

Bl. nr. 8526 b 7.89 3000 HN

# U – 621 Document frontpage Exploration and Production

. 3

| Agreement Amend                                                                                                                                                                          | ment Report                                                                                                                             |                                                                                                            | Doc. id.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| 2 years > 5 years                                                                                                                                                                        | ars Permanent archives                                                                                                                  |                                                                                                            | R-04149                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 99       |
|                                                                                                                                                                                          |                                                                                                                                         | idential Strictly confiden                                                                                 | tial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |
| listribution                                                                                                                                                                             | Title                                                                                                                                   | Strictly confiden                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |
| 2 (eksemplarer<br>Statoil<br>Saga<br>Norsk Agip<br>DNO<br>Conoco<br>NPD                                                                                                                  | )<br>PETROLEUM<br>WELL 30/9                                                                                                             | GEOCHEMISTRY<br>-9                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |
| Norsk Hydro<br>Central Archive                                                                                                                                                           | e                                                                                                                                       |                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |
| produced oil f:<br>The maturity pa<br>Jurassic age a:                                                                                                                                    | rom this well.<br>arameters show that<br>re in the early sta                                                                            | the analyzed b<br>ge of oil gener                                                                          | norizons, main<br>ration.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | nly of   |
| The source rocl                                                                                                                                                                          | k potential is poor                                                                                                                     | throughout the                                                                                             | analyzed int                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Forvale  |
| except for the                                                                                                                                                                           | coal samples which                                                                                                                      | have a good so                                                                                             | burce rock pot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | tensial. |
| except for the                                                                                                                                                                           | coal samples which                                                                                                                      | have a good sc<br>BA-90-                                                                                   | 1146-(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | tensial. |
| except for the                                                                                                                                                                           | coal samples which                                                                                                                      | BA-90-                                                                                                     | VI 1990                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | tensial. |
| except for the<br><sup>eywords</sup><br>Source Rocks, M<br>Migrated Hydrod                                                                                                               | Maturity, Coals                                                                                                                         | BA-90-<br>1 1 JUN<br>REGION<br>OLJEDIREK                                                                   | VI 1990<br>TORATET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | tensial. |
| except for the<br>eywords<br>Source Rocks, M<br>Migrated Hydrod<br>ages-Appendix                                                                                                         | Maturity, Coals<br>carbons.                                                                                                             | BA-90-<br>11JUN<br>REGIST<br>OLJEDIREK<br>Revision no.                                                     | VI 1990<br>TORATET<br>Revision date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | tensial. |
| except for the<br>eywords<br>Source Rocks, M<br>Migrated Hydrod<br>ages-Appendix<br>uadrant/Block-Well<br>30/9-9                                                                         | Maturity, Coals<br>carbons.<br>Amendment no.<br>Project no<br>300421                                                                    | BA-90-<br>11JUN<br>REGISS<br>OLJEDIREK<br>Revision no.<br>Licens no.<br>PL 104                             | VI 1990<br>VI 1990<br>TORATET<br>Pevision date<br>Date<br>28.03.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 90       |
| eywords<br>Source Rocks, M<br>Migrated Hydrod<br>nges-Appendix<br>Jadrant/Block-Well<br>30/9-9                                                                                           | Maturity, Coals<br>carbons.<br>Amendment no.<br>Project no<br>300421<br>F-Geosection                                                    | BA-90-<br>11JUN<br>REGISS<br>OLJEDIREK<br>Revision no.                                                     | VI 1990<br>TORATET<br>Revision date<br>28.03.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 90       |
| except for the<br>sywords<br>Source Rocks, M<br>Migrated Hydrod<br>ages-Appendix<br>uadrant/Block-Well<br>30/9-9<br>Sector<br>Section                                                    | Maturity, Coals<br>carbons.<br>Amendment no.<br>Project no<br>300421<br>F-Geosection<br>Petroleum Geoch                                 | Ave a good so<br>BA-90-<br>11JUN<br>REGISS<br>OLJEDIREK<br>Revision no.<br>Licens no.<br>PL 104            | VI 1990<br>TORATET<br>Pevision date<br>28.03.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 90       |
| except for the<br>sywords<br>Source Rocks, M<br>Migrated Hydrod<br>ages-Appendix<br>uadrant/Block-Well<br>30/9-9<br>Sector<br>Section                                                    | Maturity, Coals<br>carbons.<br>Amendment no.<br>Project no<br>300421<br>F-Geosection<br>Petroleum Geoch<br>Tone Jacobsen<br>Nils Telnæs | Ave a good so<br>BA-90-<br>11JUN<br>REGISS<br>OLJEDIREK<br>Revision no.<br>Licens no.<br>PL 104<br>emistry | II46- (<br>II46- | 90       |
| except for the<br>sywords<br>Source Rocks, M<br>Migrated Hydrod<br>ages-Appendix<br>uadrant/Block-Well<br>30/9-9<br>Sector<br>Section<br>Authors<br>Controlled                           | Maturity, Coals<br>carbons.<br>Amendment no.<br>Project no<br>300421<br>F-Geosection<br>Petroleum Geoch<br>Tone Jacobsen<br>Nils Telnæs | Are a good so<br>BA-90-<br>11JUN<br>REGIST<br>OLJEDIREK<br>Revision no.<br>Licens no.<br>PL 104<br>emistry | NI 1990<br>TORATET<br>Pevision date<br>28.03.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 90       |
| except for the<br>aywords<br>Source Rocks, M<br>Migrated Hydrod<br>ages-Appendix<br>Jadrant/Block-Well<br>30 / 9 - 9<br>Sector<br>Sector<br>Section<br>Authors<br>Sontrolled<br>Accepted | Maturity, Coals<br>carbons.<br>Amendment no.<br>Project no<br>300421<br>F-Geosection<br>Petroleum Geoch<br>Tone Jacobsen<br>Nils Telnæs | BA-90-<br>1 1 JUN<br>REGISS<br>OLJEDIREK<br>Revision no.<br>Licens no.<br>PL 104<br>emistry<br>Tose G.S.   | II46- (<br>II46- | 90       |

#### TABLE OF CONTENTS

1. INTRODUCTION

2. MIGRATED HYDROCARBONS

- 2.1. Rock Eval data, PI.
- 2.2. Extraction and TOC data.
- 2.3. Biomarker data.
- 2.4. Correlation with the produced oil.
- 3. SOURCE ROCK EVALUATION.
  - 3.1. Rock Eval data.
  - 3.2. Pyrolysis gas chromatography.
  - 3.3. Gas chromatography, saturated hydrocarbons.
  - 3.4. Gas chromatography, aromatic hydrocarbons.
  - 3.5. Biological markers, saturated hydrocarbons.
  - 3.6. Biological markers, aromatic hydrocarbons.
  - 3.7. Stable isotope measurements.
  - 3.8. Kerogen composition, visual analysis.

4. THERMAL MATURITY

- 4.1. Rock Eval data, T-max.
- 4.2. Vitrinite reflectance, Ro.
- 4.3. Biomarker ratios.
- 4.4. Spore colour.
- 5. CORRELATION WITH THE COAL FROM THE NESS FM. OF 30/9-8.
- 6. SUMMARY.

TABLES.

FIGURES.

APPENDICES.

PETROLEUM GEOCHEMISTRY 30/9-9

#### LIST OF TABLES

```
Table 1.1. List of samples analyzed.
Table 2.1. Source rock screening data.
Table 2.2. Extraction data.
Table 2.3. Extraction data.
Table 2.4. Biomarker ratios.
Table 3.1. Molecular ratios.
Table 3.2. Stable isotope measurements.
Table 3.3. Kerogen composition.
```

Table 4.1. Vitrinite reflectance values.

#### LIST OF FIGURES

- Figure 1.1. Well location map.
- Figure 1.2. Well summary.
- Figure 2.1. PI and EOM/TOC versus depth.
- Figure 3.1. TOC, S2 and HI versus depth.
- Figure 3.2. Kerogen composition.
- Figure 4.1. Vitrinite reflectance versus depth.
- Figure 4.2. Spore colour.

#### INTRODUCTION.

Well 30/9-9, located in the Oseberg area was spudded 26.09.89 and completed 06.11.89. T.D. was reached at 2809 m., in the Statfjord Fm. The location map is given in fig. 1.1., and a well summary is given in fig. 1.2.

A total of 34 samples, SWC's and CC's have been analyzed representing; Upper Cretaceous, Upper-, Middle- and Lower Jurassic.

In addition 13 DC's have been analyzed for Vitrinite reflectance.

The spore colour analysis has been undertaken both on DC's, SWC's and CC's, totally seventeen samples.

Table 1.1. gives a list of the samples investigated.

The Vitrinite reflectance measurements has been undertaken by Geo-optics Ltd., Newcastle upon Tyne, UK. Stable isotope composition of fractions has been analyzed by Geolab Nor, Trondheim, Norway. All other analytical work, the interpretation of data and the compilation of this report were undertaken by Norsk Hydro's Research Centre, Bergen, Norway.

#### 2. MIGRATION.

Determination and evaluation of migrated hydrocarbons are based upon Rock Eval-, extraction- and biomarker data.

#### 2.1. Rock Eval pyrolysis.

The results from this analysis are listed in Table 2.1. The Production Index (PI) values are plotted versus depth in Fig. 2.1.

The Tarbert Fm. samples, consisting mainly of sandstones, have PI values around 0.70, clearly indicating the presence of migrated hydrocarbons, with exception of the two coal samples. The samples from Heather Fm. also exhibit high PI values, and may be affected by migrated hydrocarbons.

The rest of the samples have PI values ranging from 0.08 to 0.31, suggesting indigenous hydrocarbons.

#### 2.2 Extraction and pyrolysis data.

The extraction data are given in table 2.2., and the ratio between EOM and TOC is plotted versus depth, Fig. 2.1.

The samples representing Heather and Tarbert Fm.'s have the highest values, except for the coals. This confirms that these samples are contaminated by migrated hydrocarbons.

Sample 2291.10m (Cromer Knoll) also has a high EOM/TOC value, 0.74.

The rest of the analyzed samples seems to consist mainly of indigeous hydrocarbons.

#### 2.3. Biomarker data.

The biomarker ratios (saturated hydrocarbons) are given in table 2.4. and fragmentograms are given in Appendix IV.

The relative high values of the maturity parameters, %20Sand  $\%\alpha\beta\beta$  steranes indicate presence of migrated hydrocarbons in the Heather and Tarbert Fms. samples. The moretane/hopane ratio is also reflecting elevated maturity.

In addition these samples contain significant amounts of the  $C_{27}$  steranes which can indicate that these migrated hydrocarbons are partly of a marine origin.

2.4. Correlation with the produced oil.

The gas chromatograms of the saturated hydrocarbons are given in Appendix II, and the gas chromatograms of the aromatic fractions are given in Appendix III.

The Pristane/Phytane ratios (3.28, 3.20) and Pristane/N-C17 ratios (0.96, 0.98) from the two produced oils (DST#1 and DST#2) are very similar to those of the sandstone extracts from the Heather/Tarbert Fms (Table 3.1.).

The biomarker ratios from the oil of well 30/9-9 DST#1 and DST#2, are given in table 2.4. and the fragmentograms are given in Appendix IV.

The ratios from the extracted Heather and Tarbert Fm.'s samples are very similar to the two produced oils, suggesting a positive correlation between the oils and these extracts. The composition of the sandstone extracts appear to be relatively homogeneous, based on the distribution of biological markers.

#### 3. SOURCE ROCK EVALUATION.

Rock Eval data, pyrolysis gas chromatography, gas chromatography, biomarker contents, stable isotope measurements and kerogen composition have been used to evaluate the source rock potential of the investigated horizons, mainly of Jurassic age.

#### 3.1. Rock Eval.

The results from the Rock-Eval pyrolysis are given in table 2.1., and are plotted versus depth in fig. 3.1.

Throughout the whole sequence, except for the coals, the S2 and TOC values are very low. The TOC values are generally below 1% and the S2 values below 2 kg/tonne. These data are suggesting a poor source rock potential. There is no systematic increase in these values towards depth and no positive correlation with the different geological formations present. The HI values range from 33 to 154 indicating the organic matter mainly to be gas prone, type III kerogen.

The six analyzed coal samples naturally show higher S2 and TOC results. The HI, ranging from 165 to 319, indicate some potential for gas/condensate. 3.2. Pyrolysis gas chromatography.

Extracted material has been used for this programmed pyrolysis gas chromatography. A total of thirteen samples have been selected based on the Rock Eval results.

The pyrograms are given in Appendix I.

All the coals apart from the sample at 2408.50m are dominated by aromatic hydrocarbons like toluene and xylenes in addition to a series of phenols. These features clearly suggest a terrestrially derived organic matter with a potential for gas only. The sample from 2408.5 m contains some liptinitic material based on the homologous series of n-alkanes/alkenes extending up beyond n-C25. This might suggest a lagoonal setting for this sample, and gives a potential for condensate and gas.

The rest of the samples analysed by pyrolysis-GC contain low amounts of organic matter, but shows a mixture of liptinitic material, mixed with humic, terrestrially derived kerogen, typical of marine settings. The kerogen has a potential for both liquid and gaseous hydrocarbons, but due to the low contents of organic matter, it is questionable wether these will act as effective source rocks for oil.

3.3. Gas chromatography of saturated hydrocarbons.

The gas chromatograms of the saturated fractions are given in Appendix II., and molecular ratios are given in table 3.1.

There is a distinct difference between the samples above 2308.60 m and those below this depth, which coincides with top Ness Fm. The upper samples (Heather and Tarbert Fms.) have a unimodal n-alkane distribution with a maximum around  $n-C_{1,7} - n-C_{1,9}$ , which decreases with increasing carbon number. This is a typical feature of marine organic matter. However, these samples are affected by migrated hydrocarbons. Most of the samples below 2308.60 m have a bimodal distribution, which indicate input from terrestrial material. This is supported by the pronounced odd/even n-alkane predominance in the  $n-C_{2}$  to  $n-C_{3}$  region. The pristane/n-C, , ratios are usually less than unity. For all the analyzed samples the pristane/phytane ratio is higher than 1, indicating a dysaerobic depositional environment. Some of the coal samples have higher pristane/phytane ratios (7.10) indicating a partially oxic depositional environment.

#### 3.4. Gas chromatography of aromatic hydrocarbons.

The gas chromatograms of the aromatic fractions are given in appendix III.

3.5. Biological markers, saturated hydrocarbons.

The fragmentograms of the steranes  $(m/z \ 217)$  and terpanes  $(m/z \ 191)$  are given in appendix IV and biomarker ratios are listed in table 2.4.

The samples above top Ness Fm. all contain significant amount of  $C_{27}$  steranes which are believed to originate from marine algae. This suggest that these samples contain migrated hydrocarbons of a marine origin. All samples from Ness Fm. contains almost exclusivly  $C_{29}$ steranes, indicating that the organic material is predominantly terrestrial derived. The samples 2424.70m, 2727.0m and 2778.0m are also dominated by  $C_{29}$  steranes, but also contain some  $C_{27}$ steranes. This can indicate that the dominating terrestrial organic material have a minor contribution from marine derived organic material.

#### 3.6. Biological markers, aromatic hydrocarbons.

The fragmentograms of the monoaromatic steranes (Ion m/z 253) and the triaromatic steranes (Ion m/z 231) are given in Appendix V.

PETROLEUM GEOCHEMISTRY 30/9-9

3.7. Stable isotope measurements.

A total of eight extracts have been analyzed for  $\delta^{13}$ C contents, the results are given in table 3.2.

The material from upper Cretaceous, Heather and Tarbert Fm's. are isotopic lighter than the other investigated samples. Indicating that the samples above top Ness Fm. have some marine input, which can be related to the migrated hydrocarbons.

The deeper samples are more influenced by terrestrial organic matter.

#### 3.8. Kerogen composition.

A total of fourteen samples were analyzed for semiquantitative kerogen description. Apart from the coal samples, all samples were treated according to the internal Norsk Hydro standard method. Analysis of each kerogen concentrate was based on observations involving both transmitted light as well as fluorescence. The results are given in Fig.3.2. The following groups were recognized by visual kerogen analysis: 2291.75m, 2295.75m, 2297.40m, 2313.50m, 2356.50m,
 2408.50m:

High productivity. Dominated by fine grained vitrinite of low intensity fluorescence, embedding variable proportions of sometimes very coarse inertinite and woody particles; some cutinite and sporonite. The 2313.50m sample differs by its major proportion of coarse inertinitic and fusinitic woody fragments. The 2356.50m sample differs by its higher fluorescence intensity of the vitrinite and larger proportion of cutinite and sporonite. No visible pyrite. Strong background fluorescence of the mounting medium caused by hydrocarbons.

Note the uncertainty in composition due to the vitrinitic character.

Interpretation: Presumably orthohydrous vitrinitic coals, formed by humification of organic matter under mildly oxidative terrestrial conditions (cf. Khavary Khorasani, 1989). Gas/Condensate-prone.

2. 2292.5m and 2293.0m:

Very low productivity. Upper sample dominated by sporinite (S+P+Cy), lower sample by inertinite. Pyrite abundant, coarse crystals in upper, finegrained in lower sample.

Interpretation: Marine, aerobic environment of deposition. Gas-prone.

3. 2299.02m:

Low productivity. Large flakes of spongy, slightly structured material dominate (?cutinite); some resinite?

Interpretation: A similar kind of organic matter has been recorded from shallow marine, nearshore deposits (P. V. Veen's observations).

4. 2308.60m, 2355.75m, 2424.70m, 2727.0m, 2778.0m:

Low productivity. Rather low amount of often fluorescing finely disseminated material. Coarse fraction consists of a mixture of inertinite, woody particles, cutinite and sporonite. Traces of AOM at 2355.75m and 2424.70m; marine microplankton at 2424.70; Botryococcus present at 2424.70m, common at 2727.0m. Some small pyrite framboids on woody and cutinite particles. Some background fluorescence. Heavy minerals present at 2308.60 and 2355.75m.

Interpretation: Shallow marine, aerobic to slightly dysaerobic (2355.75m?, 2424.70m, 2727.0m) with strong fresh water influx, to deltaic (2308.60, 2778.0m). Gas/Condensate prome.

#### 4. THERMAL MATURITY.

Determination of the degree of maturity is based upon  $T_{max}$  values from Rock Eval, Vitrinite reflectance (Ro), biomarker data and spore colour.

#### 4.1. T- from Rock Eval.

The results are given in Table 2.1. and the T-max values have been plotted versus depth, Fig. 3.1.

The analyzed sequence range from  $417^{\circ}$  C to  $445^{\circ}$ C, with a slight increase towards depth. The Tarbert samples have an average value of  $427^{\circ}$ C, while the Ness samples have an average value of  $437^{\circ}$ C. The deepest samples have values above  $440^{\circ}$ C.

The investigated intervals are ranging from immature to early mature.

#### 4.2. Vitrinite reflectance, Ro.

The results from the vitrinite measurements are given in table 4.1., and the vitrinite readings are given in Appendix V. The Ro values are plotted versus depth in fig. 4.1.

In addition to the CC's and SWC's, this analysis also include some DC-samples from the intervals 1000-2200m and 2500-2600m.

The values increase slightly from 0.34 (1000m) to 0.60 (2778.0m) indicating that the Jurassic sequence of Well 30/9-9 contain marginally mature to mature samples.

#### 4.3. Biomarker ratio.

The calculated biomarker ratio's are listed in table 2.4., and the fragmentograms are given in Appendix IV.

% 20S C, ααα Sterane.

This parameter monitors the isomerisation which occurs at carbon atom in position #20 on the sterane sidechain. The ratio in immature sediments is zero, and reach a value of about 60% at equilibrium, which is in the peak oilgenerating zone.

The uppermost samples representing Cromer Knoll Grp., Heather Fm. and Tarbert Fm. have values ranging from 42%-47% (except 2295.75m). Whilst the lower Ness Fm. and Drake Fm. have values varying from 20%-29%, (two exceptions).

Taken into account that the Heather and Tarbert samples contain migrated hydrocarbons, this parameter indicate immature to early mature samples.

When entering the Amundsen Fm. and Statfjord Fm. the % 20S value increases to 44%, which indicate that these lower samples have a higher degree of maturity.  $% \alpha\beta\beta C_{20}$  Steranes.

With increasing thermal stress, the  $\alpha\beta\beta$  20S configuration is generated. When the sediment enters the principal zone of oil generation this parameter will show a 20% conversion, and increase to 75% at the peak oil generating zone.

The contaminated samples displays the highest amount of  $\alpha\beta\beta$  C<sub>29</sub> sterane, with values above 55%. The rest of the analyzed interval have values around 30%, indicating early mature samples. Samples 2727.0m and 2778.0m do not show higher values compared to the other analyzed sample, which can be explained with coeluation of the  $\beta\alpha\alpha$  and  $\alpha\beta\beta$  steranes.

#### Moretan/hopane.

This ratio can be used as a maturity parameter as moretane is thought to be less thermal stable than hopane. However, this ratio is also affected by the origin of the organic matter. Terrestrially derived plant material have a higher relative abundance of moretanes than marine organic matter.

Again the Heather Fm. and Tarbert Fm. samples show the highest level of maturity, probably due to migrated hydrocarbons.

However, this ratio then increase towards depth, which reflects the change in the composition of the organic matter with a higher terrestrial influence.

4.4. Spore colour.

The results from spore colour analysis are given in Fig.4.2.

The analysed interval, 1750-2809m show a slight increase in maturity versus depth. Starting with immature samples, and when entering the Jurrasic sequence the samples are mainly early mature.

Due to the fact that this analysis was made upon oxidized DC's, these samples can indicate some higher values (towards orange) than what is real.

5. CORRELATION WITH COAL FROM THE NESS FM.OF WELL 30/9-8.

Only one coal sample representing Ness Fm. have been analyzed from Well 30/9-8, 2930.30m.

Based upon the results from pyrolysis gas chromatography the sample 2408.50m from 30/9-9 seem to be quite similar to the sample 2930.30m from 30/9-8. Both samples contain homologous series of n-alkanes/alkenes originating from liptinitic organic matter, indicating some potential for liquid hydrocarbons.

Based upon the gas chromatograms these two samples are relative similar, except for the pristane content. They both have an odd dominance over even n-alkanes in the  $C_{25}$  to  $C_{33}$  region, indicating terrestrial derived organic matter.

The biomarker distributions and ratios for these two samples are quite similar, except for the fact that the sample 2930.30m from 30/9-8 is more mature than the sample 2408.50m from 30/9-9.

#### 6. SUMMARY.

The section from 2291.10m to 2304.20m, representing Shetland Group, Heather and Tarbert Fm.'s, is invaded by mature migrated hydrocarbons of a marine origin, and have a biomarker distribution similar to the produced oil from this well.

The maturity parameters show that the analyzed horizons, mainly of Jurassic age are in the early stage of oil generation.

The source rock potential is poor throughout the analyzed intervals, except for the coal samples which have a good source rock potensial.

Table 1.1. List of samples analyzed.

| Depth, m               | l Rock-Eval                                       | 2 TOC | 3 PyGC | 4 Exic. | 5 GCMSD sat. | 6 GCMSD<br>ato | 7 ISOTOPE 8 | Ro, .itr.<br>Reflec. | 9 Visual<br>kerogen | 10 SPORE<br>COLOU |
|------------------------|---------------------------------------------------|-------|--------|---------|--------------|----------------|-------------|----------------------|---------------------|-------------------|
| 1 1000.00              | * *** *** *** *** *** *** *** *** *** *** *** *** |       |        |         |              |                |             | *                    |                     |                   |
| 2 1100.00              |                                                   |       |        |         |              |                |             | *                    |                     |                   |
| 3 1200.00              |                                                   |       |        |         |              |                |             | *                    |                     |                   |
| 5 1/00 00              |                                                   |       |        |         |              |                |             | *                    |                     |                   |
| 6 1500.00              |                                                   |       |        |         |              |                |             | *                    |                     |                   |
| 7 1600.00              |                                                   |       |        |         |              |                |             | *                    |                     |                   |
| 8 1700.00              |                                                   |       |        |         |              |                |             | *                    |                     |                   |
| 9 1750.00              |                                                   |       |        |         |              |                |             |                      |                     | *                 |
| 0 1800.00              |                                                   |       |        |         |              |                |             | *                    |                     | *                 |
| 1 1900.00              |                                                   |       |        |         |              |                |             | *                    |                     | *                 |
| 2 2000.00              |                                                   |       |        |         |              |                |             | *                    |                     |                   |
| 3 2100.00<br>A 2196 50 |                                                   |       |        |         |              |                |             | *                    |                     |                   |
| 5 2200 00              |                                                   |       |        |         |              |                |             | *                    |                     |                   |
| 6 2236.00              | *                                                 | *     |        |         |              |                |             |                      |                     | *                 |
| 7 2291.10              | *                                                 | *     |        | *       | *            | *              | *           |                      | *                   |                   |
| 8 2291.75              | *                                                 | *     | *      | *       | *            | *              |             |                      |                     |                   |
| 9 2292.50              | *                                                 | *     | *      | *       | *            | *              |             | *                    | *                   | *                 |
| 0 2293.00              | *                                                 | *     |        | *       | *            | *              | *           |                      | *                   |                   |
| 1 2293.02              | *                                                 | *     |        | *       | *            | *              | *           |                      |                     |                   |
| 2 2293.70              | *                                                 | *     | +      | +       | +            | +              |             |                      | 1. C                |                   |
| 3 2293.73<br>1 2297 10 | *                                                 | *     | *      | *       | *            | *              |             |                      | *                   |                   |
| 5 2299.02              | *                                                 | *     |        | *       | *            | *              | *           |                      | *                   | *                 |
| 6 2301.35              | *                                                 | *     |        |         |              |                |             |                      |                     |                   |
| 7 2304.20              | *                                                 | *     |        |         |              |                |             |                      |                     |                   |
| 8 2308.60              | *                                                 | *     | *      | *       | *            | *              |             | *                    | *                   | *                 |
| 9 2312.30              | *                                                 | *     |        | *       | *            | *              |             |                      | 12                  |                   |
| 0 2313.50              | *                                                 | *     | *      | *       | *            | *              | *           |                      | *                   |                   |
| 1 2313.03              | *                                                 | *     |        | *       | *            | *              |             |                      |                     |                   |
| 3 2325 60              | *                                                 | *     |        |         |              |                |             |                      |                     |                   |
| 4 2347.02              | *                                                 | *     |        |         |              |                |             |                      |                     |                   |
| 5 2352.50              | *                                                 | *     |        | *       | *            | *              |             |                      |                     |                   |
| 6 2355.75              | *                                                 | *     | *      | *       | *            | *              |             |                      | *                   | *                 |
| 7 2356.50              | *                                                 | *     | *      | *       | *            | *              | *           |                      | *                   |                   |
| 8 2405.10              | *                                                 | *     |        |         |              |                |             |                      |                     |                   |
| 9 2407.80              | *                                                 | *     | +      | +       | +            | +              |             |                      |                     |                   |
| 0 2408.30<br>1 2408.30 | *                                                 | *     | ^      | ^       | ~            | x              |             |                      | ×                   |                   |
| 2 2411 40              | *                                                 | *     |        |         |              |                |             |                      |                     |                   |
| 3 2415.20              | *                                                 | *     |        |         |              |                |             |                      |                     |                   |
| 4 2424.70              | *                                                 | *     | *      | *       | *            | *              | *           | *                    | *                   | *                 |
| 5 2500.00              | *                                                 | *     |        |         |              |                |             | *                    |                     |                   |
| 6 2505.00              |                                                   |       |        |         |              |                |             |                      |                     | *                 |
| / 2600.00              | *                                                 | *     |        |         |              |                |             | *                    |                     |                   |
| 0 2605.00              |                                                   |       |        |         |              |                |             |                      |                     | *                 |
| 9 2093.00              | *                                                 | *     | *      | *       | *            | *              | *           |                      | *                   |                   |
| 1 2761 50              | *                                                 | *     |        |         |              |                |             |                      | 2                   |                   |
| 2 2770.00              | +                                                 | +     | +      |         |              |                |             |                      |                     |                   |

Table 2.1. Source rock screening data.

-

## Table 2.1. SOURCE ROCK SCREENING DATA WELL 30/9-9

Petroleum Geochemistry Group Research Center Bergen



| Depth<br>(m) | Group/Fm | 0/0 | Lithology | Sample | S1<br>Kg∕t | S2<br>Kg/t | S3<br>Kg∕t | TOC<br>१ | HI  | ΟI | ΡI   | Tmax<br>Deg.c | Company |
|--------------|----------|-----|-----------|--------|------------|------------|------------|----------|-----|----|------|---------------|---------|
| 2236.00      | SHETLAND |     |           | SWC    | 0.0        | 0.2        |            | 0.5      | 33  |    | 0.15 | 431           | F-BG    |
| 2291.10      | SHETLAND |     |           | CC     | 3.9        | 0.8        |            | 0.9      | 92  |    | 0.83 | 412           | F-BG    |
| 2291.75      | SHETLAND |     |           | СС     | 38.1       | 213.6      |            | 66.8     | 320 |    | 0.15 | 417           | F-BG    |
| 2292.50      | HEATHER  |     |           | SWC    | 0.3        | 0.4        |            | 0.5      | 88  |    | 0.39 | 429           | F-BG    |
| 2293.00      | HEATHER  |     |           | SWC    | 2.7        | 0.3        |            | 0.6      | 55  |    | 0.90 | 403           | F-BG    |
| 2293.02      | HEATHER  |     |           | CC     | 3.4        | 0.5        |            | 0.4      | 111 |    | 0.87 | 590           | F-BG    |
| 2293.70      | TARBERT  |     |           | CC     | 3.2        | 1.0        |            | 1.4      | 74  |    | 0.75 | 430           | F-BG    |
| 2295.75      | TARBERT  |     |           | CC     | 40.1       | 204.7      |            | 74.3     | 276 |    | 0.16 | 419           | F-BG    |
| 2297.40      | TARBERT  |     |           | CC     | 31.9       | 203.9      |            | 69.1     | 295 |    | 0.14 | 423           | F-BG    |
| 2299.02      | TARBERT  |     |           | СС     | 3.5        | 1.2        |            | 0.9      | 132 |    | 0.74 | 431           | F-BG    |
| 2301.35      | TARBERT  |     |           | CC     | 2.4        | 1.1        |            | 0.7      | 155 |    | 0.69 | 430           | F-BG    |
| 2304.20      | TARBERT  |     |           | CC     | 0.5        | 0.3        |            | 0.4      | 58  |    | 0.67 | 431           | F-BG    |
| 2308.60      | NESS     |     |           | СС     | 0.2        | 1.2        |            | 0.8      | 149 |    | 0.16 | 438           | F-BG    |
| 2312.30      | NESS     |     |           | СС     | 0.4        | 1.1        |            | 1.4      | 83  |    | 0.25 | 440           | F-BG    |
| 2313.50      | NESS     |     |           | CC     | 46.8       | 132.2      |            | 80.4     | 164 |    | 0.26 | 429           | F-BG    |
| 2315.05      | NESS     |     |           | CC     | 0.1        | 0.3        |            | 0.6      | 50  |    | 0.31 | 440           | F-BG    |
| 2318.50      | NESS     |     |           | SWC    | 0.1        | 0.7        |            | 0.6      | 131 |    | 0.10 | 445           | F-BG    |
| 2325.60      | NESS     |     |           | CC     | 0.1        | 0.4        |            | 0.6      | 64  |    | 0.20 | 438           | F-BG    |
|              |          |     |           |        |            |            |            |          |     |    |      |               |         |

## Table 2.1. SOURCE ROCK SCREENING DATA WELL 30/9-9 (cont'd)

Petroleum Geochemistry Group Research Center Bergen



| Depth<br>(m) | Group/Fm  | 0\0 | Lithology | Sample | S1<br>Kg∕t | S2<br>: Kg/t | S3<br>Kg∕t | TOC<br>% | ΗI  | OI | PI   | Tmax<br>Deg.c | Company |
|--------------|-----------|-----|-----------|--------|------------|--------------|------------|----------|-----|----|------|---------------|---------|
| 2347.02      | NESS      |     |           | CC     | 0.0        | 0.1          |            | 0.1      | 70  |    | 0.13 | 442           | F-BG    |
| 2352.50      | NESS      |     |           | СС     | 0.2        | 1.4          |            | 0.9      | 146 |    | 0.11 | 439           | F-BG    |
| 2355.75      | NESS      |     |           | CC     | 0.2        | 2.1          |            | 1.4      | 148 |    | 0.09 | 440           | F-BG    |
| 2356.50      | NESS      |     |           | СС     | 13.0       | 142.7        |            | 71.9     | 198 |    | 0.08 | 425           | F-BG    |
| 2405.10      | NESS      |     |           | CC     | 0.2        | 0.5          |            | 0.4      | 107 |    | 0.29 | 438           | F-BG    |
| 2407.80      | NESS      |     |           | CC     | 0.1        | 0.3          |            | 0.4      | 85  |    | 0.13 | 441           | F-BG    |
| 2408.50      | NESS      | -   |           | CC     | 20.2       | 152.7        |            | 78.2     | 195 |    | 0.12 | 431           | F-BG    |
| 2409.02      | NESS      |     |           | CC     | 0.2        | 0.7          |            | 1.0      | 72  |    | 0.23 | 439           | F-BG    |
| 2411.40      | NESS      |     |           | CC     | 0.3        | 0.9          |            | 1.3      | 65  |    | 0.25 | 438           | F-BG    |
| 2415.20      | DRAKE     |     |           | CC     | 0.1        | 0.6          |            | 1.0      | 60  |    | 0.18 | 440           | F-BG    |
| 2424.70      | DRAKE     |     |           | CC     | 0.3        | 1.6          |            | 1.7      | 96  |    | 0.15 | 441           | F-BG    |
| 2727.00      | BURTON    |     |           | SWC    | 0.3        | 1.7          |            | 1.3      | 134 |    | 0.14 | 444           | F-BG    |
| 2761.50      | AMUNDSEN  |     |           | SWC    | 0.1        | 0.4          |            | 0.3      | 141 |    | 0.14 | 565           | F-BG    |
| 2778.00      | STATFJORD |     |           | SWC    | 0.3        | 1.8          |            | 1.8      | 97  |    | 0.17 | 442           | F-BG    |
|              |           |     |           |        |            |              |            |          |     |    |      |               |         |

Table 2.2. Extraction data.

Table 2.2. SOURCE ROCK EXTRACTION DATA II WELL 30/9-9

Petroleum Geochemistry Group

Research Center Bergen



| Depth(m) | Group/Fm | TOC (%) | EOM(%)/TOC(%) | SAT(%)/TOC(%) | SAT(%)/ARO(%) | HC/non HC | +0 |
|----------|----------|---------|---------------|---------------|---------------|-----------|----|
| 2291.10  | SHETLAND | 0.86    | 0.74          | 69.77         | 3.24          | 3.67      |    |
| 2291.75  | SHETLAND | 66.79   | 0.11          | 0.20          | 3.05          | 0.22      |    |
| 2293.00  | HEATHER  | 0.55    | 1.38          | 86.55         | 4.03          | 1.46      |    |
| 2293.02  | HEATHER  | 0.44    | 1.07          | 146.82        | 3.36          | 5.20      |    |
| 2293.70  | TARBERT  | 1.41    | 0.35          | 35.32         | 2.91          | 2.03      |    |
| 2295.75  | TARBERT  | 74.30   | 0.07          | 0.29          | 1.31          | 0.62      |    |
| 2297.40  | TARBERT  | 69.14   | 0.08          | 0.10          | 0.30          | 0.42      |    |
| 2299.02  | TARBERT  | 0.90    | 0.68          | 67.67         | 3.48          | 3.66      |    |
| 2308.60  | NESS     | 0.83    | 0.06          | 28.07         | 1.22          | 0.74      |    |
| 2312.30  | NESS     | 1.39    | 0.04          | 8.56          | 1.00          | 0.31      |    |
| 2313.50  | NESS     | 80.39   | 0.05          | 0.43          | 1.30          | 1.56      |    |
| 2318.50  | NESS     | 0.55    | 0.04          | 6.00          | 1.00          | 0.07      |    |
| 2352.50  | NESS     | 0.94    | 0.07          | 16.49         | 1.17          | 0.40      |    |
| 2355.75  | NESS     | 1.40    | 0.07          | 6.64          | 1.00          | 0.23      |    |
| 2356.50  | NESS     | 71.89   | 0.06          | 0.05          | 0.22          | 0.28      |    |
| 2408.50  | NESS     | 78.21   | 0.03          | 0.04          | 0.13          | 0.41      |    |
| 2424.70  | DRAKE    | 1.67    | 0.05          | 8.98          | 1.00          | 0.43      |    |
| 2727.00  | BURTON   | 1.26    | 0.08          | 12.30         | 1.25          | 0.39      |    |



| Depth(m) | Group/Fm  | TOC (%) | EOM(%)/TOC(%) | SAT(%)/TOC(%) | SAT(%)/ARO(%) | HC/non HC |  |
|----------|-----------|---------|---------------|---------------|---------------|-----------|--|
| 2778.00  | STATFJORD | 1.81    | 0.05          | 5.03          | 0.81          | 0.26      |  |

Table 2.3. Extraction data

-





## Table 2.3. SOURCE ROCK EXTRACTION DATA I WELL 30/9-9

| Depth(m) | Group/Fm | EOM(mg) | EOM(%) | H<br>SAT(%) | Iydrocarb<br>ARO(%) | ONS<br>TOTAL(%) | NSO(%) | Non Hydro<br>ASPH(%) | carbons<br>TOTAL(%) |  |
|----------|----------|---------|--------|-------------|---------------------|-----------------|--------|----------------------|---------------------|--|
| 2291.10  | SHETLAND | 79.00   | 0.64   | 60          | 19                  | 79              | 7      | 14                   | 21                  |  |
| 2291.75  | SHETLAND | 65.00   | 7.20   | 13          | 4                   | 18              | 28     | 54                   | 82                  |  |
| 2293.00  | HEATHER  | 79.70   | 0.76   | 48          | 12                  | 59              | 11     | 29                   | 41                  |  |
| 2293.02  | HEATHER  | 52.90   | 0.47   | 65          | 19                  | 84              | 11     | 5                    | 16                  |  |
| 2293.70  | TARBERT  | 52.30   | 0.50   | 50          | 17                  | 67              | 7      | 26                   | 33                  |  |
| 2295.75  | TARBERT  | 57.30   | 5.40   | 22          | 17                  | 38              | 25     | 37                   | 62                  |  |
| 2297.40  | TARBERT  | 62.80   | 5.20   | 7           | 23                  | 30              | 17     | 54                   | 70                  |  |
| 2299.02  | TARBERT  | 65.10   | 0.61   | 61          | 18                  | 78              | 9      | 12                   | 21                  |  |
| 2308.60  | NESS     | 3.70    | 0.05   | 23          | 19                  | 42              | 32     | 26                   | 58                  |  |
| 2312.30  | NESS     | 5.50    | 0.06   | 12          | 12                  | 24              | 18     | 58                   | 76                  |  |
| 2313.50  | NESS     | 47.90   | 4.13   | 34          | 27                  | 61              | 17     | 22                   | 39                  |  |
| 2318.50  | NESS     | 4.80    | 0.02   | 3           | 3                   | 7               | 4      | 90                   | 93                  |  |
| 2352.50  | NESS     | 7.40    | 0.07   | 16          | 13                  | 29              | 27     | 45                   | 71                  |  |
| 2355.75  | NESS     | 5.90    | 0.10   | 9           | 9                   | 19              | 20     | 61                   | 81                  |  |
| 2356.50  | NESS     | 43.80   | 4.10   | 4           | 18                  | 22              | 20     | 58                   | 78                  |  |
| 2408.50  | NESS     | 21.00   | 2.04   | 3           | 26                  | 29              | 19     | 52                   | 71                  |  |
| 2424.70  | DRAKE    | 5.20    | 0.09   | 15          | 15                  | 30              | 12     | 58                   | 70                  |  |
| 2727.00  | BURTON   | 6.00    | 0.10   | 16          | 12                  | 28              | 16     | 57                   | 72                  |  |
|          |          |         |        | 1           |                     |                 |        |                      |                     |  |



# Table 2.3. SOURCE ROCK EXTRACTION DATA I WELL 30/9-9 (cont'd)Petroleum Geochemistry GroupResearch Center Bergen

| Depth(m) | Group/Fm  | EOM(mg) | EOM(%) | H<br>SAT(%) | lydrocarb<br>ARO(%) | ons<br>TOTAL(%) | NSO(%) | Non Hydro<br>ASPH(%) | carbons<br>TOTAL(%) |  |
|----------|-----------|---------|--------|-------------|---------------------|-----------------|--------|----------------------|---------------------|--|
| 2778.00  | STATFJORD | 5.00    | 0.09   | 9           | 11                  | 20              | 14     | 66                   | 80                  |  |

Table 2.4. Biomarker ratios.

| 0 depth,end                                                                                                                                                                                                                                                    | 1 TS/IM                                                                                                                                                 | 2 % 205                                                                                                                         | 3 ABB STER.                                                                                                             | 4 MOR/HOP                                                                                                                                                                                         | 5 NO/NOTHO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 depth,end<br>1 2291.10<br>2 2291.75<br>3 2292.50<br>4 2293.00<br>5 2293.02<br>6 2293.70<br>7 2295.75<br>8 2297.40<br>9 2299.02<br>10 2308.60<br>11 2312.30<br>12 2313.50<br>13 2318.50<br>14 2352.50<br>15 2355.75<br>16 2356.50<br>17 2408.50<br>18 2424.70 | 1 TS/TM<br>1.17<br>1.12<br>1.16<br>1.25<br>1.18<br>1.11<br>1.26<br>1.35<br>1.25<br>0.60<br>0.05<br>0.48<br>0.26<br>0.17<br>0.10<br>0.01<br>0.01<br>0.08 | 2 % 205<br>47<br>42<br>42<br>42<br>45<br>43<br>29<br>44<br>47<br>21<br>29<br>35<br>20<br>22<br>38<br>20<br>22<br>38<br>21<br>21 | 3 ABB STER.<br>60<br>55<br>58<br>59<br>59<br>59<br>46<br>55<br>58<br>30<br>28<br>46<br>29<br>34<br>25<br>34<br>20<br>25 | 4 MOR/HOP<br>0.13<br>0.14<br>0.14<br>0.12<br>0.13<br>0.13<br>0.13<br>0.13<br>0.14<br>0.14<br>0.14<br>0.14<br>0.13<br>0.14<br>0.14<br>0.13<br>0.18<br>0.20<br>0.31<br>0.27<br>0.37<br>0.54<br>0.54 | 5 NO/NO1HO<br>0.30<br>0.32<br>0.33<br>0.31<br>0.32<br>0.31<br>0.32<br>0.31<br>0.32<br>0.33<br>0.31<br>0.32<br>0.33<br>0.31<br>0.32<br>0.33<br>0.31<br>0.35<br>0.36<br>0.16<br>0.30<br>0.31<br>0.32<br>0.35<br>0.36<br>0.31<br>0.32<br>0.35<br>0.36<br>0.31<br>0.32<br>0.33<br>0.32<br>0.33<br>0.32<br>0.33<br>0.32<br>0.33<br>0.32<br>0.33<br>0.32<br>0.33<br>0.32<br>0.33<br>0.32<br>0.33<br>0.32<br>0.33<br>0.32<br>0.33<br>0.32<br>0.33<br>0.32<br>0.33<br>0.32<br>0.33<br>0.32<br>0.33<br>0.32<br>0.33<br>0.32<br>0.33<br>0.32<br>0.33<br>0.32<br>0.33<br>0.32<br>0.33<br>0.32<br>0.33<br>0.32<br>0.33<br>0.32<br>0.33<br>0.32<br>0.33<br>0.32<br>0.33<br>0.32<br>0.33<br>0.32<br>0.33<br>0.32<br>0.33<br>0.32<br>0.33<br>0.32<br>0.33<br>0.32<br>0.35<br>0.36<br>0.30<br>0.30<br>0.36<br>0.30<br>0.36<br>0.30<br>0.37<br>0.36<br>0.37<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39 |
| 19 2727.00<br>20 2778.00<br>21 DST#1<br>22 DST#2                                                                                                                                                                                                               | $0.10 \\ 0.04 \\ 1.18 \\ 1.31$                                                                                                                          | 44<br>44<br>46<br>46                                                                                                            | 31<br>32<br>60<br>62                                                                                                    | 0.38<br>0.41<br>0.14<br>0.13                                                                                                                                                                      | $0.44 \\ 0.45 \\ 0.32 \\ 0.31$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

-

RESEARCH CENTER IN BERGEN

**WHYDRO** 

# Table 3.1. Molecular ratios.

Table 3.1. SATURATED FRAC., MOLECULAR RATIOS WELL 30/9-9

Petroleum Geochemistry Group Research Center Bergen



| Depth   | Group/Fm | Pr/n-C17 | Pr/Ph | CPI-I | CPI-II | n-C15+/Total | n-C20/n-C25 |
|---------|----------|----------|-------|-------|--------|--------------|-------------|
| 2291.10 | SHETLAND | 1.11     | 2.87  | 1.07  | 1.02   |              |             |
| 2291.75 | SHETLAND | 0.89     | 2.84  | 1.07  | 1.04   |              |             |
| 2292.50 | HEATHER  | 1.09     | 2.53  | 1.10  | 1.07   |              |             |
| 2293.00 | HEATHER  | 1.00     | 2.96  | 1.09  | 0.98   |              |             |
| 2293.02 | HEATHER  | 1.26     | 2.80  | 1.07  | 1.05   |              |             |
| 2293.70 | TARBERT  | 1.14     | 2.96  | 1.08  | 0.98   |              |             |
| 2295.75 | TARBERT  | 0.78     | 3.14  | 1.10  | 1.04   |              |             |
| 2299.02 | TARBERT  | 1.05     | 2.33  | 1.08  | 1.03   |              |             |
| 2308.60 | NESS     | 0.93     | 3.14  | 1.40  | 1.49   |              |             |
| 2312.30 | NESS     | 1.77     | 3.52  | 1.77  | 1.65   |              |             |
| 2313.50 | NESS     | 0.94     | 3.05  | 1.13  | 1.01   |              |             |
| 2318.50 | NESS     | 0.56     | 1.99  | 2.31  | 1.77   |              |             |
| 2352.50 | NESS     | 1.76     | 3.61  | 1.69  | 1.80   |              |             |
| 2355.75 | NESS     | 1.63     | 3.49  | 1.67  | 1.96   |              |             |
| 2356.50 | NESS     | 3.90     | 7.10  | 1.85  | 1.63   |              |             |
| 2408.50 | NESS     |          | 0.27  | 1.67  | 1.48   |              |             |
| 2424.70 | DRAKE    | 1.90     | 4.89  | 1.70  | 1.69   |              |             |
| 2727.00 | BURTON   | 1.27     | 4.59  | 1.49  | 1.47   |              |             |
|         |          |          |       |       |        |              |             |


| Depth   | Group/Fm  | Pr/n-C17 | Pr/Ph | CPI-I | CPI-II | n-C15+/Total | n-C20/n-C25 |
|---------|-----------|----------|-------|-------|--------|--------------|-------------|
| 2778.00 | STATFJORD | 1.55     | 4.09  | 1.52  | 1.42   |              |             |

Table 3.2. Stable isotope measurements.

.

-

| 0 d                                                                                      | 0 depth                                                                                                    |  | ISOTOP           |
|------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--|------------------|
| 1<br>2                                                                                   | 2291.10<br>2291.75                                                                                         |  | -27.94           |
| 34567                                                                                    | 2292.50<br>2293.00<br>2293.02<br>2293.70<br>2293.70                                                        |  | -27.82<br>-27.86 |
| 8<br>9<br>10<br>11                                                                       | 2297.40<br>2299.02<br>2301.35<br>2304.20                                                                   |  | -27.92           |
| $12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 16 \\ 17 \\ 17 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10$ | 2308.60<br>2312.30<br>2313.50<br>2315.05<br>2318.50                                                        |  | -27.02           |
| 17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26                                 | 2325.60<br>2347.60<br>2352.50<br>2355.75<br>2356.50<br>2405.10<br>2407.80<br>2408.50<br>2409.02<br>2411.40 |  | -25.58           |
| 27<br>28<br>29                                                                           | 2415.20<br>2424.70<br>2500.00                                                                              |  | -26.09           |
| 30<br>31<br>32<br>33                                                                     | 2600.00<br>2727.00<br>2761.50<br>2778.00                                                                   |  | -25.75           |



RESEARCH CENTER IN BERGEN

Table 3.3. Kerogen composition.

.

| Depth    | C/F   | Inert | Wood/Vitrinite | Liptinite AOM        | Remarks             |
|----------|-------|-------|----------------|----------------------|---------------------|
| 2291.75m |       | 20?   | 70 (10/60)     | 10                   |                     |
|          |       |       |                | (5)                  |                     |
| 2292.50m | 50/50 | 20    | 5              | 70                   | Py abd.             |
|          |       |       |                | (S+P 60, Cy 10)      |                     |
| 2293.0m  | 50/50 | 70    | 15             | 15                   | Py abd.             |
|          |       |       |                | (C 10, S+P 5)        | Pterospermella rare |
| 2295.75  |       | 30    | 70 (10/60)     |                      |                     |
| 2297.40  |       | 20    | 65 (10/55)     | 15                   |                     |
|          |       |       |                | (C 5, P+S 10)        |                     |
| 2299.02m |       | 10    | 5              | 75 (?C)              | Resinite ?10        |
|          |       |       |                |                      |                     |
| 2308.60  | 70/30 | 30    | 15             | 55                   | Heavy minerals      |
|          |       | 1     |                | (C 25, S+P 30)       |                     |
| 2313.50  |       | 60?   | 35 (10/25)     | 5? (C)               | tr. S+P             |
| 2355.75  | 40/60 | (5)   | 20             | 75                   | tr. AOM             |
|          |       |       |                | (C 25, S+P 50)       | Heavy minerals      |
| 2356.50  |       | (5)   | 65 (5/60)      | 30                   |                     |
|          |       |       |                | (C 10, S+P 20)       |                     |
| 2408.50  |       | 15    | 60 (10/50)     | 20                   |                     |
|          |       |       |                | (C 10, S+P 10)       |                     |
| 2424.70  | 50/50 | 20    | 30             | 45 (5)               | tr. Botryococcus    |
|          |       |       |                | (C 20, S+P 20, Cy 5) | picoplankton abd.   |
| 2727.0   | 40/60 | 15    | 40             | 45                   | common Botryococcus |
|          |       |       |                | (C 30, S+P 15)       |                     |
| 2778.0   | 40/60 | 30    | 35             | 15                   |                     |
|          |       | ÷     |                | (C 25. S+P 10)       |                     |

#### Explanation:

C/F: coarse fraction over finely disseminated

(5) Notable traces; C-Cutinite, S+P-Sporonite, Cy-Thinvalled Cysts

Picoplankton: acritarchs <5 micron.



RESEARCH CENTER IN BERGEN

Table 4.1. Vitrinite reflectance values.

· ·

Petroleum Geochemistry Group Research Center Bergen



| Table 4.1. | VITRINITE | REFLECTANCE | DATA | WELL | 30/9-9 |
|------------|-----------|-------------|------|------|--------|
|            | Average   | values      |      |      |        |

| Depth   | Group/Fm  | Population I | Population II | Population III | SCI |
|---------|-----------|--------------|---------------|----------------|-----|
| 1000.00 | HORDALAND | 0.34 ( 20)   |               |                |     |
| 1100.00 | HORDALAND | 0.35 ( 20)   |               |                |     |
| 1200.00 | HORDALAND | 0.36 ( 13)   |               |                |     |
| 1300.00 | HORDALAND | 0.39 ( 11)   |               |                |     |
| 1400.00 | HORDALAND | 0.35 ( 20)   |               |                |     |
| 1500.00 | HORDALAND | 0.37 ( 20)   |               |                |     |
| 1600.00 | HORDALAND | 0.39 ( 19)   |               |                |     |
| 1700.00 | HORDALAND | 0.50 ( 4)    |               |                |     |
| 1800.00 | HORDALAND | 0.52 ( 4)    |               |                |     |
| 1900.00 | HORDALAND | 0.45 ( 20)   |               |                |     |
| 2000.00 | HORDALAND | 0.50 ( 7)    |               |                |     |
| 2100.00 | HORDALAND | 0.51 ( 6)    |               |                |     |
| 2200.00 | SHETLAND  | 0.49 ( 20)   |               |                |     |
| 2292.50 | HEATHER   | 0.50 ( 21)   |               |                |     |
| 2308.60 | NESS      | 0.49 ( 20)   |               |                |     |
| 2424.70 | DRAKE     | 0.50 ( 21)   |               |                |     |
| 2500.00 | DRAKE     | 0.54 ( 22)   |               |                |     |
| 2600.00 | DRAKE     | 0.55 ( 21)   |               |                |     |
|         |           |              |               |                |     |

| Table 4.1. | <b>VITRINITE REF</b><br>Average valu | ELECTANCE DATA WELL | Petroleum Geochemistry<br>Research Center Bergen | Group          | HYDRO |   |
|------------|--------------------------------------|---------------------|--------------------------------------------------|----------------|-------|---|
| Depth      | Group/Fm                             | Population I        | Population II                                    | Population III | SCI   | 8 |
| 2778.00    | STATFJORD                            | 0.60 ( 21)          |                                                  |                |       |   |

Figure 1.1. Well location map.

1.5

### PROSPECT OVERVIEW, BLOCK 30/9



TNI001/KeK-OH/NA/06.89

Figure 1.2. Well summary.

|        |                 |                                              |                                       |                         |                       |            |                                    |        |                     |                                        |                                                              |             | 5    |        |
|--------|-----------------|----------------------------------------------|---------------------------------------|-------------------------|-----------------------|------------|------------------------------------|--------|---------------------|----------------------------------------|--------------------------------------------------------------|-------------|------|--------|
|        |                 | JURASSI                                      | C CR.                                 |                         | _                     |            | TERTIARY                           |        |                     |                                        | QUAT.                                                        | S           |      |        |
|        |                 | SI. PLIENS. TOA.                             | BAJOC.                                | PALEO.                  | EOCEN                 | IE         | OLIGOCEN                           | IE     | MIOCEN              | E PLIOCENE                             | PLEI.                                                        | ä           |      | ရှိ    |
|        |                 | · ■<br>H: H : .H H · ·<br>· ○                |                                       | ²= ≟≪=<br>₽ ₩<₩         | ∦= <u>_</u> =∦<br>ĸ ₀ | : H ° :    |                                    |        | · · · · · · ·       | . E • .                                | •<br>• · · · ·                                               | лносост     | PROG | OLOGI  |
| L      |                 | DUNLIN                                       | BRENT V SHE                           | ROGALAND                |                       | HORDA      | LAND GROUP                         |        | NO                  | RDLAND GRO                             | UP                                                           | 8           | No.  | 8      |
|        |                 | STAN/BU DRAKE                                | NESSTH                                | LSB                     |                       |            |                                    |        | UTSIRA              |                                        |                                                              | ÌÌ          | N    |        |
|        | 280.3m          | Set: A                                       | 2289 m<br>2289 m<br>Sat/Chat          | 1964m<br>Chat<br>2171m  |                       |            | Chat                               |        | 525m                |                                        | SISm N                                                       | CASING      | S    | WELL P |
|        | - 2900          | 2300<br>2300<br>2300                         | -2200<br>-2300                        | -2800                   | -1800                 | - 1800     | -1200                              | -11000 | 80 70               |                                        | - 100                                                        | DEPTH       |      | ROG    |
|        |                 | JURASSIC                                     | CRET                                  |                         |                       |            |                                    |        | TERTI               | ARY                                    | QUAT.                                                        | 83          |      | 18     |
|        |                 |                                              |                                       |                         |                       |            |                                    |        |                     |                                        | PLEI.                                                        | 20          |      | N N    |
| *      |                 |                                              |                                       | H = H<br>= 2 H          |                       | H - H -    | E<br>B                             |        | · -1 · ·<br>· • · · |                                        | 124m                                                         | UTHOLOGY    | SUN  | SAND   |
|        |                 | DUNLIN GROUP                                 | BRENT                                 | ROGALAN                 | н                     | ORDALAND G | ROUP                               |        |                     | NORDLAND                               | GROUP                                                        | CRP         | N    | S      |
|        |                 | BU DRAKE FI                                  | HESES S                               | USTA =                  |                       |            |                                    |        | UTSIRA              |                                        |                                                              | 1           | N.   | X      |
|        | 2809m           | 2840m<br>2853m<br>2735m<br>2762.5m           | 2270<br>2283<br>231<br>3<br>1         | 1975m<br>2033m<br>2174m | 1926m                 |            |                                    |        |                     | 3                                      | - 306m                                                       | DESCRIPTION | R    | MARY   |
|        |                 | HA.                                          | 218                                   | 1                       |                       |            |                                    | Į.     | 13.5                |                                        |                                                              | CASING      |      |        |
| 2420-  | 2410-           | 2400-                                        | 2390-                                 |                         |                       | 2350-      | 2340-                              | 2330-  | 2320-               | 2310-                                  | 2290-                                                        | NUDD        |      | ME     |
|        | - 4<br>4        |                                              | · · · · · · · · · · · · · · · · · · · | =                       |                       |            | ₩ · · = =                          |        |                     | == · · · · · · · · · · · · · · · · · · | 4<br>4<br>4<br>4<br>1<br>4                                   | Unicoor     | DEL  | F      |
| DRAKE  | lio             | WER NESS RES.                                |                                       |                         |                       | NES        | S FM                               |        |                     | TARBERT                                | RES. <b></b>                                                 | 2           | P    | S      |
| DUNLIN |                 |                                              |                                       |                         |                       | BREN       | r GROUP                            |        |                     |                                        | < SHE                                                        | τ.          |      | 6      |
| S.     | 2412m<br>FAULT. | 2293m<br>Set: m-<br>v cra.<br>glou.<br>Clyst |                                       | Cools                   |                       | Cool       | Ciyet/<br>Slet<br>Slet<br>Sat: vf- |        | Set: m-             | 2307m                                  | Lat<br>2292m<br>2293.5<br>2293.5<br>Sat: 1-<br>vf,occ<br>cm. | NOLLANCE    |      | 6-     |

.

Figure 2.1. PI and EOM/TOC versus depth.

# WELL: 30/9-9



Figure 3.1. TOC, S2 and HI versus depth.

.

-





Figure 3.2. Kerogen composition.

2



Figure 4.1. Vitrinite reflectance versus depth.



Figure 4.2. Spore colour.

-

|                         |               |                 | IMMATURI    | E        | EARLY        | 1       | MATUR          | E                    | LATE      | MAT                                 |             | STR.       |           |       |
|-------------------------|---------------|-----------------|-------------|----------|--------------|---------|----------------|----------------------|-----------|-------------------------------------|-------------|------------|-----------|-------|
| WELL<br>30/9-9          | Stoplin Scale | Greenish Yellow | Pale Yellow | Yellow   | Amber Yellow |         | Orange         | Orange -<br>Red Brn. | Red Brown | Deep Fied Brown<br>to<br>Dark Brown | Brown<br>to | Dark Brown | Dark Brn. | Black |
|                         | %Ro           |                 | .30         | .36      | .50          | .65     |                | 83                   | 25        | 1.48                                | 6.1         | 2.55       | 3.51      | 3.80  |
| DEPTH                   | Index         |                 | 1.2         | 1.5      | 1.7          | 1.8     |                | 2.3                  | 0.7       | 3.0-3.1                             | 3.3-3.4     | 3.6        | 3.8-3.9   |       |
|                         | _             |                 |             |          |              |         |                |                      |           |                                     |             |            |           |       |
| 1750 DC                 |               |                 | ж           | BISAC    | (X           |         | — X) F         | REWORI               | KED       |                                     |             |            |           |       |
| 1800 DC                 | 7             |                 | Х-          | BISACX   |              |         |                |                      |           |                                     |             |            |           |       |
|                         | -             |                 |             |          |              |         |                |                      |           |                                     |             |            |           |       |
| 1900 DC                 | -             |                 | х-          | BISACX   |              |         |                |                      |           |                                     |             |            |           |       |
|                         | -             |                 |             |          |              |         |                |                      |           |                                     |             |            |           |       |
| 2010 00                 | -             |                 | v           | V        |              |         |                |                      |           |                                     |             |            |           |       |
| 2010 DC                 | 4             |                 | X-          | X        | (P I SITU)   |         |                |                      |           |                                     |             |            |           |       |
| 2100 DC                 | -             |                 |             | x        | S+P<br>X     |         |                |                      |           |                                     |             |            |           |       |
|                         | -             |                 |             |          |              |         |                |                      |           |                                     |             |            |           |       |
| 2196.5 DC               | -             |                 | x -         | x        | (P           | , dino) | 1              |                      | (X)       | NOOD<br>S                           | )           |            |           |       |
| 2236 SWC                | -             |                 |             | x        | x            | (P, dir | 10)            |                      | (X)       | NOOD<br>S                           | )           |            |           |       |
| 2292.5 SWC              | _             |                 | x-          | X        | (S+P)        |         |                |                      |           |                                     |             |            |           |       |
| 2299.02 CC              |               |                 |             | (D)      | X            |         | A) –           |                      |           |                                     |             |            |           |       |
| 2308.6 CC<br>2355.75 CC | -             |                 |             | (F) X    | —— х<br>х    | (S)     | - x (x<br>x (v | (IT)                 |           |                                     |             |            |           |       |
| 2424 7 CC               | -             |                 | (X -        | X)       | ×            | (S)     | . (V           | /IT, <b>VIT</b> )    | )         |                                     |             |            |           |       |
| 2424.7 00               | -             |                 |             | P, M (*) |              |         | ^              |                      |           |                                     |             |            |           |       |
| 2525 20                 | -             |                 |             |          |              |         | . (S           | )                    |           |                                     |             |            |           |       |
| 2909 DC                 | -             |                 |             |          |              |         | X              |                      |           |                                     |             |            |           |       |
| 2605 00                 | _             |                 |             |          |              |         | , (S           | )                    |           |                                     |             |            |           |       |
| 2003 00                 | _             |                 |             |          |              |         | - X            |                      |           |                                     |             |            |           |       |
| 2695 DC                 | _             |                 |             |          |              |         | <u>х (S</u>    | <u>)</u> x           |           |                                     |             |            |           |       |
|                         | 1             |                 |             |          |              |         |                |                      |           |                                     |             |            |           |       |
|                         |               |                 |             |          |              | (S)     |                |                      |           |                                     |             |            |           |       |
|                         |               |                 | 11          | M)       | ×            | 1-1     |                |                      |           |                                     |             |            |           |       |

### **APPENDIX I**

### Pyrolysis Gas Chromatograms.

44 C

### NURSK HYDRO F-BERGEN, PEIROLEUM GEOCHEMISIRY



•

#### NOHSK HYDHO F-BEHGEN, PEIROLEUM GEOCHEMISIRY



#### NORSK HYDRO F-BERGEN, PETROLEUM GEOCHEMISTRY



#### NORSK HYDRO F-BERGEN, PETROLEUM GEOCHEMISTRY



#### NOHSK HYDRO F-BEHGEN, PEIROLEUM GEOCHEMISIRY



#### NORSK HYDRO F-BERGEN, PETROLÉUM GEOCHEMISTRY



#### NORSK HYDRO F-BERGEN, PETROLEUM GEOCHEMISTRY



,

#### NOHSK HYDRO F-BEHGEN, PEIROLEUM GEOCHEMISIRY



#### NOHSK HYDRO F-BEHGEN, PEIROLEUM GEOCHEMISIRY



#### NOHSK HYDRO F-BERGEN, PETROLEUM GEOCHEMISTRY



#### NOHSK HYDRO F-BERGEN, PEIROLEUM GEOCHEMISIRY



#### NORSK HYDRO F-BERGEN, PEIROLEUM GEOCHEMISIRY



## **APPENDIX II**

Gas Chromatograms of Saturated Hydrocarbons.
Analysis Name : [PETRO] 7 A3009095,6,1.

30/9-9 2291.1



÷

```
Analysis Name : [PETRO] 7 A3009095,9,1.
```

30/9-9 2291.75



Reported on 5-MAR-1990 at 13:58



.



Reported on 5-MAR-1990 at 13:49

÷

30/9-9 2293.0

.



```
Analysis Name : [PETRO] 7 A3009095,7,1.
30/9-9 2393.02
```



.

Analysis Name : [PETRO] 7 A3009095,8.1.

30/9-9 2293.7



Reported on -5-MAR--1990 at 13+57

1.11

```
Analysis Name : [PETRO] 7 A3009095,10,1.
```

30/9-9 2295.75





30/9-9 2297.4



.



30/9-9 2299.02







. .

1

.



.

30/9-9 2308.6





•

.

30/9-9 2312.3



Lims ID . Acquired on 13-FEB-1990 at 22:40 Reported on 14-FEB-1990 at 00:03 Run Sequence : MSDS

÷

Analysis Name : [PETRO] 7 a300909s,22,1.

.

Analysis Name : [PETRO] 7 a300909s,12,1.

30/9-9 2313.5

i.



Instrument : HP5890 Channel Title : MSD Lims ID : Acquired on 13-FEB-1990 at 07:23 Reported on 13-FEB-1990 at 13:21 Method & MSDS Calibration & MSDS Run Sequence & MSDS Multichrom



Analysis Name : [PETRO] 7 A3009095,5,1.

. .

÷

Analysis Name : [PETRO] 7 a300909s,21,1.

30/9-9 2352.50

. .



.

Analysis Name : [PETRO] 7 a300909s,17,1.

30/9-9 2355.75





Lims ID . Acquired on 13-FEB-1990 at 08:54

Reported on 13-FEB-1990 at 13:25

Run Sequence + MSDS

-

.

. 30/9-9 2408.5



Reported on 13-FEB-1990 at 13.36

Analysis Name : [PETRO] 7 a300909s,14,1.

÷

Analysis Name : [PETRO] 7 a300909s,18,1.

30/9-9 2424.70



Instrument : HP5890 Channel Title : MSD Lims ID : Acquired on 13-FEB-1990 at 16:33 Reported on 13-FEB-1990 at 17:55

Calibration : MSDS Run Sequence : MSDS 1.

Analysis Name : [PETRO] 7 a300909s,19,1.

.

30/9-9 2727.0





.

```
Analysis Name : [PETRO] 7 a300909s,20,1.
                  1.1
```

30/9-9 2778.0

.





Multichrom

÷

Analysis Name : [PETRO] 7 OSEBERGO.3.1. 30/9-9 DST1



Analysis Name : [PETRO] 7 OSEBERGO.4.1. 30/9-9 DST 2



# **APPENDIX III**

Con Channess of Aromatic Hydrogerbond

# Gas Chromatograms of Aromatic Hydrocarbons.

4. .

\*





Analysis Name : [PETRO] 1 A300909A.4.1.

30/9-9 2318.5 Amount : 1.000

AROMATIC HYDROCARBONS HP ULTRA-2 HP5880A

Multichrom





Reported on 23-MAP-1990 at 00:33



Analysis Name : [PETRO] 1 A300909A,7,1.

30/9-9 2293.70 Amount : 1.000

AROMATIC HYDROCARBONS HP ULTRA-2 HP5880A





 Analysis Name : [PETRD] 1 A300909A.8.1.

 30/9-9 2291.75

 Amount : 1.000

 Amount : 1.000

AROMATIC HYDROCARBONS HP ULTRA-2 HP5880A





-



Analysis Name : [PETRO] 1 A300909A.10.1.

30/9-9 2297.40 Amount : 1.000

AROMATIC HYDROCARBONS HP ULTRA-2 HP5880A





Reported on 23-MAR-1990 at 08:57

Analysis Name : [PETRO] 1 A300909A.11.1.

30/9-9 2313.5 Amount : 1.000

AROMATIC HYDROCARBONS HP ULTRA-2 HP5880A





Reported on 23-MAR-1990 at 10:39

Analysis Name : [PETRO] 1 A300909A,12,1.

30/9-9 2356.5 Amount : 1.000

AROMATIC HYDROCARBONS HP ULTRA-2 HP5880A








Analysis Name : [PETRO] 1 A300909A.15.1.

30/9-9 2308.6 Amount : 1.000

AROMATIC HYDROCARBONS HP ULTRA-2 HP5880A



Instrument : HP5880 Channel Title : HP5880A GC Lims ID : Acquired on 23-MAR-1990 at 15:59 Reported on 23-MAR-1990 at 17:21

.

Method • ARO Calibration • ARO Run Sequence • ARO Multichrom



1.00





Analysis Name : [PETRO] 1 A300909A, 19, 1.

30/9-9 2778.0 Amount : 1.000

AROMATIC HYDROCARBONS HP ULTRA-2 HP5880A





Channel Title : HP5880A GC Lims ID : Acquired on 23-MAR-1990 at 22:44 Reported on 24-MAR-1990 at 00:06 Calibration : ARO Run Sequence : ARO

Ĵ,





Analysis Name : [PETRO] 7 OSEBERGO,11,1. 30/9-9 DST1 ARO



Instrument : HP5890 Channel Title : MSD Lims ID : Acquired on 23-MAR-1990 at 07:48 Reported on 23-MAR-1990 at 09:11

Calibration : MSDS Run Sequence : MSDS

Analysis Name : [PETRO] 7 OSEBERGO.12.1. 30/9-9 DST2 ARO

Reported on 23-MAR-1990 at 10:45



Multichrom

# **APPENDIX IV**

Fragmentograms of Terpanes, (Ion 191 m/z).

Fragmentograms of Steranes, (Ion 217 m/z).

.



30/9-9 2291.10 m

i.





30/9-9 2291.75 m

ł





30/9-9 2292.50 m











30/9-9 2393.02 m















.



30/9-9 2297.40 m



;

ų,





į

- 2





30/9-9 2308.60 m





30/9-9 2312.3 m







.















.



30/9-9 2355.75 m





#### 30/9-9 2356.5 m

÷.



- - - -





÷



į



30/9-9 2424.70 m



. . .



30/9-9 2727.0 m





30/9-9 2778.0 m



÷.

14.1



30/9-9 DST 1





30/9-9 DST 2



# **APPENDIX V**

Fragmentograms of Triaromatic Steranes, (Ion 231 m/z).

Fragmentograms of Monoaromatic Steranes, (Ion 253 m/z).



# 30/9-9 2291.10 m

÷
















30/9-9 2293.0 m





30/9-9 2393.02 m





30/9-9 2293.70 m





30/9-9 2295.75 m



•



30/9 9 2297.40 m





30/9-9 2299.02 m





30/9 9 2308.60 m











30/9-9 2313.5 m

......





30/9-9 2318.50 m





30/9-9 2352.5 m





30/9-9 2355.75 m





30/9-9 2356.5 m





30/9 9 2408.5 m





30/9-9 2424.70 m





30/9-9 2727.0 m





30/9-9 2778.0 m



## **APPENDIX VI**

## Vitrinite reflectance readings.

```
Sample ID: 30/9-9 1000m
 R.o. Aver.: 0.34 (20)
 Lithology: Silty shale 100%
 Phytoclast Content: Trace
     Vitrinite: 70%
     Inertinite: 30%
     Exinite: -
 UV fluorescence: Carbonate - mod. - y/o; dino. - low -
 g/y; spores - tr. - y/o
 Bitumen: Stain. - mod.; wisps + blebs - trace
 VR populations: 1
 Mineralogy: Forams. Calcareous glauconite
 General Comments: -
 0.36
 0.34
 0.31
 0.30
 0.38
 0.44
 0.40
 0.32
 0.31
 0.31
 0.33
 0.29
 0.44
0.30
0.32
0.33
0.34
0.34
0.39
0.34
Sample ID: 30/9-9 1100m
R.o. Aver.: 0.35 (20)
Lithology: Silty shale 100%
Phytoclast Content: Trace
    Vitrinite: 70%
    Inertinite: 30%
    Exinite: -
UV fluorescence: Spores - low - y-y/o
Bitumen: Stain. - mod.; wisps + blebs - mod.
VR populations: 1
Mineralogy: Forams. Glauconite calcareous
General Comments: -
0.29
0.37
        .
0.30
0.37
0.37
0.33
0.34
0.46
0.31
0.29
0.33
0.37
0.33
0.31
0.38
0.34
0.43
0.40
0.33
0.33
```

```
Sample ID: 30/9-9 1200m
 R.o. Aver.: 0.36 (13)
 Lithology: Silty shale 50%; sandstone 50%; cement tr.
                                Phytoclast Content: Trace
     Vitrinite: Tr.
     Inertinite: Tr.
     Exinite: -
 UV fluorescence: Dino. low - g/y; spores - low - y-y/o
 Bitumen: Stain. - light/mod; wisps - low
 VR populations: 1
 Mineralogy: Forams
General Comments: -
 0.34
0.36
         . .
0.36
0.39
0.36
0.37
0.38
0.35
0.33
0.31
0.35
0.44
0.38
Sample ID: 30/9-9 1300m
R.o. Aver.: 0.39 (11)
Lithology: Sandstone 70%; shale 30%
Phytoclast Content: Trace
    Vitrinite: Tr.
    Inertinite: Tr.
    Exinite: -
UV fluorescence: Spores - tr. - y/o
Bitumen: Stain. - mod in shale; wisps + blebs - low in
shale
VR populations: 1
Mineralogy: -
General Comments: -
0.29
0.37
0.43
0.45
0.30
0.37
0.43
0.47
0.40
0.36
0.43
```

s

```
Sample ID: 30/9-9 1400m
 R.o. Aver.: 0.35 (20)
 Lithology: Sandstone 80%; shale 20%
 Phytoclast Content: Trace
     Vitrinite: 70%
     Inertinite: 30%
     Exinite: -
 UV fluorescence: Spores - tr. - y-y/o
 Bitumen: Stain. - mod. in shale; wisps + blebs - mod. in
 shale
 VR populations: 1
 Mineralogy: -
 General Comments: -
 0.43
 0.44
 0.40
 0.35
 0.40
 0.37
 0.27
 0.39
 0.35
                                .
 0.27
 0.32
 0.36
 0.35
 0.33
 0.31
         1.1
 0.33
0.29
0.31
0.32
0.44
Sample ID: 30/9-9 1500m
R.o. Aver.: 0.37 (20)
Lithology: Shale 100%
Phytoclast Content: Trace
    Vitrinite: 70%
    Inertinite: 30%
    Exinite: -
UV fluorescence: Spores - low/mod. - y/o
Bitumen: Stain. - mod.; wisps - mod./rich
VR populations: 1
Mineralogy: -
General Comments: -
0.34
0.39
0.32
0.38
0.38
0.39
0.33
0.39
0.37
0.38
0.40
0.38
0.38
0.32
0.37
0.41
0.41
0.34
         t.
0.37
0.40
```

```
Sample ID: 30/9-9 1600m
R.o. Aver.: 0.39 (19)
Lithology: Silty shale 100%
Phytoclast Content: Trace
     Vitrinite: 80%
     Inertinite: 20%
     Exinite: -
UV fluorescence: Spores - tr. - y/o
Bitumen: Stain. - mod.; wisps + blebs - mod./rich
VR populations: 1
Mineralogy: Forams. calcareous
General Comments: -
0.31
0.46
0.38
0.34
0.36
0.37
0.39
0.43
0.39
0.41
0.40
0.43
0.40
0.38
0.39
0.42
0.45
0.35
0.35
        . .
Sample ID: 30/9-9 1700m
R.o. Aver.: 0.50 (4)
Lithology: Shale 100%
Phytoclast Content: Trace
    Vitrinite: Tr.
    Inertinite: Tr.
    Exinite: -
UV fluorescence: Algae - tr. - y-y/o; spores - tr. - y/o
Bitumen: Stain. - light; wisps - mod.
VR populations: 1
Mineralogy: -
General Comments: -
0.58
        . .
0.38
0.44
0.58
```

Ş

```
Sample ID: 30/9-9 1800m
 R.o. Aver.: 0.52 (4)
Lithology: Shale 100%
Phytoclast Content: Trace
     Vitrinite: Tr.
     Inertinite: Tr.
     Exinite: -
UV fluorescence: Spores - tr. - y/o+1.o.
Bitumen: Stain. - v. light; wisps + blebs - mod.
VR populations: 1
Mineralogy: -
General Comments: -
0.58
0.40
0.43
       . . .
0.65
Sample ID: 30/9-9 1900m
R.o. Aver.: 0.45 (20)
Lithology: Shale 100%
Phytoclast Content: Trace
    Vitrinite: 90%
    Inertinite: 10%
    Exinite: -
UV fluorescence: Spores - low - y-y/o; dino. - tr. - y
Bitumen: Stain. - v. light; wisps - mod./rich
VR populations: 1
Mineralogy: Some light haematite staining
General Comments: Phyt. degraded
0.48
0.51
0.43
0.40
0.45
0.35
0.47
0.40
0.41
0.51
0.46
0.54
0.47
        1.1
0.50
0.46
0.38
0.38
0.44
0.51
0.53
                                1
```

1

```
Sample ID: 30/9-9 2000m
R.o. Aver.: 0.50 (7)
Lithology: Shale 100%
Phytoclast Content: Trace
    Vitrinite: Tr.
     Inertinite: Tr
     Exinite: -
UV fluorescence: Spores - tr. - y/o+l.o.
Bitumen: Stain. - mod.; wisps + blebs - mod./rich
VR populations:1
Mineralogy: -
General Comments: -
0.54
0.51
0.47
0.42
0.42
0.56
0.61
                               .
Sample ID: 30/9-9 2100m
R.o. Aver.: 0.51 (6)
Lithology: Shale 100%
Phytoclast Content: Low
    Vitrinite: Tr.
    Inertinite: 100%
    Exinite: -
UV fluorescence: Spores - tr. - y/o-l.o.
Bitumen: Stain. - light/mod.
VR populations: 1
Mineralogy: Iron oxide specks
General Comments: -
0.57
0.56
0.52
0.51
0.39
0.51
```

?

,

```
Sample ID: 30/9-9 2200m
 R.o. Aver.: 0.49 (20)
Lithology: Marl 60%; shale 40%
Phytoclast Content: Trace
     Vitrinite: 50%
      Inertinite: 50%
      Exinite: -
 UV fluorescence: Carbonate - mod. - y; algae - tr. - y;
 spores - tr. - 1.0.
 Bitumen: Stain. - nil in marl; mod/strong in shale;
 wisps - mod in shale
 VR populations: 1
 Mineralogy: -
 General Comments: Phyt. restricted to shale
 0.51
 0.45
 0.37
 0.54
 0.59
 0.53
 0.42
 0.41
        .
 0.44
 0.42
 0.42
 0.71
 0.41
 0.43
 0.45
                                 . .
 0.53
 0.73
 0.54
 0.44
 0.49
Sample ID: 30/9-9 2292.5m SWC
R.o. Aver.: 0.50 (21)
Lithology: Silty shale 100%
Phytoclast Content: V. low
     Vitrinite: 20%
     Inertinite: 80%
     Exinite: -
UV fluorescence: Spores - mod. - y/o-l.o.
Bitumen: Stain. - light; wisps - mod.
VR populations: 1
Mineralogy: -
General Comments: -
0.45
         0.49
0.51
0.51
0.52
                                .
0.45
0.54
0.39
0.59
0.44
0.52
0.51
0.56
0.47
0.47
0.46
0.49
0.39
0.67
0.51
0.56
        1.
```

```
Sample ID: 30/9-9 2308.6m SWC
 R.o. Aver.: 0.49 (20)
 Lithology: Silty shale 100%
 Phytoclast Content: Mod.
     Vitrinite: Tr.
     Inertinite: 100%
     Exinite: -
 UV fluorescence: Spores - mod./rich - 1.o.
 Bitumen: Stain. - light; wisps - mod.
 VR populations: 1
 Mineralogy: -
 General Comments: -
 0.52
 0.51
 0.53
          .
 0.56
 0.53
 0.52
 0.42
 0.42
 0.43
 0.36
 0.56
 0.57
 0.47
 0.48
 0.54
 0.43
 0.45
0.57
0.50
0.46
         . .
Sample ID: 30/9-9 2424.7m SWC
R.o. Aver.: 0.50 (21)
Lithology: Silty shale 100%
Phytoclast Content: Mod.
    Vitrinite: 20%
    Inertinite: 80%
    Exinite: -
UV fluorescence: Spores - low - l.o.
Bitumen: Stain. - mod./strong; wisps - mod.
VR populations: 1
Mineralogy: Siderite rich
General Comments: -
                                η.
0.56
0.45
0.50
0.56
0.50
        .
0.50
0.53
0.53
0.47
                                ÷
0.52
0.63
0.54
0.52
0.42
0.56
0.37
0.38
0.44
0.44
0.56
0.57
```

```
Sample ID: 30/9-9 2500m
 R.o. Aver.: 0.54 (22)
 Lithology: Shale 100%
 Phytoclast Content: Mod.
      Vitrinite: Tr.
      Inertinite: 100%
      Exinite: -
 UV fluorescence: Spores - mod./rich - 1-m.o.; algae -
 tr. - y/o
 Bitumen: Stain. - mod./strong
 VR populations: 1
 Mineralogy: -
 General Comments: -
 0.55
 0.52
 0.52
 0.52
 0.54
 0.51
 0.53
 0.55
 0.65
 0.53
 0.55
                                 .
 0.58
 0.57
 0.42
         .
 0.45
 0.59
 0.42
 0.51
 0.44
 0.55
 0.72
 0.68
Sample ID: 30/9-9 2600m
R.o. Aver.: 0.55 (21)
Lithology: Shale 100%
Phytoclast Content: Low-mod.
    Vitrinite: 50%
    Inertinite: 50%
    Exinite: -
UV fluorescence: Spores - mod. - 1.o.
Bitumen: Stain. - mod.; wisps - mod.
VR populations: 1
Mineralogy: -
General Comments: -
0.62
0.62
0.59
0.65
0.64
0.57
0.57
0.42
0.45
0.59
0.45
                               0.44
0.50
0.50
0.50
0.45
0.55
0.59
0.65
0.60
                            * <sup>*</sup>
0.65
```

Sample ID: 30/9-9 2778m SWC R.o. Aver.: 0.60 (21) Lithology: Silty shale 100% Phytoclast Content: Mod. Vitrinite: 20% Inertinite: 80% Exinite: -UV fluorescence: Spores - mod./rich - 1-m.o. Bitumen: Stain. - mod./strong; wisps - mod. VR populations: 1 Mineralogy: -General Comments: -0.53 0.60 0.59 1.1 0.54 0.56 0.59 0.68 0.59 0.57 0.56 0.61 0.59 0.56 0.54 0.60 0.66 0.61 0.60 0.59 0.64

## Well I.D.: 30/9-9 1000-2778m

| B.D.         | Ravg.    | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|--------------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <del>.</del> | 0.34     | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| -            | 0.35     | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| -            | 0.36     | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| -            | 0.39     | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|              | 0.35     | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| _            | 0.37     | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| _            | 0.39     | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| _            | 0.50     | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| _            | 0.52     | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| _            | 0.45     | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| _            | 0.50     | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| _            | 0.51     | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|              | 0.49     | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|              | 0.50     | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| -            | 0.49     | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| -            | 0.50     | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| _            | 0.54     | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| -            | 0.55     | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| _            | 0.60     | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|              | B.D.<br> | B.D. Ravg.<br>- 0.34<br>- 0.35<br>- 0.36<br>- 0.39<br>- 0.37<br>- 0.37<br>- 0.39<br>- 0.50<br>- 0.50<br>- 0.51<br>- 0.49<br>- 0.50<br>- |

.

?