U - 249

Copy No. 13

RESEARCH CENTRE

CONFIDENTIAL

SUNBURY - ON - THAMES

MIDDLESEX

EXPLORATION AND PRODUCTION DIVISION

EPR/R7087

Work by:

P. Callow

H. Bockmeulen

Analytical Branch

DECEMBER 1980

GEOCHEMICAL OPERATIONS AND DEVELOPMENT GROUP

PETROLEUM GEOCHEMISTRY OF THE WELL 35/3-2, NORWEGIAN SECTOR, NORTH SEA

By H.A. Bockmeulen

Park and a

BA 81-6216-1

27 JAN1981 RESISTNERY OLIEDIALATET

Approved by:

P.J.D. Park

This document is the property of THE BRITISH PETROLEUM COMPANY LIMITED and is classified as CONFIDENTIAL. The contents should be disclosed only to those directly concerned with the project and must not be reproduced in whole or part without prior consent in writing of BP Research Centre. CONTENTS

Laten / EET

Ecolory 1997

1.000

1.55

Esther my

1.43.62

22-1

PAGE NO.

SUMM	IARY	i
1.	INTRODUCTION	1
2.	ANALYTICAL TECHNIQUES	2
	2.1 Sample Preparation	2
	2.2 Vitrinite Reflectance	2
	2.3 Visual Kerogen and Spore Colour Descriptions	2
	2.4 Pyrolysis Studies	2
	2.5 Soluble Extract Studies and Organic Richness	3
3.	RESULTS AND DISCUSSION	4
	3.1 Vitrinite Reflectance	4
	3.2 Kerogen Studies	4
	3.2.1 Spore Colour Descriptions	4
	3.2.2 Source Potential from Visual Kerogen Descriptions	4
	3.3 Pyrolysis Studies	5
	3.4 Soluble Extract Studies and Organic Richness	5
4.	CONCLUSIONS	7
5.	REFERENCES	8
TABLI	ES 1 - 7	
FIGU	RES 1 - 8	
APPEN	NDIX 1	

SUMMARY

Cuttings and sidewall core sediment samples of Cretaceous and Jurassic ages from the well 35/3-2 were examined for this geochemical study. The interval analysed was from 2410m to \sim 4160m. Sandstones or metamorphic rocks were encountered below this depth to TD.

The Oil Generation Threshold is tentatively placed in the range 3300 - 3700m on the basis of vitrinite reflectance measurements. Spore colours suggest the OGT may be somewhat shallower <u>ca.</u> 3100m. The results also suggest the Middle and Lower Jurassic below the unconformity <u>ca.</u> 3829m are at least sufficiently mature for onset of gas generation.

Pyrolysis studies indicated the Jurassic kerogens were likely to source gas and possibly some (minor amounts of) condensate. Total hydrocarbon source potentials however, were at best, only moderate. The source quality of the Cretaceous sediments examined was generally poor or insignificant.

12 M. W.

÷

The results were compared to those for the well 35/3-1.

1. INTRODUCTION

10 av

Is it.

 $\{1,2,2,3\}$

L. C. C. L. C.

The Statoil/BP/Saga well 35/3-2 was drilled at location 61° 51' 05.98"N, 03° 46' 28.22"E in the Norwegian Sector of the North Sea. The well was spudded on 19th May 1980 and reached a total depth of 4400m on 19th September 1980.

The primary objective was to test some Lower Jurassic sandstones on a Westerly dipping fault block 2 Km updip and east of the well 35/3-1. Gas was found in Cretaceous levels.

Cans of wet cuttings material were available from 3500m to TD as was a suite of sidewall core samples. Cuttings samples from intervals that had been turbo-drilled were not examined in detail nor were samples below \sim 4160m to TD which appeared to be oxidised or metamorphic in nature and thus not suitable for geochemical analyses. After work had commenced a request from Norway was received not to use the sidewall core material provided, thus in some instances full sets of analyses were not completed.

For this study twenty-seven samples of cuttings or sidewall core material from the interval 2410m to 4160m were examined. The stratigraphic interval covered is Campanian to ?Late Pliensbachian. Although detailed geochemistry was requested only on samples below 3500m it was necessary to examine a larger interval to better establish the maturity of the sediments. The biostratigraphic information (shown in Table 7) was provided by BP Sunbury (Crux, 1980).

2. ANALYTICAL TECHNIQUES

The objectives of the geochemical analyses undertaken were to establish the maturity and hydrocarbon source potential of the sediment samples. The following techniques were used to determine these parameters.

2.1 Sample Preparation

Prior to any of the analyses, cuttings samples were washed, dried and picked to remove cavings and any obvious contaminants, to provide a uniform lithology of geochemical interest. Sidewall-core samples were cleaned as far as possible by removal of surface contamination. Apart from the Vitrinite Reflectance and Visual Kerogen Analyses, samples were ground and then sieved to achieve a uniform mixture for analysis. The cuttings samples used were 30m composites and in such cases the depth quoted is the top of the interval.

2.2 Vitrinite Reflectance

Vitrinite Reflectance measurements were made on coarsely ground cuttings or sidewall core samples contained in polished resin blocks. Reflectances (% Ro) were determined using oil immersion objectives on 5μ particle widths at a light wavelength of 546 mm. A reflectance value of Ro = 0.55% is considered to characterise the Oil Generation Threshold for an average oil-prone kerogen.

2.3 Visual Kerogen and Spore Colour Descriptions

Visual Kerogen and sporomorph colour studies were carried out using transmitted light microscopy on samples previously demineralised by hydrochloric/hydrofluoric acid treatment. A colour rating of 3/4 on a scale of 1-7 is considered representative of the generation threshold for liquid hydrocarbons from an average oil prone kerogen.

2.4 Pyrolysis Studies

Total hydrocarbon source potential yields (kg/tonne) of the samples were assessed by the Rock-Eval apparatus. A pyrolysis-gas chromatography technique developed at BP Sunbury (Dungworth, 1979) was also employed to determine the Gas/Oil Generation Index (GOGI) of the samples. Analysis of the GOGI value and total hydrocarbon potential yield makes possible a relative estimation of the amount of oil and gas likely to be sourced from a Kerogen.

2.5 Soluble Extract Studies and Organic Richness

Finely ground and sieved sediment samples (5g) were extracted with dichloromethane (100ml) using a Chemcol high speed mixer for 20 minutes. After filtration and evaporation of the solvent, the Total Soluble Extract (TSE) was obtained. The TSE was de-asphaltened by addition of hexane and separated into its constituent saturate (SAC), aromatic and residual fractions by High Performance Liquid Chromatography (HPLC). The SAC fraction was analysed by glass capillary gas chromatography (GC) to obtain the n-alkane distribution used to calculate the Carbon Preference Index (CPI) over the range $C_{18} - C_{32}$.

The organic richness of the sediments was assessed by Total Organic Carbon (TOC) determinations on decarbonated samples. This was accomplished by decarbonating ground and sieved samples with hydrochloric acid, drying under vacuum at 50°C and analysing for carbon with a Leco Carbon Analyser.

The Generation Indices TSE/TOC (o/oo) and SAC/TOC (o/oo) were calculated from these results.

Pyrolysis, HPLC and GC data were collected and analysed by a Hewlett-Packard HP 3354 Laboratory Automation System.

3. RESULTS AND DISCUSSION

Laco

Louis Vell

3.1 Vitrinite Reflectance

These results are summarised in Table 1 and the full data set collected is presented in Appendix 1.

Samples were examined from 2410m to 4247m to obtain a maturity trend over as large an interval as possible. However, the amount of reliable autochthonous vitrinite in the Cretaceous and Middle Jurassic was rather low, with gnarled particles of inertinite and reworked material generally dominant. As a result of this, the results were not considered sufficiently reliable to make a statistically valid projection of the various maturity thresholds.

The results tentatively suggest the Oil Generation Threshold (OGT) is in the range 3300 - 3700m, within the Albian/Cenomanian interval although reliable reflectance values are few. Below the Lower Cretaceous-Middle Jurassic unconformity at ca. 3829m, the reflectances in the Toarcian-Middle Bajocian interval suggest the maturity is about equivalent to the Gas Generation Threshold (GGT) ($R_0 = 0.7\%$). In the Pliensbachian section ~ 100m deeper, several sets of vitrinite reflectances These samples, however, were characterised by were somewhat lower. the presence of bitumen staining, and the spore fluorescence colours under ultra-violet light suggest a slightly higher maturity than is indicated by vitrinite reflectance. Thus source rock sediments of Jurassic or older age in this well are probably at least at the GGT stage of maturity.

The small interval between the OGT and the GGT suggests a high geothermal gradient but is more plausibly explained by the absence of the Upper Jurassic as a result of erosion.

3.2 Kerogen Studies

3.2.1 Spore Colour Descriptions

These results are summarised in Table 2.

Samples from 3092m to 4133/60m were examined and the sporomorph colours observed suggested, in contrast to vitrinite reflectance results, that the entire section was at least sufficiently mature for the onset of generation of liquid hydrocarbons (spore colour 4). Only a very gradual change of colour was apparent over the interval reaching colour 4-4/5 from 3746m to 4133m. Gas-prone Kerogens in the deeper section of the well would be sufficiently mature for gas generation.

3.2.2 Source Potential from Visual Kerogen Descriptions

These results are summarised in Table 2 and detailed in Table 2A.

Visual Kerogen descriptions of source quality suggested there was no hydrocarbon source potential in the sediments of Albian to Cenomanian/ Santonian age. Open marine environments of deposition were proposed for the samples at 3092m, 3204m and 3468.5m and less well-defined open-marine to near shore marine environments at 3336m and for the samples of Albian age. Poor source potential for gas was indicated for the sediments of Late Toarcian to Middle Bajocian age (3830m, 3845/72m) and poor/poor-moderate oil and gas source potential from some sediments of Pliensbachian and Toarcian age.

Some algal detritus with <u>Botrycoccus</u>-like structure was found in the samples at 3945/62m, 4046/72m and 4133/60m which suggested some oil source potential from these kerogens. Environments of deposition suggested for the Lower and Middle Jurassic ranged from near-shore marine (3945/72m, 4046/72m, 4133/60m) to brackish/some marine influence (3845/72m), to brackish or non-marine (3830m,4033.5m).

3.3 Pyrolysis Studies

The results obtained are shown in Table 4.

The hydrocarbon source potential of the Upper and Lower Cretaceous sediments examined was generally poor or insignificant. The best sample was one predominantly gas-prone kerogen at 3483m with a maximum theoretical yield of hydrocarbons = 1.6 kg/tonne.

The Jurassic source sediments contained only poor-to-moderate potential at best, *MAX values reaching 2.2 - 2.5 kg/tonne. Pyrolysisgas chromatography suggested the kerogens were predominantly gas-prone (GOGI = .49 - .84) although some minor amounts of condensate might also be sourced from these.

The quantitative pyrolysis studies are generally regarded as the more reliable indicator of source quality.

3.4 Soluble Extract Studies and Organic Richness

These results are listed in Tables 4,5 and 6.

N-alkane GC traces are shown in figures 1 to 6 and the normalised n-alkane distributions in figures 7 and 8. The results of soluble extract studies were not of great value in evaluating the maturity of the section. Some odd-over-even predominance of the n-alkanes was apparent in the gas chromatograms of the samples although generally they appear mature in character. Low generation indices were calculated from the data obtained. These results however, are consistent with the presence of gas-prone kerogens and significant amounts of inertinite as noted under Reflected Light Microscopy. The large n-C21 peak observed in sample 3830m (figure 2) is most probably due to contamination by sidewall core gun grease (see also figure 6).

Total organic carbon determinations were only carried out on a few samples of interest. The organic richness of the Cenomanian section varied from poor, to good at 3483m, TOC = 2.2% wt, although it was mostly moderate, TOC = .56-.98% wt. The five samples of Jurassic age analysed contained good organic richness, TOC = 2 - 2.9% wt. The significance of these however, is downgraded by the presence of inertinite which has no potential to source hydrocarbons, and this is borne out by the low pyrolysis yields observed.

*MAX = maximum theoretical yield of hydrocarbons.

E. Shing

RADAN

(C.CVC.) 3

5 ... AZ 4 2 F

ALC: L'ARTER

4. CONCLUSIONS

The results obtained therefore suggest the following conclusions may be made.

Although the quality of the vitrinite data is not high, the Oil Generation Threshold is tentatively placed at $3500m \pm 200m$. The sediments in the Middle and Lower Jurassic below the unconformity <u>ca</u>. 3829m are probably sufficiently mature for gas generation to have occurred.

Although the spore colours observed suggested maturity for generation of liquid hydrocarbons below 3092m, this may be due to the subjectivity of the technique and/or the types of Kerogen present which are gas or gas/condensate prone and the oil generation threshold may be deeper as is suggested by vitrinite reflectance determinations.

The source quality of the Cretaceous is generally poor. Poor to moderate source potential is indicated for some sediments in the Jurassic with gas and minor amounts of condensate likely from the Kerogens present.

These results agree quite well with those from 35/3-1 (Speers, 1977). In that well the OGT was placed <u>ca. 3200m</u> on the basis of vitrinite reflectance measurements and the GGT <u>ca. 4100m</u> based on light hydrocarbon analyses. The interval between the OGT and GGT is smaller in this well but this may be explained by the absence of the Upper Jurassic as a result of erosion.

Visual Kerogen descriptions disagree rather markedly in evaluation of the maturity of the Cretaceous but are basically in agreement for the Jurassic. For 35/3-1 spore colours suggested an OGT <u>ca</u>. 3950m although not supported by other evidence. The best explanation for this disparity is probably the result of these two studies being carried out by two palynologists and serves to emphasize the subjectivity of the technique.

The pyrolysis techniques employed in this study confirm the Kerogen types encountered in 35/3-1 are also present in 35/3-2: predominantly gas-prone with minor condensate source potential.

No evidence was found in this study to suggest any biodegradation of the hydrocarbons deep in the subsurface as was suggested for 35/3-1 and the difficulties encountered in that study were therefore probably introduced in transit/storage or other.

- 5. REFERENCES
- 1. Speers, G.C. and Apps, P.G. 1
- 2. Crux, J.A., Davies, S.C. and Duxbury, S.
- 3. Dungworth, G.

- 1977 Petroleum Geochemistry of NOCS well 35/3-1. EPR Report 7033
- 1980 The Biostratigraphy of Saga well 35/3-2, Norwegian Sector, North Sea. EPR/TN 3127
- 1979 Commissioning and use of a New Pyrolysis - Gas Chromatography (PGC) Kerogen Analyser. EPR/R7060, Geochemical Development Group, EPD, Sunbury.

というでは

TABLE 1

VITRINITE REFLECTANCE DATA

WELL: 35/3-2 LOCATION: NORWEGIAN SECTOR NORTH SEA

DEPTH (M)	REFLECTANCE VALUES(%RO)	COMMENTS
2410	• 47(7) • 63(3)	L-M/GN PAR I+V/M RM/BW
2410.1	• 73(3)	
3092	0(0)	NDP/L GN PAR I+R/NTV
3162	• 49 (5)	L-M/GN PAR I+R/F V PAR
3207	0(0)	NDP
3336	• 34(1) • 45(5)	L/GN PAR I+R/BW/F V V PAR
3391	• 54(4)	M/GN PAR I+R/F PAR V
3468.5	0(0)	NDP/HI RO I+R
3477	.39(1).48(1)	L GN PAR I+R/F V PAR ?
3477.1	• 61(1)	
3483	• 34(1) • 62(4)	L/PAR I+R/TR P V W PAR
3 59 3	• 42(4) • 63(12)	M-RICH/M I+R PAR/LOWEST RO MEASURED
3593.1	•96(4)	•
3653	• 61(1) • 5(3)	M/M GN PAR I+R/F PAR TRUE V?
3671	• 64(2)	M/GN PAR I+R/LOWEST RO MEASURED-POS TRUE
3746	• 58 (1 5) • 8 1 (5)	M-RICH/PL PAR I+RM/F BW+W PAR V
3750	•71(1)•54(1)	L/GN PAR I+HIGH RO V+R/NTV/BS
38 30	•71(14) • 57(5)	M-RICH/OBS/PAR I+R DOM/S G PAR+W TRUE V
3830.1	.88(2)	
3898	1.18(3).62(2)	BS+BW/L I+R/LOWEST RO MEASURED-POS TRUE
3922	• 69 (18) • 48 (3)	L-M/G PAR I+R/S G W PAR V
39 65	•35(1)•54(20)	OBS/M I+R/W+PAR V/F LGN FR
398Ø	.55(20)	L/BW/I+R PAR/S G VW+W PAR
4033.5	• 66(20)	L-M/G VST += I PAR/BS
4151.5	0(0)	NDP/NU URGANIC MATERIAL
4196	0(0)	NDP/NU URGANIC MATERIAL
4247	0(0)	NDP/NU UKGANIU MATERIAL

FIGURES IN PARENTHESES INDICATE NUMBER OF READINGS SEE LIST OF ABBREVIATIONS OVERLEAF

TABLE IA

VITRINITE TABLE ABBREVIATIONS ______

_ _ _ _ _

AN S	-	ANI SOTROPI C	
B	-	BITUMEN	
BS	-	BITUMEN STAINING	
BVB BM	-	BITUMEN WISPS	
CAV	-	CAVED	
CARB		CARBARGILITE	
COR	-	CORRODED	
CTGS	 .	CUTTINGS	
DD	-	DIFFERENTIATION DIFFICULT	
DMA	-	DRILLING MUD ADDITIVE	
DOM	-	DOMINANT	
F	-	FEW	
r K C	-	FRAGMENIS	
GN	_	GNARI FD	
GRAN	-	GRANII. ARI TY	
I	-	INERTINITE	
INST	-	INTERSTITIAL	
L	-	LOW ORGANIC CONTENT	
LGN	-	LIGNITE	
MOD	-	MODERATE ORGANIC CONTENT	
NDP	-	NO DETERMINATION POSSIBLE	
NTV	_ .	NO TRUE VITRINITE	
OBS		OVERALL BITUMEN STAINING	
000	-	OCCASIONAL	
UX D	-	INDICATIONS OF UXIDATION	
PAR	-	POUR PARTICIES	
PL	-	PLENTY-PLENTIFUL	
R	-	REWORKED	
RM	-	REWORKED MATERIAL	
RO	-	REFLECTANCE MEASUREMENT	
RES	-	RESIN RESIN	
S S		SOME	
šc		SCRUFFY	
SH	~	SHALE	
SLT		SILTSTONE	
SML		SMALL	
SP	-	SPECKS	
STR		STRONGLY	
TR		TRACE-V.LOW ORGANIC CONTENT	•
TEL	• <u>-</u>	TELINITIC	
V	-	VITRINITE	
VW	- '	VITRINITE WISPS	D٥
VAA VST	_	VITRINITE STRINGERS	μŪ
W	-	WI SPS-WI SPY	
*	-	ALLOCTHONOUS	
=	-	EQUAL PROPORTIONS	

TABLE 2

١.

VISUAL KEROGEN DESCRIPTIONS _____

WELL: 35/3-2 Location: Norwegian Sector North Sea

Ŕ

DEPTH(M)	SPORE COLOUR	SOURCE POTENTIAL
3092	4	NONE
3204	4	N ON E
3336	4	N ON E
3468•5	4	NONE
3 59 3	4	NONE
3 68 3	4	NONE
3746	4-4/5	NON E
38 3Ø	4-4/5	POOR GAS
3845	4-4/5	POOR GAS
39 65	4-4/5	POOR-MOD OIL/POOR GAS
4033•5	4-4/5	POOR?-MOD GAS
4046	4-4/5	POOR OIL/GAS
4133	4-4/5	POOR-MOD OIL/POOR GAS

																						Ţ	ABI	ĿE	<u>2A</u>																							
Number	Depth in metres	Type	Amount of Organic Matter	J. Trace/Rare	Common MIOSPORES	s riequein	1-2	EXCLUDING TASMANITIDS	1 5	1	<pre>> TASMANITIDS >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>></pre>	1	▶ FORAM LININGS	3 1	MEGASPORES	3 1	▶ OTHER MICROFOSSILS	31		4-5	G OTHER TISSUES	4-5	1-2	E BHUWN WOUD : LIGNITE	F BLACK WOOD': VITRINITE	4 INERTINITE	BLACK WOOD':	A INERTINITE ONLY	FINELY DISSEMATED	PARTICLES	MORPHOUS VASCULAR	C PLANT MATERIAL	AMORPHOUS MATTER OF	MARINE/ALGAL ORIGIN	5	fair PRESERVATION	poor Demorking	undiff mac ENVIDONMENT	open mar. OF DEPOSITION	restricted mar.	some mar. influence/brackish	non-mar./freshwater		2 3	COLOUR MATURATION			SOURCE POTENTIAL
	3092	SWC	MOD	•	_				7	١						_	\square						•			0			•	1					1	•		-					T	\square	•	T	\Box	NONE
	32 04	11	SHL		┿	÷		•	+-	$\left \cdot \right $		÷	┼╌┼	┿	┼╌┼	┿	+		┿	┼╾┼		+			$\left - \right $		┝╌┼╸			+	┝╌┼		┝╼┝╸	┥┥				┥╍			+	┝╼┝		┿┥		+-	┼╌┥	NONE
						1													T																									+-+	Ť	\pm	+-+	NUNC
	3336	p	SML.	┼╾┼	0			0				l.	<u> </u>	╺┥╍	$\left \right $			-	<u> </u>	┝╍╿	•		0		_	•		_ _	•	<u>م</u>	0				_		0	_					\mp	П	•	1	\square	NONE
	34695	11	V SHI		-+-			$\left \right $	┿	$\left \cdot \right $		╋	┾╍┾	┽	┼┼		-		┿	┼╾┼		┽┥			$\left - \right $		+				┼╍┼	╧┥┯╴	┝╌┼╸	+			┯┼╸					┝╼╄	<u> </u>	┼╍┥		┿	+	Marle
	5100.5						Ē																																					+-+		+-		NJAC
	3593-20	CTG	SML		0										-	0		($\left - \right $		-	•	4	\square	0		_	0 (9						•	_					1	\square	0	T		NONE
	21:02 -10		Mak	┼╌┼				┝╼┝	+-			+-	┼─┼╸	╺┼╍	┨═╊		+-			┝┥		+-			┼╌┼		┠╍┠╸			-	┟ <u></u>		┣━╋-								-	┝─┼	+-	+	-	_ <u> </u>	┿┥	NANE
	5015-10		1 100	┼╌┼	-	+-	+	┝╼┽╹	-	\vdash		┼╴	┼╌┼╴	-	+			-	+	+			- +		++		\vdash					- -	\vdash	+	-	┽┦		+-			+	┝┥		┿┥	-	+	++	NUNE
	3746-76	11	MOD		0																•					•			0	0	•					•									50			NONE
. 								.																		-]].			6	-		_ -						1-1			2		\square	-			
	3830	SMG	LGE			_ 0		┝ -	-			-	· -	- -	╉╼╍┟			- <u> </u> !	- -	┼━┞			₽.			-] -		┝╼╌┼╸				╎╼┤╸	┥╾┥		귀			┼╍╋	-	-		-	┿╍┽	<u>00</u>		╄╾┥	for cars
	3945-77	CTG	LOF		-+-		ō	┼╌┼╸	-{			-	┝╌┤╸		╀╼┼		+		-	┢╼┟			D	+	++		-+-			0	0	╤	┝╌┼╴	┥┥┥		10	•		┼╌┼			-+	+	┼┽	न्ने	┿	+-	Post GAS
							Ē											2			-										Ē												1	\pm	Ì	士	Ľť	
	3945-92	- 11	MOD			0											90	5	0							0				00	0					3	•	_	-	. 0		-		\square		_	F	P=2-MODO
	1.000		1.00	-	-+		4	┝─┝	·				$\left \cdots \right $		┿┿			·	-	$\left - \right $					┼╌┼		┥┯┿						┝╌┝	+		╉╍┨		-	┼╍┼		┥┥┥		╺┼╾	╉┷┽	+	┿	+	POL GAS
	4033-5	SWC	Luc					┝╍┾╸			┝╾┼╍	+	┼╌┼╴	-	┼─┼	╾┼╧		\vdash		┝					+		┨╾┥╸		┝╼┤				╆╍┾╸	┽┽		┽┥		-	╧		+			++			+-}	CCC:-FIG) 41
	4046-72	CTC	SML	+		- c		0	┿╸	┢╼┥		1		- -	+	-7	15	3		+	0	1-	•		╏╼┽						10		$\uparrow \uparrow$		\uparrow		•						+	++	60	+-		POOR O/G
																	L	20														_												\Box		T		and the second
	4133-60	11	Mon			0			1_					_				•			0		0		┟╌╽		1-				식의					┥┥	•	_ _	-	8		$\left \cdot \right $		┥┥	60		\downarrow	Pol noto/ a
				+			-	┼╍┥╴		·	┝╌┼╌	-	┼╌┼	- -	┼─┤			$\left - \right $		┿╍┥		+	┝╾┼	- -	┥╾┥		┨╾┝		\vdash		┝┼	_ -	++	-		-+-		- -	+	-	+	-+	+-	┿┽	-+-	+	┼┤	
				┼╌┤			┿	┼╍┼		+	┼╌┼╸	+-	┿╌┼	┥╸	┽╾┦		+	\vdash		+	-+				┼╼┤		╉╼╂	-+-	\vdash	-+-	┼╍┼	+-	+					- -	┼╌╿	\uparrow				++	-+	+	+	
	+		+	++	-+		+	+	+	t	<u> -</u> -	+-			1-1				1					1	\square																		T					·····
												1										ŀ		1	1						П		\Box		П					J.	J		Ţ		\Box	I	\Box	
6-1	I FIRST S	LIDE	ONLY	: 7	- FI	UNG	AL	REH	AIN.	5 :	8-11	KE	GULA	ĸМ	ORE	or 1	ESS	AM	or /	HOV;	> MA	SE	5 Sh	<i>iowsii</i>	NG	ALG	AL (BOT	RYC	occv	/\$)-	LIK	: 37	KUCT	UKE	5:	9-	MI	23A	<u>≥K</u> €		<u>I</u> AŞ	SES	<u>,</u>				

VELL: 3 LOCATIO	85/3-2 N: NORWEGI	AN SECTOR	NORTH	SEA	
DEPTH (M)	P1 KG/TONNE	P2 KG/TONNE	GOGI	OIL YIELD KG/TONNE	GAS YIELD KG/TONNE
			ay an an ta ta an an an		
3092	Ø	•1	· · ·	and the second second	
3162	• 1	•2			
3204	Ø	Ø			· ·
3336	• 1	• 5			
3391	Ø	• 1			
3463	• 1 • •	• 1		· · ·	• •
3477	•2	• 6			
3483	• 3	1.6.	• 6	1	• 5
3500	•2	• 3			
3 59 3	•2	• 4		·· ·	· .
3630	• 1	• 3		بر المراجع (المراجع المراجع (المراجع (الم	
3653	• 1 • • •	•2		• • • •	
3671	+ 1	•2			
3633	•2	• 4			
3746	• 1	• 1			
3750	• 1	•2			
3781	Ø	•2		a da anti-	· .
3330	• 5	22	• 49	1.5	• 1
3345	• 3	1.3	•73	1	• 3
3898	•1	• 2			
3922	•2	• 9	•		· .
39.65	•5	1.4	• 62	•9	• 5
398Ø	• 4	•9			in the second
4033	•2	• 6	· · · · ·		
4046	• 3	• 7			
4133	• 3	2.5	•34	1.4	1 • 1

E 1.

15,004.0

ROCK-EVAL AND PYROLYSIS DATA

TABLE 3

TABLE 4

LITHOLOGY AND TOC DATA

Courses - Erren - Labor

11221

1111014

MELL: 35/3-2

LOCATION: NORVEGIAN SECTOR NORTH SEA

2410 CAMPANIAN C-CLAYSTONE N.D. N.D. 3092 CENOM./SANT. S-MUDSTONE Ø.56 11.5 3162 CENOM./SANT. S-MUDSTONE Ø.76 31.6 3204 CENOM./SANT. S-MUDSTONE Ø.76 31.6 3264 CENOM./SANT. S-MUDSTONE Ø.88 35.3 3391 CENOMANIAN S-MUDSTONE Ø.98 17 3468.5 CENOMANIAN S-MUDSTONE Ø.98 17 3468.5 CENOMANIAN S-SHALE Ø.51 43 3477 CENOMANIAN S-SHALE N.D. N.D. 3483 CENOMANIAN S-SHALE N.D. N.D. 3560 CENOMANIAN S-SHALE N.D. N.D. 3593 ALBIAN C-SLITSTONE N.D. N.D. 3630 ALBIAN S-SHALE N.D. N.D. 3633 ALBIAN S-MUDSTONE N.D. N.D. 3633 ALBIAN S-MUDSTONE N.D. N.D. 3643 ALBIAN C-SHALE N.D.	DEPTH(M)	AGE	PICKED LITHOLOGY	%TOC	%CARBONATE
3092 CENOM./SANT. S-MUDSTONE 0.56 11.5 3162 CENOM./SANT. S-MUDSTONE 0.76 31.6 3204 CENOM./SANT. S-MUDSTONE 0.39 14.7 3336 CENOMANIAN S-MUDSTONE 0.39 14.7 3336 CENOMANIAN S-MUDSTONE 0.88 35.3 3391 CENOMANIAN S-MUDSTONE 0.98 17 3468.5 CENOMANIAN S-SHALE 0.51 43 3477 CENOMANIAN S-SHALE N.D. N.D. 3483 CENOMANIAN S-SHALE N.D. N.D. 3483 CENOMANIAN S-SHALE N.D. N.D. 3593 ALBIAN C-SLTST/SST N.D. N.D. 3630 ALBIAN S-MUDSTONE N.D. N.D. 3633 ALBIAN S-MUDSTONE N.D. N.D. 3634 ALBIAN S-MUDSTONE N.D. N.D. 3750 ALBIAN S-SILTSTONE N.D. N.D. 3731 ALBIAN C-SHALE N.D.	2410	CAMPANIAN	C-CLAY STONE	N.D.	N • D •
3162 CENOM./SANT. S-MUDSTONE 0.76 31.6 3204 CENOM./SANT. S-MUDSTONE 0.39 14.7 3336 CENOMANIAN S-MUDSTONE 0.39 14.7 3336 CENOMANIAN S-MUDSTONE 0.38 35.3 3391 CENOMANIAN S-MUDSTONE 0.98 17 3468.5 CENOMANIAN S-SHALE 0.98 17 3483 CENOMANIAN S-SHALE 0.98 17 3483 CENOMANIAN S-SHALE 0.98 17 3483 CENOMANIAN S-SHALE N.D. N.D. 3590 CENOMANIAN S-SHALE 2.2 28.3 3593 ALBIAN C-SLTST/SST N.D. N.D. 3630 ALBIAN S-SHALE N.D. N.D. 3653 ALBIAN S-MUDSTONE N.D. N.D. 3663 ALBIAN S-MUDSTONE N.D. N.D. 3746 ALBIAN C-SHALE N.D. N.D. 3731 ALBIAN C-SHALE N.D. N.D. <td>3092</td> <td>CENOM. (SANT.</td> <td>S-MUDSTONE</td> <td>0.56</td> <td>11.5</td>	3092	CENOM. (SANT.	S-MUDSTONE	0.56	11.5
3204 CENOM./SANT. S-MUDSTONE 0.39 14.7 3336 CENOMANIAN S-MUDSTONE 0.88 35.3 3391 CENOMANIAN S-MUDSTONE 0.98 17 3468.5 CENOMANIAN S-SHALE 0.98 17 3463.5 CENOMANIAN S-SHALE 0.98 17 3433 CENOMANIAN S-SHALE 0.98 17 3483 CENOMANIAN S-SHALE 0.98 17 3483 CENOMANIAN S-SHALE 0.98 17 3483 CENOMANIAN S-SHALE N.D. N.D. 3483 CENOMANIAN S-SHALE N.D. N.D. 3593 ALBIAN C-SLTSTONE N.D. N.D. 3630 ALBIAN C-SHALE N.D. N.D. 3663 ALBIAN S-MUDSTONE N.D. N.D. 3760 ALBIAN C-SHALE N.D. N.D. 3731 ALBIAN C-SHALE N.D. N.D. 3830 L.TOARC./M.BAJ S-MUDSTONE N.D. N.D.	3162	CENOM. /SANT.	S-MUDSTONE	0.76	31.6
3336 CENOMANIAN S-MUDSTONE Ø.88 35.3 3391 CENOMANIAN S-MUDSTONE Ø.98 17 3468.5 CENOMANIAN S-SHALE Ø.51 43 3477 CENOMANIAN S-SHALE N.D. N.D. 3433 CENOMANIAN S-SHALE N.D. N.D. 3593 ALBIAN C-SLTST/SST N.D. N.D. 3630 ALBIAN S-SHALE N.D. N.D. 3663 ALBIAN S-MUDSTONE N.D. N.D. 3750 ALBIAN C-SHALE N.D. N.D. 3731 ALBIAN C-SHALE N.D. N.D. <	3204	CENOM. /SANT.	S-MUDSTONE	Ø • 39	14.7
3391 CENOMANIAN S-MUDSTONE Ø.98 17 3468.5 CENOMANIAN S-SHALE Ø.51 43 3477 CENOMANIAN S-SHALE N.D. N.D. 3483 CENOMANIAN S-SHALE N.D. N.D. 3483 CENOMANIAN S-SHALE 2.2 28.3 3500 CENOMANIAN C-SLTST/SST N.D. N.D. 3593 ALBIAN C-SLTST/SST N.D. N.D. 3630 ALBIAN C-SLTST/SST N.D. N.D. 3653 ALBIAN S-SHALE N.D. N.D. 3663 ALBIAN S-MUDSTONE N.D. N.D. 3663 ALBIAN S-MUDSTONE N.D. N.D. 3683 ALBIAN C-SHALE N.D. N.D. 3750 ALBIAN C-SHALE N.D. N.D. 3731 ALBIAN S-MUDSTONE N.D. N.D. 37330 L.TOAPC./M.BAJ S-MUDSTONE N.D. N.D. 3945 L.TOAPC./M.BAJ S-MUDSTONE N.D. N.	3336	CENOMANIAN	S-MUDSTON E	0.88	35.3
3468.5 CENOMANIAN S-SHALE Ø.51 43 3477 CENOMANIAN S-SHALE N.D. N.D. 3483 CENOMANIAN S-SHALE 2.2 28.3 3500 CENOMANIAN C-SLTST/SST N.D. N.D. 3593 ALBIAN C-SLTST/SST N.D. N.D. 3630 ALBIAN C-SILTSTONE N.D. N.D. 3633 ALBIAN S-SHALE N.D. N.D. 3643 ALBIAN S-SHALE N.D. N.D. 3653 ALBIAN S-SHALE N.D. N.D. 3663 ALBIAN S-MUDSTONE N.D. N.D. 3663 ALBIAN C-SHALE N.D. N.D. 3746 ALBIAN C-SHALE N.D. N.D. 3750 ALBIAN S-SILTSTONE N.D. N.D. 3731 ALBIAN C-SHALE N.D. N.D. 3830 L.TOAPC./M.BAJ S-MUDSTONE N.D. N.D. 3982 L.TOAPC./M.BAJ S-MUDSTONE N.D. N.D.	3391	CENOMANI AN	S-MUDSTONE	0.98	17
3477CENOMANIANS-SHALEN.D.N.D.3483CENOMANIANS-SHALE2.228.33500CENOMANIANC-SLTST/SSTN.D.N.D.3593ALBIANC-SILTSTONEN.D.N.D.3630ALBIANS-SHALEN.D.N.D.3653ALBIANS-SHALEN.D.N.D.3671ALBIANS-MUDSTONEN.D.N.D.3683ALBIANS-MUDSTONEN.D.N.D.3746ALBIANC-SHALEN.D.N.D.3750ALBIANC-SHALEN.D.N.D.3751ALBIANC-SHALEN.D.N.D.3830L.TOAFC./M.BAJS-MUDSTONE2.228.23845L.TOAFC./M.BAJS-MUDSTONEN.D.N.D.3953L.TOAFC./M.BAJS-MUDSTONEN.D.N.D.3965TOARCIANS-MUDSTONEN.D.N.D.3964L.PLIENSBACHIANS-SILTSTONEN.D.N.D.4033L.PLIENSBACHIANS-SILTSTONEN.D.N.D.4133?L.PLIENSBACH.C-SHALEN.D.N.D.	3468.5	CENOMANI AN	S-SHALE	0.51	43
3483CENOMANIANS-SHALE2.228.33500CENOMANIANC-SLTST/SSTN.D.N.D.3593ALBIANC-SILTSTONEN.D.N.D.3630ALBIANS-SHALEN.D.N.D.3653ALBIANS-MUDSTONEN.D.N.D.3671ALBIANS-MUDSTONEN.D.N.D.3683ALBIANC-SHALEN.D.N.D.3746ALBIANC-SHALEN.D.N.D.3750ALBIANC-SHALEN.D.N.D.3731ALBIANC-SHALEN.D.N.D.3830L.TOAPC./M.BAJS-MUDSTONE2.228.23845L.TOAPC./M.BAJS-MUDSTONEN.D.3988L.TOAPC./M.BAJS-MUDSTONEN.D.3922TOARCIANS-MUDSTONEN.D.3965TOARCIANS-MUDSTONEN.D.3980L.PLIENSBACHIANS-SILTSTONEN.D.4033L.PLIENSBACHIANS-SILTSTONEN.D.4046?L.PLIENSBACH.C-SHALEN.D.N.D.4133?L.PLIENSBACH.C-SHALE2.917.4	3477	CENOMANIAN	S-SHALE	N.D.	N.D.
3500CENOMANIANC-SLTST/SSTN.D.N.D.3593ALBIANC-SILTSTONEN.D.N.D.3630ALBIANS-SHALEN.D.N.D.3653ALBIANS-MUDSTONEN.D.N.D.3671ALBIANS-MUDSTONEN.D.N.D.3683ALBIANS-MUDSTONEN.D.N.D.3746ALBIANC-SHALEN.D.N.D.3750ALBIANC-SHALEN.D.N.D.3731ALBIANS-SILTSTONEN.D.N.D.3830L.TOAPC./M.BAJS-MUDSTONE2.228.23845L.TOAPC./M.BAJS-MUDSTONEN.D.N.D.3922TOAPC./M.BAJS-MUDSTONEN.D.N.D.3940L.PLIENSBACHIANS-SILTSTONEN.D.N.D.3950L.PLIENSBACHIANS-SILTSTONEN.D.N.D.4033L.PLIENSBACHIANS-SILTSTONEN.D.N.D.4133?L.PLIENSBACH.C-SHALEN.D.N.D.4133?L.PLIENSBACH.C-SHALE2.917.4	3483	CENOMANI AN	S-SHALE	2.2	28.3
3593ALBIANC-SILTSTONEN.D.N.D.3630ALBIANS-SHALEN.D.N.D.3653ALBIANS-MUDSTONEN.D.N.D.3671ALBIANS-MUDSTONEN.D.N.D.3683ALBIANC-SHALEN.D.N.D.3746ALBIANC-SHALEN.D.N.D.3750ALBIANS-SILTSTONEN.D.N.D.3731ALBIANS-SILTSTONEN.D.N.D.3830L.TOARC./M.BAJS-MUDSTONE2.228.23845L.TOARC./M.BAJS-MUDSTONEN.D.N.D.3922TOARCIANS-MUDSTONEN.D.N.D.3965TOARCIANS-SILTSTONEN.D.N.D.3980L.PLIENSBACHIANS-SILTSTONEN.D.N.D.4033L.PLIENSBACHIANS-SILTSTONEN.D.N.D.4046?L.PLIENSBACH.C-SHALEN.D.N.D.4133?L.PLIENSBACH.C-SHALE2.917.4	3500	CENOMANIAN	C-SLTST/SST	N.D.	N•D•
3630ALBIANS-SHALEN.D.N.D.3653ALBIANS-MUDSTONEN.D.N.D.3671ALBIANS-MUDSTONEN.D.N.D.3683ALBIANC-SHALEN.D.N.D.3746ALBIANC-SHALEN.D.N.D.3750ALBIANS-SILTSTONEN.D.N.D.3731ALBIANC-SHALEN.D.N.D.3830L.TOAPC./M.BAJS-MUDSTONE2.228.23845L.TOAPC./M.BAJS-MUDSTONE2.228.23845L.TOAPC./M.BAJS-MUDSTONEN.D.N.D.3922TOAPC./M.BAJS-MUDSTONEN.D.N.D.3965TOAPCIANS-MUDSTONEN.D.N.D.3980L.PLIENSBACHIANS-SILTSTONEN.D.N.D.4033L.PLIENSBACHIANS-SILTSTONEN.D.N.D.4046?L.PLIENSBACH.C-SHALEN.D.N.D.4133?L.PLIENSBACH.C-SHALE2.917.4	3593	ALBIAN	C-SILTSTONE	N.D.	N.D.
3653ALBIANS-MUDSTONEN.D.N.D.3671ALBIANS-MUDSTONEN.D.N.D.3683ALBIANC-SHALEN.D.N.D.3746ALBIANC-SHALEN.D.N.D.3750ALBIANS-SILTSTONEN.D.N.D.3731ALBIANC-SHALEN.D.N.D.3830L.TOARC./M.BAJS-MUDSTONE2.228.23845L.TOARC./M.BAJS-MUDSTONE2.228.23845L.TOARC./M.BAJS-MUDSTONEN.D.N.D.3922TOARCIANS-MUDSTONEN.D.N.D.3965TOARCIANS-MUDSTONEN.D.N.D.3950L.PLIENSBACHIANS-SILTSTONE20204033L.PLIENSBACHIANS-SILTSTONEN.D.N.D.4046?L.PLIENSBACH.C-SHALEN.D.N.D.4133?L.PLIENSBACH.C-SHALE2.917.4	3630	ALBIAN.	S-SHALE	N.D.	N.D.
3671ALBIANS-MUDSTONEN.D.N.D.3683ALBIANC-SHALEN.D.N.D.3746ALBIANC-SHALEN.D.N.D.3750ALBIANS-SILTSTONEN.D.N.D.3731ALBIANC-SHALEN.D.N.D.3830L.TOARC./M.BAJS-MUDSTONE2.228.23845L.TOARC./M.BAJC-MDST/SHALE2.7313988L.TOARC./M.BAJS-MUDSTONEN.D.N.D.3922TOARCIANS-MUDSTONEN.D.N.D.3965TOARCIANS-MUDSTONEN.D.N.D.4033L.PLIENSBACHIANS-SILTSTONEN.D.N.D.4046?L.PLIENSBACH.C-SHALEN.D.N.D.4133?L.PLIENSBACH.C-SHALE2.917.4	3653	ALBIAN	S-MUDSTONE	N.D.	N • D •
3683ALBIANC-SHALEN.D.N.D.3746ALBIANC-SHALEN.D.N.D.3750ALBIANS-SILTSTONEN.D.N.D.3731ALBIANC-SHALEN.D.N.D.3830L.TOARC./M.BAJS-MUDSTONE2.228.23845L.TOARC./M.BAJC-MDST/SHALE2.7313898L.TOARC./M.BAJS-MUDSTONEN.D.N.D.3922TOARCIANS-MUDSTONEN.D.N.D.3965TOARCIANC-SILTSTONE20203980L.PLIENSBACHIANS-SILTSTONEN.D.N.D.4033L.PLIENSBACHIANS-SILTSTONEN.D.N.D.4046?L.PLIENSBACH.C-SHALEN.D.N.D.4133?L.PLIENSBACH.C-SHALE2.917.4	3671	ALBI AN	S-MUDSTONE	N.D.	N.D.
3746ALBIANC-SHALEN.D.N.D.3750ALBIANS-SILTSTONEN.D.N.D.3731ALBIANC-SHALEN.D.N.D.3830L.TOAPC./M.BAJS-MUDSTONE2.228.23845L.TOAPC./M.BAJC-MDST/SHALE2.7313988L.TOAPC./M.BAJS-MUDSTONEN.D.N.D.3922TOARCIANS-MUDSTONEN.D.N.D.3965TOARCIANC-SILTSTONE203980L.PLIENSBACHIANS-SILTSTONEN.D.N.D.4033L.PLIENSBACHIANS-SILTSTONEN.D.N.D.4046?L.PLIENSBACH.C-SHALEN.D.N.D.4133?L.PLIENSBACH.C-SHALE2.917.4	3683	ALBIAN	C-SHALE	N.D.	N · D ·
3750ALBIANS-SILTSTONEN.D.N.D.3731ALBIANC-SHALEN.D.N.D.3830L.TOAPC./M.BAJS-MUDSTONE2.228.23845L.TOAPC./M.BAJC-MDST/SHALE2.7313898L.TOAPC./M.BAJS-MUDSTONEN.D.N.D.3922TOARCIANS-MUDSTONEN.D.N.D.3965TOARCIANC-SILTSTONE20203980L.PLIENSBACHIANS-SILTSTONEN.D.N.D.4033L.PLIENSBACHIANS-SILTSTONEN.D.N.D.4046?L.PLIENSBACH.C-SHALEN.D.N.D.4133?L.PLIENSBACH.C-SHALE2.917.4	3746	ALBIAN	C-SHALE	N.D.	N • D •
3731ALBIANC-SHALEN.D.N.D.3830L.TOARC./M.BAJS-MUDSTONE2.228.23845L.TOARC./M.BAJC-MDST/SHALE2.7313898L.TOARC./M.BAJS-MUDSTONEN.D.N.D.3922TOARCIANS-MUDSTONEN.D.N.D.3965TOARCIANC-SILTSTONE203980L.PLIENSBACHIANS-SILTSTONEN.D.4033L.PLIENSBACHIANS-SILTSTONEN.D.4046?L.PLIENSBACH.C-SHALEN.D.N.D.4133?L.PLIENSBACH.C-SHALE2.917.4	3750	ALBIAN	S-SILTSTONE	N.D.	N•D•
38.30L.TOARC./M.BAJS-MUDSTONE2.228.238.45L.TOARC./M.BAJC-MDST/SHALE2.73138.98L.TOARC./M.BAJS-MUDSTONEN.D.N.D.39.22TOARCIANS-MUDSTONEN.D.N.D.39.65TOARCIANC-SILTSTONE22039.80L.PLIENSBACHIANS-SILTSTONEN.D.N.D.4033L.PLIENSBACHIANS-SILTSTONEN.D.N.D.4046?L.PLIENSBACH.C-SHALEN.D.N.D.4133?L.PLIENSBACH.C-SHALE2.917.4	3731	ALBIAN	C-SHALE	N.D.	N.D.
3845L.TOAFC./M.BAJC-MDST/SHALE2.7313898L.TOARC./M.BAJS-MUDSTONEN.D.N.D.3922TOARCIANS-MUDSTONEN.D.N.D.3965TOARCIANC-SILTSTONE2203980L.PLIENSBACHIANS-SILTSTONEN.D.N.D.4033L.PLIENSBACHIANS-SILTSTONEN.D.N.D.4046?L.PLIENSBACH.C-SHALEN.D.N.D.4133?L.PLIENSBACH.C-SHALE2.917.4	38 30	L. TOARC. /M. BAJ	S-MUDSTONE	2.2	28.2
3898L.TOARC./M.BAJS-MUDSTONEN.D.N.D.3922TOARCIANS-MUDSTONEN.D.N.D.3965TOARCIANC-SILTSTONE2203980L.PLIENSBACHIANS-SILTSTONEN.D.N.D.4033L.PLIENSBACHIANS-SILTSTONEN.D.N.D.4046?L.PLIENSBACH.C-SHALEN.D.N.D.4133?L.PLIENSBACH.C-SHALE2.917.4	3845	L. TOAPC. /M. BAJ	C-MDST/SHALE	2.7	31
3922TOARCIANS-MUDSTONEN.D.N.D.3965TOARCIANC-SILTSTONE2203980L.PLIENSBACHIANS-SILTSTONEN.D.N.D.4033L.PLIENSBACHIANS-SILTSTONEN.D.N.D.4046?L.PLIENSBACH.C-SHALEN.D.N.D.4133?L.PLIENSBACH.C-SHALE2.917.4	3898	L. TOARC. /M. BAJ	S-MUDSTON E	N · D ·	N • D •
3965TOARCIANC-SILTSTONE2203980L.PLIENSBACHIANS-SILTSTONEN.D.N.D.4033L.PLIENSBACHIANS-SILTSTONEN.D.N.D.4046?L.PLIENSBACH.C-SHALEN.D.N.D.4133?L.PLIENSBACH.C-SHALE2.917.4	39.22	TOARCIAN	S-MUDSTONE	N.D.	N • D •
3980L.PLIENSBACHIANS-SILTSTONEN.D.N.D.4033L.PLIENSBACHIANS-SILTSTONEN.D.N.D.4046?L.PLIENSBACH.C-SHALEN.D.N.D.4133?L.PLIENSBACH.C-SHALE2.917.4	39 65	TOARCIAN	C-SILTSTONE	2	20
4033L.PLIENSBACHIANS-SILTSTONEN.D.N.D.4046?L.PLIENSBACH.C-SHALEN.D.N.D.4133?L.PLIENSBACH.C-SHALE2.917.4	398Ø	L.PLI ENSBACHIA	N S-SILTSTONE	N • D •	N.D.
4046?L.PLIENSBACH.C-SHALEN.D.N.D.4133?L.PLIENSBACH.C-SHALE2.917.4	4033	L. PLIENSBACHIA	N S-SILTSTONE	N.D.	N • D •
4133 ?L.PLI ENSBACH. C-SHALE 2.9 17.4	4046	?L.PLIENSBACH.	C-SHALE	N · D ·	N • D •
	4133	?L.PLIENSBACH.	C-SHALE	2.9	17.4

SAMPLE TYPES :-N-CORE SAMPLE S-SIDEWALL CORE

0-OUTCROP C-CUTTINGS

TABLE 5 .

SEDIMENTS SOLUELE EXTRACT DATA

Law Street

N. N

 $(U_{r,r})_{r\in \mathbb{Z}} \sum_{i=1}^{r} (V_{r,r})_{r\in \mathbb{Z}}$

WELL: LOCATI	35/3-2 ON: NORWEGIA	N SECTOR	NORTH SE	CA .		
DEPTH (M)	TOC %WT	TSE/TOC 0/00	SAC/TOC 0/00	CPI	ASPHALTENES %VT	
3483	2.2	22	8	1.13	3.2	
38 30	2.2	39	14	1 • 1	12.3	
3845	2.7	20	7	1•09	3.3	
3965	2	29	12	1.09	2.3	
4133	2.9	27	9	1.12	7.5	

TABLE 6

SEDIMENTS SOLUELE EXTRACT DATA

WELL: 35/3-2 LOCATION: NORWEGIAN SECTOR NORTH SEA

CALL OF

C C

TANK TANK

 \mathbb{E}^{2}

124423

والمعالمة والمراجع

DEPTH(M)	%SAC	%TSE	PRI ST/PHYT	PRIST/C-17	PHYT/C-18
3483	36.3	•Ø48	2.63	1.01	• 39
38 30	35.5	• Ø 78	3•1	1.16	•36
3845	37	.055	2.82	•76	•33
3965	42.5	• Ø 59	2.61	• 43	• 19
4133	34.6	.077	1.98	• 46	•24

TABLE 7

BIOSTRATIGRAPHICAL SUMMARY

DEF	TH	<u>(M</u>)	AGE
500	_ 1	720	PLIOCENE
730	-	900	MIOCENE TO PLIOCENE
910	-	990	MIOCENE
1000	-	1070	OLIGOCENE
1080	-	1190	EOCENE TO OLIGOCENE
1200	-	1340	EOCENE
1350	-	1540	PALAEOCENE
1550	-	1700	MAASTRICHTIAN
1710	-	2540	CAMPANIAN
2550	-	3320	CENOMANIAN TO SANTONIAN
3340	-	3515	CENOMANIAN
3530	-	3800	ALBIAN
3816	-	3817.5	LATE APTIAN
3829	-	3922	LATE TOARCIAN TO MIDDLE BAJOCIAN
3947.4	-	3959.75	TOARCIAN
3973.5	- 1	4007.85	LATE PLIENSBACHIAN
4040	-	4124	? LATE PLIENSBACHIAN
4167	- 1	4400	INDETERMINATE

SAMPLE: 35/3-2 3483M SATURATES FRACTION

SAMPLE: 35/3-2 3830M SATURATES FRACTION

.

SAMPLE: 35/3-2 3845M SATURATES FRACTION

SAMPLE: 35/3-2 3965M SATURATES FRACTION

SAMPLE: SWC GREASE SATURATES FRACTION

FIG. 7

್ರ

.

F16. 8

W.

Origin B.P.	SAMPLE Our Ref: I.S. J.M.J. Your Ref: II 15 2410 - 20
LITHOLOGY SHIPLE	2410-20m
MINERALOGY	GENERAL COMMENTS
ORGANIC MATERIAL LOW-MODERATE ORIANIC CONTEN SAIAL, CINARLED PARTICLES OF INEXTIMITE + VITRINITE - LARGE REWORKED LOWEST PARTICLES MERSURED. BITUMEN WISPS.	
APPEARANCE IN U.V. LIGHT + M.D. OZANCE FROZESCENCE FROM SARES EXINITE CONTENT IN U.V. LOW - MODERATE	Genoptics Ltd. Ash House Bell Villas Ponteland Northumberland NE20 9BE Signature Date 20.11.80

E and

		• • •		· .			
PREPAR	ATION	Ann	WAVELENG	TH		R.I. OF IMMERSION	OIL
1501- 0-62 0-45	0.43	0.72		5464	TOTAL No. (PARTICLES)F MEASURED /3	•
0.66	0.54	043			REFLEC	TIVITY (%)	No. OF Particle
045	5-00	6.00 6.50 5.00 5.00 5.00 5.00 5.00 5.00 5.00	0.05 0.10 0.15 0.20		R _{max.}		
3.50	450			0.30	R _{aver.}	0.56	/3
2.50				0.45	EQUIVAI	Ent Chemical Pai Dry Ash Free	RAMETERS
1·80 1·70	50			0.65	CARBON (%)	VOLATILE MATTER YIELD (%)	CARBON Ratio
	1.50	1-20 1-10 1-00	0.95 0.90	75	75		

Our Ref: A.S. J.M.J. SAMPLE ORIGIN B.P. Your Ref: *JI16* 3092 LITHOLOGY PHALE 3092m **GENERAL COMMENTS** MINERALOGY ในคบเองเกะ โกคเะร No DETERMINATION POSSIBLE **ORGANIC MATERIAL** Low CONTENT OF HIGH R.O. CONARCED PARTICUS OF INERTINITE + REWORKED MATERIA. No TRUE VERINITE. APPEARANCE Geo-optics Ltd. IN U.V. LIGHT DRANGE FLUCKESCENCE FROM Shores Ash House Bell Villas A. Ponteland Northumberland NE20 9BE EXINITE CONTENT TRACE Signature Date 20.11.90 IN U.V.

			• .		
PREPARATION	WAVELENGTH	BI			
ISOPROPYC PACOFOC	c 5464u		1.57	6	
		TOTAL No. OF PARTICLES MEA	NO DETER	411117710N SIISLE	
		REFLECTIV	ITY (%)	No.OF Particles	
4.50 4.50	0.05 0.10 0.15 0.20 0.25	R _{max.}			
4·00 3·50 3·00	0.30	Raver.			
2:50	2·50 2·00 1·90		Equivalent chemical parameters DRY ASH FREE		
1-80 1-70 1-60	0.65	CARBON (%)	Volatile Matter Yield (%)	CARBON Ratio	
1.50	0.75		1		

ORIGIN B.P. SAN	IPLE Our Ref: A.S./J.M.J. Your Ref: GC 98
LITHOLOGY SHARE	3162m
MINERALOGY	GENERAL COMMENTS
ORGANIC MATERIAL LOW - MODERATE DEGANIC CONTENT. SMALL, CONARCED PARTICLES OF REWERRED MATERIAL + INERTIMITE ONLY A HANDFULL OF TRUE VITRINITE PARTICLES.	
APPEARANCE IN U.V. LIGHT ORPHAE FAUORESCENCE FROM PROPES EXINITE CONTENT IN U.V. LOW	Signature Signature

ł

ORIGIN B.P.	SAMP	LE Our Ref: 7.5./c Your Ref: 66	1.m.J. 99
LITHOLOGY SHARE			3207m
MINERALOGY		GENERAL COMMENTS	
GLAUCONTE TRACES			
ORGANIC MATERIAL LOW OLUBNIC CONTENT. CONARLED, HIGH R.O. PARTICLES OF MERTINIC REWORKED MATERIAL. NO MAT	176 F. 1672/196	Хо Детеретикат	rov PossikiE
UNDER 1/2 K.S. LOCATED, NOTHING WORTH MEASURING.			
APPEARANCE IN U.V. LIGHT / M.D. CARNEE FLUORESCE FROM SHORES EXINITE CONTENT IN U.V. LOW	91/22	Signature	Gen-optics Ltd. Ash House Bell Villas Ponteland Northumberland NE20 9BE Date 7.10.80

-

origin <i>B.P.</i>	SAMPLE Dur Ref: FI-S./J.M.J Your Ref: HHOI	
LITHOLOGY SHALE	3336m	
MINERALOGY	GENERAL COMMENTS	
Forms		•
ORGANIC MATERIAL LOW BRGANIC (GNTENT. GNARLED PARTICLES OF INERTIMITE + DATERIAL BITUMEN		
WISPS. A FEW TRUE VITRINITE WISPY PARTICLES.		
IN U.V. IN U.V. LIGHT/Mid. DAMAGE FROMESCENCE FROM SHORES + HIDROCARBON SHETCES EXINITE CONTENT IN U.V. LOW	Genophics Ltd. Ash House Bell Villas Ponteland Northumberland Ne20 9BE Date 7.10.80	

ORIGIN B.P.	SAMI	PLE Our Ref: 17-5-10 Your Ref: 144	1, M. J. 102	
LITHOLOGY SHARE			3391m	
MINERALOGY		GENERAL COMMENTS		
GLAUCONITE TRACES				
ORGANIC MATERIAL MODERATE ORGANIC CONTENT. VERY CINARLED PARTICLES OF MER + REMORCED MATERIAL ONLY I COURCE OF TRUE PARTICLES LOCAT	12 71 NII, P T=D.	E		
APPEARANCE				_
IN U.V. LICHT CLEANGE LUCRESCEN Fram STORES + HEDROCARBON ST AND MIRELENATION EXINITE CONTENT IN U.V. TRACE	re netres	Jah M. Jan Signature	Gen.optics Ltd. Ash House Bell Villas Ponteland Northumberland NE20 9BE Date 7.10.80	