ROBERTSON RESEARCH INTERNATIONAL LIMITED

NORWEGIAN OFFSHORE AREA - PRELIMINARY REPORT NO. 6A

Project No. RRI/789/IIB/2676

PRELIMINARY RESULTS OF PETROLEUM GEOCHEMICAL STUDIES

OF THE ELF NORGE 2/6-1 WELL

1st September, 1978

1

INTRODUCTION

Petroleum geochemical studies have been carried out on samples received from the Elf Norge 2/6-1 well. The samples were received at varying intervals and were selected for analysis by compositing at 20 metre intervals dependent on lithological and log data. After compositing, samples were washed with cold water as necessary to remove drilling mud, and air dried at 50°C. No core samples were available from this well section. The well was drilled with a water based drilling mud throughout. It is noted that diamond drilling bits were used below about 3180 metres.

The samples were generally of good quality for geochemical analysis. Compositing was started at 1465 metres so that representative material from

- 1 -

BA 78-0155-

250KT1978 REGISTRERT

OLJEDIREKTORATET

approximately below the mid-Miocene unconformity has been analysed. The analytical procedures used include organic carbon analysis on all the bulk cuttings samples at 20 metre intervals and also on individual lithologies where bulk samples consisted of more than one lithotype. Extractive source rock analysis has been carried out on samples containing more than 0.5% organic carbon at approximately 120 metre intervals. No gas chromatographic analysis has been carried out since no alkane fractions contained greater than 100 ppm of hydrocarbon. Pyrolysis source rock evaluation using the IFP/Fina ROCK-EVAL apparatus has been carried out on the same samples as used for extractive analysis, on samples where insufficient material was available for extractive analysis and also on samples of picked lithologies where composite samples contained more than one significant lithotype. Kerogen composition has been assessed on a semiquantitative basis by visual estimation of the kerogen components in unsieved, unoxidised, palynological preparations.

Maturity levels have been assessed in this study using principally spore colouration analysis on sieved unoxidised palynological preparations and vitrinite reflectivity on kerogen concentrates. In assessing maturity level, reference may also be made to the temperatures of maximum pyrolysis rate which give useful indications of maturity level when used in conjunction with the kerogen type.

II

RESULTS AND INTERPRETATION

The results of the various analyses carried out on the 2/6-1 well are presented in Tables 1 to 3 and are represented graphically in Figures 1 to 4. Table 1 lists data on maturity level in the section along with the kerogen composition data for the same samples. The spore colouration and vitrinite

- 2 -

reflectivity trends with depth are shown in Figures 1 and 2 respectively. Table 2 lists the organic carbon and extractive source rock evaluation data while pyrolysis data are presented in Table 3. Pyrolysis data are represented graphically against depth in Figures 3 and 4. A detailed graphic presentation of all the data will be presented later in the compilation report.

MATURITY DATA

Our assessment of the spore colouration data is that the Lower Tertiary sediments in the analysed interval are immature for hydrocarbon generation. Spore colour values in the Jurassic seem to indicate a maturity gradient which is continuous with that in the Tertiary and indicate that sapropelic organic matter would be capable of sourcing low ^OAPI gravity oils.

Vitrinite reflectivity data give a trend rising from about 0.3% in the Lower Miocene to about 0.4% at the base of the Tertiary, Reflectivity values in the Jurassic interval of the well are about 0.5% so that low ^OAPI gravity oil could be sourced at present from appropriate oil-prone organic matter.

HYDROCARBON SOURCE POTENTIAL DATA

On the basis of the geochemical data obtained, the following breakdown of the analysed interval of the 2/6-1 well is made:

Interval 1465 to 2640 metres

Interval is represented by variously coloured olive-grey, green-grey and brown-grey shales and mudstones with slightly above average organic carbon content (typically 2% to 3%), although some lithotypes are considerably richer in the Lower Miocene and upper Oligocene and leaner at around 1% in the Paleocene. The organic matter in this interval is entirely humic in origin and is mostly witrinite in the interval down to about 2150 metres while below this depth inertinite

- 3 -

becomes significantly abundant. The interval is immature and is unlikely to have any significant source potential. Solvent extractable hydrocarbon contents are low. Pyrolysis data confirm there is no present hydrocarbon potential and give indications of poor hydrocarbon yield (gas) at optimum maturity.

Interval 2650 to 3100 metres

Interval 3105 to 3335 metres

Mostly chalk - organically lean with no hydrocarbon source potential. Caving contamination in the upper part of the interval. Possible Lower Cretaceous sediments at the base of the interval.

Jurassic mudstones and shales with caved chalk. Samples not of very good quality due to diamond drilling. The organic carbon content of the composite samples and of the picked lithologies is a little above average in general at 2% to 3%. The kerogen composition in the interval 3105 to 3224 metres appears to be a mixture of sapropel and humic materials with vitrinite subordinate to inertinite. Below 3265 metres inertinite is predominant over vitrinite and sapropel. Pyrolysis data suggest poor hydrocarbon generating potential from the composite samples. The data for the picked dark grey lithologies indicate that the shales will be predominantly a gas source

- 4 -

at optimum maturity.

No significant amounts of solvent extractable organic matter or hydrocarbons are present in the samples analysed. It appears that the source rocks presently have no source potential and will source gas only at optimum maturity.

DOBERTSON

PCB/Eml.

1st September, 1978

TABLE 1 MATURITY EVALUATION DATA

WELL: 2/6-1

4

LOCATION: NORWEGIAN NORTH SEA

.

	SAMPLE DEPTH ME TRE S	SAMPLE TYPE	GENERALISED LITHOLOGY	SPORE COLOUR INDEX (1 - 10)	VITRINITE REFLECTIVITY IN OIL, Rav%	KEROGEN	COMPOSI	
	1465-485	Ctgs	Lt ol-gy mdst	2.5-3	0.31(2)	40	60	*
	1565-585	11	01-gy/dk gy mdst	2.5-3	0.31(2) 0.39(10)	5	95	*
	1625-645	tt	Ditto	2.5	0.34(12)	5	95	*
	1720-740	11	Lt ol-gy mdst	2.5	0.36(9)	5	95	*
	1810-830	ττ	Ditto	2.5	0.31(16)	5	95	*
	1910-930	97	Ditto	2.5-3	0.34(16)	5	95	*
	2020-040	**	Ditto	2.5-3	0.30(11)	15	85	*
	2130-150	17	Ditto	2.5-3	0.39(3)	25	75	*
	2220-250	11	Ditto	3	0.38(18)	40	60	*
	2 320- 340	**	Lt ol-gy/gn-gy mdst	3	0.37(20)	40	60	*
	2410-430	: n	Ditto	3	0.37(19)	40	60	*
	2500-520	FF	Ditto	3-3.5	0.38(18)	40	60	*
	2590-610	11	Ditto	3.5	0.39(20)	50	50	*
	3105-120	Π	Ol-gy slty mdst+ med-dk gy sh	3.5	0.40(7)?	20	30	50
	3155-175	**	Ditto+ditto	3.5	0.56(6)	40	10	50
	3210-224	**	Ditto+ditto	3.5	0.51(10)	25	15	60
	3265-290	**	Ditto+ditto	4-4.5	0.52(19)	60	20	20
	3310-335	17	Ditto+ditto	4	0.55(3)	50	30	20
					-			
_					٤			
				-				

SOURCE ROCK EVALUATION DATA

-

. WELL: 2/6-1 LOCATION : NORWEGIAN NORTH SEA

SAMPLE DEPTH (METRES	SAMPLE	ANALYSED	ORGANIC	TOTAL	EXTRACT % OF	HYDRO- -CARBONS	HYDRO- CARBONS	TOTAL ALKANES
OR NOTATION	TYPE	LITHOLOGY	CARBON % OF ROCK	EXTRACT P.P.M.	ORGANIC CARBON	P.P.M. OF ROCK	% OF EXTRACT	% HYDRO+ CARBONS
1465-485	Ctgs	Lt ol-gy sl slty mic mdst	2.31	735	3.2	<20	*	*
1505-525	n	Ditto	3.14					
1535-555	11	Ol-gy/dk gy slty mic mdst	4.11	755	1.8	<20	×	*
1565-585	11	Ditto	4.17					
1595-615	11	Ditto	4.27					
1625-645	**	Ditto	4.46					
1655-665	**	Ditto	4.66					
1690-710	11	Lt ol-gy slty mic mdst+10% dk gy mdst	3.00	925	3.1	<20	*	*
1720-740	17	Ditto+ditto	3.50					
1750-770	11	Ditto+ditto	3.20	1605	5.0	<20	*	*
1780-800	n n	Ditto+ditto	3.52	-				
1810-830	11	Ditto+ditto	3.68					
1840-860	11	Ditto+ditto	4.11					
1870-890	11	01-gy/dk gy slty mic mdst+mnr dk gy mdst	4.12	1310	3.2	<20	*	*
19 10-9 30	11	Lt ol-gy sft sl slty mdst+10% med gy sh	4.13					
1950-970	11	Ditto+ditto	4.26					
1990-20 <u>10</u>	11	Ditto+ditto	4.03	615	1.5	< 20	*	*
2020-040	U	Ditto+ditto	4.56					
2050-070	11	Ditto+ditto	4.28	675	1.6	< 20	*	*
2090-100	11	Ditto+ditto	4.71					
2130-150	11	Ditto+ditto	4.05					
2160-180	π	Ditto+ditto	4.77]	
2190-210	11	Ditto+ditto	4.89					
2220~250	11	Ditto+15% ditto	3.26					
2260-280	11	Ditto+20% ditto	2.45	1145	4.7	< 20	*	*
2290-310	11	Lt ol-gy/gn-gy/dk gy mdst	2.52					
2 320 340	14	Ditto	2,45					
2350-370	11	Ditto	2,00	695	3.5	< 20	*	*
2380-400	11	Ditto	1.89					
2410-430	ÎI .	Ditto	1.69			ļ		
2440-460	"	Lt ol-gy/gn-gn mdst/ sh	2.23	655	2.9	< 20	*	*

SOURCE ROCK EVALUATION DATA

4

į

WELL: 2/6-1 LOCATION NORWEGIAN NORTH SEA

SAMPLE DEPTH (METRES	SAMPLE	ANALYSED	ORGANIC	TOTAL	EXTRACT % OF	HYDRO- -CARBONS	HYDRO- CARBONS	TOTAL ALKANES
	TYPE	LITHOLOGY	CARBON % OF ROCK	EXTRACT REM.	ORGANIC CARBON	P.P.M. OF ROCK	% OF EXTRACT	% HYDRO- CARBONS
2470-490 Ctgs Lt ol-gy/gn-gy mdst/ sh		1.76						
2500-520	**	Ditto	1.05					
2530-550	τı	Ditto+mnr 1t brn sst+ mnr gy-red sh	1.58	690	4.4	<20	*	*
2560-580	11	Ditto+20% gy-red sh+ mnr dk gy sh	2.01					
2590-610	et.	Ditto+mnr ditto	1.22		•			
2620-640	11	Ditto+ditto	1.06	360	3.4	<20	*	*
2650-670	11	Wht chk+20% lt ol-gy/gn- gy mdst/sh+mnr gy-red sh	0.64	740	11.5	<20	*	*
26 80-700	11	30% ditto+70% ditto	0.78				· · ·	
2710-730	"	20% ditto+80% ditto	0.60			-	` <u>.</u>	
2740-755	n	90% ditto+10% vgt sh/ sst	<0.05					
2770790	11	Ditto+mnr ditto	<0.05					i.
2800-820	tt	Ditto+ditto	<0.05					
2830-850	U.	Ditto+ditto	<0.05					
2860-880	н	Ditto+ditto	<0.05					
2890-910	11	Ditto+ditto	<0.05					
2920-940	11	Ditto+ditto	<0.05					
2950-970	п	Wht/pnk-gy chk+mnr vgt sh/sst	<0.05	:		-		
29 80–3000	Π	Ditto+ditto	<0.05					
3010-030	**	Ditto+ditto	<0.05					
3035-055	**	Ditto+mar vgt sh	<0.05					
3060-080	- 11	Ditto+10% ditto	<0.05	:				
_3085-100		Ditto+ditto	<0.05					
3105-120	11	01-gy slty mdst+med- dk gy mic sh+mnr chk	1.81					
3130-150	п	Ditto+ditto+15% chk	2.97	1630	5.5	65	4	81
3155-175	11	Ditto+ditto+ditto	2.74					
3180-200	11	Ditto+ditto+ditto	2.57	1280	4.8	45	3	51
3210-224	^т н	Ditto+ditto+ditto	2.59					
3240-260	π	Ditto+ditto+mnr chk	5.15	4775	9.3	50	1	43
3265-290	ŧ	Ditto+ditto+ditto	2.95					
3295-305	* 99	Ditto+ditto+ditto	2.60					
L	L				ł	L	l	Ļ

SOURCE ROCK EVALUATION DATA

WELL: 2/6-1 LOCATION : NORWEGIAN NORTH SEA

.

SAMPLE DEPTH METRES OR	SAMPLE TYPE	ANALYSED LITHOLOGY	ORGANIC CARBON % OF ROCK	TOTAL EXTRACT P.P.M.	EXTRACT % OF ORGANIC	HYDRO- -CARBONS P.P.M. OF	HYDRO- CARBONS % OF	TOTAL ALKANES % HYDRO-
NOTATION 3310-335	Ctgs	01-gy slty mdst+med-dk gy mic sh+mnr chk		1705	CARBON	коск 55	EXTRACT	CARBONS 76
		PICKED LITHOLOGIES						
1535-555	17	Dk gy mdşt	5.85	:				
1750-770	TT .	Ditto	3.88					
1840-860	11	Ditto	5.05					
2260-280	11	Ditto	2.29					
2320-340	11	Lt ol-gy mdst/sh	1.89					
2530-550	n	Dk gy mdst/sh	4.88					
2530-550	11	Gy-red sh	<0.05					
2710 -7 30	TT	01-gy mdst/sh	0.92					
2740-755	11	Med-dk gy sh	0.32					
3105-120	11	Dk gy sh	2.09					
3130-150	п	Ditto	3.14					
3180-200	11	Ditto	2.94					
3210-224	11	Ditto	2.94					
3240-260	TT .	Ditto	3.97					
3295-305	ti je	Ditto	3.16					
3310-335	п	Ditto	2.34					
					· ·			
			, , ,					
	:							
	-	-*				1		
L					<u> </u>		Į	I

ς.

TABLE 3 A

ROCK - EVAL. PYROLYSIS DATA

WELL: 2/6-1

......

7

L

LOCATION: NORWEGIAN NORTH SEA

SAMPLE DEPTH (METRES) OR NOTATION	GENERALISED LITHOLOGY	ORGANIC CARBON (%)	TEMPERATURE (°C)	HYDROGEN INDEX	ÓXYGEN INDEX	PRODUCTION	POTENTIAL YIELD (PPM)
							J
1465-485	Lt ol-gy mdst	2.31	*	*	124	*	*
1535-555	01-gy/dk gy mdst	4.11	426	17	158	*	700
1625-645	Ditto	4.46	415	43	40	*	1900
1690-710	Lt ol-gy mdst	3.00	420	106	79	*	3200
1750-770	Ditto	3.20	426	68	80	*	2200
1780-800	Ditto	3.52	4 32	52	48	*	1900
1870-890	01-gy/dk gy mdst	4.12	436	50	44.	*	2100
1990-2010	Ditto	4.03	425	22	66	*	900
2050-070	Ditto	4.28	428	19	56	*	800
2160-180	Ditto	4.77	432	23	45	*	1100
2260-280	Ditto	2.45	419	8	132	0.1	1900
2320-340	Lt ol-gy/gn-gy mdst	2.45	436	11	85	*	300
2350-370	Ditto -	2.00	420	18	94	*	400
2440-460	Ditto	2.23	430	21	136	*	500
2500-520	Ditto	1.05	433	15	93	*	200
2530-550	Ditto	1.58	418	16	133	*	300
2620-640	Ditto	1.06	418	21	153	*	200
2650-670	Chk+20% o1-gy sh	0.64	418	21	250	*	100
3105-120	01-gy mdst+med- dk gy sh	1.81	428 ·	65	74	0.1	1200
31 30-150	Ditto+ditto	2.97	446	65	63	0.3	1900
3180-200	Ditto+ditto	2.57	447	43	61	*	1100
3240-260	Ditto+ditto	5.15	444	55	32	*	2800
3295-305	Ditto+ditto	2.60	426	1.7	60	0.2	400
3310-335	Ditto+ditto	3.05	446	54	93	*	1700
	PICKED LITHOLOGIES						
1535-555	Dk gy mdst	5.85	4 39	34	87	*	2000
1750-770	Ditto	3.88	42.2	96	45	*	3700
1840-860	Ditto	5.05	424	94	53	*	4700
2260-280	Ditto	2.29	435	63	73	*	1400
2320-340	Lt ol-gy mdst	1.89	417	35	75	*	600
25 30-5 50	Dk gy mdst	4.88	420	9	26	*	400
2710-730	01-gy mdst	0.92	421	33	121	*	300
2740-755	Med-dk gy sh	0.32	440	31	402	*	600

TEMPERATURE (°C) = TEMPERATURE AT MAXIMUM RATE OF PYROLYSIS PRODUCTION INDEX = AN ESTIMATE OF PRESENT HYDROCARBON GENERATING POTENTIAL COMPARED TO THAT AT OPTIMUM MATURITY POTENTIAL YIELD = AN ESTIMATE OF HYDROCARBON PRODUCTION AT OPTIMUM MATURITY

TABLE 3 B

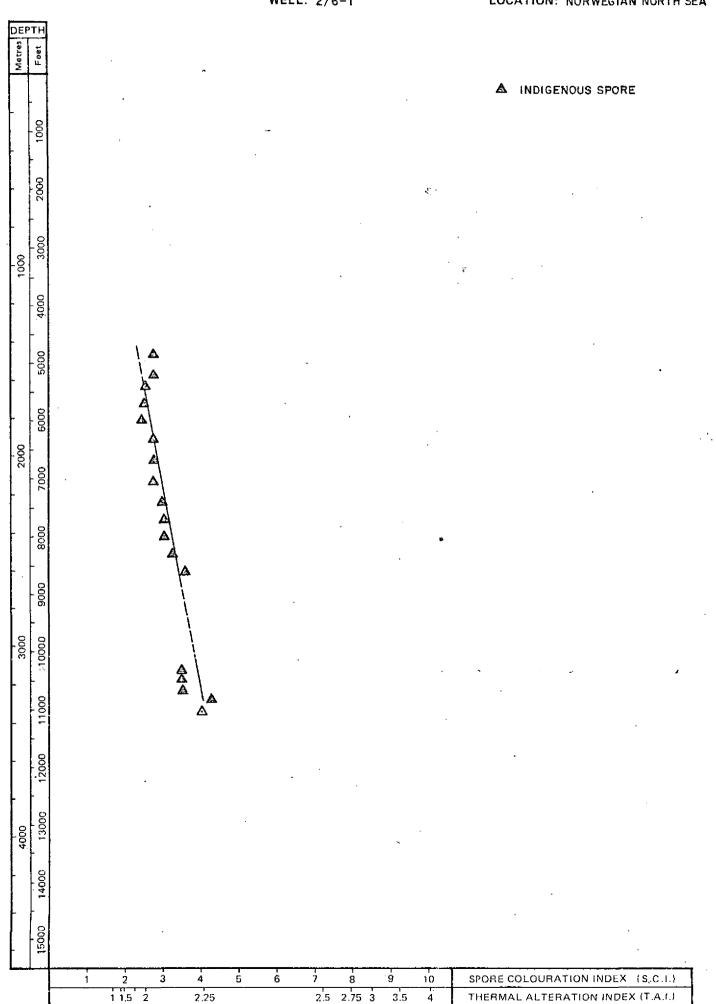
ROCK - EVAL. PYROLYSIS DATA

WELL: 2/6-1

. ...

1

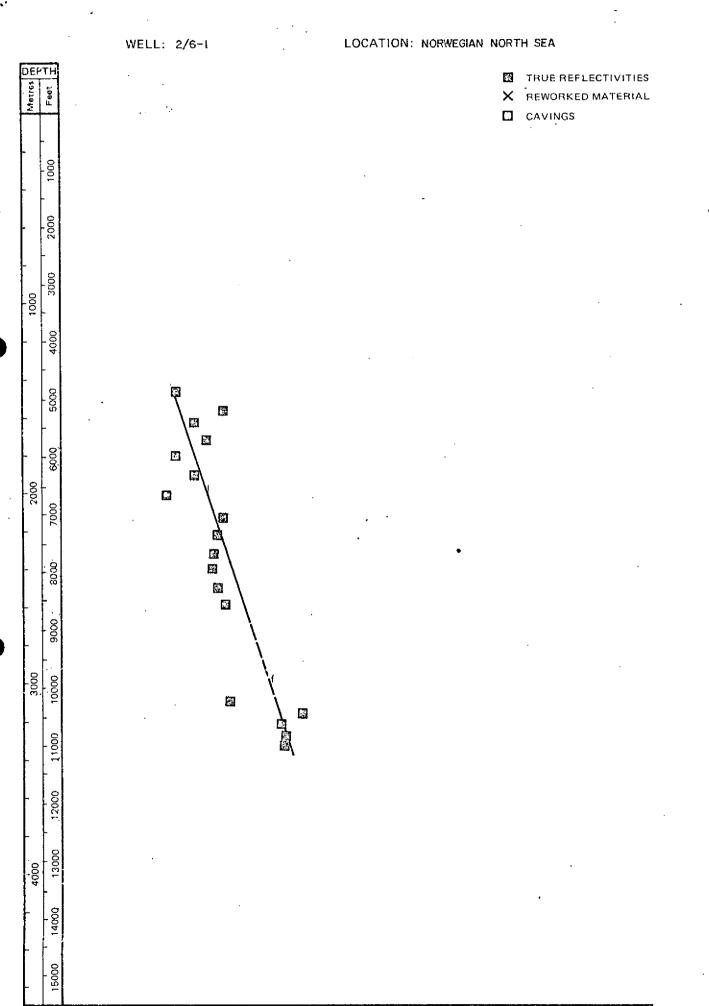
ъ.


LOCATION: NORWEGIAN NORTH SEA

.

SAMPLE DEPTH (METRES) OR NOTATION	GENERALISED LITHOLOGY	ORGANIC CARBON (%)	TEMPERATURE { [°] C)	HYDROGEN INDEX	OXYGEN INDEX	PRODUCTION INDEX	POTENTIAL YIELD (PPM)
3105-120	Dk gy sh	2.09	449	170	34	0.04	3500
3130-150	Ditto	3.14	437	196	35	*	6200
3210-224	Ditto	2.94	449	102	20	*	3000
3240-260	Ditto	3.97	434	160	22	*	6400
3295-305	Ditto	3.16	437	201	37	*	6400
		· · · ·					
			,				
		• 					
		:					
		-					
							-
				1	1		

TEMPERATURE (°C) = TEMPERATURE AT MAXIMUM RATE OF PYROLYSIS PRODUCTION INDEX = AN ESTIMATE OF PRESENT HYDROCARBON GENERATING POTENTIAL COMPARED TO THAT AT OPTIMUM MATURITY POTENTIAL YIELD = AN ESTIMATE OF HYDROCARBON PRODUCTION AT OPTIMUM MATURITY


SPORE COLOURATION INDICES AGAINST DEPTH FIGURE 1.

WELL: 2/6-1

LOCATION: NORWEGIAN NORTH SEA

FIGURE 2 VITRINITE REFLECTIVITY AGAINST DEPTH

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.2 1.4 6 1.8 2.0 2.5 3.0 PERCENTAGE REFLECTIVITY IN OIL

0.2

FIGURE 3 PYROLYSIS DATA SUMMARY CHART

- -

WELL: 2/6-1 LOCATION: NORWEGIAN NORTH SEA

DEPTH T°C	HYDROGEN INDEX mgHC/g organic carbon 200 400 600	OXYGEN INDEX mgCO ₂ /g organic carbon	PRODUCTION INDEX	POTENTIAL YIELD (ppm HC) 10^3 10^4 10^5
1000 1000 1000 1000 2000 1000 1000 2000 1000 1000 2000 1000 1000 1000 10000 1000 1000	200 400 600		0.2 0.4 0.6	
15000 14000 12000 11000 10000 8 15000 13000 12000 10000 8				

FIGURE 4 PYROLYSIS DATA SUMMARY CHART

. :

PICKED LITHOLOGIES

WELL: 2/6-1

LOCATION: NORWEGIAN NORTH SEA

Metres	тн Еве	т°с	HYDROGEN INDEX mgHC/g organic carbon	OXYGEN INDEX mgCO ₂ /g organic carbon	PRODUCTION INDEX	POTENTIAL YIELD (ppm HC) 10 ³ 10 ⁴ 10 ⁵
Me	ш Г	410 430 450	200 400 600	50 100 150	0.2 0.4 0.6	
-	10001					
_	2000	 				
1000	3000					
-	4000					
-	5000		-	· · ·		
P	6000					
2000	7000					
-	8000	· · · · · · · · · · · · · · · · · · ·				
-	9006		-			
3000	10000				-	
-	11000			=		
-	12000					
4000	13000					
-	14000					
•	15000					