

ADDRESS TELEPHO. TELEX TELEFAX REPORT TYPE	KJELLER H N-2007 Kjeller, Norway N +47 6 806000 + 74 573 energ n 76 +47 6 815553 76 REPORT NO. IFE/KR/F-89/164 REPORT TITLE 76	AVAILABILITY Private Confidential DATE 1989-12-21 DATE OF LAST REV.			
	REPORT ON STABLE ISOTOPES (& NATURAL GAS SAMPLES FROM V DST 2B.	REV. NO.			
	CLIENT NORSK HYDRO A/S	NUMBER OF PAGES 5			
-	CLIENT REF. U & P 3132 K10404D52/ZU 89270	NUMBER OF ISSUES 20			
from well 3 propane, the hydrogen fr The isotopic maturity sin The isotopic The mixed g the contribu- contribution maturity lev It is in the p indicate the	aponents C ₁ -C ₅ and CO ₂ have been separ 0/9-8, DST 1 and DST 2B, and the δ^{13} butanes and CO ₂ have been measured om CH ₄ has also been measured. c composition of sample DST 2B from	Andresen, B. Råheim, A. Throndsen, T. File (2)			
KEYWORI					
	NAME	DATE	SIGNATURE		
PREPAREI	DBY Bjørg Andresen	1989-12-21	Bjorg Andresen		
REVIEWE	OBY Torbjørn Throndsen	1989-12-21			
APPROVE	D BY Arne Råheim	1989-12-21	Ame Rahin		

1 INTRODUCTION

Two gas samples from well 30/9-8, DST 1 and DST 2B were received and analysed December 1989.

On the samples $C_1 - C_5$ and CO_2 are quantified, and the $\delta^{13}C$ value is measured on methane, ethane, propane, the butanes and CO_2 . The δD value is also measured on methane.

2 ANALYTICAL PROCEDURE

The natural gas has been quantified and separated into the different gas components by a Carlo Erba 4200 instrument.

The hydrocarbon gas components were oxidized in separate CuO-ovens in order to prevent cross contamination. The combustion products CO_2 and H_2O were frozen into collection vessels and separated.

The water was reduced with zinc metal in sealed tubes to prepare hydrogen for isotopic analysis. The isotopic measurements were performed on a Finnigan Mat 251 and a Finnigan Delta mass spectrometer. IFE's value on NBS 22 is - 29.77 \pm .06 % PDB.

3 RESULTS

The volume composition of the gas samples is given in table 1. The results have been normalized to 100%. The stable isotope results are given in table 2.

The uncertainty on the δ^{13} C value is estimated to be $\pm 0.3 \%$ PDB and includes all the different analytical steps. The uncertainty on the δ D value is likewise estimated to be $\pm 5 \%$.

1

SAMPLE	IFE no.	C1 %	C2 %	C3 %	iC₄ %	nC ₄ %	iCs %	nCs %	CO2 %	$\Sigma C_1 - C_5$	WET- NESS	iC₄/ nC₄
DST 1 DST 2			3.3 11.0							87.1 98.1	0.05 0.21	0.78 0.56

Table 1 Volume composition of gas samples from well 30/9-8.

Table 2 Isotopic composition of gas samples from well 30/9-8.

SAMPLE	IFE no.	C ₁ δ ¹³ C PDB	C ₁ δ D SMOW	C ₂ δ ¹³ C PDB	C ₃ δ ¹³ C PDB	iC₄ δ ¹³ C PDB	nC₄ δ ¹³ C PDB	CO ₂ δ ¹³ C PDB	CO2 δ ¹⁸ O PDB
DST 1	8576	-43,3	-196	-29.7	-29.3	-28.1	-29.9	-11.5	-7.0
DST 2B	8577	-43.3	-188	-29.2	-27.8	-27.1	-26.8	-12.1	-10.

4 INTERPRETATION

The two gas samples from well 30/9-8 (DST 1 and DST 2B) differ mainly in the volume composition as shown in table 1. The DST 2B sample contains a higher concentration of the wetter components and a lower CO_2 concentration than the DST 1 sample. In addition the two samples differ in the isotopic composition of the higher hydrocarbon gas components C_3 and C_4 .

A general isotopic trend for unaltered gases is found to be a smooth progression from methane to n-butane, excluding i-butane (James, 1983). This is the case with the DST 2B sample. A source LOM of about 12 is indicated when the δ^{13} C values of methane, ethane, propane and n-butane are plotted in James maturity diagram, fig.1 (James ,1983), e.g. at a high maturity level almost in the condensate field of the oil window. This is in accordance with the combined use of the hydrogen and carbon isotopic composition of methane as indicated in fig. 2 (Schoell, 1983).

The DST 1 sample is characterized by a δ^{13} C n -butane value lighter than or at the same level as the corresponding ethane and propane values. This relationship between the δ^{13} C ethane, propane and n-butane values may indicate a mixed gas situation with gas at least derived from two sources with one source dominating from C₁ to C₃ and the other dominating from C_4 and higher. Gases derived from the same source but at different maturity levels is also a possibility. The present relationship between the carbon isotopic values of ethane, propane and n-butane may also indicate a high maturity situation.

A source LOM of about 13 is indicated when the δ^{13} C values of methane, ethane and propane are plotted in James maturity diagram, fig.1 (James ,1983), e.g. at a high maturity level in the condensate field of the oil window.

A high maturity level is also indicated with the combined use of the carbon and hydrogen isotopes of methane, fig.2 (Schoell, 1983).

5 CONCLUSION

The isotopic composition of sample DST 2B from well 30/9-8 indicates a high maturity situation.

The isotopic composition of the DST 1 sample indicates however a mixed gas. The mixed gas is possibly derived from two sources with one source dominating the contribution to the C_1 to C_3 range and the other source dominating the contribution to the butanes. Gases derived from the same source but at different maturity levels is also a possibility.

It is in the present case (because of the mixed gas) difficult to use the isotopes to indicate the maturity level of the source rocks, the data however, suggest a high maturity source rock situation.

6 LITERATURE

- James, A.T. (1983). Correlation of natural gas by use of carbon isotopic distribution between hydrocarbon components. American Association of Petroleum Geologists Bulletin, 67, 1176-1191A.
- Robert, P. (1985) Methods and means of paleothermal analysis. Organic Methamorphism and Geothermal History, Elf-Aquitaine and D. Reidel Publishing Company.
- Schoell, M. (1983). Genetic characterization of natural gases. American Association of Petroleum Geologists Bulletin, 67, 2225-2238.

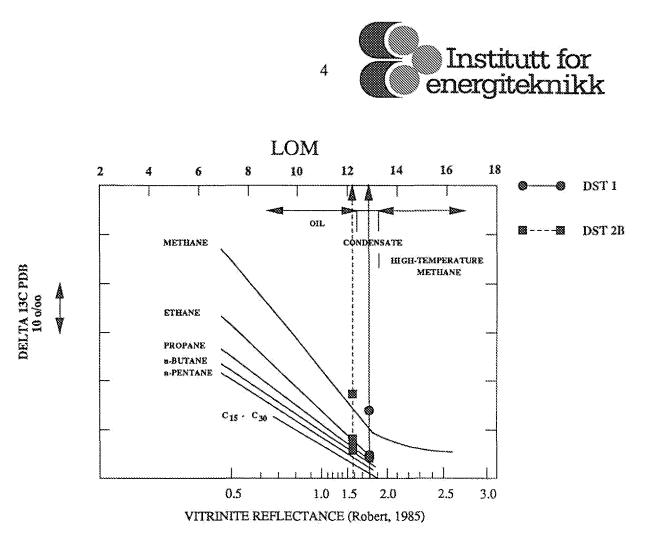
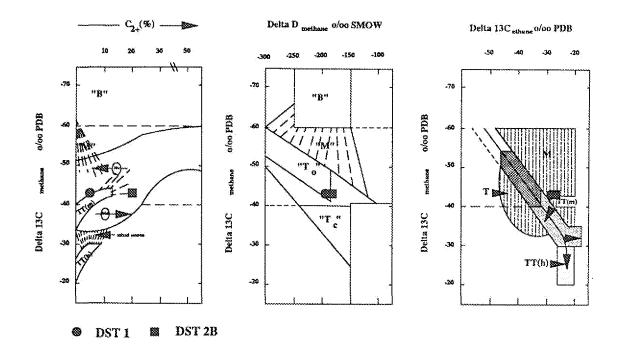



Figure 1

Carbon isotopic separation of gas samples from well 30/9-8, DST 1 and DST 2B are plotted on the maturity diagram (after James, 1983). A source LOM of about 12 to 13 is indicated for the gas samples.

The calculated carbon isotopic separations between gas components are plotted on the vertical axis using a sliding scale that is simply the algebraic difference, in parts per mil, between the isotopic composition of the natural gas components. The scale does not posses a fixed origin, but is oriented with the more depleted δ^{13} C values at the upper end. Use of this sliding scale allows the maturity of a gas to be assessed without prior knowledge of the isotopic composition of the gas source.

Figure 2A

Figure 2B

Variations of molecular composition in natural gases related to the isotope variations of methane.

Carbon and hydrogen isotope variations in methane.

Figure 2C

Carbon isotope variations in ethane related to carbon isotope variations in methane.

The principle for the genetic characterization of natural gases is that primary gases (B-biogenic gas, T-associated gas, TT- non-associated gas) are defined by fields of compositional variations. These primary gases may become mixed and form various mixtures "M" of intermediate composition. "TT(m)" and "TT(h)" are non-associated gases from marine source rocks and coal gases from N.W. Germany, respectively, compositional shifts due to migration are indicated by arrows Md (deep migration) and Ms (shallow migration), respectively. "T₀" are gases associated with petroleum in an initial phase of formation. "T_c" are gases associated with condensates (Schoell, 1983).

5