wispy particles. UV light shows mid to deep orange fluorescence from spores and a low eximite content.

K-8073, 4005-20 m: Shale and Siltstone, Ro=0,36(1) and 0,71(6)

The sample has a variable strong bitumen staining and wisps. It has a low to moderate content of gnarled inertinite and reworked particles with a trace only of poor vitrinite particles of variable Ro values. UV light shows mid orange fluorescence from spores and a low exinite content.

K-8076, 4050-65 m: Siltstone and Shale

The sample has an overall moderate bitumen staining and wisps. There is a trace only of phytoclasts and a few inertinite and reworked particles. No vitrinite is located. UV light shows mid to deep orange fluorescence from spores and hydrocarbon wisps and a low exinite content.

 κ -8392, 4095-110 m: Shale and Siltstone, Ro=0,61(3) and 1,00(2)

The sample has strong bitumen staining and wisps with a trace only of phytoclasts. It has a few particles of inertinite and reworked material and a handful of doubtful vitrinite particles. UV light shows mid orange fluorescence from spores and hydrocarbon specks and a low to moderate exinite content.

K-8392, 4095-110 m: Turbo-drilled

The sample contains no true sediment. UV light shows no fluorescence and the exinite content is nil.

K-8798, 4121.05 m: Shale and Siltstone, Ro=0,81(12)

The sample contains bitumen wisps and a moderate staining. The vitrinite and inertinite particles have high Ro values. The lowest Ro vitrinite particles measured are possibly wholly reworked. UV light shows deep orange fluorescence from spores and a low eximite content.

K-8799, 4124 m: Shale and Sandstone, Ro=0,84(6)

The sample has a light bitumen staining and plentiful phytoclasts. Reworked and inertinite particles are dominant. There is a trace only of vitrinite wisps. UV light shows mid orange fluorescence from carbonate and the exinite content is nil.

K-8396, 4155-70 m: Turbo drilled

The sample contains no true sediment. UV light shows no fluorescence and the exinite content is nil.

K-8396, 4155-70 m: Shale, Ro=0,65(16) and 1,00(2)

The sample contains bitumen wisps. It has a variable phytoclast content, generally low overall. There are some inertinite and reworked particles present with a trace only of vitrinite wispy particles. UV light shows mid orange fluorescence from spore specks and a low exinite content.

K-8401, 4230-45 m: Turbo drilled

The sample contains no true sediment. UV light shows no fluorescence and the eximite content is nil.

K-8401, 4230-45 m: Shale, Ro=0,29(1)

The sample contains bitumen wisps but is otherwise virtually barren. There are a few phytoclasts and only one poor vitrinite wisp is located. UV light shows mid to deep orange fluorescence from spores and a low to moderate eximite content.

K-8408, 4335-50 m: Turbo drilled

The sample contains no true sediment. UV light shows no fluorescence and the exinite content is nil.

K-8408, 4335-50 m: Shale, Ro=0.45(1), 0.68(7) and 1.07(1)

The sample contains bitumen wisps and has a very low phytoclast content. There are a few particles of inertinite and reworked material with a trace only of vitrinite particles of variable Ro values. UV light shows mid orange fluorescence from spores and a low to moderate exinite content.

K-8639, 4380 m: Turbo drilled

The sample consists of only a couple of shale cuttings containing bitumen wisps and it has no phytoclasts. UV light shows no fluorescence and the eximite content is nil.

K-8641, 4395-410 m: Turbo drilled

The sample contains no true sediment. UV light shows no fluorescence and the exinite content is nil.

K-8646, 4470-85 m: Turbo drilled

Only three true shale cuttings are located in this sample. It contains bitumen wisps with a trace only of inertinite and reworked particles. One speck of possible vitrinite is located. UV light shows no fluorescence and the eximite content is nil.

K-8647, 4500 m: Shale, Ro=0,73(6)

The sample shows a strong bitumen staining and wisps. There is a trace only of vitrinite and inertinite particles which are possibly reworked. UV light shows mid orange fluorescence from spores and a low exinite content.

 \times K-8649, 4515-30 m: Shale and Siltstone, Ro=0,57(6) and 0,95(2)

The sample contains bitumen wisps and has a very low organic content. It has inertinite and reworked particles with only a handful of vitrinite particles and wispy particles. UV light shows deep orange fluorescence from spores and a low exinite content.

INVESTIGATIONS IN TRANSMITTED LIGHT

<u>Disperse Organic Matter (Visual Kerogen)</u>

The analysis of the sedimentary organic matter in this well, on request from Norsk Hydro, has been based on picked lithologies from ditch cuttings. The results from 33 cutting samples were supplied by analyses of 6 core samples.

We distinguish the following main intervals on the basis of composition and preservation of the organic matter.

1680-1725 m and 1770-1860 m: Dominantly cuticles and woody material. Large sapropelised cuticular fragments were observed especially in the upper part and fusinite and inertinite were frequent in the lower part of the interval. Cysts and pollen of late Jurassic affinity indicate immature to moderate mature deposits.

1983-2041.2 m: Coal fragments of mostly pure woody nature.

2044.2-2175 m, 2265-2460 m and 2625-2730 m: Dominantly cuticular and woody material with 10-20% of amorphous material. The presence in some samples of Jurassic palynomorphs indicate contamination in an interval of Triassic age. The maturity is near the top of the oil window.

2775-2985 m: Consist of residues of variable composition, due to fluctuations in marine influence of the Triassic rocks. Caved material from higher levels were occasionally observed. Top of the oil window.

4020 m and below: The sidewall cores suggest marine Permian deposits. Mostly very small residues consisting of dominantly amorphous, finely disperse matter. From 4350 m and below there is abundant caved material. The opacity of the material required chemical oxidation. The results obtained from this are therefore arbitrary.

Sample 1500 m:

The organic residue consists mainly of amorphous material as aggregates with embedded pyrite framboids and particles of wood (vitrinite). Well preserved cysts allow a correlation to Early Cretaceous.

Colour index: 2 is too high as maturation index.

Samples 1680-1725 m and 1770-1860 m:

The organic residues consists dominantly of terrestrial material (cuticles and woody matter) that is strongly sapropelised. True amorphous material which was estimated at about 10% is difficult to distinguish since the material is coherent as aggregates embedding palynomorphs, cysts and pollen of Late Jurassic affinity.

The upper part of the interval seems richer in large cuticular fragments, while there is more fusinite/inertinite in the lower interval. Colour index: 2-/2 or 2 to 2/2+. The colour index in the lower part 2/2+ is probably too high as a maturation index and we tentatively propose a maturity level close to 2 for the entire interval.

Samples 1983-2041.2 m:

The short interval, covered by cored material, is rich in coal fragments, mostly vitrinite. Cuticles and pollen/spores are subordinate.

Colour index: 2/2+ (sample 2026.8 m) seems somewhat low. Due to the opacity of the coal and the low content of eximite, a colour estimate was not attempted for the other samples.

Samples 2044.2 m and 2265 m:

Sapropelised cuticles and woody material together with true amorphous material are contained in aggregates. The structured material is poor or poor to fairly well preserved.

Colour index: 2/2+ or 2+

Samples 2310-2730 m:

Terrestrial material, cuticles and woody matter, from aggregates of variable density. Pollen, spores and small cysts revealed by chemical oxidation are of Triassic affinity. The preservation is variable and generally poor due to pyrite framboids.

The colour index: 2/2+, 2+, 2+/3-; variable within the interval. The lower readings represent Jurassic caved material, the highest readings may be due to weathering.

At this level, along with the Jurassic palynomorphs; we also consider the light coloured woody material to be caved material.

Samples 2775-2985 m:

The amorphous matter, although usually not dominant represents 25-35% of the organic matter. Cuticular fragments (30-45%), are important

together with occasionally rich assemblages of pollen and spores of undoubted Triassic nature. The degree of preservation is variable.

The colour index: 2/2+ or 2+

Samples 4020-4110 m:

The content of amorphous material is relatively high, but the organic residues are small and after screening (15μ) are dominated by dark coaly fragments. Due to the high coalification the distinction between inertinite and vitrinite is difficult.

Colour index: 3-/3

Samples 4121.05-4350 (?4530 m):

The residues are very small, most of them being dominated by amorphous material. After oxidation which removes the sapropel, most residues were rich in dark coaly matter, both vitrinite/inertinite and fusinite/semifusinite. Palynomorphs of Permian affinity were found occasionally and seem poorly preserved as a consequence of a carbonate lithology and abundance of pyrite.

The colour index: 3-, 3-/3, 3+ is variable and is probably influenced by the lithology.

ROCK-EVAL PYROLYSES

Zone A: Two samples from this zone were pyrolysed. The sample from 1485-1500 m has a low hydrogen index typical for a kerogen type III. The oxygen index is also found to be low for this sample which is found to have a fair petroleum potential. The sample from 1665-80 m has a far higher hydrogen index and probably consists of a mixture of kerogen type II and III. This sample which is immature has a good petroleum potential.

Zones B, C, D and E: A total of nineteen samples from these zones were pyrolysed and all are considered to be immature. The hydrogen indices

vary from 200 to 400 for these samples while the oxygen indices vary from 12-38. The results indicate a mixture of kerogen type II and type III in the various analysed samples, but with a large percentage of kerogen type II in most of the samples. Almost all the analysed samples have a rich petroleum potential. The production indices of the two core samples from 1983 m and 1993 m indicate that these samples contain some migrated hydrocarbons.

Zone F: Two samples from this zone were pyrolysed and both were immature, kerogen type III.

Zone G,H, J and K: No samples from these zones were pyrolysed.

Zones L and M: Seven samples from these zones were pyrolysed and all of mature kerogen type III. The petroleum potential is poor for all these samples while the high production index indicates free hydrocarbons in the samples.

CONCLUSION

The maturity of the analysed sequence from well 7120/12-2 is mainly based on vitrinite reflectance, spore fluorescence, spore coloration and $T_{\rm max}$ values from Rock-Eval pyrolysis. The richness of the samples is based on TOC and Rock-Eval pyrolysis with additional evidence being supplied from the abundance of light hydrocarbons, and C_{15}^+ extractable hydrocarbons. Source rock quality is based mainly on Rock-Eval pyrolysis and on visual kerogen examination.

Zone A, 1485-1680 m: Every second sample only was analysed. These were mainly grey-green claystones with a small amount of sandstone at 1600 m. Mostly diagenetic methane is present in the light hydrocarbons. All the samples have a good abundance of organic carbon. Rock-Eval of the two analysed samples show a distinct variation with far higher hydrogen index in the sample from 1665-1680 m compared with the sample from 1485-1500 m. This is in disagreement with the visual kerogen examinations which shows the sample from 1485-1500 m to contain more than 50% amorphous material while the sample from 1665-1680 m consists almost entirely of terrestrial material. Some of the terrestrial material is cuticular which would give a high hydrogen index. The zone is immature with a good potential as a source rock for gas.

Zone B, 1680-1875 m: The zone consists almost entirely of dark grey claystone with a rich abundance of organic carbon. The abundance of light hydrocarbons is good to rich, but rather dry. This is probably due to the low maturity. The abundance of extractable hydrocarbons is good increasing to rich in the lower half of the zone. The Rock-Eval pyrolysis shows the samples in the zone to have a relatively high hydrogen index. Pure kerogen type II should however, have a hydrogen index of 400-500 at this maturity level while kerogen type I should be at 700 m or higher. The visual kerogen examination shows that the samples contain almost entirely terrestrial material with a large input of cuticules. The gas chromatograms of the saturated hydrocarbon fractions show a large input of high molecular weight n-alkanes. Based on this it is believed that the kerogen in this zone consists of a

mixture of kerogen type I and III. The zone is immature with a rich potential as a source rock for heavy paraffinic oil and gas.

Zone C, 1875-2410 m: Parts of this zone were cored and some of the samples are badly affected by turbodrilling. This has severely affected the results and the interpretation is therefore tentative. The TOC analyses show the claystone in the samples to have a rich abundance of organic carbon. The gas chromatograms of the extracted hydrocarbon from the core samples from 1983 m and 1993.2 m show these to contain migrated hydrocarbons, possibly condensate. Similarly for the cutting sample 1980-95 m. The core samples from 2026.8 m, 2041.2 m and 2044.2 m are typical for immature coal samples. The hydrogen index was high for all the analysed samples from the zone, while the visual kerogen examination indicate that the samples contain mostly terrestrial material. Down to approximately 2042 m this is all woody material, and in the rest of the zone there is a significant proportion of cuticules. The vitrinite reflectance measurements on the core samples shows that most are immature, while one sample, 2044.2 m, has an oil window maturity. The results we think are reliable. This coal sample does, however, contain a large percentage of inertinite and we have therefore decided not to include this result in the maturity evaluation. The zone has a good potential as a source rock for gas plus heavy paraffinic oil below 2100 m. There are indications of migrated hydrocarbons (condensate) between 1950 m and 2100 m approximately .

Zone D, 2445-2715 m: The zone consists mainly of sandstones with a larger amount of siltstone towards the base. Fluorescence of hydrocarbons in UV light indicate some migrated hydrocarbons between approximately 2450 m and 2600 m. The zone is moderate mature.

Zone E, 2715-2910 m: Almost the entire zone is turbodrilled and the results are affected. The brown-grey claystone in upper part of the zone has a rich abundance of organic carbon and a rich abundance of extractable hydrocarbon with a relatively large amount of high molecular weight n-alkanes. The Rock-Eval results show a lower hydrogen index than for the samples above, although the visual kerogen examination does not indicate any great variation. The zone is found to be moderate mature with a rich potential as a source rock for gas and

possibly some heavy paraffinic oil. The lower part of the zone was not analysed.

Zone F, 2910-3105 m: Most of the samples in this zone consist of brown-grey claystones with a good abundance of organic carbon. Extraction of the samples show that they have a good abundance of extractable hydrocarbons with a large proportion of high molecular weight n-alkanes. The Rock-Eval results show that the samples have a low hydrogen index typical for kerogen type III while the visual kerogen examination indicate that these samples contain a good proportion of amorphous material. The zone is moderate mature with a good potential as a source rock for gas.

Zones G, H, I, J and K, 3105-3960 m: Only screening analyses have been undertaken on these zones which is partly turbodrilled. The abundance of organic carbon is poor in the analysed samples and there is no indication of free hydrocarbons in the samples. The upper part is moderate mature increasing to mature/oil window maturity for the lower part.

Zone L, 3960-4065 m: This zone consists of a mixture of sandstones and claystones. The claystones have a fair abundance of organic carbon. The light hydrocarbon data, together with the occurrence of fluorescence from hydrocarbons in UV light indicate migrated hydrocarbons in the sandstones in the zone. This is in good agreement with the gas chromatogram of the saturated hydrocarbon fraction and the production index. The Rock-Eval shows the sample in the zone to be of kerogen type III while the visual kerogen examination indicates that the sample contains approximately 50% amorphous material. The zone has an oil window maturity.

Zone M, 4065-4485 m: Almost the entire zone is turbodrilled. Grey claystones have a fair abundance of organic carbon while cokey mudstone has a good abundance. The Rock-Eval shows the zone to contain kerogen type III while most of the samples analysed in transmitted light contain a large proportion of amorphous material. The analyses might be strongly affected by the turbodrilling and interpretation is therefore difficult. The zone has an oil window maturity, with a fair

and good potential as source rocks for hydrocarbons for the two lithologies respectively.

Zone N, 4485-4575 m: The zone consists of claystone and chert. The claystone has a fair abundance of organic carbon. Rock-Eval pyrolyses shows the samples to contain kerogen type III in contrast to the visual kerogen examination which shows the sample to contain mainly amorphous material. The zone is found to have an oil window maturity with a fair potential as a source rock for gas.

TIPOTER (BATTION 188) was you a socra of the LV HipAthambons in Alabamati.

	illa i e			مرسو شاره سو در د	والمراقبة والمراجعة المحارضة		o com chart man an an ann an an an an an an an an an	ون بالمستقد والمستقد المستقد ا				
]	IFU No.	145F*T)- (m)	i Ci	C2	DЗ	i 0.4	nC4	05+	SUM C1-C4	SUM C2-C4	WET- NESS (%)	104 n04
	i did Alamana an	Near Protestant of Protest Co.	i en efiler miles se .		rs. gane in 199 Signs gane capte have all largers in the Sauge Makes, of the 1995	P LOSE MAN APPR PAR I LIGHT STAN P J. man Problem Adv. 1876 August Pari		. # FT # # 1 # 1# 1	7. 4. 5 11. 3 15. 11. 11. 1	, ''	¥ 11	
1	+777AZ)	11334	239	i01	1.6	20	77	11710	376	3,2)	. 80
I	K7765	1545	6113	102	56	15	16	44	6302	189	3.00	.94
1	K7768	1590	19529	436	258	54	50	83	20327	798	3.93	1.08
I	K7771	1635	3633	147	115	31	36	87	3962	329	8.30	.86
I	K7774	1680	39437	1809	1306	221	262	250	43035	3598	8.36	.84
1	K7776	1710	62066	2894	2097	327	432	498	67816	5750	8.48	.76
1	K7777	1725	66217	3132	2074	287	381	358	72091	5874	8.15	. 75
I	K7778	1740	37357	1912	1379	190	293	295	41131	3774	9.18	.65
1	K7779	1755	61960	3337	2564	394	667	876	68922	6962	10.10	.59
I	K7780	1770	74185	4569	4198	703	1376	1757	85031	10846	12.76	.51
I.	K7781	1785	131417	8173	7075	1035	2061	2052	149761	18344	12.25	.50
I	K7782	1800	98214	6567	6163	829	1978	2263	113751	15537	13.66	.42
	K7783	1815	26845	3447	3453	479	1033	965	35257	8412	23.86	. 46
	K7784	1830	49292	15343	6422	788	1535	1290	73380	24088	32.83	.51
[K7785	1845	56051	13710	4752	575	1064	1167	76152	20101	26.40	.54
	K7786	1860	55396	14187	4099	506	792	1010	74980	19584	26.12	. 64
	K7787	1875	40206	2675	1991	256	424	736	45552	5346	11.74	.60
	K7788	1890	9534	930	898	169	310	577	11841	2307	19.48	.55
[K7789	1905	7598	797	710	101	206	353	9412	1814	19.27	.49
]	K7792	1950	5713	463	620	249	402	988	7447	1734	23.28	.62
[K7797	1995	8454	699	564	74	152	248	9943	1489	14.98	.49
	K7800	2040	21472	1508	1028	168	289	537	24465	2993	12.23	,58
	K7803	2085	56957	10242	1723	254	193	100	71369	14412	20.19	1.32
	1 700.c	2130	O F E	. N	1. T D	r						
	. Vaje	7 - 74 2 - 7 - 4	\$, 4 <u>1.</u> 7	i a fel	#1.3K	E j	4.7	355	4 (4 6 2	i o re	4.23	1.19

TABLE I a.

CONCENTRATION (u) Gas / kg Rock) OF -C1 - C7 HYDROCARBONS IN HEADSPACE

			=======	=======================================	======			=======			=====
IKU No.	DEPTH	C1	C2	C3	i C4	nC4	C5+	SUM C1-C4	SUM C2-C4	WET- NESS (%)	iC/ nC/
K7812		2828	70	42	ه	10	23	2956	128	4.33	. 60
K7834	2265	11971	1526	827	108	232	528	14664	2693	18.36	. 4:
K7837	2310	4580	341	213	29	46	55	5209	629	12.08	. 6:
K7840	2355	1520	95	68	9	37	111	1729	209	12.09	. 24
K7843	2400	13530	502	289	52	87	158	14460	930	6.43	. 60
K7846	2445	4671	419	490	194	279	661	6053	1382	22.83	. 70
K7847	2460	4391	401	444	151	198	379	5585	1194	21.38	. 70
K7848	2475	14145	440	277	74	106	246	15042	897	5.96	. 70
K7849	2490	2947	206	194	72	104	372	3523	576	16.35	.6
K7850	2505	43	5	2	1	1	9	52	9	17.31	1.0
K7851	2520	4050	308	325	113	170	421	4966	916	18.45	.6
K7915	2535	6683	614	697	235	362	903	8591	1908	22.21	. 6!
K7916	2550	3847	478	514	155	207	492	5201	1354	26.03	. 7 !
K7917	2565	11998	602	514	171	223	562	13508	1510	11.18	. 7
K7918	2580	6305	434	361	126	167	358	7393	1088	14.72	. 7 !
K7919	2595	1868	187	180	47	60	104	2342	474	20.24	. 7;
K7920	2610	2909	412	402	90	120	157	3933	1024	26.04	. 7
K7921	2625	9698	499	481	120	167	159	10965	1267	11.55	. 7.
K7922	2640	7448	537	573	169	194	252	8921	1473	16.51	.8
K7923	2655	5304	1387	1337	357	475	588	8860	3556	40.14	. 7:
K7924	2670	2895	299	431	108	161	207	3894	999	25.65	.6
K7925	2685	7243	298	380	85	114	103	8120	877	10.80	. 7
K7926	2700	7239	564	506	88	138	136	8535	1296	15.18	.6
K7927	2715	6307	353	250	39	69	81	7018	711	10.13	.5
K7528	2730	1825	171	124	j	36	31	2174	349	16.05	. 5

168m.E I a.

CONCENTRATION (ul Gas / ke Rock) OF C1 - C7 HYDROCARBONS IN HEADSPACE

I	IKU No.	DEPTH (m)	C1	C2	C3	i04	nC4	C5+	SUM C1-C4	SUM C2-C4	WET- NESS (%)	iC4 nC4
	K7929	2745	1044	101	79	13	22	23	1259	215	17,08	.59
-	K7930	2760	925	89	82	16	29	38	1141	216	18.93	.50
	K7931	2775	1074	87	65	11	22	30	1259	185	14.69	.50
	K7932	2790	106	10	8	1	3	3	128	22	17.19	.30
I	K7933	2805	930	56	40	6	15	17	1047	117	11.17	. 40
I	K7934	2820	1200	82	50	7	19	26	1358	158	11.63	•3
I	K7935	2835	1680	117	68	8	26	53	1899	219	11.53	.3
_	K7936	2850	2482	176	188	36	84	136	2966	484	16.32	. 4:
I	K7937	2865	1378	115	93	14	36	, 58	1636	258	15.77	.3 [,]
III	K 7 938	2880	813	82	53	9	18	40	975	162	16.62	.5
_	K7939	2895	2484	210	143	17	59	110	2913	429	14,73	. 2
-	K7940	2910	492	52	39	3	18	49	604	112	18.54	. 1
	K7941	2925	1535	155	106	16	33	59	1845	310	16.80	. 4:
_	K7942	2940	14767	787	634	108	152	118	16448	1681	10.22	. 7
•	K7943	2955	25971	1549	1001	142	235	314	28898	2927	10.13	. 6
Ī	K7944	2970	13487	1150	718	102	192	280	15649	2162	13.82	.5
III	K7945	2985	50229	2746	1346	134	246	296	54701	4472	8.18	.5
	K7946	3000	9576	689	465	69	124	150	10923	1347	12.33	.5
_	K7947	3015	6689	669	393	50	97	127	7898	1209	15.31	.5
_	K7948	3030	5443	681	424	53	114	199	6715	1272	18.94	. 4
I	K7971	3045	9748	1326	868	108	224	423	12274	2526	20.58	. 4
_	K7972	3060	6090	650	377	47	91	149	7255	1165	16.06	.5
	K7973	3075	4481	514	293	37	74	127	5399	918	17.00	.5
	K7974	3090	3383	982	482	63	122	190	5032	1649	32.77	.5
	K7975	3105	4499	1430	715	140	218	431	7002	2503	35.75	.6
.1	tin i tini	in vita en pargrin	: 2.12. 1 # N	1,27120,117.	ay tara	·Ayrayan	falminini.	.೯೪ ಒಪ್ಕುಕ್	mili ir atianili.	y na a garayan (nann gaele gann a yi an a garayan (nan ayar yay nan a dad		an an an

TOURSENTRATION (ul Gas / Le Fock) OF C1 - C7 HYDROCAPBONS IN MEADSPACE.

17	with the				.er 21 ab p. 5. 27			main annual patenta del patent			and and the late a	
I I In I No	- -	DEFTH (m)	C1	C2	03	i04	nC4	C5+	SUM C1-C4	SUM C2-C4	WET- NESS (%)	iC4] 1 nC4]
Ī		3120	0 F E	N	LID			The second of the second people second	the late of the sale of the sale	, main mann inne, prior territi, main e]
I I 87	97 7	3135	430	204	124	43	61	217	862	432	50.12	.70]
1 I K7	978	3150	454	97	86	47	58	256	742	288	38.81	.81
1 1 K7:	979	3165	OPE	N	LID							1
1 I K71	280	3180	401	144	127	69	95	574	836	435	52.03	.73
ī K7	98i	3195	351	123	85	24	38	181	621	270	43.48	.63
1 I K7:	982	3210	427	129	80	28	34	89	698	271	38.83	.82
1 I K75	983	3225	277	114	67	21	24	50	503	226	44.93	.87
I K79	984	3240	840	286	119	28	32	67	1305	465	35.63	.87
I K79	785	3255	OPE	N	LID	٠						•
I K79	986	3270	5594	588	270	73	97	382	6622	1028	15.52	.75
I K7:	987	3285	3135	329	139	30	39	98	3672	537	14.62	.77
1 I K79	997	3300	521	136	56	14	25	108	752	231	30.72	.56
1 1 K7:	998	3315	201	156	96	32	50	200	535	334	62.43	. 64
I K79	999	3330	422	318	272	142	185	475	1339	917	68.48	.77
	000	3345	191	184	246	124	262	792	1007	816	81.03	. 47
	001	3360	286	215	978	932	1952	6559	4363	4077	93.44	. 48
	002	3375	183	201	399	209	371	775	1363	1180	86.57	. 56
	003	3390	270	359	713	287	489	935	2118	1848	87.25	.59
	004	3405	180	331	521	150	280	422	1462	1282	87.69	.54
	005	3420	124	90	134	39	88	250	475	351	73.89	. 44
	506	3435	206	57	100	26	66	165	455	249	54.73	.39
I I FE	907	3450	153	42	71	20	57	243	343	190	55.39	.35
1 1 + 10 1	P(n) ;	3465	69	18	30	(8)	25	102	150	81	54.00	.32
	KP.	3490	160	Æ (E).	Eld,	22	€.5	201	142.1	ŽĪĮ	53.01	. 3:4
ŧ												

COMPANY CATION (6) Gas / ta Book) OF C1 - 67 HOUROCARBONS IN HEADSPACE.

]		DEPTH			omananan C3	i C-4	nC4	eesee.t	5UM C1-C4	SUM 02-04	WET-	iC4
J	No.	(m)									(%)	nC4
j		######################################					The late tage was 1 in 1794	The same to the same to the same				
I	K8010	3495	116	44	90	21 -	. 55	100	326	210	64.42	.38 }
I	K8011	3510	238	76	174	50	121	206	659	421	63.88	-41
I	K8012	3525	173	129	201	57	143	300	703	530	75.39	.40
-	K8013	3540	633	181	327	93	258	493	1492	859	57.57	.36
	K8014	3555	1088	363	629	172	405	753	2657	1569	59.05	.42
I	K8015	3570	5	7	11	3	6	8	32	27	84.38	.50
	K8016	3585	157	304	562	138	351	381	1512	1355	89.62	.39
	K8017	3600	125	208	362	86	229	212	1010	885	87.62	.38
	K8018	3615	322	361	746	147	397	580	1973	1651	83.68	.37
_	K8019	3630	333	441	977	205	540	674	2496	2163	86.66	.38
III	K8020	3645	331	471	975	189	461	451	2427	2096	86.36	.41
_	K8021	3660	563	581	1082	204	488	475	2918	2355	80.71	.42
Ī	K8022	3675	589	433	737	130	317	311	2206	1617	73.30	.41
III	K8023	3690	607	316	761	189	442	638	2315	1708	73.78	.43
-	K8024	3705	4131	1297	1707	403	883	1355	8421	4290	50.94	.46
_	K8025	3720	2199	1172	1488	285	626	936	5770	3571	61.89	.46
I	K8026	3735	2340	1276	1599	278	651	1004	6144	3804	61.91	.43
I	K8027	3750	1364	934	1270	205	541	877	4314	2950	68.38	.38
_	K8028	3765	1245	624	749	116	294	464	3028	1783	58.88	.39
I	K8029	3780	1843	926	1153	209	490	660	4621	2778	60.12	.43
	K8030	3795	981	443	559	102	260	516	2345	1364	58.17	.39
	K8031	3810	1340	445	407	61	160	516	2413	1073	44.47	.38
I	F 9032	98.75	1422	470	489	76	198	564	2655	1233	46.44	.38
	: -:104.4	30.40	1070	804	909	142	352	473	4330	25%0	52.19	.37
<i>j</i>	: కేతలమో	36.14	14.4.1	1387	1400	į. Žir		VE4	7153	4\$45	54.75	.35
1.								*** ***			عوديو وراء دادادا	شهريسان سدادات

CÓMCENTRATION (UI Gas / La Rock) OF C1 - C7 HYDROCARSONS IN HEADCPACE.

I I	IKU Ne.	DEFTH	C1	02	C3	i C4	nC4	C5+	SUM C1-C4	SUM C2-C4	WETH NESS (%)	iC4]] nC4]
I I	K8063		2559	823	966	191	509	783	5048		49.31	.38]
	K8064	3885	3208	269	292	52	139	370	3960	752	18.99	.37 J
I	K8065	3900	2057	942	1190	231	642	1412	5062	3005	59.36	.36 J
I	K8066	3915	2703	1408	1134	291	413	960	5949	3246	54.56	.70]
I I	K8067	3930	2292	310	412	102	221	384	3337	1045	31.32	.46
I	K8048	3945	1195	478	509	146	357	1124	2685	1490	55.49	.41
I I	K8069	3960	54420	1765	1218	348	531	1094	58282	3862	6.63	.66 1
I	K8070	3975	5650	381	277	66	118	318	6492	842	12.97	.56
i I	K8071	3990	305	69	167	46	125	400	712	407	57.16	.37]
	K8072	4005	1363	523	377	100	196	388	2559	1196	46.74	.51 j
_ [_	K8073	4020	2260	1208	1054	384	655	1622	5561	3301	59.36	.59
[K8074	4035	6892	744	666	212	337	638	8851	1959	22.13	.63]
[[K8075	4050	14218	1143	827	210	325	578	16723	2505	14.98	.65 j
L [r	K8076	4065	2480	284	227	54	98	175	3143	663	21.09	.55)
[K8077	4080	7334	922	797	169	358	628	9580	2246	23.44	.47
[[K8391	4095	2108	403	259	65	131	149	2966	858	28.93	.50 j
	K8392	4110	0 P E	N	LID		W.					j
	K8393	4125	1042	358	304	45	103	103	1852	810	43.74	.44
	K8394	4140	688	217	198	35	90	102	1228	540	43.97	.39 j
	K8395	4155	529	171	167	29	70	73	966	437	45.24	.41
	K8396	4170	OPE	N	LID	•	*) ;
	K8397	4185	970	95	63	8	20	57	1156	186	16.09	.40
	K813.20	4500	492	120	88	13	32	45	745	253	33.96	.41
	Eggs part	POTES TO	화원, 항	j ~	212	34	#i	\$3j	1056	573	51.59	.42
	1 7 2 3 b	-,739	*7.3 y _{**}	771	100	25.	4 Î	β.Φ.	₽å¢		45.11	.45

CONCENSE-YION (of Gas / Es Fack) OF C1 - C7 HYDROGARGONS IN HEADSPACE.

	ranii o a arabi	the second secon	العمالات عداف عياشا	na dia mangalina ujan			11.3.257072.55					
	ial No.	DEPTH	C. 1	C2	C.B	iC4	r.C4	05÷	SUM C1-C4	SUM C2-C4	WET- NESS (%)	i 04 n04
]]	Saruse:	25 (2.14)	unranka e.			eretuunun 12	THE RESERVE THE PARTY OF THE PA		AND THE WAY IN THE THE REAL PROPERTY.	AND DOOR STORY SHAPE STORY OF	= =: = = = = = = = = = = = = = = = = =	======
1	10483	4245	278	. 75	89	15	29	27	506	228	45.06	.52
ı I	K8402	4260	390	116	85	14	34	68	639	249	38.97	. 41
I	1.8403	4275	530	119	77	12	27	41	765	235	30.72	.44
I	K8404	4290	517	179	169	24	55	63	744	427	45.23	.44
J	K8405	4305	489	100	70	12	29	81	700	211	30.14	.41
I	K8406	4320	1078	359	270	38	88	97	1833	755	41.19	.43
I	K8407	4335	306	92	88	15	38	66	539	233	43.23	.39
I	K8408	4350	335	68	47	7	17	129	474	139	29.32	.41
I	K8638	4365	1093	256	402	70	165	202	1986	893	44.96	.42
I	K8639	4680	602	104	159	28	62	69	955	353	36.96	. 45
I	K8640	4695	1903	243	395	62	131	135	2734	831	30.40	. 47
Ī	K8641	4410	1167	146	279	52	135	277	1779	612	34.40	.39
Î	K8642	4425	893	105	186	28	71	149	1283	390	30.40	.39
I	K8643	4440	2249	416	462	77	204	588	3408	1159	34.01	.38
I	K8644	4455	1978	319	438	74	194	363	3003	1025	34.13	.38
I	K8645	4470	4051	446	240	45	76	182	4858	807	16.61	.59
_	K8646	4485	1571	267	229	41	90	182	2198	627	28.53	.46
	K8647	4500	911	430	370	65	149	181	1925	1014	52.68	. 44
I	K8648	4515	614	318	409	79	198	301	1618	1004	62.05	.40 -
I	K8649	4530	1580	819	975	160	403	379	3937	2357	59.87	.40
_	K8650	4545	1055	102	175	35 [*]	.86	146	1453	398	27.39	.41
-	E8651	4560	1064	86	85	22	43	118	1300	236	18.15	.51
I	r 8652	4575	2:34	53	84	17	42	80	432	198	45,83	.40
		eernelier ook	Liente un mini la cial de					ne us as és ser es.		** ** ** ** 1.5 15 73 5.		

TABLE NO.: II

Sample	Depth	тос		Lithology
K 7762	1485-			
	1500	4,61	15	Claystone, dark grey, carbonaceous
		1,25	80	Claystone, grey brownish grey, micaceous,
				occasionally grading to Siltstone
			2	Coal
			3	Limestone, light brownish grey
K 7765	1530-		5	Claystone, dark grey, micaceous
	1545	1,28	70	Claystone, light grey, micaceous
			2	Sand
			1	Coal
			2	Limestone
K 7768	1575-	1,25	60	Claystone, grey
	1590		5	Claystone, dark grey
			4	Limestone, light brownish grey,
				sideritic
		:	30	Sandstone,
			1	Coal
K 7771	1620-	1,20	55	Claystone, grey, greenish grey,
	1635			light grey
		2,63	38	Claystone, (dark) grey, brownish
				grey, micaceous, silty
			3	Sandstone, white, light brownish,
				white
			1	Coal
-			3	sideritic carbonate
N 1/ 7774	1665	2.20	O.F	Claustone dank hyperiah avan ta
№ K 7774	1665-	3,20	95	Claystone, dark brownish grey to
	1680			grey, micaceous Sand
			1 2	sideritic carbonate
			-	Stati tite carbonate
		<u></u>		

TABLE NO.: II

Sample	Depth	тос	,	Lithology
K 7776	\ 1695-	3,92	95	Claystone, (dark), brownish grey to
	1716	·		grey, micaceous and silty
			3	Claystone, grey, slightly micaceous
			2	Coal
K 7777	1710-	4,50	98	Claystone (dark), brownish grey,
	1725			micaceous and silty
			1	Claystone, grey, micaceous
			1	Sandstone, white
K 7778	1725-	4,72	70	Claystone, dark grey, brownish grey,
	1740	. ,, _	'	micaceous and silty
·			5	Claystone, grey, micaceous
			25	Cement
K 7779	1740-	4,93	75	Claystone, dark brownish grey, dark
				grey, micaceous and silty, slightly fissile
			25	Cement
K 7780	\ 1755-	5,24	98	Claystone, dark brownish grey,
	1770			micaceous and silty, fissile and some- times laminated
			2	Cement, grey, brownish white
		٠.	ج	Cemenc, grey, brownish willce
K 7781	1770-	5,64	100	Claystone, dark brownish grey,
	1785		•	micaceous, silty, fissile, sometimes
				laminated and with occasional slicken-
				sides
			sm.am.	Cement, brownish white

TABLE NO.: II

Sample	Depth	тос	i,	Lithology
K 7782	1785-	5,49	100	Claystone, as above, occasionally
K 7702	1800	3,43	100	grading to Siltstone
	1000		sm.am.	Cement, brownish white
			Jiii aiii	Schieffe, Brownish wirec
K 7883	1800-	6,63	100	Claystone, dark brownish grey,
	1815			micaceous, fissile
			sm.am.	Cement, brownish white
K 7884	1815-	8,14	100	Claystone, as above
	1830		sm.am.	Siltstone, light brownish grey
				Cement, brownish white to light
				grey
K 7885	× 1830−	9,30	100	Claystone, dark brownish grey,
	1845			dark grey, micaceous, silty, fissile
			-	to sub-fissile, weakly laminated
			sm.am.	Cement, brownish white
				Fossile fragments
				Coa1
K 7886	√ 1845-	10,50	100	Claystone, as above
<i>*</i>	1860		sm.am.	Cement
K 7887	1860-	9,66	60	Claystone, as above
	1875		40	Sandstone/Siltstone fine grained
				micaceous, light brownish white,
				light brownish grey, clayey
			sm.an.	Pyrite
K 7888	\ 1875-	9,54	35	Claystone, as above
	1890		60	Siltstone/Sandstone as above
			5	Cement
	N.			

TABLE NO.: II

Sample	Depth	тос	*	Lithology
K 7789	\ 1890-	7,17	40	Claystone, as above
	1905		10	Siltstone/Sandstone as above,
				light reddish brown or light
•	į.			brownish grey
		·	50	Cement
K 7792	1935-		5	Claystone, as above
٠.	1950		95	Sandstone, fine grained, micaceous,
	·			Calcite laminated, often grading
				to Siltstone, light brownish grey to
				light brownish white, containing
				some Glauconite and Claystone
	:			laminas, moderately hard
K 7797	1980-		80	Cement and deformed Claystone
	1995			material due to the coring procedure
		6,19	15	Claystone, dark brownish grey
			5	Coal, carbonate and micaceous
K 7800	2025-		83	Cement and deformed Claystone,
	2040			as above
•	!	5,55	12	Claystone, as above
			<u>,3</u>	Siltstone, micaceous, grey
			2	very fine Sandstone, quartzitic
K 7803	2070-		10	Cement and deformed Claystone,
	2085			as above
		·	20	fine Sandstone, quatzitic
			60	coarse to very coarse Sandstone,
				angular and unconsolidated
			4	Claystone, dark brownish grey
			2	very fine immature dark Sandstone and sideritic Carbonate
			4	Coal

TABLE NO.: II

Sample	Depth	тос		Lithology
K 7809	2160-		40	Light quartzitic Sandstone
	2175		25	very fine immature Sandstone
			15	Coal
		5,99	10	Claystone, dark
		1,95	10	Claystone, light grey-green,
				calcareous
				occasional Siderite
K 7812	2205-	2,36	94	Claystone, parallellaminated
	2220			but slightly bioturbated
		-	2	Coal
			3	Sandstone, quartzitic
			1	Claystone, light grey-green
K 7834	√ 2250-		55	Mudstone, light grey, deformed
	2265			fragments due to turbodrill
			15	Mudstone, dark, deformed frag-
				ments due to turbodrill
			5	medium Sandstone
		5,86	12	Claystone, dark grey, silty
			3	micaceous Siltstone
			8	very fine Sandstone
		·	2	Coal
K 7837	` 2295-		40	Mudstone, light, turbodrill
	2310		50	Mudstone, dark, turbodrill
		4,30	8	Claystone, dark grey, slightly
		*	•	micaceous
			2	traces of Coal, chloritic Clay-
				stone and Carbonate

TABLE NO.: II

Sample	Depth	тос	i	Lithology
K 7840	\ 2340-	1,64	88	Mudstone, transition light grey
	2355			to dark grey material, turbodrill
			6	very fine quartzitic, light
				grey Sandstone
		·	sm.am.	Coal, Pyrite and Carbonate
			5	Claystone, dark grey, micaceous
K 7843	2385-		86	very fine-fine quartzitic Sand-
	2400			stone, oil incorporated from the
			:	drill mud
		5,05	10	Claystone, dark grey and micaceous,
		-		as above
			2	Claystone, light grey
K 7846	2430-		85	very fine, light grey Sandstone,
	2445	*		quartzitic, slightly Carbonate
				cemented
		1,68	10	Claystone, dark grey
			4	Carbonate, grey
			1	Coal
K 7847	× 2445-		80	very fine Sandstone, as above
	2460	2,72	12	Claystone, dark grey, almost as
		₩		above, tending to be more silty
		÷	8	Carbonate
				occasional Coal and Cement frag- ments
K 7848	2460-		88	very fine-fine Sandstone
	2475		4	Claystone, dark grey, as above
_ ,, -			sm.am.	Coal, chloritic Claystone and Pyrite
			3	Carbonate
			2	Siltstone, grey

TABLE NO.: II

Sample	Depth	тос	*	Lithology
K 7849	2475-		81	Sandstone, as above
	2490	3,23	10	Claystone, dark grey, as above
			2	Coal
			1	Claystone, grey-green, waxy
			3	Siltstone, as above
K 7850	\ 2490-		78	Sandstone, as above
	2505	1,42	10	Claystone, dark grey, as above
			2	Claystone, grey-green, waxy
			4	Siltstone, light grey-grey
	•		7	Coal and Coal shale
			2	Carbonate
			1	Pyrite
K 7851	2505-		89	Sandstone, as above
	2520		2	Claystone, dark grey, as above
			2	Siltstone, as above
		<u>.</u>	3	Claystone, light grey, micaceous
				occasional waxy Claystone, Coal
				and Carbonate
K 7915	2520-		95	Sandstone, hard, immature, contain-
	2535			ing grains of Quartz, Feldspar,
				micaceous. Calcite cemented,
				porosity in most cases seems to
				be moderate. Grain-size: very fine
		,	5	Siltstone, probably as laminae in
4			•	Sandstone
K 7916	2535-		85	Sandstone, as above
	2550	1,19	10	Siltstone, grey, as above
•			5	Claystone, grey to dark grey, sub-
				fissile

TABLE NO.: II

WELL NO.: 7120/12-2

Sample	Depth	тос	*	Lithology
K 7917	2550-		90	Sandstone, fine grained, white to
	2565			light grey, Calcite cemented, some-
				times with a brown stain (hydro-
				carbon)
			5	Siltstone, grey, calcareous
			5	Claystone, grey to dark grey, waxy,
				luster, or brownish grey, silty,
				probably organic rich
K 7918	2565-		90	Sandstone, as above, rich in mica
	2580		5	Siltstone, as above
			5	Claystone, as above
K 7919	2585-	į	90	Sandstone, as above, fine to very
	2595			fine grained, often stained brown
			5	Siltstone, grey
			5	Claystone, grey, silty
	,		sm.am.	Limestone, pinkish or brownish
				white
K 7920	2595-	. «	85	Sandstone, as above
	2610	1,37	10	Siltstone, as above
			5	Claystone, as above
			sm.am.	Limestone, as above
K 7921	2610-		80	Sandstone, as above
	2625	4,69	10	Siltstone, as above
		·	•	occasionally also green
		4,91	10	Claystone, grey, dark grey,
				brownish grey, occasionally
				silty (broken staining on Sand-
				stones and Siltstones probably
			k •	caused by hydrocarbons)

TABLE NO.: II

Sample	Depth	тос	ŧ	Lithology
K 7922	\ 2625-		80	Sandstone, as above
	2640	3,07	10	Siltstone, as above
		3,11	10	Claystone, light grey, light
) 	brownish grey, brownish grey, grey,
				dark brownish grey, occasionally
				silty
			sm.am.	Coal fragments
К 7923	2640-		70	Sandstone, as above, fine to medium
	2655			grained
		1,54	15	Siltstone, as above
		2,91	15	Claystone, subfissile, silty and/or
				micaceous, as above
K 7924	> 2655-	w'	50	Sandstone, as above
	2670	0,76	25	Siltstone, as above
		2,24	25	Claystone, silty and micaceous, grey
				to brownish grey
			sm.am.	Coal (trace)
				Limestone, brownish grey
K 7925	√ 2670-		20	Sandstone
	2685	1,23	20	Siltstone, as above
		2,31	60	Claystone, grey brownish grey, silty, micaceous
			sm.am.	Coal, Limestone
К 7926	2685- 2700		5	Sandstone, very fine to fine, mainly quartz grains, but also mica, Calcite
				cemented
		0,93	60	Siltstone, light grey, as above
		4,33	30	Claystone, grey, silty, as above, also some greenish
			5	Limestone, grey or brownish grey
:	:		sm.am.	Coal

TABLE NO.: II

Sample	Depth	тос	2.	Lithology
K 7927	2700-		10	Sandstone, as above
	2715	0,71	30	Siltstone, as above
ļ.		6,24	65	Claystone, grey, brownish grey,
				silty, observed with tiny coal
				flakes, or coal laminae, often
				micaceous
			5	Limestone, off.white, grey,
				brownish grey
·			sm.am.	Fossil fragments
к 7928	2715-		50	Approximately 50% of the material,
	2730			strongly affected by turbine drilling, indeterminate, Mudstone
		4,58	30	Claystone grey, brownish grey-green
		4,50	30	or greenish grey often micaceous and
				silty
		0,97	10	Siltstone, as above
	·	0,57	5	Limestone, as above
			5	Sandstone, as above
				samustome, as above
K 7929	√ 2730-		50	Affected by turbo drilling, Mudstone
	2745	2,68	30	Claystone, as above, often with
		·		fine lamination
			10	Siltstone, as above
	÷		5	Sandstone, as above
		-	5	Limestone
			sm.am.	Coal, as fragments
K 7930	2745-		70	Strongly affected by turbine
	2760			drilling, Mudstone
		1,83	20	Claystone, as above
			5	Siltstone, as above
			5	Sandstone, as above
·			sm.am.	Limestone, as above

TABLE NO.: II

Sample	Depth	тос		Lithology
K 7931	2760-		70	Strongly affected by turbo drilling,
	<u> </u>			Mudstone
		2,68	20	Claystone, grey, brownish grey,
			-	micaceous, subfissile, probably also
				carbonaceous, greenish-grey, light
				grey, also observed; occasionally
				silty and sandy, with lamination
			5	Siltstone, lihgt grey, as above
			5	Sandstone, fine grained, as above
К 7932	2775-		90	Affected by turbine drilling, Mudstone
	2790	2,26	10	Claystone, brownish grey, micaceous
				or grey, subfissile, micaceous
			sm.am.	Siltstone, as above
				Sandstone, as above
К 7933	2790-		95	Affected by turbine drilling, Mudstone
	2805		5	Claystone, grey, brownish grey
		·	sm.am.	Siltstone, as above
K 7934	2805-		95	Affected by turbine drilling, Mudstone
	2820		5	Claystone, grey, brownish grey
*			sm.am.	Siltstone, as above
				Limestone, light grey, light grey
К 7935	2820-		95	Affected by turbine drilling, Mudstone
	2835		3	Limestone, light grey, light
		·	٠	greenish grey
			2	Claystone, grey, brownish grey
К 7936	2835-		95	Affected by turbine drilling, Mudstone
	2850		4	Claystone, grey, brownish grey,
				micaceous
			1	Limestone, light green, light
				grey

TABLE NO.: II

Sample	Depth	тос	ź	Lithology
K 7937	2850-		95	Affected by turbine drilling, Mudstone
	2865	,	4	Claystone, grey, brownish grey,
				micaceous, often silty
			1	Limestone, light greenish grey
К 7938	2865-		99	Affected by turbine drilling, Mudstone
	2880		1.	Claystone, grey, brownish grey,
*				micaceous
К 7939	2880-		99	Affected by turbine drilling, Mudstone
	2895		1	Claystone, grey, micaceous, sub-
				fissile
K 7940	2895-		95	Affected by turbine drilling, Mudstone
	2910	ŧ	4	Claystone, grey, brownish grey,
				micaceous, subfissile
			1	Limestone, light greenish grey
K 7941	2910-		95	Affected by turbine drilling, Mudstone
	2925		5	Claystone, grey, greenish grey,
				brownish grey
			sm.am.	Limestone, as above
				Siltstone, light brownish grey
K 7942	\ 2925-		10	Cement from casing
	2940	1,63	88	Claystone, grey, brownish grey,
				greenish grey, mícaceous, occasion-
			•	ally silty
İ			2	turbo drilled material, Mudstone
			sm.am.	very fine grained Sandstone
			3	

TABLE NO.: II

Sample	Depth	тос	Lithology
K 7943	2940- 2955	0,88	80 Claystone, grey, brownish grey, greenish grey, sometimes subfissile, micaceous, noncalcareous, sometimes the brownish grey Claystone has thin coal laminae
			5 Siltstone, brownish grey with lamination 5 Sandstone, white to light brownish grey, fine grained
			10 Affected by turbine drilling, Mudstone sm.am. Cement
K 7944	2955- 2970	1,28	70 Affected by turbine drilling, Mudstone 25 Claystone, as above, laminated, some- times silty
·			5 Sandstone, white, very fine to fine grained sm.am. Siltstone, as above Coal (or coalified plant remains)
K 7945	¹ 2970- 2985	1,37	40 Affected by turbine drilling, Mudstone 55 Claystone, as above 5 Sandstone, as above with small amounts of coalified plant remains sm.am. Coal, black shiny
		·	

TABLE NO.: II

Sample	Depth	тос	*	Lithology
K 7946	\ 2985- 3000	1,07	90	Claystone, grey, brownish grey, greenish grey, micaceous, laminated, sometimes silty
			5	Siltstone, brownish grey, micaceous
			5	Sandstone, white or brownish white
			sm.am.	turbine drilled material Cement
				Coal and coalified plant remains
K 7947	3000- 3015	1,10	95	Claystone, as above, sometimes silty and sandy
			5	Siltstone, brownish grey
			sm.am.	Sandstone, as above
				Coal and coalified wood fragments
				some material affected by turbine drilling
K 7948	3015-	1,18	90	Claystone, as above, sometimes silty
	3030		5	Siltstone, brownish grey, as above
			sm.am.	Sandstone, fine grained, white to grey
				Cement, from casing
K 7971	√ 3030- 3045	1,49	99	Claystone, grey, brownish grey, some- times silty or sandy, with silt,
				sand or coal laminae, subfissile, micaceous
	·		1 .	Sandstone, white, observed to have been thin bands in Claystone
K 7972	∖ 3045–		10	Affected by turbine drilling, Mudstone
	3060	1,37	89	Claystone, grading to Siltstone,
				grey, brownish grey, greenish grey,
				laminated, micaceous
			1	Sandstone, white, off-white

TABLE NO.: II

Sample	Depth	TOC	ıż.	Lithology
K 7973	3060-	1,16	95	Claystone, grey, brownish grey,
	3075			greenish grey, as above, occasion-
				ally silty or sandy, subfissile
			5	Siltstone, greenish grey, brownish
K 7974	3075-		10	Affected by turbine drilling, Mudstone
	3090	1,12	85	Claystone, as above, with slicken-
		-		sides, micaceous, and partly
				carbonaceous
			5	Siltstone, light brownish grey
	V.		sm.am.	Pyrite
K 7975	₹ 3090- ₇		5	Affected by turbine drilling, Mudstone
	3105	1,0	85	Claystone, silty, micaceous, carbon-
	· '4,	, we want		aceous
			5	Siltstone, light brownish grey
			5	Sandstone, fine grained
K 7976	3105-	0,87	85	Claystone, as above
	3120		5	Siltstone, as above
	·		10	casing Cement, brownish white
K 7977	3120-	0,82	50	Claystone, mainly grey but also
	3135	e and the		brownish grey, as above, some greenish
				grey observed
	į		40	Sandstone, medium to coarse grained,
·				white brownish white, containing organic
	-		•	material and glauconite, well cemented,
			Į.	calcite cement, quartz grains are angula
				to subangular, poorly sorted
			10	casing Cement, brownish white
			sm.am.	Pyrite

TABLE NO.: II

Sample	Depth	тос		Lithology
K 7978	, 3135-	0,30	40	Claystone, greenish grey, grey,
	3150	###		occasionally brownish grey
			55	Sandstone, as above, white, to
	·			light grey, but sometimes stained
				brown
			5	casing Cement
K 7979	`3150-	0,40	40	Claystone, greenish grey, grey,
	3165	· · · · · · · · · · · · · · · · · · ·		subfissile
			60	Sandstone, as above
			sm.am.	Siltstone
				casing Cement
K 7980	3165-	0,30	40	Claystone, as above
	3180	==	60	Sandstone, white, light greenish
				grey, light grey, often stained
				brown (hydrocarbons)
			sm.am.	casing Cement
K 7981	√ 3180-	0,32	30	Claystone, as above
	3195	<u></u>	70	Sandstone, as above, mainly fine
			1	grained, calcite and silica
				cemented
K 7982	3195-	0,26	30	Claystone, as above
	3210	e e e e e e e e e e e e e e e e e e e	70	Sandstone, as above
K 7983	3210-	0,31	20	Claystone, as above
	3225	·	80	Sandstone, as above
K 7984	3225-	0,28	20	Claystone, as above
	3240		80	Sandstone, as above

TABLE NO.: II

Sample	Depth	тос	ž.	Lithology
K 7985	3240-	0,31	20	Claystone, as above
	3255		80	Sandstone, as above, some grains are light grey due to a higher content of clay minerals
			sm.am.	reddish brown or purple Claystone, silty casing Cement
K 7986	3255-	0,28	50	Claystone, greenish grey, as above
	3270		50	Sandstone, Calcite cemented, as above
			sm.am.	reddish brown Siltstone and Clay- stone
				casing Cement, brownish grey
K 7987	3270-	0,29	50	Claystone, greenish grey, as above
	3285		50	Sandstone, Calcite cemented, as above
			sm.am.	reddish brown Claystone
				casing Cement
K 7997	\ 3285-	0,17	30	Claystone, grey
	3300		70	Sandstone, white
K 7998	\ 3300-	0,18	80	Claystone, grey, as above
	3315		20	Sandstone, white, light grey
K 7999	\ 3315-	0,20	50	Claystone, grey, partly green and
	3330			light green
			50	Sandstone, as above
K 8000	3330-	0,23	80	Claystone, grey
	3345		20	Sandstone, as above

TABLE NO.: II

Sample	Depth	TOC	*	Lithology
K 8001	3345-	0,25	20	Claystone, grey, with small zones
	3360			which are green and brown
			75	Sandstone, as above
;			5	Coal, probably additives
K 8002	3360-	0,34	40	Claystone, as above
•	3375	management !	60	Sandstone, as above, with white
				Siltstone in addition
K 8003	∖ 3375-	0,31	90	Claystone, as above
	3390	No. ye.	10	Sandstone, as above
K 8004	\ 3390-	0,46	85	Claystone, as above, but grading to
	3405			light grey and greenish grey
			5	Sandstone, as above
			10	Coal (?additives). Some of the
				cutting fragmetns have coating of
				hydrocarbon (?Oil from the drill mud)
K 8005	3405-	0,73	100	Mudstone, grey (turbodrill) with
	3420			some light grey and green Claystones
				probably caved
K 8006	3420-	0,37	100	Mudstone, as above
	3435			
K 8007	3435-	0,33	100	Mudstone, as above
	3450			
K 8008	3450-	0,27	100	Mudstone, as above
	3465	,		
K 8009	、3465 <i>-</i>	0.19	98	Mudstone, as above
	3480		2	Coal (?additives)

TABLE NO.: II

Sample	Depth	тос	*	Lithology
K 8010	√3485- 🥌 3495	0,23	100	Mudstone, as above occasional coal (?additives)
K 8011	ν 3495 - 3510	0,36	100	Mudstone, grey, turbodrill, as above
K 8012	、3510- 3525	0,31	85 15	Mudstone, as above Claystone, not deformed, light grey-grey and green (?caved)
К 8013	¹ 3525 - 3540	0,63	100	Mudstone, as above
K 8014	3540 3555	0,68	85 15	Mudstone, as above Claystone, light grey to grey
K 8015	3555- × 3570	0,31	100	Mudstone, as above
K 8016	、3570 - 3585	0,12	100	Mudstone, turbodrill
К 8017	\ 3585 - 3600	0,02	85 15	Mudstone, as above Claystone, grey to light grey (?caved)
K 8018	√ 3600- 3615	0,17	100	Mudstone, as above
K 8019	3615- 3630	0,57	100	Mudstone, as above
K 8020	3630- 3645	0,09	75 25	Mudstone, as above Claystone, grey to light grey, not deformed material (?caved)

TABLE NO.: II

Sample	Depth	тос	*	Lithology
K 8021	3645- 3660	0,28	100	Mudstone, turbodrill, as above, but tending to be more brown-grey
K 8022	、3660 - 3675	0,28	95 5	Mudstone, as above Sandstone, white occasional Coal (?additives)
K 8023	* 3675- 3690	0,36	100 sm.am.	Claystone, light grey to grey, some fragments are greenish, relatively good lamination. The surface of the cutting fragments are often coated with hydrocarbons Sandstone and Coal (?the last as additives)
K 8024	3690- 3705	0,42	100	Claystone, light grey to grey, often brownish
К 8025	3705 - 3720	0,40	100	Claystone, as above, hydrocarbon coating
K 8026	3720- 3735	0,33	98 2	Claystone, as above, with some green fragments in addition Coal (?additives)
K 8061	3825- 3840	0,36	85 15	Claystone, light grey and dark grey, partly deformed due to turbodrill Sand, as above
K 8062	3840- 3855	0,62	100	Claystone/Mudstone, light grey to dark grey, largely deformed by turbodrill

TABLE NO.: II

Sample	Depth	тос	*	Lithology
K 8063	3855-	0,34	50	Claystone, grey to light grey
	3870			occasionally green
			40	Mudstone, dark grey, deformed by
•	·	·	10	turbodrill Sandstone, white
		,	10	SalidStolle, will te
K 8064	√ 3870-	0,86	95	Mudstone, mostly dark grey, but
	3885	en e		also 10 to 15% of light grey
				deformed material by turbodrill
			5	Sandstone, white
K 8065	√ 3885-	0,37	85	Claystone, grey and light grey
	3900			with some green fragments
			13	Sandstone, white
			2	Coal (?additives)
K 8066	√ 3900° -	0,81	90	Claystone, as above
	3915		10	Limestone, white
			. <u></u>	
K 8067	\ 3915-	0,40	70	Claystone, as above
	3930		30	Limestone and silicified Limestone
K 8068	3930-	0,53	20	Claystone, as above
:	3945	0,01	80	Limestone, strongly silicified,
				white grading to grey, bryozoans
			·	and brachiopods abundant
K 8069	× 3945-	0,02	95	Chert and silicified Limestone,
	3960	* ***** *		white to bluish
			5	Claystone, as above
к 8070	3960-		95	Silica-cemented Sandstone, white
1. 0070	3975			and clear, grading to grey chert
	33, 0			and didnity grading to gray one. c

TABLE NO.: 11

Sample	Depth	тос		Lithology
K 8071	3975-		85	Sand to Sandstone, white
	3990	0,35	, 15	Claystone, grey, as above
K 8072	3990-		35	Sandstone, white
	4005	1,08	35	Silt to Sandstone, clayey, brownish
			20	to dark grey, micaceous
			30	Claystone, as above
K 8073	4005-	1,55	70	sandy Siltstone, dark brown-grey,
	4020	·		micaceous
1		0,45	30	Claystone, as above
K 8074	∖ 4020-	0,04	50	Limestone, white to light grey,
	4035			partly dolomitized and silicified
		0,91	30	Siltstone, as above, probably
				dolomitic
		0,36	20	Claystone, as above
K 8075	× 4035-	0,03	65	Limestone, silicified and dolo-
	4050			mitized as above
		0,52	30	Siltstone, as above
			5	Claystone, as above
K 8076	4050-	0,02	65	silty, silicified Limestone, white
	4065		[.] [grading to grey
		0,53	35	Siltstone, as above
K 8077	√ 4065-	0,39	80	Siltstone, as above
	4080	0,21	20	silty, silicified Limestone, as
				above

TABLE NO.: II

Sample	Depth	тос	·	Lithology
K 8391	× 4080-	0,44	98	Claystone, micromicaceous, light
	4095			grey to dark grey, slighly silty,
				occasionally pyritized
			2	fragments of Chert, Carbonate and
			,	coarse grained Siltstone
K 8392	√4095-	0,48	50	Claystone, as above
	4110	1,44	50	Mudstone, cokey due to turbodrill
			sm.am.	Chert, micaceous Siltstone and
				Carbonate
K 8393	4110-	0,50	65	Claystone, as above
	4125	1,40	33	Mudstone, as above
			2	traces of the same lighologies as
-				above
K 8394	4125-	0,40	88	Claystone, as above
	4140		10	Mudstone, as above
		ŀ	1	waxy greenish Claystone
			1	traces of Chert and Siltstones
K 8395	4140-	0,39	40	Claystone, as above
	4155	1,41	60	Mudstone, as above
K 8396	\ 4155 -	0,39	20	Claystone, as above
	4170	1,55	77	Mudstone, as above
			7 3	Chert, Carbonate and micaceous
				Siltstone
K 8397	4170-	0,41	10	Claystone, as above
	4185	1,41	90	Mudstone, as above

TABLE NO.: II

WELL NO.:

7120/12-2

Sample	Depth:	тос	*	Lithology
K 8398	4185-	0,38	10	Claystone, as above
	4200	1,36	88	Mudstone, as above
		Service Services	2	traces of very fine Sandstone,
				coaly waxy Shale and silicified
				Carbonate
K 8399	4200-	0,38	10	Claystone, as above
	4215	1,58	90	Mudstone, as above
K 8400	1 4215-	0,37	13	Claystone, as above
	4230	1,28	86	Mudstone, as above
	,[*	1	Silicified Carbonate, micaceous
				Siltstone and very fine Sandstone
K 8401	4230-	0,34	10	Claystone, as above
	4245	1,98	88	Mudstone, as above
		The second of th	occ.	trace of the same
				accessorian lithologies as above
K 8402	4245-	0,47	10	Claystone, as above
	4260	1,57	88	Mudstone, as above
			occ.	traces of the same lithologies as above
K 8403	4260-	0,41	10	Claystone, as above
	4275	1,84	85	Mudstone, as above
		The second secon	3	fine Sandstone and micaceous
		,	٠	Siltstone
			2	silicified Carbonate and Coal
				(?additives)
K 8404	4275-		5	Claystone, as above
	4290	1,53	90	Mudstone, as above (turbodrilled)
			5	Siltstone and very fine Sandstone,
			C	micaceous and variately cemented

TABLE NO.: II

Sample	Depth	TOC	*	Lithology
K 8405	4290-	0,37	13	Claystone, as above
	4305	1,76	86	Mudstone, as above
			1	micaceous Siltstone and waxy
				Claystone
K 8406	4305-	0,44	70	Claystone, as above, mainly light
	4320			grey to grey, micromicaceous and
		1 26	20	silty Mudatana as above
		1,36	30	Mudstone, as above
			occ.	micaceous Siltstone
K 8407	» 4320-	0,39	48	Claystone, as above
	4335	1,59	50	Mudstone, as above
			2	very fine Sandstone, and waxy, dark
				grey Shale
K 8408	4335-	0,42	15	Claystone, as above
	4350	1,62	83	Mudstone, as above
			2	very fine Sandstone and micaceous
				Siltstone
K 8638	4350-	1,01	95	Mudstone, grey to dark grey,
	4365	**		turbodrilled material
			5	Claystone, light grey to grey, not
				deformed by turbodrill
K 8639	4364-	0,90	96	Mudstone, as above
	4380		2	Claystone, as above
			occ.	very fine Sandstone
				and waxy greenish Claystone
K 8640	4380-	0,62	95	Mudstone, as above
	4395	-	5	Claystone and Siltstone, grey
			i:	

TABLE NO.: II

Sample	Depth	тос		Lithology
K 8641	4395-	0,59	95	Mudstone, as above
	4410		5	Claystone, grey to light grey
				occasional Coal (?additives) and
				light Sandstone, fine
K 8642	` 4410-	0,30	80	Mudstone, as above
	4425	0,29	18	Claystone, light grey to grey,
				some fragments with good lamination
			2	Sandstone, very fine and Siltstone,
· ·				grey and micaceous
K 8643	4425-	0,23	75	Mudstone, as above
	4440	0,30	20	Claystone, as above
			3	Additives
	A.		2	waxy Claystone, greenish and
				micaceous Siltstone
K 8644	4440-		3	Mudstone, as above
	4455	0,32	15	Claystone, as above
		0,72	75	silty and partly silicified Lime-
		,		stone, dark grey, ?dolomitized
			7	Siltstone, micaceous and very fine
				grained Sandstone
				occasionally various types of
				addditives
K 8645	. 4455-		3	Mudstone, as above
	4470	0,34	25	Claystone, as above, occasionally waxy
		0,39	70	Limestone, as above, some of the
		,		fragments have white calcite fillings
				in micro cracks
			2	Siltstone and very fine Sandstone

TABLE NO.: II

Sample	Depth	тос	a.	Lithology
K 8646	4470-	0,53	50	Mudstone, influenced by turbodrill,
	4485			as above
		0,32	40	various types of Claystones, grey to
				light grey, micaceous and partly
				waxy. Some fragments are also
			_	laminated
		:	5	Limestone, dark grey, as above
		:	5	Siltstone, and fine Sandstone, grey
K 8647	t 4485~		5	Mudstone, as above
	4500 جار	0,59	85	Claystone, grey to dark grey, as
	Jacob Control	*		above
			5	Siltstone, grey, micaceous
	Y		5	Sandstone, grey
			sm.am.	Limestone, and some additives
K 8648	4500-	-	2	Mudstone, as above
	₹ 4515	0,32	88	Claystone, as above
		·	7	Siltstone, as above
			3	Sandstone, and silicified Limestone
			sm.am.	additives
K 8649	× 4515 -		2	Mudstone, as above
·	4530	0,79	85	Claystone, mostly grey, occasionally
				waxy and laminated
			6	?additives of Coal
	e.		4	Siltstone and Sandstone, very fine
			•	grained
		; ·	sm.am.	Limestone and Pyrite
		.		

TABLE NO.: II

Sample	Depth	тос	E.	Lithology
K 8650	4530-	0,34	20	Claystone, as above
	4545	0,32	60	Chert/silicified Limestone, dark
				grey to bluish grey
			5	Mudstone, as above
		0,33	15	Siltstone, light grey, micro-
				micaceous, grading into Claystone
			sm.am.	Coal (?additives) and
				very fine Sandstone
ĺ	1			e*
K 8651	\ 4545 -		5	Claystone, as above
	4560	0,18	50	Chert/silicified Limestone, as
	Š.	Colony is		above
		0,88	40	silty Limestone, light grey
			3	Coal (?additives)
			2	Siltstone, micromicaceous
K 8652	4560-		8	Chert/silicified Limestone, as
	4575			above
		0,52	90	Limestone, grey to light grey
			2	(additives of Coal and Siltstone)
			•	
	:			
*				
				,

TABLE: III

WEIGHT OF EOM AND CHROMATOGRAPHIC FRACTIONS

	=======================================	=======================================						
I I IKU-No	: : DÉPTH :	Rock : Extr. :	EOM :	Sat.	: Aro.	HC	Non HC	: TOC
I I	(m)	(9)	(mg)	(mg)	(mg)	(mg)	(mg)	: (%)
I I K-7762	: : \1500	17.8	7.8	1.2	: 2.2	: 3.4	====== : : 4.4	: :9,6 2.0
I I K-7774	\1680	30.3	32.8	2.5	: 2.9	5.4	27.4	: :४३ ३.८
I I K - 7777	\1725	32.0	42.6	6.0	: 2.3	8.3	34.3	:5,3 4.9
I I K-7780 :	√1770	30.4	60.3	9.4	12.0	21.4	: : 38.9	: ≝%,≎5.4
I I K-7784 :	\1830	31.7	98.7 :	15.2	20.5	35.8	62.9	: :338.5
I I K-7786	,1860	33.5	114.8	11.0	19.3	30.4	84.4	:8310.9
I I K-7797 :	: :	7.6	22.9	7.0	5.3	12.2	10.7	:25,16.4
I I K-7809 :	: :\2175_ :	4.5	16.7	1.6	2.2	3.7	13.0	: :14 7.2
I I K-7834 :	: (2265)	3.2	4.5	1.7	.7	2.4	2.1	:16.34.6
I I K-7837 :	: ::2310 :	6.9	6.8 :	2.4		3.2	3.6	: :125 3.7
I J K-7847 :	12460 :	8.8 :	9.4	.6	.6	1.2	8.2	: :7.6 1.8
I I K-7921 :	: √2625 :	13.5 :	23.2 :	2.9	5.5	8.4	14.8	: : 15,24.1
I I K-7922 :	: :\2640 :	6.3:	7.1 :	1.9	1.4	3.4	: 3.7	: :20,02.7
I I K-7926 :	: :	8.9 :	12.4:	2.0	1.9	4.0	8.4	: :14,53.1
I I K-7928 :	: :\2730 :	9.4 :	24.5	3.2	: : 3.2 :	6.5	18.0	:16,94.1
i I K-7931 :	: :\2775 :	7.3 :	13.6:	3.2 :	: 2.6	5.9	7.7	: :21,92.7
I I K-7942 :	: 1\2940 :	16.9 :	: 12.7 :	3.1	2.2:	5.3 :	7.4	1492.1
I I K-7945 :	; 1 ₁ 2985 ;	15.0:	7.4:	3.4	1.4	4.8	2.6	: ≈8.81.7
I 1 K-8073 :	: : \4020 :	17.7 :	11.7 :	3,2 :	2.4	5.6 :	6.1	: :21.1 1.5
I I K-8392 :	: (4110 :	7.7 :	3.9 :	.7	1.0:	1.7 :	2.2	: :\%\\$ 1.4
I I K-8396 :	4170	3.9 :	6.5 :	.5 :	.4	.e:	5.7	13,71.5
I I K-8401 :	4245 :	3.7 :	8.3 :	j.0 :	.5	1.4 :	6.9	: :(9,92.0
I K-8408 :	: 14350 :	5.9 : 5.9 :	1 2.3 : 	1.1 : 2.1 : 2.2 : 2.2 : 2.2 : 2.2 : 2.2 : 2.2 : 2.2 : 2.2 : 2.2 : 2.2 : 2.2 : 2.2 : 2.2 : 2.2 : 2.2 : 2.2 : 2.2 : 2.2 : 2.2	. ,7 : - ,7 :	: : 1.8 : ********	: . <u> </u>	: :17.9 1.7 =======

TABLE: III

WEIGHT OF EOM AND CHROMATOGRAPHIC FRACTIONS

=								=======================================
I I I	IKU-No	: DEPTH :	Rock : Extr. :	EOM :	: Sat.	:	HC :	Non : HC : TOC
I		: (m) :	(g)	(mg)	(mg)	(mg)	(mg) ;	(me): (%)
I			-é=====:			ėėsias sami		
I	K-8793	*1983.0	10.5	190.3	20.4	24.8	45.2	145.1 9,557.1
I	K-8794	1993.2	10.3	245.9	44.3	49.8	94.0	151.9 :14,065.0
I	K-8795	12026.8	10.8	61.3	9.4	13.4	22.8	38.5 6,\34.6
J	K-8796	2041.2	10.6	220.6	69.0	43.2	112.2	108.4 K.464.4
I	K-8797	12044.2	10.3	180.0	2.5	2.1	4.6	175.4 1. 4 33.0
I	K-8798	54121.05	10.5	4.9	2.4	1.3	3.7	1.2 16.02.2
I	K-8799	:\4124.0	10.5	6.1	1.6	1.6	3.1	3.0 9,13.2

TABLE: IV

CONCENTRATION OF EOM AND CHROMATOGRAPHIC FRACTIONS (Weight ppm of rock)

======= [[IKÜ-No	DEPTH	EOM	 : Sat.	Aro.	======== : : HC	======= : Non : HC
[=========	(m)				: 	: : ========
I I K−7762	1500	438	67	121	189	: : 249
K-7774	1680	1083	83	95 :	178	904
K-7777	1725	1331	187	71	259	1072
K-7780	1770	1984	308	395	703	1281
K-7784	1830	3114	481	647	1128	1985
K-7786	1860	3427	330	577	906	: 2521
K-7797	1995	3013	916	695	1611	1403
K-7809	2175	3711	347	480	827	2884
K-7834	2265	1406	525	225	750	656
K-7837	2310	986	348	122	470	516
K-7847	2460 :	1068	68 :	68 :	136	932
K-7921	2625 :	1719	213	409	622	1096
K-7922	2640	1127	305	229	: 533	594
K-7926 :	2700 :	1393 :	229	216	445	• 948
K-7928 :	2730 :	2601 :	344	344	688	: 1913
K-7931	2775 :	1863 :	444	362	805	: : 1058
K-7942 :	. 2940 :	752 :	185	128	313	439
K-7945	: 2985 :	493 :	224	96 :	320	173
K-8073	4020 :	660 :	183	135	318	342
K-8392 :	4110 :	508 :	94 :	125	219	: 289
: : ১୧୧୫:	4170 :	: 1654 :	122 :	92 :	214	1440
K-8401 :	4245 :	: 2249 :	260 :	130	39Q :	1859
	4350 :	S91 :	184 :	122	: 304 :	: 85

TABLE: IV

CONCENTRATION OF EOM AND CHROMATOGRAPHIC FRACTIONS

(Weight ppm of rock)

I I I I	IKU-No	: : DEPTH : : (m,)	: EOM :	:	sat.	:	Aro.	======= : : HC :	: Non : HC :	I I I I
I I	K-8793	:1983.0	18124	:	1943	:	2362	: 4305	: 13819	I
1	K-8794	:1993.2	23874		4296	# #	4830	9126	14748	I T
I	K~8795	2026.8	5676	:	867	:	1244	2111	: 3565	I
I	K-8796	:2041.2	20811	;	6509	;	4079	10589	10223	1
1	K-8797	2044.2	17476	:	240		203	• 443	17033	I
]	K-8798	:4121.05	467	:	229	:	126	: 354	: 112 :	I
I	K-8799	:4124.0	581	:	149	: 	149	297	284	I

TABLE: V

' CONCENTRATION OF EOM AND CHROMATOGRAPHIC FRACTIONS

(me/e TOC)

======== I	DEPTH	EOM :	Sat.	Aro.	HC :	Non HC
1 [(m _i)					
I I K-7762 :	1500	21.7	3.3	6.0	9.3	12.3
I K-7774 :	1680	28.6	2.2	2.5	4.7	23.9
I K-7777 :	1725	27.2	3.8	1.5	5.3	21,.9
K-7780	1770	36.6	5.7	7.3	13.0	23.6
[K-7784 :	1830	36.5	5.6	7.6	13.2	23.2
[K-7786 :	1860	31.4	3.0	5.3	8.3	23.1
K-7797	1995	46.8	14.2	10.8	25.0	21.8
K-7809	21.75	51.3	4.8	6.6	11.4	39.9
K-7834	2265	30.2	11.3	4.8	16.1	14.1
K-7837 :	2310	26.4:	9.3	3.3	12.6	13.8
K-7847	2460	<u> 6</u> 0.3 :	3.9	3.9	7.7 :	52.6
K-7921 :	2625 :	41.6	5.2	9.9	15.1	26.5
К-7922 :	2640	41.4	11.2	8.4	19.6:	21.8
K-7926 :	2700 :	44.9 :	7.4	7.0	14.4:	30.6
: K-7928 :	2730	62.7 :	8.3	8.3	16.6:	46.1
K-7931 :	2775 :	69.0 :	16.4	13.4	29.8 :	39.2
K-7942 :	2940 :	36.2 :	g.9 :	6.1	15.0 :	21.1
: K-7945 :	2985 :	29.9 :	13.6	5.8 t	19.4:	10.5
: K-8073 :	4020 :	44.0 :	12.2	9.0	21.2 :	22.8
K-8392 :	4110 :	35.8 :	6.6	8.8 :	15.4:	20.4
: K-8396 :	4170 :	108.8	8.0 :	6.0:	14.1 :	94.8
: E-8401 :	4245 :	111.4 :	12.9	6.4 :	19.3:	92.0
E-8400 :	4350 :	23.7 :	13,1	7.4:	: 18.6:	शक्त स्तु चिक्रमा

TABLE: V

CONCENTRATION OF EOM AND CHROMATOGRAPHIC FRACTIONS

(00T e\em)

I I I I	IKU-No	: DEPTH :	EOM	: : Sat. :	: : Aro. :	: HC	Non I HC I I
I	K-8793	: 1983.0	31.8	: : 3.4	: 4.1	7.5	I 24.2 I
I	K-8794	:1993.2	36.7	6.6	7.4	14.0	22.7 I
I	K-8795	:2026.8 :	16.4	2.5	: 3.6 :	6.1	10.3 I
I	K-8796	2041.2	32.3	10.1	: 6.3:	16.4	15.9 I
J	K-8797.	2044.2	53.0		: .6	1.3	51.7 I
I	K-8798	4121.05	21.6	10.6	: 5.8	16.4	5.2 I
Ī	K-8799	:4124.0	18.1	: 4.6	· 4.6	9.3	8.8 I

TABLE: VI

COMPOSITION IN % OF THE MATERIAL EXTRACTED FROM THE ROCK

 I	====== !	======= : Sat :	=======: Ar:o	======== • HC :	======= : Sat	=======: : Non HC	======= : HC
I IKU-No I I	: DEPTH : (m)		EOM	EOM	: Aro :	EOM	Non HC
K-7762	: 1500	======= : : 15.4 :	27.7	======= : 43.1 :	:======= : 55.6 :	:=======: : 56.9 :	======= : : 75.7
K−7774	: : 1680	7.7	8.8	16.5	: 87.5 :	83.5	19.7
[[K-7777	: : 1725	14.1	5.4	: : 19.4 :	: : 263.2 :	80.6	24.1
K-7780	: 1770	15.5	19.9	: 35.4 :	: 78.0	64.6	54.9
K-7784	: 1830 :	15.4	20.8	36.2	74.3	63.8	56.8
K-7786	1860	9.6	16.8	26.4	57.1	73.6	36.0
K-7 797	1995	30.4	23.1	53.4	131.8	46.6	114.8
K-7809	2175	: 9.3 :	12.9	22.3	72.2	77.7	28.7
K-7834	2265	37.3	16.0	53.3	233.3	46.7	114.3
K-7837	2310	35.3	12.4	47.6	285.7	52.4	91.0
K-7847	2460	6.4	6.4	12.8	100.0	87.2	14.6
K-7921	2625	12.4	23.8	36.2	52.2	63.8	56.8
K-7922	2640	27.0	20.3	47.3	133.3	52.7	89.8
: K-7926	2700	16.5	15.5	31.9	106.3	68.1	46.9
K-7928	2730	13.2	13.2	26.4	100.0	73.6	36.0
K-7931	2775	23.8	19.4	43.2	122.7	56.8	76.2
K-7942	2940	24.6	17.0	41.6	144.4	58.4	71.2
K-7945	2985	45.4	19.5	64.9	233.3	35.1	184.6
K-8073	4020	27.7	20.5	48.2	135.0	51.8	93.1
K-8392	4110	18.5	24.6	43.1	75.0	56.9 :	75.7
K-8376	4170	7.4 :	5,5	12.9	133.3	87.1	14.8
M-8401	4245	11.6	5.8	17.3	200.0	92.7	21.0
K-8408 :	4350	47.0	31.3	78.3 :	150.0:	21.7	360.0

TABLE: VI

COMPOSITION IN % OF THE MATERIAL EXTRACTED FROM THE ROCK

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	IKU-No	: DEPTH	2	Sat EOM	:	Aro EOM	:	HC EOM		Sat Aro	***	Non HC EOM	HC Non HC	I
I	K-8793	: 1983.0		10.7	:	13.0	:	23.8	:	82.3	:	76.2	31.2	I
I	K-8794	: :1993.2 :	1	18.0	:	20.2	; ; ;	38.2	:	88.9	:	61. 8	61.9	I I
I	K-8795	:2026.8	: :	15.3	: :	21.9	:	37.2	:	69.6	:	62.8	59.2 •	I
I	K-8796	:2041.2	:	31.3	:	19.6	*	50.9	=	159.6	:	49.1	103.6	I
I	K-8797 K-8798	:2044.2 : :4121.05	# # #	1.4 49.0	:	1.2 26.9	: :	2.5 75.9	:	118.2	:	97.5 24.1	: 2.6 : : 315.3	I T
I		:4124.0	:	25.6	:	25.6	=	51.1	:	100.0	:	48.9		I

TABULATION OF DAYAS FROM THE GASCHROMATOGRAMS.

1	3 =: == == == == == == == == == == == ==	4			: I
I I	IKU No.	\$ (m)	n-017	PHYTANE	: CPI I
	= == == == == == == == == == == == == =				========[
I I I	K7762	: 1500	. 9 . 9	-	: 1.8 I : 1.8 I
I	K7774	: 1480 :	3.2	3,4	1.9 I
I	K7777	1725	3.3	2.4	: 2.0 Î
ī	K7780	1.770	2.9	1.9	: 1.9 Ī
I	K7784	: 1830 :	2.9	2.1	1.9 I
I 1	K7786	1860	2.5	2.1	1.6 I
Î	K7797	1995	1.0	2.5	1.9 I
I I	K 7 809	2175	1.9	2.8	1.6 I
I I	K7834	2265	.8	2.2	: 1.7 I
I I	K7837	2310	1.2	2.5	: 1.8 I
I	K7847	2460	1.1	2.1	1.4 I
I I	K7921	2625	1.4	2.4	1.7 I
I I	K7922	2640	1.0	2.2	: 1.3 I
I I	K7926	2700	1.4	3.1	1.4 I
I I	K7928	2730	1.6	2.2	1.4 I
I I	K7931	2775	1.2	2.1	1.5 I
I I	K7942	2940	1.1	2.2	1.6 I
I	K79 4 5	2985	.7	2.6	: 1.3 I
I	K8073	4020	.4	2.2	1.2 I
I	K8392	4110	.4	.3	4.3 I
I I	K8396 :	4170	.4	1.1	2.4 I
I I	K8401	4245	,5 :	1.4	1.2 I
I	K8408	4350 :	. 4	1.2	

TABULATION OF DATAS FROM THE GASCHROMATOGRAMS

==	=======		==		=:		==	========	===
Ï	IKU No.	: DEPTH	:	PRISTANE	# ·	PRISTANE	:	CP I	I
I T_	21100 1404	: (m)	:	n-C17	:	PHYTANE	:		I
1 T									- 1
I	K8793	: 1983.0		. 4	¥	2.1	:	1.2	I
I		•	<u> </u>	_	2		:		I
1	K8794	: 1993.2	ž,	. 4	=	1.8		. 9	Ī
I	K8795	: 2026.8	:	.9	-	4.6	:	1.3	I
Ι		•	:		:		:		I
I	K8796	: 2041.2	ï	2.0		8.1	ž	$1 \cdot 2$	I
I		*	÷		E		:		I.
1	K8797	: 2044.2	į.	1, ., 1.	:	3.9	:	1.6	I
I		•	#	_	*		÷		1
I	K8798	: 4121.05		. 4	÷	1.8	:	1.2	Į.
I	رسن بنم وشريح دراو	£	£	, ,	:	رسو و	:	ਤੂੰ ਤੂੰ	1
1	K8799	: 4124.0	i	.3	•	1.8	:	1. i	1
I		*	:		:				1

VITRINITE REFLECTANCE MEASUREMENTS

TABLE NO.: VIII

Sample	Depth	Vitrinite reflectance	Fluorescence in UV light	Exinite content
K-7762	√1500	0,45(6)	No fluorescence	
K-7774	1680	0,42(22)	Yellow/orange and light orange	Moderate
K-7777	, 1725	0,44(22)	Yellow/Orange	Moderate-Rich
K-7780	\1770	0,42(22)	Yellow and yellow/orange	Low-Moderate
K-7784	、1830	0,43(21)	Yellow/orange	Low-Moderate
K-7786	√1860	0,44(22)	Yellow/orange and light orange	Trace
K-8793	1983.0	0,39(21)	Light orange	Moderate
K-8794	, 1993.2 ·	0,44(25)	Light/mid orange spores and algae	Rich
K-7797	₹1995	0,47(16)	Light orange	Low
K-8796		0,44(17)	Light and mid orange	Moderate
K-8797		0,83(21)	Deep orange	Moderate
K-7809	2175	0,44(20)	Yellow/orange	Moderate
K-7834	2265	0,51(10)	Light-deep orange	Low
K-7837	2310	0,45(8)	Light orange	Low-Moderate
K-7847	2460	0,50(21)	Yellow/orange	Moderate
K-7921	×2625	0,45(21)	Yellow/orange	Moderate
K-7922	2640	0,45(20)	Light orange	Moderate
K-7926	√2700	0,47(21)	Yellow/orange and light orange	Moderate
K-7928	№ 2730	0,45(20)	Yellow/orange and light orange	Moderate
K-7931	\2775	0,48(21)	Yellow/orange and light orange	Moderate
K-7942	2940	0,44(23)	Light and mid orange	Low
K-7945	12985	0,59(21)	Mid orange	Low
K-7971	3045	0,55(11)	Mid orange	Moderate.
K-7975	3105	0,57(6)	Light orange	Moderate
K-8005	3420	0,54(2)1,04(1)	Light and mid orange	Low-Moderate
K-8013	√3540	0,57(3)	Mid orange	Low
K-8019	3630	0,59(7)	Mid-deep orange	Moderate
K-8025	3720	0,55(7)0,91(1)	Light orange	Low
K-8030	√3795	0,57(5)	Light-mid orange	Low
K-8061	3840	0,37(1)0,68(4)	Mid orange	Low
K-8067	√3930	0,69(7)	Orange/red	Low-Moderate
K-8072	4005	0,67(20)	Mid-deep orange	Low

VITRINITE REFLECTANCE MEASUREMENTS

TABLE NO.: VIII

Sample	Depth	Vitrinite reflectance	Fluorescence in UV light	Exinite content
K-8073	∖4020	0,36(1) 0,71(6)	Mid orange	Low
K-8076	4065	N.D.P.	Mid-deep orange	Low
K-8392	×4110	0,61(3) 1,00(2)	Mid orange	Low-Moderate
(Shale)				
K-8392	4110	N.D.P.		Nil
(coxy m	udstone)			
K-8798	4121.05	0,81(12)	Deep orange	Low
K-8799	4124.0	0,84(6)		Nil
K-8396 [′]	4170	N.D.P.		Nil
(coxy m	udstone)			
K-8396	4170	0,65(16) 1,00(2)	Mid orange	Low
(shale)				
K-8401	4245	N.D.P.		
(coxy m	udstone)			
K-8401	· ·	0,29(1)	Mid-deep orange	Low-Moderate
(shale)				
K-8408	4350 🚿	0,45(1) 0,68(7)	Mid orange	Low-Moderate
(shale)		1,07(1)		
K-8408		N.D.P.		Nil
K-8639	4380	N.D.P.		Nil
K-8641	4410	N.D.P.		Nil
K-8646	4485	0,50(1)		Nil
K-8647	√4500	0,73(6)	Mid crange	Low
K-8649	4530	0,57(6)0,95(2)	Deep orange	Low
			•	
ł				

TABLE NO.: IX

WELL NO.: 7120/12-2

Sample	Depth	Composition of residue	Particle size	Preservation- palynomorphs	Thermal maturation index	Remarks
K-7762	1500	Am,Cy/W,Cut,P	F-M	good	2	Lower Cretaceous cysts (?Hauterive). Aggregates with pyrite framboids.
K-7774	1680	Cut,W,P/Am,Cy	F-M-L	poor-fair	2-/2 2	Indet. Late Jurassic cysts. Pollen, bisaccates and cuticles dominate after chemical oxidation of aggregates with pyrite framboids.
K-7777	1725	Cut,W,P/Am,Cy	F-M-L	poor-fair	2-/2 2	Saccate coniferous pollen abundant. Hyphae may be seen in the aggregates. Pyrite.
K-7780	1770	Cut,P,S,W/Am	F-M	poor	2/2+	Looser aggregates with pyrite framboids.

ABBREVATIONS

Am amorphous
He herbaceous
Cut cuticles

Cy cysts, algae P pollen grains S spores W woody material
C coal
R! reworked

TABLE NO.: IX

7120/12-2 WELL NO.:

Sample	Depth	Composition of residue	Particle size	Preservation- palynomorphs	Thermal maturation index	Remarks
K-7784	1830	Cut,P,S,W/Am	F-M	poor	2/2+	Very dense opaque aggregates. More fusinite than above and spores are more common. Small particles stick and obscure.
K-7786	1860	Cut,W,P,S/Am	F-M	poor	2+	More disperse material (smaller particles) than above together with dense opaque aggregates rich in pyrite. Saccate conifers dominate over bisaccates.
K-8793	1983	W(Cut)				Coal, dominantly homogenous woody material (vitrinite). Traces of cuticular matter.
K-8794	1993	W(Cut)				As the core above.

ABBREVATIONS

Am amorphous He herbaceous

Cut cuticles

cysts, algae pollen grains

spores

woody material coal R! reworked

fine medium large

TABLE NO.: IX

WELL NO.: 7120/12-2

Sample	Depth	Composition of residue	Particle size	Preservation- palynomorphs	Thermal maturation index	Remarks
K-7797	1995	W,Cut,P,S/?Am	F-M-L	poor	-	Aggregates less dense than in 1860. Strongly fragmented or brittle cuticles. <u>Late Jurassic</u> cysts observed.
K-8795	2026.8	W,Cut,P,S/?Am	F-M-L	fair to good	? 2-/2	Dominantly coaly matter, but more of structured material (semifusinite and cuticles). Particles often with an amorphous texture.
K-8796	2041.2	W(Cut)	F-M-L			Coal, homogenous woody mater- ial dominates.

ABBREVATIONS

Am amorphous
He herbaceous
Cut cuticles

Cy cysts, algae P pollen grains S spores W woody material C coal R! reworked

TABLE NO.: IX

WELL NO.: 7120/12-2

Sample	Depth	Composition of residue	Particle size	Preservation- palynomorphs	Thermal maturation index	Remarks
K-8797	2044.2	W,Cut,S,P	F-M-L	good to poor	2+	Dark coaly matter, after chemical oxidation revealing woody (vitrinite, semifusinite) particles, cuticles and pollen spores.
K-7809	2175	Cut,W,P,S/Am	F-M-L	poor to fair	2+	Granuloperculatipollis and Cha- omatosporites sp. A in between more light coloured ?caved aggregates.
K-7834	2265	Cut,W,P,S/Am	F-M-L	poor to fair	2+	Aggregates of mostly saprope- lised cuticular and woody mat- erial (vitrinite).

ABBREVATIONS

Am amorphous He herbaceous

He herbaceo Cut cuticles

Cy cysts, algae pollen grains spores

W woody material
C coal
R! reworked

TABLE NO.: IX

WELL NO.: 7120/12-2

Sample	Depth	Composition of residue	Particle size	Preservation- palynomorphs	Thermal maturation index	Remarks
K-7837	2310	W,Cut,P,S/Am	F-M-L	poor to fair	2+/3-	Aggregates of sapropel/sapropelised material, mostly vitrinite particles. Pyrite framboids abundant. <u>C.mes</u> . and <u>Kyotomisp</u> . mixed in one sample. Etched vitrinite fragments suggest presence of some carbonate.
K-7847	2460	*Cut,W,P,S/Am	F-M-L		2+	*Screened residue.
K-7921	2625	Cut,W,P,S,W/Am	F-M-L	poor	2/2+ 2+	Aggregates of sapropelised cuticular matter. Cerebropol-lenites macroverrucosus bisaccates and small simple spores.

ABBREVATIONS

Am amorphous He herbaceous

Cut cuticles

Cy cysts, algae P pollen grains S spores Woody material coal R! reworked

TABLE NO.: IX

WELL NO.: 7120/12-2

Sample	Depth	Composition of residue	Particle size	Preservation- palynomorphs	Thermal maturation index	Remarks
K-7922	2640	Cut,W,P,S/Am	F-M-L	poor to good	2/2+ 2+	Loose and less aggregates. Increase in fusinite/semifusinite. Cerebrop. bisaccates and small simple spores, Late Jurassic cysts. Aratrisporites.
K-7926	2700	*Cut,W,P,S/Am	F-M-L	poor		*Very light coloured vitrinite in the aggregates. Screened residues.
K-7928	2730	Cut,W,P,S/Am	F-M-L	poor to fair		<u>Protohaploxypinus</u> <u>Baltispheri</u> - <u>dium</u> <u>Taeniaesporites</u> some caved Late Jurassic cysts and pollen.

ABBREVATIONS

Am amorphous He herbaceous

Cut cuticles

Cy cysts, algae pollen grains spores

W woody material
C coal
R! reworked

TABLE NO.: IX

WELL NO.: 7120/12-2

Sample	Depth	Composition of residue	Particle size	Preservation- palynomorphs	Thermal maturation index	Remarks
K-7931	2775	Cut,P,S,W/Am,Cy	F-M-L	poor to fair	2/2+ 2+	Loose aggregates mostly of cuticular matter. <u>Haplxypinus</u> and <u>Diploxypinus</u> , small <u>Micrhystr</u> . <u>Alisp</u> . Very small spores.
K-7942	2940	1	F-M-L	fair to poor	2/2+	Striatoabietites and other small bisaccates. <u>Limbosp</u> . <u>lundbladii</u> , <u>Eucommiid</u> . <u>minor</u> . Rich in pyrite framboids. Some fusinite.
K-7945	2985	Am/Cut,W,WR!,P,S	F-M	fair to good	2+	Kraueuselisporites, Kyrtomisp. Aratrisporites, cf Institi- sporites, Conbacculatisp., small cysts.

ABBREVATIONS

Am amorphous
He herbaceous
Cut cuticles

Cy cysts, algae P pollen grains S spores W woody material
C coal
R! reworked

TABLE NO.: IX

WELL NO.: 7120/12-2

Sample	Depth	Composition of residue	Particle size	Preservation- palynomorphs	Thermal maturation index	Remarks
K-8073	4020	Am,Cy/W,WR!,Cut,P,S	F-M	poor to fair	3-/3 3	Inertinite and vitrinite is difficult to distinguish due to high thermal influence. Taeniaesp. Aratrisp. Riccisp. sp. small spinose cysts.
K-8392	4110	Cut,P,W,He,WR!/Am	F~M	poor to fair	3-/3 3	Well dispersed, rich in pyrite framboids and crystals. Some fusinite and inertinite Taeniaesp. Small cysts abundant
K-8392	4110	**Am,Cy/W,He	F			**Amorphous opaque fragments, after chemical oxidation and screening remain only rare inertinite fragments.

ABBREVATIONS

Am amorphous
He herbaceous
Cut cuticles

Cy cysts, algae P pollen grains S spores W woody material C coal R! reworked

TABLE NO.: IX

WELL NO.: 7120/12-2

Sample	Depth	Composition of residue	Particle size	Preservation- palynomorphs	Thermal maturation index	Remarks
K-8798	4121.05	Am/W,Cut,WR!,P,S	F-M	poor to fair	2+/3- 3+	Very much of structured woody material (Increased because of high coalification).
K-8799	4121	Am/W,R!,W,Cut,P,S	F-M	poor	3+	Pyrite framboids and crystals are very abundant. Structured woody material dominate after screening.
K-8396 coaly mudst.	4170	?Ám/W	?F-M	?		Opaque amorphous aggregates. Mostly disappear by chemical oxidation.
					,	

ABBREVATIONS

Am amorphous He herbaceous

Cut cuticles

Cy cysts, algae P pollen grains S spores W woody material C coal R! reworked

TABLE NO.: IX

WELL NO.: 7120/12-2

Sample	Depth	Composition of residue	Particle s ize	Preservation- palynomorphs	Thermal maturation index	Remarks
K-8396 shale	4170	Cut,W,P/Am,Cy	F-M-L	?	3-/3-/3	Aggregates - loose mostly of cuticular nature, very rich in pyrite <u>Cyclosporites Taeniaesp</u> . ?Mostly caved lithologies.
K-8401 shale	4245	Am,Cy/Cut,W,P,S	F-M	fair	3+/3- 3-/3	Abundant small cysts. Taeniate pollen are considered as mostly pollutions from higher levels.
K-8401	4245	Am/He	F-M		3+	Opaque ?amorphous fragments most of which disappear by chemical oxidation.
K-8408 coxy mudst.	4350	Am/He	F-M	poor		As 4245 above.

ABBREVATIONS

Am amorphous He herbaceous

Cut cuticles

Cy cysts, algae P pollen grains S spores W woody material
C coal
R! reworked

TABLE NO.: IX

WELL NO.: 7120/12-2

Sample	Depth	Composition of residue	Particle size	Preservation- palynomorphs	Thermal maturation index	Remarks		
K-8408 shale	4350	**P,S,W	F-M	poor		Very rich in pyrite small spherical spinose cysts. <u>Illinites</u> .		
K-8639	4380	Am/He	F-M	poor		As 4350?		
K-8641	4410	Am	F	poor		Small spherical aggregates of combined amorphous/inorganic nature. Carbonate.		
K-8646	4485	Am/He	F			Small globular organic/inorganic aggregates. Oxidation does not improve. ??Primary structures.		
	*-							

ABBREVATIONS

Am amorphous
He herbaceous
Cut cuticles

Cy cysts, algae P pollen grains S spores

W woody material C coal R! reworked

TABLE NO.: IX

WELL NO.: 7120/12-2

Sample	Depth	Composition of residue	Particle size	Preservation- palynomorphs	Thermal maturation index	Remarks		
K-8647	4500	Cut,He/Am	F-M-L			Loose aggregates with abundant pyrite framboids, probably pollutions from higher levels to judge by their light colour.		
K-8649	4530	Cut,He/Am	F-M-L			As for 4500 m.		
*	i							
		· j				4		
	,							

ABBREVATIONS

Am amorphous He herbaceous Cut cuticles Cy cysts, algae P pollen grains S spores W woody material C coal R! reworked

TABILE Y

WOCK EVAL PYROLYSES

٤.	. The Televician community will be seen as	1 1. '17,			remain pare some value pour an			========			74355
]	I I INU DEPTH I No.	:	61	0	S 3	(foc)	HYDR: INDEX	OXYGEN INDEX	OIL OF GAS CONTENT	PROD. INDEX	TEMP.
. 1 . 1	[(m _i)	:				(%)			S1+S2	S1+S2	(C)
]		:	، سب سے سر سر سے سے مراج			2 / 4		حصد میت میت میت میت میت میت میت ماده داده در است میت است است است است است است است است است اس		# .**.	A
]	[K7762 γ1500 [:	.31	2.83	.57	4.61	64	12	3.14	.10	432
I	[K7774 \1680 [:	.58		.39	3.20	251	12	8.60	. 07	427.
1	N K7777 (1725 [: :	.94	15.19	.53	4.50	338	12	16.13	.06	424
]	! K 77 80 ∖1770 !	:	1.07	20.64	.83	5.24	394	16	21.71	.05	424
]	K7784 \1830	:	1.86	28.45	1.20	8.14	350	15	30.31	.06	421
1	K7786 1860		2.26	33.47	1.61	10.50	319	15	35.73	.06	419
hu	MK7797 (1995	:	1.43	19.46	2.14	6.19	314	35	20.89	.07	423
1	K7809 (2175	:	1.25	19.19	1.69	5.99	320	28	20.44	.06	422
I	K7834 ₍ 2265	:	1.41	19.34	1.91	5.86	330	33	20.75	.07	421
I	K7837\2310	:	1.01	12.57	1.64	4.30	292	38	13.58	.07	423
I	K7847 \2460	:	.56	6.24	.51	2.72	229	19	6.80	.08	427
1 1	K7921 (2625	: :	1.05	13.74	. 75	4.91	280	15	14.79	.07	423
I	K7922\2640	:	.56	6.94	. 66	3.11	223	21	7.50	.07	426
I	K7926\2700		.87	13.31	.66	4.33	307	15	14.18	.06	423
I	K7928 *2730	:	.91	12.31	.96	4.58	269	21	13.22	.07	422
I	K7931√2775	:	.49	5.29	.46	2.68	197	17	5.78	.08	429
I	K7942 \2940		.27	1.68	.37	1.63	103	23	1.95	. 14	438
I	K7945 (2985	:	.33	1.18	.32	1.37	86	23	1.51	.22	441
I	K8073 _\ 4020	:	.71	.72	.54	1.55	46	35	1.43	.50	445
	K8392 _\ 4110	:	.35	.22	.21	1.44	15	15	.57	.61	433
I	K8396 _\ 4170		.37	.26	.43	1.55	17	28	.63	.59	453
I	K8401 \4245	:	.40	.25	.40	1.98	13	20	. 65	.62	456 🦈
I	K8408 (4350	; ;;	41	.07	.40	1.62	. 4	25	.48	.85	457
I		:			. *						

KU

TABLE X
ROCK EVAL PYROLYSES

I	IKU No.	EXEFTH	: \$1 : \$1	S2	53	TOC		OXYGEN INDEX	OIL OF GAS CONTENT	PROD. INDEX S1	TEMF.
I	منتوب موجد محجد مجوب مرسد	(m)			or this your makes when an	(%)			S1+S2	\$1+\$2	(C)
I			*	the part was year and after or			- course being speak which from Pr				
I	K8793	1983	:42.88	246.15	2.87	62.31	395	5	289.03	.15	426
I	K8794	1993	43.78	286.25	3.10	71.20	402	4	330.03	.13	426
I	K8795	.2026.8	9.75	139.54	2.08	34.86	400	6	149.29	.07	426
Ī	K8796	12041.2	16.82	209.94	2.42	54.62	384	4	226.76	. 07	427
I	K8797	(2044.2	. 7.77	121.49	2.46	53.67	226	5	129.26	.06	422
I	K8798	√4121.05	÷ .41	1.26	.53	2.55	49	21	1.67	.25	446
I	K8799	×4124	.58	2.09	.33	3.98	53	8	2.67	.22	461

88 /68

société nationale elf aquitaine production

EP/S/EXP/Lab.Pau n°87/151RP

Pau , le 21 Août 1987

WELL 71-20/12-2 NORWAY - TROMSØ AREA

GEOCHEMICAL STUDY OF THE LOWER CRETACEOUS-PERMIAN SECTION AND OF A GAS SAMPLE

EP/S/EXP/Lab.Pau n°87/151RP

SA 88-1626 - 1 1 6 NOV. 1988 REGISTACIT OLJEDIREKTORATET

CONFIDENTIAL NO REPRODUCTION

adresse postale: Di tour Elf - Cédex 45 92078 Paris La Défense

🕏 Pau

- 64018 Pau Cédex

☐ Lacq

- BP 22 Lacq 64170 Artix

☐ Boussens - Boussens 31360 Saint Martory

téléphone : 33 (1) 47.44.45.46

(33) 59.83.40.00

(33) 37.83.40.00

(33) 59.05.24.50 (33) 61.97.80.00 télex : Elfa 615 400 F Petra 560 804 F

Petra 560 053 F SNEA 530 385 F

Imp. 7332 SNEA(P) - RGM 953 006 004

	•		
DEPTH (m)	% VRo	eq. % VRo	T.A.I.
1595 1600	0.4		2.5-
1680-1685 1800 1805-1810 1860-1865 1955-1960	0.5		2.5 2.5 2.5 2.5
2010–2015 2068 2075–2080	0.6		2.5/2.5+
2160-2165 2225-2230 2285-2290 2345-2350 2360 2435-2440 2530-2535 2615-2620 2675-2680 2683 2765-2770 2795-2800 2855-2860 2975-2980 3005-3010 3050-3055 3110-3115 3225-3230 3420-3425 3480-3485 3600-3605 3660-3665	0.6 0.65	0.7/0.8	2.5+ 2.5+ 2.5+ 2.5+ 2.5+/3- 3 3 3 3/3+ 3+ 3+ 3+ 3+ 3+ 3+ 3+ 3+ 3+ 3+ 3+ 3+
3715-3720 3790-3795 3830 3905 4208	1.00 1.10		4- 4-

AGE	DEPTH	 S	тос	51	SZ	S 3	ΡΙ	HI	OI	TM
AC UPJUR TO LOW.	150180800000000000000000000000000000000		0702530988216045466703929531062943540649848450560318056 1212344458031752132411211102112101000000111000200211000000	5 - 0000000011211052122440000000000000000000	0.19 3.40 1.84 9.20 16.336 15.388 220.40 29.65 29.65 10.04	-418481659786660064642476662488437022061795036920522598 -0100002100012082122210121010300000000000	111475545676039666540708824760744269322433566663122 431535822233 11233222433566663122 431535822223	1505555555566555665050505050505050505050	43555555555555555555555555555555555555	M - 2409565591696213341233305126917750029 - 44430 9 - 34444444444444444444444444444444444
Permian	! 3840 ! 3960 ! 3963 ! 4023 ! 4043 ! 4178 ! 4260 ! 4260 ! 4380 ! 4540 ! 4580		0.60	0.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03	90.445 40.55	4761652054074610 00000000100000000000000000000000000	! 21 ! 75 ! 32 ! 32 ! 57 ! 32 ! 52 ! 32 ! 47	455559 42459 4559 4559 459 459 459 459 459 459 45	! 100 ! 125 ! 55 ! 40 ! 35	437 (430) (433) (424) - - (434)

TABLE Z A 71-20/12-2
COMPOSITION OF THE EXTRACTS

[]-		ļ -		. !		ļ-		- <u>ļ</u> .		·Į-		ļ-	!
! AGE !	DEPTH	Į	EOM	ij	EOM	ļ	SAT.	į	ARO.	į	POL.	ļ	S/A !
!!!		ļ			%TOC			į		į		ļ	!
1!-		ļ -		·		- ا		• !		! -		! -	!
lUp.J !	1800	ļ	3560	ļ	6	ļ	15.7	į	16.6	į	67.7	!	0.95!
1 " 1	1860	ļ	4640	ļ	4	į	8.7	ļ	24.9	į	66.4	1	0.35!
Low.J!	2043	!	10042	ļ	6	ļ	44.8	Ţ	26.4	į	28.8	į	1.70!
!Trias!	2153	ļ	7980	į	3	į	12.3	ļ	27.5	ļ	60.2	ļ	0.45!
1 " 1	2318	į	2110	į	15	ļ	25.0	į	12.4	ļ	62.6	ļ	2.02!
1 1	268 0	į	10380	į	38	•	19.2	į	21.5	į	59.2	į	Ø.89!
1 " 1	3425	ļ	1250	į	11	į	30.5	1	10.1	į	59.3	ļ	3.03!
!Perm.!	4018	ļ	1540	ļ	11	į	Z4. 1	ţ	11.8	į	64.1	ļ	2.04!
1 " 1	4260	ļ	1440	ı	13	ļ	23.4	ļ	10.8	į	65.8	ļ	2.17!
11-		! -		- -		! -		·į		ļ.		ļ-	!

TABLE 2 B 71-20/12-2
C15+ CHROMATOGRAPHICAL DATA

11-		- 1 -		- J		٠ļ٠		٠ إ ٠		Į,		Į.		! -		1
! AGE !	DEPTH	11	nAlk	: 1	Pr	ļ	Ph	į	Pr	ļ	A/B	ļ	MPII	!	MPIZ	!
1 1		1	ZSA1	ĖΙ	/n-C17	'n.	/n-C18	}	/Ph	1		1		1		1
11-														! - :		i
!Up.J!	1800	Í		•		-						-	0.36	-		į
1 " 1	1860	į	14	ļ	3.89	ļ	1.74	į	2.72	į	2.24	į	0.23	ļ	0.46	!
!Low.J!	2043	į	11	1	1.13	į	0.54	į	2.21	ļ	2.09	ļ	0.45	ļ	0.62	į
!Trias!	2153	ļ	23	!	2.81	!	0.46	ļ	6.33	ļ	3.16	į	<u>-</u> .	į	-	ļ
1 " 1	2318	1	4	į	1.52	į	1.23	į	1.26	1	1.23	ļ	0.54	1	0.78	1
4 " 1	2680	į	1	. j	1.78	ļ	0.71	ţ	2.03	ļ	Z.50	į	-	ļ	-	į
1 " 1	3425	į	1	ļ	0.93	ļ	0.83	ļ	1.27	ļ	1.13	į		ļ		ļ
[Perm.]	4018	į	6	ļ	0.66	ļ	0.38	1	1.73	ı	1.74	Į	-	!	-	ļ
1 " 1	4260	į	6	1	0.50	į	0.42	į	1.43	į	1.43	ļ		1		1
-	ر د د درد د درد	- ! -		- j		ļ.		٠ į .		1.		į.		ļ -		!

TABLE 3 71-20/12-2
GAS COMPOSITION AND ISOTOPICAL DATA

1	1
WELL	! 71-20/12-2 !
) GOR (m3/m3)	1 15000 !
1	[]
! NZ	1.51
! CO2	1.15
! C1	91.26
! CZ	1 3.64 !
i C3	1.51
! i-C4	- 1
l n-C4	1 1
! C5+	1 - 1
! C1/SCn	93.7
! C1/(C2+C3)	! 17.7 !
! d13C CH4	-44.3
! CZH6	! -30.0 !
! CO2	! -17.0 !
1	1