	TYL)K(J	Exploratio	on and Pro	oduction
Norsk Hy	dro a.s Be	ergen				
E&P Res	earch Cent		nt V Beport			
Storogo:				- arabiyaa		Das. 1d R-049
Storage:			X Permanent			Copy no.
Grading: Distribution	Open	Title	X Confidenti	al) Very conf.	Strictly con	, ,
Norsk Hy Prosjekt	(1)	(2)	alandan tersebalan ang pangan tersebakan kanakan		_	
Statoil Conoco ($\binom{(2)}{2}$ SA	H91-13	92-(PI	ETROLEUM G	EOCHEMIST	RY
DNO (2) Agip (2)			1904	WELL:	30/9-11	
Saga (2 OD (2)						
	n n n n n n n n n n n n n n n n n n n	qGIS I	RERT			
	OL	EDIREK	TORATET			
Summary/Conclus	ion//Recommencento	vsed from	n well RO	/9-11 incl	lde Heath	er Fm.
shales,	and coals	from Ta	rbert and	Ness Fms.		
The Tarb together	with the	Pyrolys:	s a nigh H is gas chi	Hydrogen II comatograph	idex, and iy result mid budr	this s indicate
The Tarb together that thi generati The coal for gase All samp maturity Keywords Source R	with the s coal mi on. s from Ne ous hydro les analy below th ock Evalu	ss Fm. ar carbon ge sed from e oil win	s a nigh H is gas chi a potenti re of Type eneration. Heather, ndow.	Hydrogen In romatograph ial for lic e III keroo Tarbert an	ndex, and ny result guid hydr gen with nd Ness F	this s indicate ocarbon a potential m. indicate
The Tarb together that thi generati The coal for gase All samp maturity Keywords Source R Peges-appendix	with the s coal mi on. s from Ne ous hydro les analy below th ock Evalu	SS Fm. and ss Fm. and carbon ge sed from e oil win ation.	s a high H is gas chi a potenti ce of Type eneration. Heather, ndow.	Hydrogen In romatograph ial for lic e III keroc Tarbert ar	ndex, and ny result guid hydr gen with nd Ness F	this s indicate ocarbon a potential m. indicate
The Tarb together that thi generati The coal for gase All samp maturity Keywords Source R Pages-appendix Quadrant/Block-w 30/9-11	ert Fm. c with the s coal mi on. s from Ne ous hydro les analy below th ock Evalu	Pyrolys: ght have ss Fm. and carbon ge sed from e oil win ation. Amendment no. Project no. 213421	s a high H is gas chi a potenti re of Type eneration. Heather, hdow.	Hydrogen In romatograph ial for lic e III kerog Tarbert ar Revision no.	idex, and iy result guid hydr gen with id Ness F	this s indicate ocarbon a potential m. indicate Revision date Date 06-jun-91
The Tarb together that thi generati The coal for gase All samp maturity Keywords Source R Pages-appendix Quadrant/Block-w 30/9-11 Department	ert Fm. c with the s coal mi on. s from Ne ous hydro les analy below th ock Evalu	Amendment no. Pyrolys: ght have ss Fm. and carbon ge sed from e oil win ation. Project no. 213421 F-Geosed	s a high H is gas chi a potenti re of Type eneration. Heather, ndow.	Hydrogen In romatograph ial for lic e III kerog Tarbert an Revision no. Licens no. PL104	idex, and iy result guid hydr gen with nd Ness F	this s indicate ocarbon a potential m. indicate Revision date Date 06-jun-91
The Tarb together that thi generati The coal for gase All samp maturity Keywords Source R Pages-appendix Quadrant/Blook-w 30/9-11 Department Section	ert Fm. c with the s coal mi on. s from Ne ous hydro les analy below th ock Evalu	Pyrolys: ght have ss Fm. ar carbon ge sed from e oil win ation. Amendment no. Project no. 213421 F-Geosec Petroleu	s a nigh H is gas chi a potenti re of Type eneration. Heather, ndow.	Hydrogen In romatograph ial for lic e III keroo Tarbert ar Revision no. Uicens no. PL104	ndex, and ny result guid hydr gen with nd Ness F	this s indicate ocarbon a potential m. indicate Revision date Date 06-jun-91
The Tarb together that thi generati The coal for gase All samp maturity Keywords Source R Pages-appendix Quadrant/Block-w 30/9-11 Department Section Authors	ert Fm. c with the s coal mi on. s from Ne ous hydro les analy below th ock Evalu	Pyrolys: ght have ss Fm. ar carbon ge sed from e oil win ation. Amendment no. Project no. 213421 F-Geosec Petroleu Elin Rei	s a nigh H is gas chi a potenti re of Type eneration. Heather, ndow.	Hydrogen In romatograph ial for lic e III keroc Tarbert an Revision no. PL104	ndex, and ny result guid hydr gen with nd Ness F	this s indicate ocarbon a potential m. indicate Revision date Date 06-jun-91
The Tarb together that thi generati The coal for gase All samp maturity Keywords Source R Peges-appendix Quadrant/Block-w 30/9-11 Department Section Authors Controlled	ert Fm. c with the s coal mi on. s from Ne ous hydro les analy below th ock Evalu	Pyrolys: ght have ss Fm. ar carbon ge sed from e oil win ation. Amendment no. Project no. 213421 F-Geosec Petroleu Elin Rei	s a high H is gas chi a potenti re of Type eneration. Heather, ndow.	Hydrogen In romatograph ial for lic e III kerog Tarbert an Revision no. PL104	idex, and ny result guid hydr gen with nd Ness F	this s indicate ocarbon a potential m. indicate Revision date Date 06-jun-91
The Tarb together that thi generati The coal for gase All samp maturity Keywords Source R Peges-appendix Quadrant/Block-w 30/9-11 Department Section Authors Controlled Accepted	ert Fm. c with the s coal mi on. s from Ne ous hydro les analy below th ock Evalu	Pyrolys: ght have ss Fm. and carbon ge sed from e oil wind ation. Amendment no. Project no. 213421 F-Geosecon Petroleu Elin Rei $7/_{h} - 19$	tion ction a gas chi a potenti re of Type eneration. Heather, ndow. ction m Geochem in	Hydrogen In romatograph ial for lic e III keroo Tarbert ar Revision no. PL104 histry	Ndex, and ny result guid hydr gen with nd Ness F	this s indicate ocarbon a potential m. indicate Revision date Date 06-jun-91

TABLE OF CONTENTS

- 1. Introduction.
- 2. Source rock evaluation.
- 3. Summary.
- Tables.
- Figures.
- Appendices.

PETROLEUM GEOCHEMISTRY 30/9-11

MADKO

LIST OF TABLES

- Table 1.1 List of samples analysed.
- Table 2.1 Source rock screening data.
- Table 2.2 Molecular ratios.
- Table 2.3 Biomarker ratios.

WHYDRO

LIST OF FIGURES

Figure 1.1	Well location map.
Figure 1.2	Well summary with formation tops.
Figure 2.1	Screening data versus depth.

Figure 2.2 Hydrogen Index versus T_{max}.

APPENDICES

.

.

a serve in Marka a serve a server a se

Appendix	I	Pyrolysis gas chromatograms. '
Appendix	II	Gas chromatograms of saturated hydrocarbons.
Appendix	III	Fragmentograms of terpanes, (Ion m/z 191).
		Fragmentograms of steranes, (Ion m/z 217).

<u> Myd</u>ro

1. INTRODUCTION.

Well 30/9-11 is located in the Oseberg J-East area. The well was spudded 27.10.90, and reached T.D at 2570m RKB in the Lower Jurassic Drake Fm. A map indicating the well location is given in Figure 1.1, and a well summary with formation tops is given in Figure 1.2.

6

The aim of this study was to identify and characterize possible source rocks in well 30/9-11.

This report comprises the results from petroleum geochemical analysis of 24 SWCs and CCs. A list of the samples investigated is given in Table 1.1.

All analytical work, interpretation of data and compilation of this report was undertaken by Norsk Hydro Research Center, Bergen Norway. 2. SOURCE ROCK EVALUATION WELL 30/9-11.

Source rock horizons have been identified using Rock Eval pyrolysis and total organic carbon (TOC) measurements. The composition of the organic matter in two selected samples have been characterized by pyrolysis gas chromatography, gas chromatography of saturated hydrocarbons and biomarker analysis.

2.1 Source rock screening data.

The results of RockEval/TOC analysis are listed in Table 2.1, and are plotted versus depth in Figure 2.1. A crossplot between Hydrogen Index and T_{max} is given in Figure 2.2.

The SWC samples of the Heather Fm. claystones/siltstones have an average S_2 value of 4.2 kg/tonne suggesting a fair source potential. The average Hydrogen Index is 197 mgHC/gTOC indicating that the organic matter in this interval consists mainly of type III kerogen with a potential for generation of light molecular weight hydrocarbons, presumably gas.

MANDRO

One COCH sample from the Tarbert Fm. was analysed. This coal sample has a S_2 value of 133.5 kg/tonne and a Hydrogen Index of 352 mgHC/gTOC. The Hydrogen Index is very high for a coal sample and might indicate a potential for liquid hydrocarbon generation.

Coal samples from the Ness Fm. have average S₂ values of 150 kg/tonne and Hydrogen Indices ranging from 173-260 mgHC/gTOC. This suggests that the organic matter in this horizon is gas/condensate prone, type III kerogen.

 ${\rm T}_{_{\rm max}}$ values for the sections analysed are around 430°C indicating low maturity.

2.2 Pyrolysis gas chromatography.

Programmed pyrolysis gas chromatography has been performed on extracted samples. The pyrolysis gas chromatograms are given in Appendix I.

Two of the samples from this well have been selected for closer examination. The richest sample from the Heather formation at 2365.5m, and the coal sample at 2388.4m in the Tarbert Fm. showing an unusually high Hydrogen Index.

The sample at 2365.5m show a homologous series of n-alkanes/alkenes extending up beyond $n-C_{25}$. Aromatics are abundant. This indicates an organic matter of mixed input, containing both terrestrially and liptinitic matter. Organic matter of this character has a potential for generation of condensate and gas.

The sample at 2388.4m shows a considerable amount of gaseous alkanes, which is typical for coaly material. The presence of homolouges of n-alkanes/alkenes beyond nC_{25} together with abundant aromatics indicates that the organic matter consists of liptinitic material mixed with material of a more terrogenous origin. This coal might have a potential for generation of liquid hydrocarbons.

2.3 Gas chromatography of saturated hydrocarbons.

The gas chromatograms of the saturated hydrocarbons are given in Appendix II. Molecular ratios are given in Table 2.2.

The gas chromatogram of the sample at 2365.5m in the Heather Fm. show abundant nC_{14} and $n-C_{15}$ alkanes, and have a slight bimodal n-alkane distribution. The Pristane/Phytane ratio is 4.1, this indicates an oxic environment at the time of deposition. The strong predominance of odd/even carbon numbered alkanes in the sample, with CPI indices of 1.8 suggests input off higher plant material and indicates a predominantly terrestrial origin for the organic matter.

The sample from Tarbert Fm. show abundant isoprenoides and has a Pristane/n- C_{17} ratio of 30. Pristane/n- C_{17} value in this order is typical for coals. The Pristane/Phytane ratio is 8.5 and this indicates that the organic matter was deposited in an oxic depositional environment. 2.4 Biological markers, saturated hydrocarbons.

The mass chromatograms of the terpanes (m/z 191) and the steranes (m/z 217) are given in Appendix III. Selected biomarker ratios are listed in Table 2.3.

The mass chromatogram (m/z 191) of the Heather Fm. sample show relatively abundant moretanes. This together with the results from calculated biomarker ratios indicates low maturity in this section. The high concentration of C_{31} hopanes and the rapid decrease in concentration of the extended hopanes suggest a dysaerobic/aerobic depositional environment. 28,30-bisnorhopane is absent.

In the m/z 217 mass chromatogram for this sample C_{29} steranes are dominant, suggesting input of terrestrial material to the organic matter. The presence of C_{27} and C_{30} steranes suggests presence of marine organic matter, and this indicates a mixed input with both marine and terrestrial organic matter for this sample. The 20S sterane isomerization is 20% indicating low maturity.

MANDRO

The distribution of terpanes in the m/z 191 mass chromatogram of the sample from Tarbert Fm. is different from that of the Heater Fm. This sample contains 28,30-Bisnorhopane, and fair amounts of $\Delta 17,22$ hopene. It also show abundant moretanes indicating low maturity.

The sterane mass chromatogram shows presence of almost exclusively C₂₉ steranes, indicating that the organic material is predominantly terrestrially derived. This together with the high Hydrogen Index suggests that the organic matter is of herbaceous character, and possibly contains Sporinite and/or Cutinite which both are rich in hydrogen. The 20S sterane isomerization is 26% indicating low maturity for this section.

3. SUMMARY.

Source rocks analysed from well 30/9-11 include Heather Fm. shales, and coals from Tarbert and Ness Fms.

Analysis indicate that the Heather Fm. is a fair source rock with a potential mainly for gas generation. The Heather Fm.seems to have been deposited in a dysaerobic/aerobic environment.

The Tarbert Fm. coal shows a high Hydrogen Index, and this together with the Pyrolysis gas chromatography results indicate that this coal might have a potential for liquid hydrocarbon generation.

The coals from Ness Fm. are of Type III kerogen with a potential for gaseous hydrocarbon generation.

All samples analysed from Heather, Tarbert and Ness Fm. indicate maturity below the oil window. (Ro for this section would probably be around or below 0.5%). Table 1.1 List of samples analysed.

DEFTH, m Type Rock-Eval TOC PyGC Extr. Iatroscan GCMSD-Sat

1	2297.8	SWC	*	*				
2	2308.8	SWC	*	*				
3	2316.6	SWC	*	*				
4	2326.1	SWC	*	*				
5	2334.0	SWC	*	*				
6	2339.8	SWC	*	*				
7	2343.8	SWC	*	*				
8	2351.7	SWC	*	×				
9	2358.0	SWC	*	*				
10	2360.4	SWC	¥	*				
11	2365.5	SWC	*	*	*	*	*	*
12	2368.5	SWC	*	*				
13	2370.8	SWC	*	*		-		
14	2371.4	SWC	*	*				
15	2378.1	SWC	*	*				
16	2378.4	SWC	*	*				
17	2380.4	SWC	*	*				
18	2388.4	СОСН	*	*	*	*	*	*
19	2389.8	сосн	*	*				
20	2390.8	СОСН	*	*				
21	2391.5	COCH	*	*				
22	2455.5	сосн	*	*				
23	2456.9	СОСН	*	*				
24	2498.8	СОСН	*	*				

E&P RESEARCH CENTRE BERGEN

Table 2.1 Source rock screening data.

Table 2.1 SOURCE ROCK SCREENING DATA WELL 30/9-11

Petroleum Geochemistry Group Research Centre Bergen

Depth (m)	Group/Fm. 8	Lithology	Туре	s1 kg/t	\$2 kg∕t	TOC १	ΗI	ΡI	Tmax DegC	Company
2297.80	HEATHER	CLYST	SWC	0.86	3.66	2.5	146	0.19	430 F	-BERGEN
2308.80	HEATHER	CLYST/SLST	SWC	0.77	5.72	3.0	191	0.12	430 F	-BERGEN
2316.60	HEATHER	CLYST/TR SS	SWC	0.59	6.13	3.0	204	0.09	430 F	-BERGEN
2326.10	HEATHER	SLST/TR SST	SWC	0.55	6.75	3.5	193	0.08	429 F	-BERGEN
2334.00	HEATHER	CLYST/SLTY	SWC	0.59	5.00	2.5	200	0.11	428 F	-BERGEN
2339.80	HEATHER	CLYST	SWC	1.33	2.68	1.4	191	0.33	430 F	-BERGEN
2343.80	HEATHER	CLYST/SLST	SWC	0.59	5.24	2.6	202	0.10	430 F	-BERGEN
2351.70	HEATHER	CLYST/SLST	SWC	0.43	3.53	1.7	208	0.11	424 F	-BERGEN
2358.00	HEATHER	CLYST/TR SS	SWC	0.23	2.72	1.4	194	0.08	430 F	-BERGEN
2360.40	HEATHER	CLYST	SWC	0.34	2.82	1.8	157	0.11	432 F	-BERGEN
2365.50	HEATHER	CLYST	SWC	0.84	14.69	5.5	267	0.05	429 F	-BERGEN
2368.50	HEATHER	CLYST/TS SS	SWC	0.09	1.07	0.7	153	0.08	438 F	-BERGEN
2370.80	HEATHER	CLYST	SWC	0.35	1.43	0.7	204	0.20	445 F	BERGEN
2371.40	HEATHER	CLYST	SWC	0.13	1.99	0.8	249	0.06	439 F	-BERGEN
2378.10	HEATHER	SLST	SWC	0.19	1.93	1.0	193	0.09	441 F	-BERGEN
2380.40	HEATHER	SLST	SWC	0.21	2.06	0.9	229	0.09	436 F	-BERGEN
2388.40	TARBERT	COAL	СОСН	10.48	133.46	37.9	352	0.07	416 F	BERGEN
2389.80	NESS	COAL	СОСН	13.39	155.87	70.3	222	0.08	424 F	BERGEN

Table 2.1 SOURCE ROCK SCREENING DATA WELL 30/9-11

Petroleum Geochemistry Group Research Centre Bergen

Depth (m)	Group/Fm. %	Lithology	Туре	S1 kg∕t	S2 kg∕t	TOC १	HI	ΡI	Tmax DegC	Company
2297.80	HEATHER	CLYST	SWC	0.86	3.66	2.5	146	0.19	430	F-BERGEN
2308.80	HEATHER	CLYST/SLST	SWC	0.77	5.72	3.0	191	0.12	430	F-BERGEN
2316.60	HEATHER	CLYST/TR SS	SWC	0.59	6.13	3.0	204	0.09	430	F-BERGEN
2326.10	HEATHER	SLST/TR SST	SWC	0.55	6.75	3.5	193	0.08	429	F-BERGEN
2334.00	HEATHER	CLYST/SLTY	SWC	0.59	5.00	2.5	200	0.11	428	F-BERGEN
2339.80	HEATHER	CLYST	SWC	1.33	2.68	1.4	191	0.33	430	F-BERGEN
2343.80	HEATHER	CLYST/SLST	SWC	0.59	5.24	2.6	202	0.10	430	F-BERGEN
2351.70	HEATHER	CLYST/SLST	SWC	0.43	3.53	1.7	208	0.11	424	F-BERGEN
2358.00	HEATHER	CLYST/TR SS	SWC	0.23	2.72	1.4	194	0.08	430	F-BERGEN
2360.40	HEATHER	CLYST	SWC	0.34	2.82	1.8	157	0.11	432	F-BERGEN
2365.50	HEATHER	CLYST	SWC	0.84	14.69	5.5	267	0.05	429	F-BERGEN
2368.50	HEATHER	CLYST/TS SS	SWC	0.09	1.07	0.7	153	0.08	438	F-BERGEN
2370.80	HEATHER	CLYST	SWC	0.35	1.43	0.7	204	0.20	445	F-BERGEN
2371.40	HEATHER	CLYST	SWC	0.13	1.99	0.8	249	0.06	439	F-BERGEN
2378.10	HEATHER	SLST	SWC	0.19	1.93	1.0	193	0.09	441	F-BERGEN
2380.40	HEATHER	SLST	SWC	0.21	2.06	0.9	229	0.09	436	F-BERGEN
2388.40	TARBERT	COAL	COCH	10.48	133.46	37.9	352	0.07	416	F BERGEN
2389.80	NESS	COAL	СОСН	13.39	155.87	70.3	222	0.08	424	F BERGEN

Table 2.1 SOURCE ROCK SCREENING DATA WELL 30/9-11 (cont'd)

Petroleum Geochemistry Group Research Centre Bergen

Depth (m)	Group/Fm.	00	Lithology	Туре	S1 kg∕t	S2 kg∕t	TOC १	HI	PI	Tmax DegC	Company
2390.80	NESS		COAL	СОСН	16.85	174.16	81.4	214	0.09	427 F	BERGEN
2391.50	NESS		COAL	СОСН	12.26	200.56	77.2	260	0.06	425 F	BERGEN
2455.50	NESS		COAL	COCH	8.03	119.01	68.6	173	0.06	433 F	BERGEN
2456.90	NESS		COAL	COCH	4.00	66.47	35.7	186	0.06	433 F	BERGEN
2498.80	NESS		COAL	сосн	15.88	183.36	71.3	257	0.08	427 F	BERGEN

Table 2.2 Molecular ratios.

Petroleum Geochemistry Group Research Centre Bergen

Table 2.2 SATURATED FRACTION MOLECULAR RATIOS WELL 30/9-11

Depth	Group/Fm.	olo	Lithology	Туре	Pristane	Pristane	CPI-I	CPI-II	nC15+	nC20	
					nC17	Phytane			Total	nC25	
2365.50	HEATHER		CLYST	SWC	2.91	4.07	1.78	1.76		ann	
2388.40	TARBERT		COAL	СОСН	30.38	8.50	1.06	0.91			
									-		

Table 2.3 Biomarker ratios.

DEPTH m	Ts/Tm	BNH/H	NH/H	MORETANE/ HOPANE	%20S	%abb
2365.5	0.07	$\substack{0.01\\0.20}$	0.6	0.4	20	35
2388.4	0.10		0.4	0.3	26	59

ШHYDRO

E&P RESEARCH CENTRE BERGEN

Figure 1.1 Well location map.

Location map, Well 30/9-11

Figure 1.2 Well summary with formation tops.

WHYDRO

WELL: 30/9-11

DEPTI	H RKB:	ELE	: 25m NB! Not to scale NB! All depth in meters			
C	CHRONOSTRA	TIGRAF	ΥHY	LITHOS	TRATIGRAPHY	
SYSTEM	SERIES/STAGE	DEPTH m	THICKNESS	GROUP	FORMATION/MEMBER	
		134			Seabed	
QUAT		314	180			
				Nordland Group	651	
			616		Utsira Fm. 829	
TERTIARY	Early Miocene Late Oligocene Early Oligocene Early Oligocene Early Oligocene Late Eocene Late - ?Middle Eocene Middle Eocene Early Eocene	930 960 990 1190 1200 1480 1490 1490 1660 1720 1730 1730 1890 1900 1940	50 10 200 10 280 10 150 280 10 150 60 10 160 10 40	Hordaland Group	1051	
	Late Paleocene	1950	230	Densie d Oweren	Balder Fm. 1975	
	7777	2180	_	Rogalano Group	Lista Fm. 2188	
CRET	Early Paleocene Early Maas - Late Campanian	2200	40 - 62	Shetland Group	7005 m. 2006	
	Early Barremian	2290	15.6	Cromer Knoll Group	2291	
ASSIC	Early Kimmeridgian Early Kimmeridgian - Middle Oxfordian Early Late Callovian - Late Bathonian - Late Bathonian -	2316.6 2365.5 2368.5 2380.4 2382	19 - 48.9 - 3 - 11.9 - 21.4	Viking Group	2384	
UR		2401.8			farbert Fm. 2390	
ſ	Bajocian - Aalenian	2510.2	108,4	Brent Group	Ness Fm. 2507 Etiye/Bannoch Fm.	
	Aalenian - Late Toarcian		9.8		2514 Oseberg Fm. 2516	
	Toarcian	2520 2570 (TD)	- 50	Dunlin Group	Drake Fm. 2570 (TD)	

Figure 2.1 Screening data versus depth.

Figure 2.2 Hydrogen Index versus T_{max}.

Well: 30/9-11

HYDROUEN INDEX

APPENDIX I

Pyrolysis Gas Chromatograms.

APPENDIX II

Gas Chromatograms of Saturated Hydrocarbons.

NORSK HYDRO RESEARCH CENTRE

Analysis Name : [PETRO] 7 w300911,9,1.

30/9-11 2365.5m

GC SATURATED HYDROCARBONS

Lims ID £

Acquired on 20-MAR-1991 at 04:20

Reported on 20-MAR-1991 at 05:42

NORSK HYDRO RESEARCH CENTRE

.

APPENDIX III

 $Fragmentograms \ of \ Terpanes, \ (Ion \ 191 \ m/z).$

Fragmentograms of Steranes, (Ion 217 m/z).

30/9-11

30/9-11

30/9-11

