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1. INTRODUCTION

Ten source rock samples (seven cuttings and three SWC's) were analysed
together with three sandstone cores in an attempt to correiation hydro-
carbons in the sandstones with the source rocks. The analysed samples
cover the Jurassic section of the well. The samples are listed in Table
1. ’

Evaluation of the possible source rocks in the well has been performed
previously (Betts et al., 1983). Some of the GC data from this previous
report is presented here together with additional GC results and GC-MS
and 613C isotope data. For the bulk geochemistry parameters we refer to

the source rock report, only summaries of some data are reported here.
In this report a correlation of the hydrocarbons found in the three
sandstone cores will be performed before source rock/hydrocarbons cor-

relation is attempted.

1.1 Molecular ratios

Geochemical fossils or biological marker components are characteristic
of the type of organic matter present at the time the sediments were
deposited. The biological isomers of these components undergo changes
due to increased maturity in particular, but also to a certain degree
caused by migration and weathering processes.

1.1.1 Source characteristics parameters

In the m/e 191 mass chromatograms, representing terpanes, the hopanes
and moretanes are the major components in most extracts and oils. Of
the hopanes the C27 and C29-C35 homologs are ubiquitous, while the C28
bisnorhopane is believed to be typical of certain types of source rocks.
" The amounts of tricyclic terpanes relative to the hopanes are also be-
lieved to a certain extent to be characteristic of the source rock. This
is also the case for the component, probably gammacerane, sometimes seen
to coelute with the 22S isomer of the C31 17a(H)-hopanes (H). In the
sterane mass chromatograms, m/e 217 and m/e 218, the molecular weight
distribution of the C27-C29 regular steranes is believed to be represen-
tative of the original input of organic matter. The highest molecular

weight compounds, the C29 steranes, represent organic matter of terre-
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strial origin, while the lower molecular weight analogs originate from
more marine type environments.

1.1.2 Maturity parameters

The biological isomers of the hopanes, the 178(H), 218(H)-hopanes, under-
go structural changes during the maturation process. The isomerisation
reactions are thought to produced via the 178(H), 21la(H)-hopanes (more-
tanes) to the most stable 17a(H), 218(H)-hopanes. At equilibrium 100%
of the 17a(H)-hopanes are seen. The ratio aB/aB+Ba is used to describe
this reaction. In the extended hopanes (2931), the thermally stable S
configurations at C-22 become increasingly more abundant as compared to
the biological preferred R configurations at increased maturity level.
The equilibrium ratio is approximately 60% of the 22S configuration.
Another ratio that is known to change with maturity is the Tm/Ts (Sei-
fert et al., 1978) of the C27 hopanes. The maturable 18a(H)-trisnorneo-
hopane (Tm) is reduced in intensity relative to the more stable 17a(H)-
trisnorhopane (Ts), causing the Tm/Ts to decrease at increased maturity.
This ratio is also believed to be source dependant, and this should be
born in mind when applying the ratio for maturity comparison. The amount
of tricyclic terpanes is also to a certain extent seen to be maturity
dependant.

Two isomerisation reactions taking place in the steranes are most com-
monly applied for maturity assignments from the m/z 217 mass chromato-
grams. The biologically preferred 14a(H), 17a(H)-isomers of the regular
steranes is transformed to the thermally stable 14a(H), 178(H)-steranes,
the %gB approaching 75% at equilibrium. An equilibrium concentration of
50% is seen of the stable S configuration at C-20 as opposed to the 100%
of the biological 20R epimer (Mackenzie et al., 1980). The abundance of
rearranged steranes increases with increasing maturity.

One of the reactions taking place at an early stage of diagenesis is
the aromatisation of steranes, leading to the formation of mono- and
triaromatic analogs. This process is measured as the abundance of tri-
aromatic relative to mono-aromatic compounds (% tri/tri + mono) in the
m/z 231 and 253 mass chromatograms, respectively. In addition the de-
gree of side chain cracking, as %CZO/CZG, 27 and %C21/C28,29 respec-
tively, is applied. These cracking processes are also taking place dur-
ing early diagenesis, and are used for maturity assignment together with

106/d/ah/4
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the previously mentioned ratios.
1.1.3 Migration and weathering

The effect on the geochemical fossils of migration and weathering, is
less apparent than the maturity induced changes. Migration is believed
to cause an increase in the relative amounts of rearranged and 148(H),
178(H) regular steranes (Seifert and Moldowan, 1978, 1981). Severe bio-

logical alteration Teads to the formation of desmethyl-hopanes (Seifert
and Moldowan, 1979).

106/d/ah/5
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2. EXPERTMENTAL

2.1 Extractable Organic Matter

Approximately 50gm of powdered rock was extracted by flowblending

for 3 minutes using dichloromethane (DCM) as solvent. The DCM used was
of organic geochemical grade and blank analyses showed the occurrence
of negligible amounts of contaminating hydrocarbons.

Activated copper fillings were used to remove any free sulphur from the
samples.

After extraction the solvent was removed on a Buchi Rotavapor and the
amount of extractable organic matter (EOM) was determined.

2.2 Chromatographic Separation

The extractable organic matter (EOM) was separated into saturated frac-
tion, aromatic fraction and non hydrocarbon fraction using a MPLC system
with hexane as eluant (Radke et al., Anal. Chem., 1980). The various
fractions were evaporated on a Buchi Rotavapor and transferred to glass
vials and dried in stream of nitrogen.

2.3 Gas Chromatographic Analysis

The saturated hydrocarbon fractions were each diluted with n-hexane and
analysed on a HP 5730A gas chromatograph, fitted with a 25m QV-101 fused
silica capillary column. Hydrogen (0.7ml/min) was used as carrier gas.
The total aromatic fractions were after dilution with n-hexane, analysed
on a Carlo Erba Fractovap Series 2150 GC fitted with a 20mm SE-54 fused
silica column. |

'Injections on both systems were performed in the split mode (1:20). The
temperature program applied was 80°C (2 min) to 260°C at 4°C/m1n.

The data processing for all the GC analyses was performed on a VG Multi-
chrom System.

106/d/ah/6



2.4 Gas chromatography - mass spectrometry (GC-MS)

GC-MS analyses were performed on a VG Micromass 70-70H GC-MS-DS system.
The Varian Series 3700 GC was fitted with a fused silica OV-1 capillary
column (30m x 0.3mm i.d.). Helium (0.7kg/cm2) was used as carrier gas

and the injections were performed in splitless mode (1.5u1, spiit ratio
1:15). The GC oven was programmed from 70°C to 280°C at 4°C/min. after
an initial isothermal period of 2 minutes.

The saturated hydrocarbons were analysed in multiple ion mode (MID) at
a scan cycle time of approximately 2 secs. Full data collection was
applied for the aromatic hydrocarbons at a scan time of 1 sec/decade.
The mass spectrometer operated at 70eV electron energy and an ion source
temperature of 200°C. Data acquisition was done by a GC data system.

Peak identification was performed applying knowledge of elution patterns
in certain mass chromatograms. Calculation of peak ratios was done from
peak height in the appropriate mass chromatograms.

2.5 613C isotope analysis

The 613C isotope analyses were performed by mass spectrometry at the

Institute for Energy Technology (IFE) in Oslo. Their value for the NBS
standard is reported to -29.8.

106/d/ah/7



3. RESULTS AND DISCUSSION

The results will be discussed in three separate parts. First a summary
of the source rock potential of the well is presented. Then a correla-
tion of the hydrocarbons in the three sandstone cores is performed be-
fore the attempt to correiate these hydrocarbons with the source rocks.

In addition to the cuttings and core samples analysed and reported in
the source rock report on well 6610/7-1 (Betts et al., 1983) three side-

wall cores were analysed for this correlation study.

3.1 Summary of source rock potential in well 6610/7-1

Table 2 Tists various bulk parameters for the source rock samples from
the Jurassic section of the well. The Upper Jurassic part of the well
seems to contain the most promising source rocks with regard to hydrogen
rich kerogen types. Sample A-5841 was re-extracted to get enough mater-
ial for 613C isotope analyses, and thus two sets of some of the data
are given. The agreement between TOC-values in the two sets of data is
not good, probably because of difficulties encountered in picking the
same lithology for the extractions. The data from the second extraction
are applied in the further discussion, since these chromatographic frac-
tions were analysed further.

The hydrogen and oxygen indices suggest that the fine claystones/shales
in the Upper Jurassic part contain type JI and mixed type II/JIT kero-
gen. The petroleum potentials (PP) are high in all the samples, while
the production indices (PI]) are low and imply indigenous and very 1lit-
tle migrated hydrocarbons. An increase in the amount of hydrocarbons is
seen with increasing depth and the SAT/ARQ ratios are relatively low.
The maturity of the Upper Jurassic section is low, with vitrinite re-
flectance‘va1ues of less than 0.5% in most cases (Table 3).

The Middle and Lower parts of the Jurassic section have poorer kerogen
types than the zone above. Very high TOC-values are seen in the lowest
part, probably due to coal. As above the production indices are rela-
tively low and migrated hydrocarbons are not expected to create pro-
blems in the correlation. The high SAT/ARO ratio of sample A-6394 is
probably not representative but due to the Tow weights of the chroma-
tographic fraciions. Vitrinite reflectance and Tmax values indicate
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that the Middle and Lower Jurassic claystones are moderate mature to
mature.

Thus the most promising source rocks based on kerogen types, the Upper
Jurassic claystones, are too immature for hydrocarbon generation in
this well. However, more mature stages of these claystones may very
well be the source of the hydrocarbons in the sandstone cores. The
Middle and Lower Jurassic claystones are most likely not at least the
main source of the hydrocarbons, based on the hydrogen poor kerogen
types generally encountered.

3.2 Correlation of hydrocarbons in sandstone cores

3.2.1 Extraction and chromatographic separation

Extraction data presented in Tables 4a-d show that the cores contain
good to rich amounts of extractable hydrocarbons relative to weight of
rock extracted and rich values compared to total organic carbon (% TOC)
in the cores. The relative distribution of saturated to aromatic hydro-
carbons, the SAT/ARO ratio, increases slightly towards the deeper cores.
This is also the case for the relative abundance of hydrocarbons, a
trend that fits well in with the richness of the samples. The shallowest
core was seen to contain lowest amount of extractable hydrocarbons, it
showed the lowest value for the SAT/ARO ratio and for the relative
amount of hydrocarbons to non-hydrocarbons.

3.2.2 GC analysis of C15+ saturated hydrocarbons

The saturated hydrocarbon GC's (Figure 1) show front end biased n-alkane
profiles, with maximum intensities at nC17. The shallowest sample shows
a weak shoulder in the region around nC25. This indicates that the front

end biased n-alkane profile is typical of the main part of the migrated
'hydrocarbons, since this is most pronounced in the samples with highest
abundance of hydrocarbons. The relative amounts of isoprenoids are simi-
lar in all three cores (Table 5).

3.2.3 GC analysis of aromatic hydrocarbons

A similar trend is seen in the GC's of aromatic hydrocarbons (Figure
2). The two deepest cores contain high amounts of the lower molecular
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weight alkyl naphthalenes relative to the phenanthrenes. The general
distribution of the individual components is very similar in these two
samples. In the shallowest core less of the lTow molecular weight com-
pounds was seen, and the general distribution was slightly different to
what was seen for the deeper cores. This is most probably due to the
overall Tower tctal abundance of hydrocarbons in this shallowest core.

3.2.4 GC-MS analysis of saturated terpanes and steranes

Mass chromatograms representing terpanes (m/z 191) and steranes (m/z
217 and 218) are presented in Figure 3. The terpane chromatograms show
the ubiquitous 17a(H),218(H)-hopanes to be the dominating components in
all three samples, indicating mature hydrocarbons to be present. Some
minor variations are seen in the molecular ratios presented in Table 6.
The bisnorhopane (Z) is found in high relative abundance in the two
deepest samples, while it is very low in the shallowest core. The un-
identified component X is more abundant in the shallow core than in the
other two. Apart from these differences the distribution of terpanes
seems to be similar. Only minor variations are seen also in the sterane
mass chromatograms, the shallowest sample showing ratios slightly dif-
ferent to the other two.

3.2.5 GC-MS analysis of aromatic hydrocarbons

In the aromatic mass chromatograms shown in Figure 4, no variation is

seen for the monoaromatic compounds (m/z 92 and 106), the naphthalenes
(m/z 142, 156 and 170) or the phenanthrenes (m/z 178, 192 and 206). The
mono- and tri-aromatic sterane traces, m/z 253 and 231, respectively,

show different distributions for the shallowest samples compared to the
other two. This could be due to the generally lower abundance of hydro-
carbons in the shallowest core.

13

1 3.2.6 §°°C isotope analysis

The 613C isotope data presented in Table 7 show the same trend as dis-
cussed above. The values for the two deepest cores are very similar for
both saturated and aromatic hydrocarbons, while the shallowest sample

is seen to be slightly heavier, especially in the aromatic fraction.

106/d/ah/10
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3.2.7 Summary on sandstone cores

Based on the previously discussed data, it may be concluded that the
three cores contain hydrocarbons generated from the same or similar
sources. The differences seen between the shallowest core (A-6419 at
2661.6m) and the two deeper ones (A-6420 at 2668.1m and A-6421 at
2706.0m) are thought to be due to the lower richness of the shallow
sample. This make the core more liable to contamination by hydrocarbons
from the claystones close to the core, and thus a mixed input to this
sample cannot be excluded.

3.3 Correlation of source rocks and migrated hydrocarbons in sandstone
cores

3.3.1 GC analysis of C15+ saturated hydrocarbons

Chromatograms are presented in Figure 1. The n-alkane distribution is
fairly similar for most of the samples. Bimodal profiles with maxima at
nC15 and nC27 are seen. The isoprenoids are very abundant relative to
n-alkanes (Pr/n-Cl7) and a CP] greater than 1.0 is encountered, especial-
ly in the Upper Jurassic part of the well. The deeper samples show lower
values for the Pr/n-C17 in agreement with the slightly higher maturity
in this deeper section. For the deepest SWC the bimodality is less pro-
nounced, with a profile more similar to those seen for the core samples.
This could indicate that the Lower Jurassic claystone at 3148m, which
is of 0il window maturity (Ro = 0.66%), is a possible source for the
hydrocarbons. There is, however, also the possibility that the hydro-
carbons in this SWC have migrated from another source.

3.3.2 GC analysis of C15+ aromatic hydrocarbons

The GC chromatograms of the aromatic hydrocarbon fractions are rela-
tively complex especially in the least mature part of the well. This is
probably mainly due to the immature stage of the samples. Towards the
base of the Jurassic section the mature pattern of alkylated naphtha-
lenes and phenanthrenes is becoming more predominant. With the excep-
tion of sample A-6399, all the claystone fractions seem to contain
higher abundance of phenanthrenes relative to naphthalenes than the

106/d/ah/11
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sandstone cores. A tentatively calculation of the methylphehanthrene
ratio from these relatively poorly resolved chromatograms (Table 8)
indicates that all claystone samples contain less of the first eluting
isomers than the second. A nearly even distribution is seen for the
shallowest sandstone core, while the other cores contain more of the
second eluting isomers. This suggests that the main part of the hydro-
carbons encountered in the cores originate from another source rock
than the claystones analysed from this well. A mixed input from the
less mature hydrocarbons in this well may explain the difference in the
shallowest core.

3.3.3 GC-MS analysis of saturated terpanes and steranes

Mass chromatograms representing terpanes (m/z 191) and steranes (m/z
217 and 218) are presented in Figure 3, and calculated molecular ratios
are given in Table 6. The main difference in the terpane chromatograms
is the relative abundance of the bisnorhopane (Z). This peak is the
main one in the Upper Jurassic samples, while it can hardly be detected
in the deepest sample. The maturity was seen to be relatively low for
all the samples, none of the isomerisation reactions having reached
equilibrium. By comparison with the core mass chromatograms the most
likely source for the hydrocarbons in the cores is a more mature stage
of the Upper Jurassic claystones.

From the sterane traces (m/z 217) the four or five shallowest samples
seem to be fairly similar, all showing relatively low amounts of

148(H),178(H)-steranes. The two deeper samples were seen to contain
less of the lower molecular weight C27 and C28 steranes. This is pro-
bably due to the amount of coal in these samples and can be seen more
clearly from the m/z 218 chromatograms and the triangular plots shown
in Figure 5. Apart from the maturity differences the core samples are

most similar to the Upper Jurassic samples.

3.3.4 GC-MS analysis of aromatic hydrocarbons

Mass chromatograms are presented in Figure 4. Total jon chromatograms
are not shown, since they look very similar to the normal GC traces.

Even with the high complexity seen in the traces representing monoaro-
matic components (m/z 92 and 106) a trend can be seen. Generally the

106/d/ah/12
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shallowest claystones exhibit patterns most similar to the cores. The
naphthalene homologs (m/z 142, 156 and 170) do not reveal big differen-
ces between the samples, and the main difference seen in the phenan-
threne chromatograms (m/z 178 + 192 + 206) is the distribution of the
methyl-phenanthrenes (m/z 192). As seen from the GC's the abundance of
the first eluting isomers is more pronounced in the deepest cores than
in the other samples. This could be solely a maturity related variation.

From the aromatic sterane chromatograms (m/z 231 and 253) the Upper
Jurassic samples are seen to be similar to the two deepest cores. The
shallowest core with lowest amount of extractable hydrocarbons shows
patterns intermediate between the other cores and the Lower Jurassic
samples.

13

3.3.5 677C isotope analyses

The data in Table 7 show that none of the source rock extracts have
613C isotope ratios in good agreement with the data for the core ex-
tracts. The shallowest claystones seem to give values closest to the

cores, both for the saturated and the aromatic hydrocarbon fractions.
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4. CONCLUSTONS

The analyses suggest that the migrated hydrocarbons in the sandstone
cores originate from the same or similar source rocks, with the possible
contribution from a second source to at least the shallowest core. Com-
parison with the source rock anaiyses indicate that a more mature stage
of the Upper Jurassic claystones is the most 1ikely main source of the
hydrocarbons. The mixed input in the shallowest core is probably due to
contamination by hydrocarbons from the claystones close to this sand-
stone. The Upper Jurassic claystones in this well are of too low matur-

ity to have sourced the main part of the hydrocarbons encountered in
the sandstones.
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Table 1: List of samples analysed.
TKU Code Sample Lithology Zone Depth (m)

type
A-6424 SWC C 2283
A-5841 Cuttings clst/sh ! 2285-2300
A-6426 SWC " 2303
A-5850 Cuttings clst/sh " 2420-2435
A-5861 Cuttings clst ‘! 2585-2600
A-6419 Core sst . 2661.60-2661.64
A-6420 Core sst " 2668.05-2668.12
A-5869 Cuttings clst D 2705-2720
A-6421 Core sst " 2706.00-2706.05
A-5874 Cuttings clst ‘! 2780-2795
A-6394 Cuttings clst E 2960-2975
A-6399 Cuttings clst/sh 3035-3050
A-6429 SWC 3148
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Table 2. Summary of source rock parameters.

Lithology TKU Depth(m) HI 01 Pet. Prod. %HC SAT/ARO mgs HC/
code ’ Pot. Ind. g TOC

Upper Jurassic

Claystone A-6424 2283 387 27 26.64 0.10 4 0.4 4.6

SWC 9.8 %T0C
type I1/111]

Clst./shale A-5841 2300 376 12 46.65 0.09 (28) (3.5) (31.5)
18.8 %T0C 15 0.7 5.8
type I1/171]

Claystone A-6426 2303 330 11 31.03 0.03 14 0.5 6.0

SWC 9.3 %T0C
type TJ/111

Cist./Shale A-5850 2435 273 13 18.45 0.04 69 0.8 24.4
2.2 %T0C
type TI/111

Claystone A-5861 2600 168 10 6.26 0.04 52 0.9 19.7
1.5 %T70C
type I1I

Middle/Lower Jurassic

Claystone A-5869 2720 76 29 0.96 0.17 49 0.9 27.9
1.3 %70C
type II1

Claystone A-5874 2795 - - - - 17 0.3 22.4
2.5 %70C

Claystone A-6394 2975 125 19 1.54 0.08 33 2.5 36.4
1.8 %T0C
type 111

Clst./Shale  A-6399 3050 100 17 0.98 0.09 (19) (0.7) (18.0)
28.6 %T0C 24 0.5 9.0
type JII

Claystone A-6429 3148 198 3 76.32 0.03 11 0.9 2.2

SWC 32.2 %70C

type TI/111

106/d/ah/17
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Table 3. Vitrinite reflectance values for Jurassic source rocks.

106/d/ah/18

TKU code Lithology Depth (m) Ro
A-6424 cist (SWC) 2283 0.56 (16)
~ A-5841 clst/sh 2300 0.47 {12)
A-6426 clst (SWC) 2303 0.42 (15)
A-5850 clst 2435 0.51 (17) 0.78 (1)
A-5861 clst 2600 0.46 (6) 0.60 (2)
A-5869 clst 2720 0.51 (8)
A-5874 2795 N.D.P.
A-6394 2975 -
A-6399 clst/sh 3050 0.68 (20) 0.92 (1)
A-6429 clst (SWC) 3148 0.66 (19)
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Table 6. Molecular parameters calculated from GC-MS mass chromatograms.

m/z 191 m/z 217
IKU code Sample type Q/E 2/E X/E ag/ogteal)  4225%) rearr./regs)  %20s%)  ugg”
A-5841  cuttings 0.06 2.54 0.08 0.82 58.3 1.1 54.0  44.6
A-5850 " 0.04 1.09 0.05 0.72 52.5 1.0 50.8  47.8
A-5861 " 0.04 1.09 0.08 0.66 44.6 1.0 37.2  47.7
A-5869 z 0.06 1.19 0.09 0.74 46.9 0.8 46.2  48.0
A-5874 " 0.05 0.67 0.07 0.72 49.7 0.6 42.5  49.0
A-6394 " 0.02 0.16 0.08 0.77 54.3 0.4 45.9  62.7
A-6399 " 0.01 - 0.10 0.77 59.8 0.2 46.9  57.8
A-6419  sst. core 0.10 0.10 0.22 0.86 62.1 0.9 45.5  70.9
A-6420 " 0.08 0.55 0.05 0.90 60.9 1.1 51.7  70.3
A-6421 " 0.07 0.56 0.06 0.90 57.8 1.1 53.8  75.7
1) E/E+F in m/z 191 (Figure 3)
2) 3,19+, in m/z 191 (Figure 3)
3

) atb/h+k in m/z 217 (Figure 3)

4) q/q+t in m/z 217 (Figure 3)

) 2(r+s)/2(r+s)+q+t in m/z 217 (Figure 3)

1NC /1AL /710

-92_




- IKU

Table 7. 613 isotope data

IKU code Sample type SAT ARO
A-6424 cuttings - 30.6 - 30.2
A-5841 " - 30.3 - 29.6
A-6426 " - 28.3 - 26.8
A-6399 " - 29.0 - 28.0
A-6429 . - 28.5 - 26.6
A-6419 sst. Core - 31.1 - 29.0
A-6420 " - 31.3 - 30.6
A-6421 " - 31.4 - 30.5

106/d/ah/20



ik IKU

Table 8. Tentatively assigned methylphenanthrene ratios.

IKU code Sample type 3+2/9+1 methylphenanthrenes
A-6424 SWC -
A-5841 cuttings 0.8
A-6426 SWC 0.5
A-5850 cuttings 0.7
A-5861 ! 0.8
A-5869 " 0.9
A-5874 8 0.8
A-6394 " 0.8
A-6399 ! 0.9
A-6492 SWC 0.8
A-6419 sst. Core 1.0
A-6420 " 1.8
A-6421 " 1.4

106/d/ah/21



e KU

FTIGURE 1.
Gas chromatograms of saturated hydrocarbons
a - n-C17

b, Pr - pristane
Cc, Ph - phytane

106/d/ah/22
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FIGURE 2.

Gas chromatograms of aromatic hydrocarbons
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DMN
TMN

MP
DMP

- naphthalene

- Cl-naphthalenes

- Cz-naphthalenes

- C3-naphtha1enes

- phenanthrene

- Cl-phenanthrene

- Cz-phehanthrene

- aromatic sterane region
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Figure 3a.

Mass chromatograms representing terpanes (m/z 191)

A TS, 18a(H)=-trisnorneochopane C27H46 (111)
B Tm’ 174(H)=-trisnorhopane C27H46 (I,R=H)
o 17a(H)-norhopane C29H50 (I,R=C2H5)
D 178(H)-normoretane CogMsg (II,R=C2H5)
E 17a(H)-hopane C30H52 (I,R=C3H7)
F 17B(H)-mor§tane C3oHs5, (II,R=C3H7)
G 17a(H)-homohopane (22S) C31H54 (I,R=C4H9)
H 17a(H)-homohopane (22R) C31H54 (I,R=C4H9)

+ unknown triterpane (gammacerane?)
I 178(H)-homomoretane C31H54 (II,R=C4H9)
J 17a(H)-bishomohopane (22S,22R) C32H56 (I,R=C5H11)
K 17a(H)-trishomohopane (225,22R) C33H58 (I,R=C6H13)
L 17a(H)-tetrakishomohopane (22S,22R) C34H60 (I,R,=C7H15)
M 17a(H)-pentakishomohopane (22S,22R) C35H62 (I,R=CBH17)
A bisnorhopane C28H48
X unknown triterpane C30H52
P tricyclic terpane C23H42 (IV,R=C4H9)
Q tricyclic terpane C24H44 (IV,R=C5H11)
R tricyclic terpane (17R,17S) C25H46 (IV,R=C6H13)
S tetracyclic terpane CogHyo (v)
T tricyclic terpane (17R,17S) C.6tsg (IV,R=C7H15)
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Figure 3b.

Mass chromatograms representing steranes (m/z 217 and 218)

138(H),17a(H)-diasterane (z0S)
138(H),17a(H)-diasterane (20R)
13a(H),178(H)-diasterane (20S)
13a(H),178(H)~diasterane (20R)
138(H),17a(
138(H),17u(H)-diasterane (Z0R)
13u(H),178(H)-diasterane (20S)
+ lda(H),17«(H)~-sterane (20S)
h 138(H),17a(H)-diasterane (20S)

+ 14u(H),17c(H)-sterane (20R)
i 148(H),178(H)-sterane (20S)

+ 13a(H),178(H)-diasterane (20R)
J 14a(H),17a(H)-sterane (20R)
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+ 148 (H),178 (H)-sterane (20R)
148(H),178(H)-sterane (20S)
14ui{H),17a(H)-sterane (20R)
14a(H),17a(H)-sterane (20S)
148(H),178{H)-sterane (20R)
+ unknown sterane
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Mass chromatograms representing aromatic hydrocarbons.
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FIGURE 5.

Triangular plot showing molecular weight
distribution of C27, C28 and C29 regular steranes
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