

THERMAL HISTORY ANALYSIS OF SEVEN SAMPLES FROM THE 35/3-2 WELL, NORWEGIAN NORTH SEA

GEOTRACK REPORT #401

12.55

Telephone:

ational (03) 344 7214 iternational 613 344 7214

Facsimile 613 347 5938

Telex AA35185 UNIMEL

Geotrack International Pty Ltd PO Box 4120 Melbourne University Victoria 3052 Australia

Samples to:

Room 225 Earth Sciences Bldg University of Melbourne Cnr Swanston and Elgin St Carlton Victoria 3052 Australia

Saga Petroleum a.s. INFORMASJONSSENTRET

THERMAL HISTORY ANALYSIS OF SEVEN SAMPLES FROM THE 35/3-2 WELL, NORWEGIAN NORTH SEA

GEOTRACK REPORT #401

A report prepared for Mobil Exploration Norway, Stavanger, Norway

Report prepared by:	S.J. Marshallsea
Fission track age determinations by:	S.J. Marshallsea
Track length measurements by:	S.J. Marshallsea

June 1992

 Telephone
 61+3 344 7214

 Facsimile
 61+3 347 5938

 Telex
 35185 (UNIMEL)

Geotrack International Pty Ltd PO Box 4120 Melbourne University Victoria 3052 Australia Samples to: Room 225 Earth Sciences Bidg University of Melbourne Cnr Swanston and Elgin St Carlton Victoria 3052 Australia

APPENDIX D

Vitrinite Reflectance Measurements

D.1 New vitrinite reflectance determinations

Samples

Sixteen samples from Norwegian North Sea well 35/3-2 were submitted for vitrinite reflectance determination to Keiraville Konsultants, Australia. Details of these samples are summarised in Table D.2, while results and supporting data are presented in the following pages.

Equipment

Leitz MPV1.1 photometer equipped with separate fluorescence illuminator, Swift point counter. Reflectance standards: spinel 0.42%, YAG 0.91%, GGG 1.72%, SiC standard for cokes and masked uranyl glass for measurement of intensity (I) in fluorescence mode. With the Keiraville Konsultants equipment, it is possible to alternate from reflectance to fluorescence mode to check for associated fluorescing liptinite, or importantly with some samples, to check for bitumen impregnation, or the presence, intensity, and source of oil-cut.

Sample preparation

Samples are normally mounted in cold setting polyester resin and polished using Cr203 and Mg0 polishing powders. Epoxy resins or araldite can be used if required. "Whole rock" samples are normally used but demineralisation can be undertaken. Large samples of coals and cokes can be mounted and examined.

Vitrinite Reflectance measurement

The procedure used generally follows Australian Standard (AS) 2486 but has been slightly modified for use with dispersed organic matter (DOM). For each sample, a minimum of 25 fields is measured (the number may be less if vitrinite is rare or if a limited number of particles of vitrinite is supplied, as may be the case with hand-picked samples). If wide dispersal of vitrinite reflectances is found, the number of readings (N) is increased until a stable mean is obtained.

Vitrinite identification is made primarily on textural grounds, and this allows an independent assessment to be made of cavings and re-worked vitrinite populations. Histograms are only used for population definition when a cavings population significantly overlaps the range of the indigenous population. Where such data provides additional information, the mean maximum reflectance of inertinite and/or the mean maximum reflectance of liptinite (exinite) is reported. For each field, the maximum reflectance position is located and the reading recorded. The stage is then rotated by 180° which should give the same reading. In practice, the readings are seldom identical because of stage run-out and slight surface irregularities. If the readings are within $\pm 5\%$ relative, they are accepted. If not, the cause of the difference is sought and the results rejected. The usual source of differences is surface relief. The measurement of both maxima results in a total of 50 measurements being taken for the 25 fields reported. Thus, the 50 readings consist of 25 pairs of closely spaced readings which provide a check on the levelling of the surface and hence additional precision.

As the vitrinite reflectance measurements are being made, the various features of the samples are noted on a check sheet to allow a sample description to be compiled. When the reflectance measurements are complete, a thorough check is made of liptinite fluorescence characteristics. At the same time, organic matter abundance is estimated using a global estimate, a grain count method or point count method as required.

Data presentation

Individual sample results are reported in the following format.

KK No.	Depth (ft)	R_vmax*1	Range* ²	N*3
x10324	3106	0.79	0.64 - 0.91	25

*1 Mean of all the maximum reflectance readings obtained.

*2 Lowest Rmax and highest Rmax of the population considered to represent the first generation vitrinite population.

*³ Number of fields measured (Number of measurements = 2N because 2 maximum values are recorded for each field)

Table D.2: Vitrinite reflectance sample details and results - samples from
well 35/3-2, Norwegian North Sea (Geotrack Report #401)

Sample	Depth	Sample	VR	N
number	(m)	type	%	
GC401-8	550	cuttings	0.34	4
GC401-9	880	cuttings	1.34 *2	1
GC401-10	920	cuttings	0.38	2
GC401-11	1150	cuttings	-	-
GC401-12	1400	cuttings	0.45	5
GC401-13	1600	cuttings	0.45	5
GC401-14	1800	cuttings	0.38	1
GC401-15	2000	cuttings	0.47	4
GC401-16	2200	cuttings	0.46	9
GC401-17	2600	cuttings	0.48	5
GC401-18	2800	cuttings	1.02 *2	5
GC401-19	3000	cuttings	0.51	5
GC401-5	3605	core	0.55	3
GC401-20	3695	cuttings	1.64	8
GC401-21	3946	cuttings	0.59	20
GC401-6	4000	core	-	-

Note: Some samples may contain both vitrinite and inertinite. Only vitrinite data is shown for these samples.

*1 See Appendix A for discussion of present temperature data.

*2 Inertinite.

KK/Ref. No.	Depth(m)/ Type	R max V	Range	N	JOB GC 401, 35-32 Description Including Liptinite (Eximite) Fluorescence
∨5807 GC401-8	550 Ctgs Ř _J		0.19-0.44 1.00-1.93	4 5	PLIOCENE Rare sporinite and liptodetrinite, yellow to orange. (Sandstone>silty claystone>carbonate. Coal rare, V>>1>L. Vitrite>inertite. Dom sparse, 1>L. Inertinite sparse, liptinite rare, vitrinite rare. Oil drops rare, greenish yellow. Mineral fluorescence pervasive, faint green. Glauconite rare. Mud additives sparse. Iron oxides sparse. Pyrite rare.)
√5808 GC401-9	880 Ctgs R ₁	- 1.34	-		PLIDCENE-MIDCENE Rare lamalginite and liptodetrinite, yellow. (Sandstone> carbonate. Dom rare, L>I. Liptinite and inertinite rare, vitrinite absent. Oil drops rare, greenish yellow. Mineral fluorescence pervasive, faint green. Glauconite common. Iron oxides rare. Pyrite sparse.)
∨5809 GC401-10	920 Ctgs R _I	0.38 1.59	- 1.00-2.00	2 10	Sparse lamalginite, yellow, rare sporinite, yellow to orange, rare liptodetrinite, yellow. Coal rare, V>>L>I. Vitrite = clarite. Dom sparse, I=L. Inertinite and liptinite sparse, vitrinite absent. Oil drops rare, greenish yellow. Mineral fluorescence pervasive, faint green to moderate orange. Glauconite sparse. Fossil fragments sparse. Mud additives common. Iron oxides sparse. Pyrite common.)
v5810 GC401-11	1150 Ctgs R _I			-	Rare lamalginite and liptodetrinite, yellow. (Sandstone> calcareous siltstone>carbonate. Dom rare, Lonly. Mineral fluorescence pervasive, faint green. Glauconite rare. Fossil fragments rare. ?Cavings rare (Rv 0.17-0.19). Iron oxides common. Pyrite abundant.)
v5811 GC401-12	1400 Ctgs	0.45	0.36-0.56	5	Sparse lamalginite, yellow to orange. (Carbonate>calcareous siltstone>>coal. Coal rare, vitrinite only. Vitrite only. Dom sparse, L>I>V. Liptinite and inertinite sparse, vitrinite rare. Mineral fluorescence pervasive, dull green to orange. Iron oxides sparse. Pyrite common.).
v5812 GC401-13	1600 Ctgs	0.45	0.40-0.49	5	Sparse lamalginite, yellow to orange, liptodetrinite rare, yellow . (Carbonate. Dom sparse, L>I>V. Liptinite and inertinite sparse, vitrinite rare. Shell fragments sparse. Mineral fluorescence pervasive, green to orange. Iron oxides sparse. Glauconite sparse. Pyrite abundant.).
v5813 GC401-14	1800 Ctgs R _I	0.38 1.00	- 0.81-1.40	1 8	Sparse lamalginite and liptodetrnite, yellow to orange. (Carbonate>calcareous siltstone. Dom common, L>I>>V. Liptinite and inertinite sparse, vitrinite rare. Shell fragments sparse. Iron oxides sparse. Pyrite abundant.)

.

SX Geot92.dw4

JOB GC #401, WELL 35-32 (CONTINUED)

KK/Ref. No.	Depth(m)/ Type	R max	Range	N	Description Including Liptinite (Exinite) Fluorescence
v5814 GC401-15	2000 Ctgs R _I		0.39-0.54 0.78-1.41	4 11	Sparse Lamalginite, yellow to orange, rare liptodetrnite, yellow to orange. (Calcareous, silty claystone>carbonate>sandstone. Dom common, I=L>>V. Inertinite and liptinite sparse, vitrinite rare. Mineral fluorescence pervasive, faint green to orange. Coal cavings rare, R of about 0.21%. Shell fragments sparse, Glauconite sparse. Iron oxides abundant. Pyrite abundant.)
√5815 GC401-16	2200 Ctgs	0.46	0.42-0.53	9	Common sporinite and ?lamalginite, yellow to orange, rare liptodetrinite, yellow to orange. (Calcareous, silty claystone>carbonate. Dom common, L>I>V. Liptinite common, inertinite sparse, vitrinite rare. Mineral fluorescence pervasive, faint green to orange. Coal cavings rare, R of about 0.31%. Forams and shell fragments sparse. Glauconite sparse. Iron oxides common. Pyrite abundant.)
v5816 GC401-17	2600 Ctgs	0.48	0.43-0.53	5	SANTONIAN-TURONIAN Rare lamalginite and liptodetrnite, yellow to orange. (Carbonate>calcareous, clayey siltstone>sandstone. Dom sparse, 1>L>V. Inertinite sparse, liptinite and vitrinite rare. Mineral fluorescence pervasive, moderate yellow to dull orange. Mud additives rare. Coal and siltstone cavings rare, R ranges from 0.27 to 0.33%. Forams and shell fragments sparse. Glauconite sparse. Iron oxides abundant. Pyrite abundant.)
v5817 GC401-18	2800 Ctgs R _j	1.02	0.76-1.21	5	Rare lamalginite and liptodetrnite, yellow to orange. (Cuttings probably from a turbodrill. If this is correct, the reflectance cannot be determined. Carbonate>calcareous, silty claystone>sandstone. Dom rare, L>1. Liptinite and inertinite rare, vitrinite absent. Mineral fluorescence weak to absent from most grains, moderate orange from about 10% of grains. If the non-fluorescing grains are not from a turbodrill, it is possible that they are thermally altered and the moderately fluorescing grains represent a cavings population. If this is the case, the inertinite reported is probably from a cavings populations. Forams and shell fragments rare. Iron oxides abundant. Pyrite abundant.)
v5818 6C401-19	3000 Ctgs R _j	1.27	0.44-0.68 0.76-1.75 obably cavi	10	Rare lamalginite and liptodetrnite, yellow to orange. (Cuttings probably from a turbodrill. If this is correct, the reflectance cannot be determined. Carbonate>calcareous, silty claystone>siltstone. Dom sparse, I>L>V. Inertinite sparse, liptinite and vitrinite rare. Mineral fluorescence weak to absent from most grains, moderate orange from about 10% of grains. If the non-fluorescing grains are not from a turbodrill, it is possble that they are thermally altered and the moderately fluorescing grains represent a cavings population. Both the vitrinite and the inertinite reported is probably from a cavings populations. Mineral fluorescence pervasive, moderate yellow to dull orange. Coal cavings rare, R of about 0.25%. Forams and shell fragments sparse. Glauconite rare. Iron oxides abundant. Pyrite abundant.)

JOB GC #401, WELL 35-32 (CONTINUED)

KK/Ref.	Depth(m)/	_			Description Including
No.	Туре	Ř max V	Range	N	Liptinite (Exinite) Fluorescence
v5819 GC401-5	3605.1 Core	0.55	0.40-0.68	31	UPPER ALBIAN Abundant lamalginite, yellow to orange, sparse liptodetrinite, yellow to orange. (Siltstone>sandstone. Dom major, V>1>L. All three maceral groups abundant. Mineral fluorescence pervasive, faint green to dull orange. Iron oxides rare. Pyrite abundant.)
v5820 GC401-20	3695 Core	71.64	1.41-1.77	-	DDLE ALBIAN-UPPER APTIAN Fluorescing liptinite absent. (Thermally altered calcareous siltstone. Dom common, 1>7V. Inertinite common, ?vitrinite rare, liptinite absent. Mineral fluorescence very weak and the conclusion that the sample is thermally altered is based on the fluorescence characteristics of the mineral matter. Glauconite rare. Fossil fragments common. Vitrinite with a reflectance of 0.44 - 0.60% is present in mud cake in a crack. Iron oxides sparse. Pyrite rare.)
v5821 GC401-21	3946 Core	0.59	0.46-0.73		TER BAJOCIAN-MIDDLE TORCIAN Common lamalginite, yellow to orange, sparse liptodetrinite, yellow to orange. (Calcareous siltstone. Dom abundant, I>L>V. All three maceral groups common. Mineral fluorescence patchy ranging from weak green to moderate orange. Iron oxides sparse. Pyrite abundant.)

4

D.26

Page 1

SAGLAB RESULTS MANAGEMENT : VITRINITE ANALYSIS RESULTS

													Data	for	Well 35	/3-2		
Туре	St.Depth	En.Depth	VRo 1	Pop	VR0 2	Pop	VR0 3	Pop	Sample	ID	Dup	-						
CUT	0.00	2410.00	.47	7	.63	3				278	11							
SWC	2410.10	2410.10	.73	3						278	13							
SWC	3162.00	3162.00	. 49	5						273	79							
SWC	3336.00	3336.00	.34	1	.45	5				273	83							
SWC	3391.00	3391.00	.54	4						273	85							
ŚWC	3468.50	3468.50	. 50							273	87							
SWC	3477.00	3477.00	.39	1	.48	1				273	89							
SWC	3477.10	3477.10	.61	1						278	15							
SWC	3483.00	3483.00	.34	1	.62	4				273	91							
UNS	0.00	3593.10	.96	4						278	17							
cur	3593.00	3620.00	.42	4	.63	12				278	19							
SWC	3653.00	3653.00	.61	1	. 50	3				273	99							
SWC	3671.00	3671.00	.64	2						274	01							
SWC	3750.00	3750.00	.71	1	.54	1				274	0 5							
cur	3746.00	3776.00	.58	15	.81	5				278	Z1							
SWC	3830.00	3830.00	.71	14	.57	5				274	11							
UNS	0.00	3830.10	.88	2						278	23							
SWC	3898.00	3898.00	1.18	3	.62	2				274	15							

SAGLAB RESULTS MANAGEMENT : VITRINITE ANALYSIS RESULTS

Page 2

					Data for Well 35/3-2						
Туре	St.Depth	En Depth	VR0 1	Pop	VR0 2	Pop	VR0 3	Pop 	Sample	10 Dup	-
SWC	3922.00	3922.00	.69	18	. 48	3				27417	1
CUT	0.00	3965.00	.35	1	.54	20				27419	1
SWC	3980.00	3980.00	.55	20						27421	1
SWC	4033.50	4033.50	.66	20						27423	1

ADDRESS TELEPHONE TELEX TELEFAX	KJELLER Boks 40, 200 +47 6 80600 74 573 energ +47 6 81116	0 n	HALDEN N1751 Ha +47 9 183 76 335 ene		AVAILABILITY Private Confide	ential
REPORT TYPE	REPORT NO.	IFE/KR/F-9	92/116		DATE 1992-08-	-12
Service	REPORT TITLE	COTANOE AN			DATE OF LAST REV	-
	WELL 35/3-2 OFF 1. REVISION	REV. NO.	187 mar 4 m			
	CLIENT	Saga Petrol	eum a.s		NUMBER OF PAGES	
	CLIENT REF.	Idar Horsta	d.		NUMBER OF ISSUES	\$ 6
SUMMARY					DISTRIBUTION	
					Saga Petroleum a.s	(3)
					Throndsen, T. File	(2)
KEYWORDS			· · · · · · · · · · · · · · · · · · ·			
	NAME			DATE	SIGNATUR	RE
PREPARED	BY Torbjø	irn Throndsei	n	1992-08-12	Dortin Atron	dren
REVIEWED E	3Y					
APPROVED	BY Hennir	ng Qvale		1992-08-12	Shing	John .

1 Introduction

This report gives the result of vitrinite reflectance analyses performed on 47 cuttings samples and 4 core samples from well 35/3-2 offshore Norway. The report is a revision of a previous report IFE/KR/F-92/066) in that the four core samples are included.

2 Material

The samples were provided from the client as washed cuttings and core chips respectively.

3 Analytical techniques

The samples were treated with hydrochloric or hydrofluoric acid prior to further preparation in order to concentrate the organic material and ensure good polishing quality. The core samples were not treated any acid prior to further prepration. They were embedded as bulk rock. Both sample types were polished using 0.25 micron diamond paste and magnesium oxide as the two final steps. The polishing quality obtained was quite satisfactory.

The analytical equipment being used was a Zeiss MPM 03 photometer microscope equipped with an Epiplan-Neofluoar 40/0.90 oil objective. The sensitive measuring spot was about 2.5 micron in diameter, and the measurements were made through a green band pass filter (546 nm) and in oil immersion. The readings were made without a polarizer and using a stationary stage. On each sample about 20 points were measured, if possible. A representative population was selected among the readings, and an arithmetic mean was calculated for this population.

4 Results

The vitrinite reflectance results are given in Table 1. Histograms for each sample are given in Appendix. Vitrinite reflectance versus depth plots on linear and log scales are given in Figure 1 and 2 respectively.

					· · · · ·
Sample			Vitrinite		Preparation
		lithology	reflectance	quality	
IFE 	mrkb		%Rm ±std (N)		
CN 307	470 cut	-1-+	0 12 40 04 (16)		HF
SA 327 SA 328			$0.13 \pm 0.04 (16)$		HF
SA 328 SA 329			0.24 ±0.06 (20)		
				Barren	HF
SA 330	770 cut			Barren	HF
SA 331	870 cut		0.20 ±0.03 (8)	-0	HF
SA 332	970 cut 1070 cut		0.26 ±0.06 (20)		HF
SA 333			$0.27 \pm 0.05 (20)$		HF
SA 334	1170 cut		0.24 ± 0.05 (20)		HF
SA 335	1270 cut		0.26 ±0.06 (20)		HF
SA 336	1370 cut		0.27 ±0.05 (20)	-0	HF
SA 337	1470 cut		0.33 ±0.06 (20)	000	HF
SA 338	1570 cut			Barren	HF
SA 339	1670 cut		0.36 ±0.04 (20)	00000	HF
SA 340	1770 cut		$0.32 \pm 0.05 (21)$	-00-0	HF
SA 341	1870 cut		0.37 ±0.04 (16)	00000	HF
SA 342	1970 cut		$0.40 \pm 0.07 (21)$	00000	HF
SA 343	2070 cut		0.30 ±0.07 (20)		HF
SA 344	2170 cut		$0.40 \pm 0.04 (11)$	0±000	HF
SA 345	2270 cut		0.36 ±0.05 (14)	otooo	HF
SA 346	2370 cut		$0.42 \pm 0.07 (11)$	-0000	HF
SA 347	2470 cut			-0000	HF
SA 348	2570 cut		0.44 ±0.04 (10)	-0000	HF
SA 349	2670 cut		0.58 ±0.06 (13)	-+0-0	HF
SA 350	2770 cut		0.58 ±0.06 (13)	00000	HF
SA 351	2870 cut			Barren	HF
SA 352	2970 cut			- ±+o-	HF
SA 353	3070 cut		0.61 ±0.06 (13)	-0000	HF
SA 354	3170 cut		0.68 ±0.06 (11)	- ++o-	HF
SA 355	3270 cut		0.58 ±0.05 (10)	-±+o-	HF
SA 356	3370 cut			Barren	HF
SA 357	3470 cut		• •	- +o-o	HF
SA 358	3569 cut		0.63 ±0.08 (21)	0+0-0	HF
SA 596	3633.1 cor	e clst	0.63 ±0.08 (2)	- <u>++</u> 00	HF
SA 597	3635.4 cor	e clst		Barren	HF
SA 598	3640.3 con	e clst	0.79 ±0.06 (7)	-±000	HF
SA 359	3668 cut	clst	0.65 ±0.07 (20)	000-0	HF
SA 599	3696.0 cor	e clst	0.90 (1)	- <u>++</u> 00	HF
SA 360	3740 cut	clst	0.73 ±0.05 (11)	00+00	HF
SA 361	3761 cut	clst	0.69 ±0.07 (20)	00+00	HF
SA 362	3779 cut	clst	0.68 ±0.07 (20)	00+00	HF
SA 363	3800 cut		0.69 ±0.06 (20)	00+00	HF
SA 364	3821 cut		0.66 ±0.08 (21)	00+00	HF
SA 365	3842 cut		0.66 ±0.09 (20)	00+00	HF
SA 366	3860 cut		0.65 ±0.05 (10)	-0+-0	HF
SA 367	3881 cut		0.69 ±0.05 (17)	- <u>++</u> o-	HF
SA 368	3902 cut			Barren	HF
SA 369	3920 cut			Barren	HF
SA 370	4019 cut		0.69 ±0.05 (17)	- <u>±</u> ±0-	HF
SA 371	4121 cut		0.66 ±0.06 (13)		HF
SA 372	4220 cut			Barren	HF
SA 373	4319 cut			Barren	HF

Table 1. Vitrinite reflectance data

LEGEND Rm : mean random reflectance in oil clst: claystone Std: standard deviation N : number of readings CODE FOR DATA QUALITY The sample quality is characterized by five items as follows: 00000 : abundance of vitrinite 1 : identification of vitrinite 2 3 : type of vitrinite 4 : particle size 5 : particle surface quality : may give a too high vitrinite reflectance value + : has no effect on the resulting vitrinite reflectance 0 : may give a too low vitrinite reflectance value An ideal sample is characterized as follows: 00000