LETE- OG UTVINNINGSAVDELINGEN (EXPLORATION AND PRODUCTION)

S Norske Shell

Tel.: 04-57 61 00 P. O. Box 10, N-4033 Forus Telex 33046 shelp n

AMOCO P.O. Box 388 4001 STAVANGE Attn: F. Stumm

(1) - 02047

Your ref:

<u>Our ref</u>: 044103 EPXE/1/mr

<u>Date</u>: 19.12.83

Dear Sir,

Subject: Geochemical analysis of core samples, well 2/11-1

We refer to telephone conversation in January 1983 in which Norske Shell was granted permission to sample the core from 2/11-1 for geochemical studies.

We have now completed our analysis and we have the pleasure to send you copies of the following 3 reports:

- RKER 83.073 source rock analysis of cores from intervals 12676 to 12711 ft of Kimmeridge Clay Fm of well 2/11-1, Norway
- RKER 83.061 Geochemical extract analysis of six core samples of the Kimmeridge Clay Formation from interval 12676.5 - 12711.8 ft in well 2/11-1, Norway
- Robertson Research. Rock Eval. Pyrolysis data sheets.

We regret our delay in reporting which was caused by instrumental problems in our research laboratory.

Yours faithfully, A/S NORSKE SHELL

as.

B.M. Thomas Team Leader Exploration and Production

May 1983

RKER 83.073

SOURCE ROCK ANALYSIS OF CORES FROM INTERVAL 12676 TO 12711 FT OF KIMMERIDGE CLAY FM. OF WELL 2/11-1, NORWAY by J.M.J.Terken and F.M.van der Veen code: 774.103

in co-operation with J.E.A.M.Dielwart R.F.M.Hofland P.J.van der Vet

Investigation

9.5.4094

This **CONFIDENTIAL** report is made available subject to the condition that the recipient will use the information contained therein for his own business only and will not divulge it to third parties without the written authority of the sponsoring party.

Copyright is vested in Shell Research B.V.

KONINKLIJKE/SHELL EXPLORATIE EN PRODUKTIE LABORATORIUM

RIJSWIJK, THE NETHERLANDS

(Shell Research B.V.)

17530.2

CONTENTS

	p		
	Introduction		
2.0	Results	• •	. 3
3.0	Discussion	• •	. 3
4.0	Conclusion	• •	. 3

Figure 1Location mapTable ISource rock propertiesTable IIMaceral description, comment linesEnclosure 1Geochemical log

1.0 INTRODUCTION

A source rock evaluation has been carried out on cores from well 2/11-1, NORWAY. The approximate location is shown in Figure 1. The samples are taken from interval 12676 to 12711 ft of the Kimmeridge Clay Fm. Total depth was reached at 15392 ft b.d.f..

The purpose of the investigation was:

- 1. to detect the presence (or absence) of source rocks in the samples
- 2. to determine the quality of the organic matter, as well as its distribution.
- 3. to establish the degree of organic metamorphism (level of maturity).

A source rock is <u>identified</u> by measuring the amount of temperature reactive ("live") organic matter present, i.e. the amount of organic matter that yields hydrocarbons upon pyrolysis. The method excludes any ("dead") organic matter such as inertinites.

In addition, the total organic carbon content can be determined which gives the sum of "live" and "dead" organic carbon. Rocks containing less than 0.5%wt organic carbon are not considered to have a potential for commercial oil accumulations.

The source rock indications (SRI), which are a measure of the amount of pyrolysable organic matter, are determined on the original samples and in certain cases also after extraction with organic solvents. A systematically lower value after extraction is due to the presence of extractable hydrocarbons. These may consist of trapped oil, oil generated in situ by a source rock, or e.g. gasoil used in the drilling fluid.

In general, samples with source rock indications of 30 or less do not represent (immature or mature) source rocks. Values between 30 and 100 generally indicate marginal source rocks, while values above 100 commonly indicate good source rocks. Intervals or samples with high source rock indications are investigated under a microscope to ensure that the high values indicate genuine source rock properties and are not due to contaminants of an organic nature such as lost circulation material.

The <u>quality</u> of a source rock for oil/gas generation depends on the type of organic matter present. Five categories of organic matter can be distinguished, viz.: humic, mainly humic, mixed, mainly kerogenous, kerogenous. This classification is based on the hydrogen content of the organic matter.

Source rocks with organic matter of kerogenous, mainly kerogenous and/or mixed type generate predominantly oil. Organic matter of humic type generates gas only. Strata with organic matter of mainly humic quality generate either gas, or gas and oil.

In addition to the type and the concentration of the organic matter, the source rock quality is also characterised by the distribution of the typical organic constituents, or macerals(1), in the sediments. The maceral distribution can be used to further qualify the source rock, especially when mainly humic quality is found. For this purpose a microscopic investigation on polished rock fragments is carried out.

The <u>"maturity"</u> of source rocks is expressed in terms of <u>degree</u> of <u>organic metamorphism</u>. With increasing degree of organic metamorphism the organic matter is gradually carbonised while generating hydrocarbons. With increasing carbonification the light reflectance of vitrinite, one of the coal macerals, increases. The degree of organic metamorphism can be assessed by measuring this reflectance.

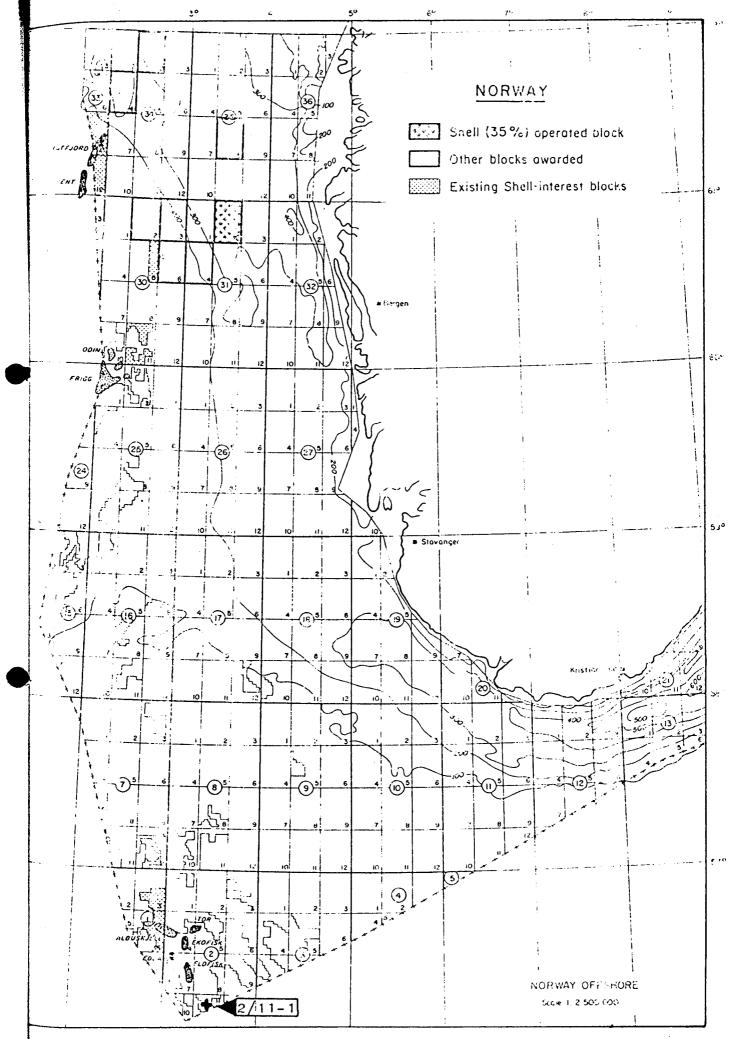
1)maceral: an organic constituent which can be recognised with the microscope (with objectives 25x to 50x)

2.0 RESULTS

The results are listed in Table I (source rock indications values, total organic carbon content ,type of organic matter) and Table II (maceral description , comment lines). All chemically obtained results are summarised in Enclosure 1 (Geochemical log).

3.0 DISCUSSION

3.1 Interval 12676 - 12711 ft (Kimmeridge Clay Fm.)


All samples from this interval show good to predominantly excellent source rock indication (SRI) values together with high total organic carbon contents in the range of 4,1 - 12.3 %wt.

The maceral descriptions show as main constituent sapropelic organic matter (SOM) and smaller amounts of sporinite, liptodetrinite, tasmanites, microplankton , fusinite and The SOM is most abundant in the middle of the micrinite. interval, (12689 - 12704 ft). In the samples from this interval botryococcus and other algae were found, which are Microscopic probably derived from an external source. of the same samples revealed a higher amount of analysis pyrite and a darker fluorescence colour, which probably indicate more bacterial activity. The slight variations observed in the type of organic matter ("kerogenous to mainly kerogenous") may have been caused by the differences in bacterial reworking of the SOM.

Consequently it is concluded that this interval 12676 - 12711 ft can be regarded as a good to excellent source rock for oil.

4.0 CONCLUSION

Interval 12676 - 12711 ft can be regarded as a good to excellent source rock for oil and gas.

GEOCHEMICAL LOG

SCALE 1:150

WELL

2/11-1

LOCATION

REGEO IDENTIFIER

LL: L I ТНОL ОGY IN SOURCE ROCK INDICATION SOURCE ROCK INCICATION DOM(VR) 0EP TH OF ORIGINAL SAMPLE č OF SAMPLE AFTER EXTRACTION WITH CH 100 200 300 400 500 600 200 300 400 500 100 1 - 1 VALUES SMALLER THAN 30 ARE CONSIDERED 12650--NOT TO BE OF SIGNIFICANCE 12660-12670-Э Θ 12680-G 8 12690-8 G 12700-G Θ A Θ 12710-G INTERVAL 12676 TO 12711 FT CONTRINS GOD EXCELLENT SOURCE ROCKS FOR OIL AND GAS. 12720-12730---a da ser de ser a and the state of the para and see Sec. State 12740-12750-NUMBER OF SAMPLES ANALYSED 17 NUMBER OF SAMPLES ANALYSED 17 LEGEND TYPE OF SAMPLE G= CORE = SIDEWALL SAMPLE C = UNSPECIFIED CONTRMINATION W = WALNUTS E = CELLOPHANE . F = FIBRES P = PLASTIC OR PAINT

HLOROFORM 600 I	DEPTH IN F	ORG.CARBON (PCT. WT)	TYPE OF Organic Matter
	12650 12660 12670 12680 12680 12680 12700 12710 12720 12720 12720 12720 12720 12750	6.6 5.3 6.0 5.3 7.4 12:3 7.1 7.0 11.8 8.5 4.1 7.6 4.7 4.6	KEROGENOUS KEROGENOUS KEROGENOUS KEROGENOUS KEROGENOUS KEROGENOUS KEROGENOUS KEROGENOUS KEROGENOUS KEROGENOUS KEROGENOUS KEROGENOUS KEROGENOUS KEROGENOUS KEROGENOUS KEROGENOUS KEROGENOUS KEROGENOUS
	EXPLOR	KONINKLYKE/SH ATIE EN PRODUKTI	
•	COUNTRY WELL INTERVAL SCALE	: NORWAY : 2/11-1 : 12650	- 12750 F.
	RUTHOR + TERKEN REF = 83.086.073	ENCL	DATE: MAY 1005 3 DRAH-NO: I

GEOCHEMICAL SOURCE ROCK DATA

TABLE I

1 'g²

**

WELL: 2/11-1

DEPTH	T Y P E OF	SOURCE ROCK	SOURCE ROCK	T YPE OF	ORGANIC CARBON
	SAMPLE	INDICATION	INDICATION	ORGANIC	CONTENT
	SAULT	INDICATION	INDICATION	MATTER	content
F		BEFORE	AFTER		2 W
		EXTR.	EXTR.		
				,	
12676	3	825	800	K	6.6
12679	R	590	565	K	5.3
12682	R	760	740	К	6.3
12685	R	640	625	ĸ	6.0
12688	R	555	520	К	5.3
12689	R	485	455	мк	6.3
12691	R	765	730	κ	7 • 4
12694	R	785	750	К	12.3
12695	R	635	625	к	6.3
12697	R	810	775	к	7.1
12697	R	810	775	К	7.0
12700	R	690	67ŭ	ĸ	11.8
12702	R	590	575	К /МК	8.5
12704	R	285	275	мк	4 • 1
12706	P	585	580	MK / K	7.6
12700	<u> </u>				
12709	R	490	475	ĸ	4.7
.12/11	R	440	425	К	4.6
TYPE OF S	SAMPLE C =	CUTTINGS, R	= CORE, S =	SIDEWALL	SAMPLE

CONTAMINATION : W = WALNUT FRAGMENTS OR SOME SIMILAR PRODUCT, E = CELLOPHANE SHREDS, F = FIBRES, P = PLASTIC OR PAINT AND C = CONTAMINATED BUT KIND NOT SPECIFIED

A DASH (-) INDICATES TEST NOT MADE, ASTERISKS INDICATE THE ORGANIC CARBON CONTENT IS THE AVERAGE FOR THE SAMPLES CONCEPNED MACERAL DESCRIPTION OF 16 SAMPLES FROM WELL 2/11-1

			ORGA		···					1 N (RC.
	ì.			TE IL GAE		-	IN I	ER I	I.		
SAFROPELIC ORG. MAITER TELOCOLLINITE TELNITE	DESMCCOLLINITE SPORINITE	CUTINITE RESINITE	LIFTCOFIRINITE SOTATOCOCCUS	145MANITES	MICROPLANKION	EXSUDATINITE SCIFERTINITE	FUSINITE	MACRINITE	MICRINITE	UNDEFINED MINERALS	ROGREGATES OF PYRITE CRYSTALS OF PYRITE
+	- /		+	/	/		-		+	*/	- /

DEPTH In Fi	SAMPLE TYPE
12676.0	CORE
12679.0	CORE
12682.0	CORE

CORE

12685.0

12688.0

12689.0

12691.0

12694.0

12695.0

12697.0

12700.0

12702.0

12704.0

12706.0

12709.0

12711.0

+	- /	+ / /	-	+ * / - /
+	- /	+ / /		+ * / - /
+	- /	+ / /	/	+ * / - /
+	- /	+ - / /		+ * /
+	- /	+ / /	/	+ * / / /
+	- /	+ ////	-	+ * + / /
+	- /	+ / /	/	+ * / - //
+	-//	+ - / + /	/	+ * + + -
+	- /	+ - / /	/	+ * /
+	- /	+ / /	/	+ * /
+	- /	+ - / + /		+ * + + -
+	- /	+ - / + /	/	+ * + + -
+	- /	+///-		+ * + + -
+	- /	+ / / + /	-	+ * + + /
+	- /	+ / /		+ * /
+	- /	+ / /		+ */ - -

L.	E	G	E	N	D	
 * + / -	27 - 19	C (F E	JMM	101	N T N	

IABLE : II (part 1)

TABLE II (part 2) COMMENT LINES FROM WELL/OUTCROP : 2/11-1 12676.0 F : INITIAL CONVERSION S.O.M. 12679.0 F : INITIAL CONVERSION S. U. M. 12682.0 F : INITIAL CONVERSION S. D. M. 12685.0 F : INITIAL CONVERSION S.O.M. RARE BOTRYOCOCCUS ALGAE 12688.0 F : INITIAL CONVERSION S.O.M. 12689.0 F : S.D.M. PARTLY CONVERTED MICRINITE = OXY-MICRINITE ? SAMPLE SLIGHTLY OXIDISED 12691.0 F : INITIAL CONVERSION S.O.M. 12694.0 F : INITIAL CONVERSION S.O.M. RARE BOTRYOCOCCUS-LIKE ALGAE 12695.0 F : INITIAL .CONVERSION S.O.M. FOSSIL REMAINS RARE BOTRYOCOCCUS-LIKE ALGAE 12697.0 F : INITIAL CONVERSION S.O.M. 12700.0 F : INITIAL CONVERSION S.O.M. FOSSIL REMAINS LAMINATED (ALGAL) S.O.M. PARTLY BACTERIALLY TRANSFORMED RARE BOTRYOCOCCUS-LIKE ALGAE 12702.0 F : INITIAL CONVERSION / S.O.M. LAMINATED (ALGAL) S.O.M. PARTLY BACTERIALLY TRANSFORMED RARE BOTRYOCOCCUS-LIKE ALGAE 12704.0 F : INITIAL CONVERSION S.O.M. FEW BOTRYOCOCCUS-LIKE ALGAE 12703.0 F : INITIAL S.O.M. CONVERSION LAMINATED (ALGAL) S.O.M. PARTLY BACTERIALLY TRANSFORMED FOSSIL REMAINS FEW BOTRYOCOCCUS-LIKE ALGAE 12709.0 F : INITIAL CONVERSION S.O.M. 12711.0 F : FOSSIL REMAINS INITIAL CONVERSION 3.0.M.

June 1983

RKER.83.061 GEOCHEMICAL EXTRACT ANALYSIS OF SIX CORE SAMPLES OF THE KIMMERIDGE CLAY FORMATION FROM INTERNAL 12676.5-12711.8 FT IN WELL 2/11-1, NORWAY by P.J. Grantham & J.M.A. Buiskool-Toxopeus

Investigation 9.5.4096

With co-operation from P. Lohbeck and R. Lieffering

This CONFIDENTIAL report is made available subject to the condition that the recipient will use the information contained therein for his own business only and will not divulge it to third parties without the written authority of the sponsoring party.

Copyright is vested in Shell Research B.V.

KONINKLIJKE/SHELL EXPLORATIE EN PRODUKTIE LABORATORIUM

RIJSWIJK, THE NETHERLANDS

(Shell Research B.V.)

CONTENTS

and the second se

		Page
1.	Results and Discussion	1
2.	Conclusions	2

Table(s) 1-3 Geochemical data of rock extracts

Figures 1-6 Gas chromatograms of saturated hydrocarbons 7 C-15 and C-30 ring distributions

8-10 Sterane and triterpane fragmentograms

GEOCHEMICAL EXTRACT ANALYSIS OF SIX CORE SAMPLES OF THE KIMMERIDGE CLAY FORMATION FROM INTERVAL 12676.5 - 12711.8 FT IN WELL 2/11-1, NORWAY

- 1 -

1. RESULTS AND DISCUSSION

Geochemical analysis of the following six core samples from the Upper Jurassic Kimmeridge Clay formation of well 2/11-1, Norway, has been carried out:

12676.5 ft 12688.0 ft 12694.0 ft 12694.3 ft 12706.9 ft 12711.8 ft

The results are shown in Tables 1-3 and in Figs 1-10. The results indicate the following:

1.1.

All six selected samples are source rocks for oil (organic carbon contents; extract/carbon ratios; source rock indication values between 425 and 800 units; maceral compositions).

1.2.

The extracts of the samples are nearly to just-mature (relatively high phytane/n- C_{18} ratios; C_{30} region of the gas chromatograms, Figs 1-6; distribution of C_{29} steranes, Figs. 8-10).

1.3.

These source rocks contain predominantly sapropelic organic matter (maceral analysis, Fig. 12). This is in agreement with the general shape of the gas chromatograms, Figs. 1-6. The sapropelic organic matter is of bacterially reworked phytoplantonic orgin $(C_{27}-C_{29}$ distribution of the sterane fragmentograms, Figs. 8-10).

1.4.

The extracts are similar to an average North Sea crude oil with respect to their gas chromatograms and sterane and triterpane distributions. The carbon isotope values however are somewhat lighter (appoximately $-30^{\circ}/\circ\circ$) compared to the mean of many North Sea crude oils ($-28.9^{\circ}/\circ\circ$).

2. CONCLUSIONS

Six core samples from the Upper Jurassic Kimmeridge Clay formation of well 2/11-1, Norway (12676.5-12711.8 ft) are source rocks for oil. The extracts of these samples are nearly to justmature and are derived from predominantly sapropelic organic matter (bacterially reworked phytoplankton).

The extracts are of the same broad type of organic matter compared as to that of an average North Sea crude oil. The carbon isotope values however are slightly lighter (approximately 1 $^{\circ}/_{\circ\circ}$) compared to those of many North Sea crude oils.

RKER.83.061

Sample	Norway 2/11-1 12676.5 ft core	2/11-1 12688.0 ft core
% ethyl acetate extract	0.68	0.57
% organic carbon after ethyl acetate extraction	6.8	5.5
% sulphur	1.2	1.1
ppm V as metals ppm Ni as metals	64 24	73 36
pristane/phytane pristane/nC17 phytane/nC18	1.5 0.8 0.6	1.5 0.7 0.6
C ₁₅ distribution 1-ring 2-ring 3-ring	50 33 17	47- 39 17
C ₃₀ distribution 3-ring 4-ring 5-ring	/2 59 29	14 53 33
C ₂₉ DOM % saturates [*] % aromatics % heterocompounds	61 37 38 25	67 38 37 25
δ ¹³ c ⁰ /00	-29.8	-30.4
extract/carbon	0.10	0.10

Table 1 - GEOCHEMICAL DATA OF EXTRACTS

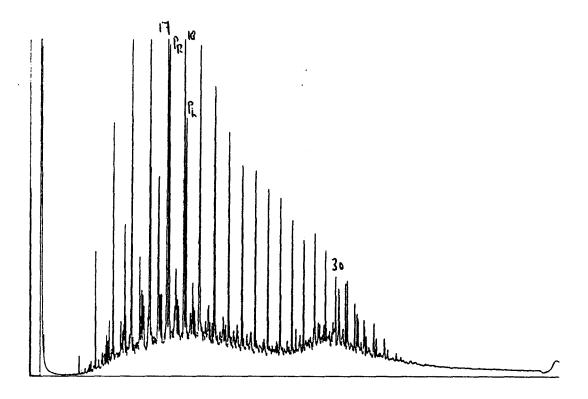
*) determined by thin - layer chromatography

Sample	Norway 2/11-1 12694.0 ft core	2/11-1 12694.3 ft core
% ethyl acetate extract	0.80	0.78
% organic carbon after ethyl acetate extraction	12.3	6.5
% sulphur	2.3	1.9
ppm V as metals ppm Ni as metals	47 8	69 23
pristane/phytane pristane/nC17 phytane/nC18	1.5 0.8 0.6	1.4 0.8 0.6
C ₁₅ distribution 1-ring 2-ring 3-ring	46 35 19	50 34 16
C ₃₀ distribution 3-ring 4-ring 5-ring	14 60 26	15 58 27
C ₂₉ DOM	62	62
% saturates % aromatics % heterocompounds	41 46 1 <i>3</i>	43 31 26
δ ¹³ c ⁰ /00	-30.4	-30.2
extract/carbon	0.07	0.12

Table 2 - GEOCHEMICAL DATA OF EXTRACTS

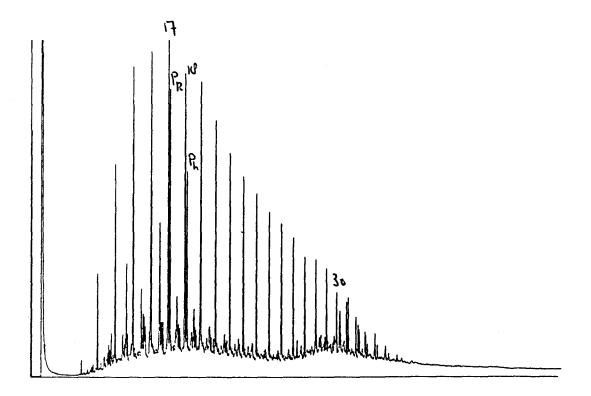
 \star) determined by thin - layer chromatography

1

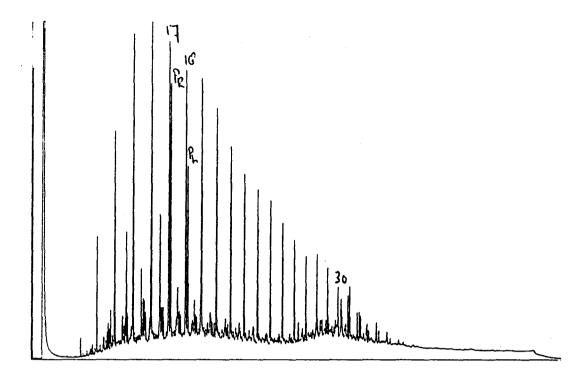

.

Sample	Norway 2/11-1 12706.9 ft core	2/11-1 12711.8 ft core
% ethyl acetate extract	0.74	0.48
% organic carbon after ethyl acetate extraction	7.6	4.7
% sulphur	7.9	1.1
ppm V as metals ppm Ni as metals	15 10	n.d n.d
pristane/phytane pristane/nC17 phytane/nC18	1.5 0.8 0.6	1.6 0.8 0.6
C ₁₅ distribution 1-ring 2-ring 3-ring	48 37 18	4B 35 17
C_{30} distribution		
3-ring 4-ring 5-ring	10 61 29	10 52 38
C ₂₉ DOM	61	62
% saturates % aromatics % heterocompounds	44 41 15	37 35 28
δ ¹³ c ⁰ /00	-31.1	-29.9
extract/carbon	0.10	0.10

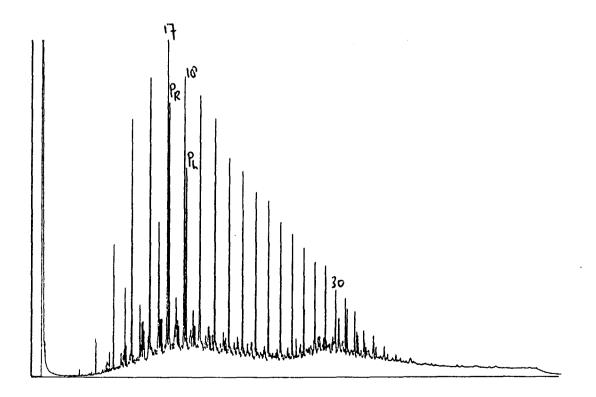
Table 3 - GEOCHEMICAL DATA OF EXTRACTS


*) determined by thin - layer chromatography n.d. = not enough material for the determination

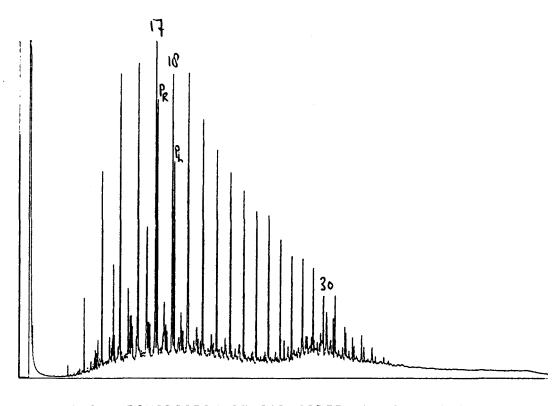
.



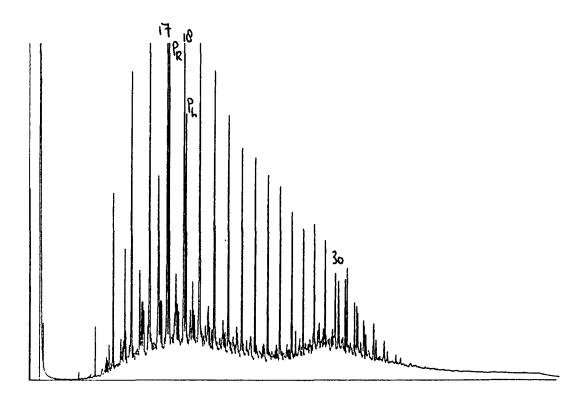
CAS CHROMAIOGRAM OF SATURAIED HYDROCARBONS


FIG. 1. NORWAY, 2/11-1 12676.5 FT

CAS CHROMAIOGRAM OF SATURATED HYDROCARBONS FIG. 2. NORWAY, 2/11-1 12688.0 FT

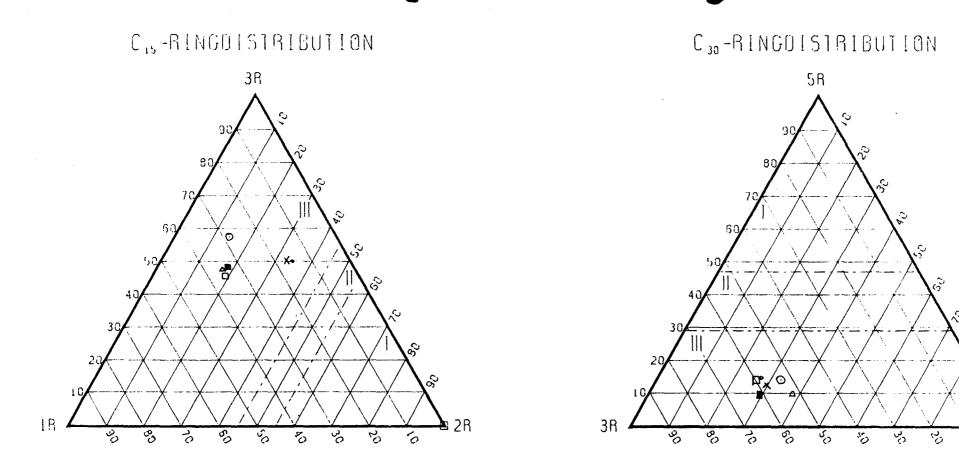


GAS CHROMATOGRAM OF SALURALED HYDROCARBONS FIG. 3. NORWAY, 2/11-1 12694.0 FT



CAS CHROMAICORAM OF SAIURAIED HYDROCARBONS

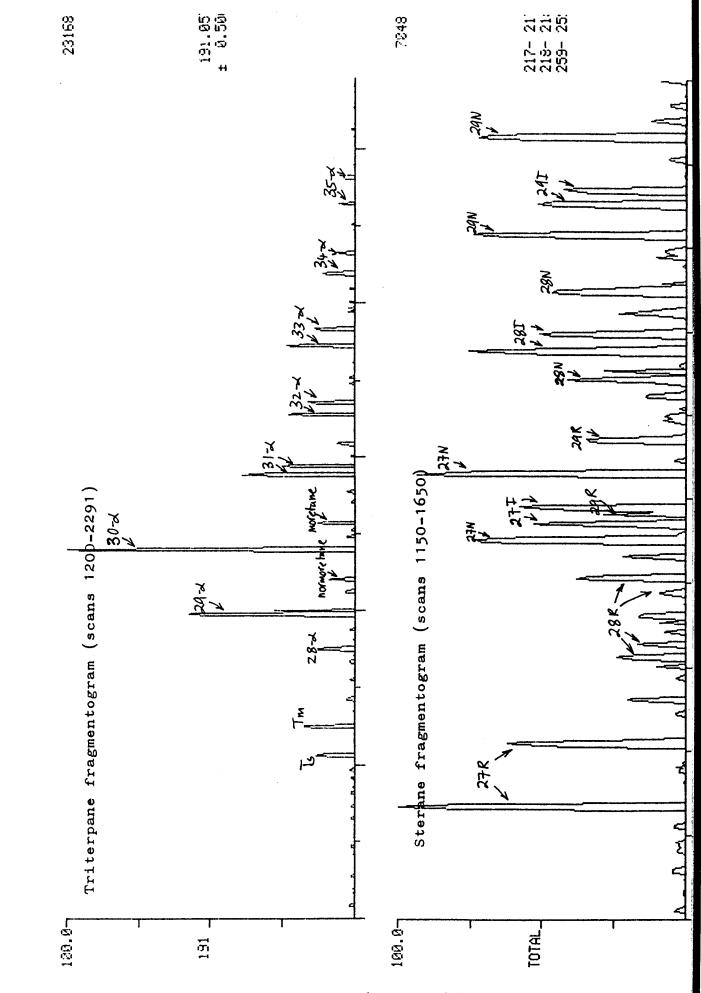
FIC. 4. NORWAY, 2/11-1 12694.3 F1


GAS CHROMAIOGRAM OF SATURATED HYDROCARBONS FIG. 5, NORWAY, 2/11-1 12706.9 F1

GAS CHROMAIOGRAM OF SAIURAIED HYDROCARBONS FIC. 5. NORWAY, 2/11-1 12711.8 F1

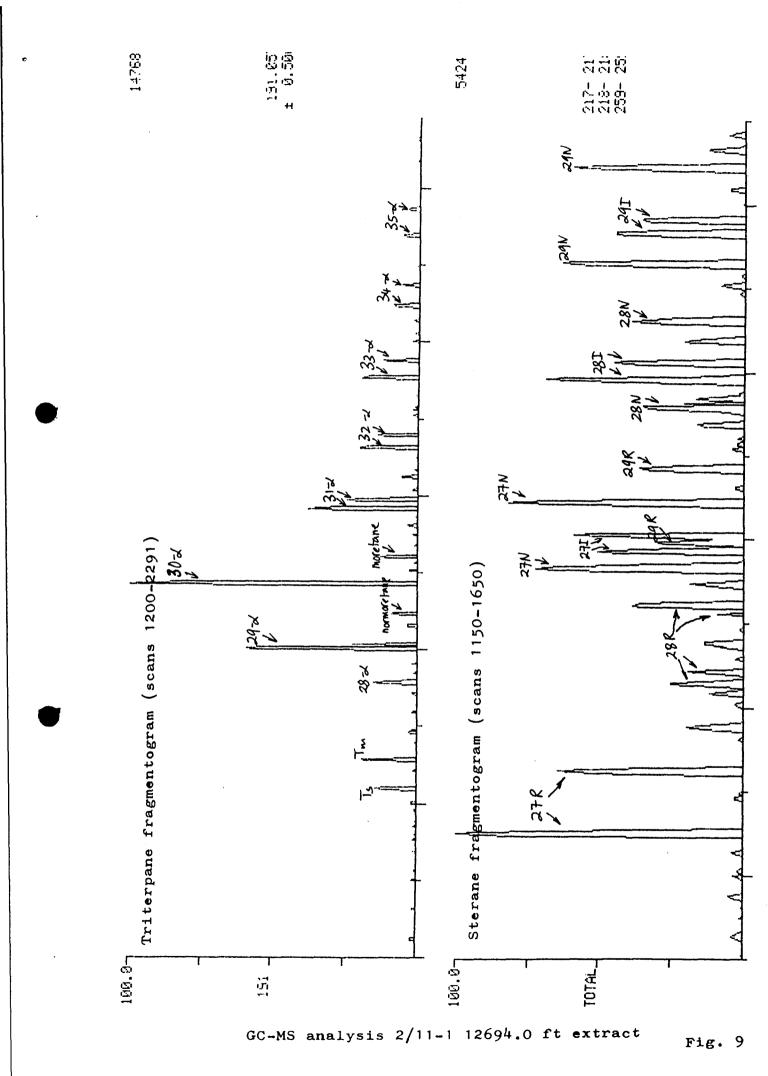
÷

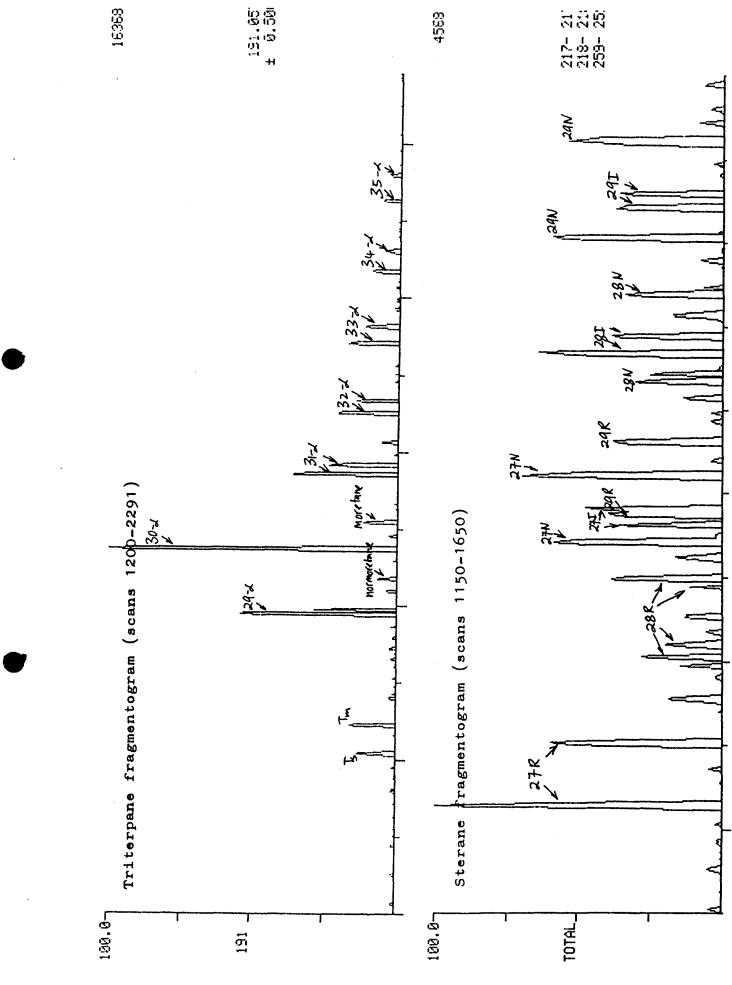
- LANDPLANT-DERIVED CRUDES WITH SUBSTANTIAL RESIN CONTRIBUTION TO SOURCE MAITER
- I CRUDES OF MIXED ORIGIN


FIG.

III CRUDES DERIVED FROM SOM AND/OR ALGAL MATTER

		LEGEND]
Ľ] -		
×	12676.5 ft		
	12688.072		
	12694.0ft		
٠	12694,3ft		
12	12706.9ft		


4 R


6

GC-MS analysis 2/11-1 126% 5 ft extract Fig.

8

GC-MS analysis 2/11-1 12711.8 ft extract

Fig.

COMPANY: NORSKE SHELL

.

.

WELL: 2/11-1

LOCATION: NORTH SEA

GENERAL DATA			CHEMICAL ANALYSIS DATA													
SAMPLE w			<u> </u>	UX PYROLYSIS							SOLVENT EXTRACTION					
DEPTH (FEET)	SAMPLE TYPE	ANALYSED LITHOLOGY	ORGANIC CARBON % OF ROCK	TEMP Erature °C	HYDROGEN INDEX	OXYGEN	PRODUCTION INDEX	POTENTIAL VIELD (ppm)	TOTAL Extract (ppm)	NYDRO- CARBONS (p.p.m)	EXTRACT % OF ORGANIC CARBON	ms/a OF Organic Carbon 7090		ALKANES X OF HYORQ - CARBONS		
12676.5	Core	SH, dk gy, calc	6.65	438	603	19	.08	40120								
	"	After extraction	6.04	441	591	28	.00	35720								
	"	After extr & decarb	7.01	444	488	8	.00	34270								
12679.8	"	A/a	5.62	440	547	19	.08	30750								
		After extraction	5.35	445	451	8	.00	24180					ARBONS			
	"	After extr & decarb	5.85	443	392	15	.01	22980								
12682.3		A/a	6.57	445	572	16	.07	37590								
	"	After extraction	6.19	443	591	15	.00	36630								
	"	After extr & decarb	7.00	443	546	15	.01	38280					ARBONS			
2685.4	"	A/a	6.34	441	618	25	.08	39240								
		After extraction	5.99	442	584	14	.00	35010								
	"	After extr & decarb	6.73	444	484	28	.00	32620								
12688	"	A/a	5.76	439	572	28	.07	33000								
	"	After extraction	5.22	444	483	17	.00	25220								
	"	After extr & decarb	5.85	442	421	4	.01	24630								
12689.4		A/a	6.97	437	294	23	.17	20500								
	"	After extraction	6.30	436	326	11	.01	20600								
	"	After extr & decarb	7.76	442	511	8	.00	39680								
12691.5	"	A/a	7.85	444	635	25	.08	49880								
	"	After extraction	7.20	444	632	10	.00	45520								
		After extr & decarb	8.32	443	585	11	.00	48700								
12694	"	A/a	12.53	439	465	11	.12	58300								
	"	After extraction	11.98	434	496	6	.00	59530								
•	"	After extr & decarb	15.25	444	584	3	.00	89130								
12694.3	"	A/a	6.90	442	586	19	.10	40480								
	н	After extraction	6.20	443	578	34	.00	35850								
	"	After extr & decarb	6.98	442	483	15	.00	33720								
12697	"	A/a	7.72	442	597	23	.08	46130								
	"	After extraction	6.83	441	632	18	•00	43190								
		After extr & decarb	7.80	442	495	49	.01	38680								
12700.6		SH, blk	10.35	444	337	12	.14	34960								
i	"	After extraction	10.39	435	343	13	•00	35710								
		After extr & decarb	16.75	445	661	12	.00	110820								
2702.8	"	SH, gy-blk	8.88	429	342	13	.15	30410								
		After extraction	8.50	435	366	12	.01	31130								
		After extr & decarb	10.85	443	587	15	.00	63740								
2704	- "	SH, dk gy	6.06	434	220	18	.22	13350								

COMPANY: NORSKE SHELL

.

مريد بوريد المراجع

WELL: 2/11-1

LOCATION: NORTH SEA

	CHEMICAL ANALYSIS DATA													
SAMPLE w			PYROLYSIS						SOLVENT EXTRACTION					
DEPTH (FEET)	SAMPLE TYPE	ANALYSED LITHOLOGY	ORGANIC CARBON % OF ROCK	TEMP - ERATURE °C	HYDROGEN INDEX	OXYGEN INDEX	PRODUCTION	POTENTIAL VIELD (ppm)	TOTAL Extract (ppm)	HYDRO- Carbons (F.F.M)	EXTRACT % OF ORGANIC CARBOM	m1/1 OF MIC ORGANIC CARBON CONCONC	X OF X OF EXTRACT GWO	ALKANES X DF HYDRO- CARBONS
12704	Core	After extraction	5.76	434	209	15	.02	12070						
	11	After extr & decarb	7.18	442	533	15	.01	38290						
12706-9		SH, dk gy	7.51	429	188	26	.23	14160						
		After extraction	7.13	436	201	22	.01	14360						
		After extr & decarb	11.83	444	554	11	.00	65570						
12709.3	"	A/a	4.85	442	499	35	.08	24220						
	1 "	After extraction	4.47	445	467	20	.01	20890						
	"	After extr & decarb	5.25	443	379	15	.00	19930						
2711.8	"	A/a	4.96	438	454	21	.10	22570						
	"	After extraction	4.71	442	410	14	.00	19320		}				
	"	After extr & decarb	5.11	444	381	16	.01	19500						
														-
J														
				I										
						ĺ								

COMPANY:	MORS
----------	------

-

(

NORSKE SHELL

WELL: 2/11-1

LOCATION: NORTH SEA

12676.5 Core SH, dk gy, calc 10 15 75 12679.8 " A/a 10 15 75 12682.3 " A/a 15 15 85 12685.4 " A/a 15 15 85 12682.3 " A/a 15 15 85 12685.4 " A/a 16 16 16 16 65 12687.4 " A/a 15 50 10 65 12694.3 " A/a 15 15 10 60 12694.3 " A/a 15 15 10 60 12697 " A/a 15 15 85 65 12697 " A/a 15 15 15 15 15 12697 " A/a 5 15 15 15 15 15 15 12697	SAMPLE DEPTH	SAMPLE	GENERALISED	GENERALISED SPORE COLOUR VITRINITE KEROGEN COMPOSITION (%				TION (%) ination)	KEROGEN COMPOSITION (%) (by calculation from pyrolysis data) L INERTINITE VITRINITE SAPROPEL SAPROPEL					
12679.8"A/aNNNNNNNN12682.3"A/a*A/a*15*8512685.4"A/a*A/a*15*8512686"A/a*1550106512687.4"A/a*1025106012694.3"A/a*15106012694.3"A/a*15106012697"A/a*15106012697"A/a*15106012697"A/a*15106012704.6"Sh, blk*15106012704.7NSh, dk gy*Sh, dk gy15106012704.9"Sh, dk gy*Sh, dk gy1510151012704.9"A/a*Sh, dk gySh, dk1510151012704.9"A/a*Sh, dk gySh, dkSh, dk3015151012704.9"A/a*Sh, dkSh, dkSh, dk3015151012704.9"Sh, dk*Sh, dkSh, dkSh, dkSh, dk3015151512704.9"Sh, dkSh, dkSh, dkSh, dkSh, dkSh, dk <th>(FEET)</th> <th>TYPE</th> <th>LITHOLOGY</th> <th>INDEX (1 - 10)</th> <th>R ail av %</th> <th></th> <th></th> <th></th> <th>INERTINITE</th> <th>VITRINITE</th> <th>ALGAL SAPROPEL</th> <th>WAXY SAPROPEL</th>	(FEET)	TYPE	LITHOLOGY	INDEX (1 - 10)	R ail av %				INERTINITE	VITRINITE	ALGAL SAPROPEL	WAXY SAPROPEL		
12682.3 " A/a 12682.3 " A/a 12682.4 " A/a 12688.4 " A/a 12688.4 " A/a 12689.4 " A/a 12691.5 " A/a 12694.3 " A/a 12697 " A/a 12697 " A/a 12700.6 " SH, gg-blk 12704 " SH, gg/blk 12709.3 " A/a 12709.3 " A/a	12676.5	Core	SH, dk gy, calc						*	10	15	75		
12685.4 " A/a 12685.4 " A/a 12688.4 " A/a 12688.4 " A/a 12688.4 " A/a 12691.5 " A/a 12694.3 " A/a 12697 " A/a 12700.6 " SH, gy-blk 12700.6 " SH, gy-blk 12700.7 A/a - 12700.8 " A/a 12700.9 " A/a 12700.3 " A/a 12700.4 T SH, dk gy 12700.5 " A/a 12700.5 " A/a </td <td>12679.8</td> <td>"</td> <td>A/a</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>*</td> <td>20</td> <td>5</td> <td>75</td>	12679.8	"	A/a						*	20	5	75		
12688 " A/a 12688 " A/a 12689.4 " A/a 12691.5 " A/a 12694 " A/a 12694.3 " A/a 12697 " A/a 12700.6 " SH, blk 2702.8 " SH, gy-blk 12704 " SH, dk gy 12709.3 " A/a 12709.3 " A/a	12682.3	11	A/a						*	15	*	85		
12689.4 " A/a 15 50 10 25 12691.5 " A/a 15 50 10 25 12694.3 " A/a 15 10 * 90 12697 " A/a * 15 15 10 60 12697 " A/a * 15 * 85 12700.6 " SH, b1k' 30 20 * 50 12702.8 " SH, dk gy 15 55 45 12704 " SH, dk gy 15 * 15 * 12709.3 " A/a * 10 15 * 12709.3 " A/a * 10 15 * 12709.3 " A/a * 30 * 70 12709.3 " A/a * 30 * 70	12685.4	++	A/a						*	15	*	85		
12691.5 " A/a 12694.3 " A/a 12697 " A/a 12697 " A/a 12697 " A/a 12700.6 " SH, blk 12702.8 " SH, gy-blk 12706.9 " A/a 12706.9 " A/a 12709.3 " A/a	12688		A/a		¢				*	25	10	65		
12694 " A/a 15 10 60 12694.3 " A/a 15 15 10 60 12694.3 " A/a * 15 * 85 12697 " A/a * 15 * 85 12700.6 " SH, blk 30 20 * 50 2702.8 " SH, gy-blk 35 40 10 15 12704 " SH, dk gy 15 * 30 25 5 45 12706.9 " A/a * 30 15 * * 12709.3 " A/a * 30 25 60 15 * 12709.3 " A/a * 30 * 70	12689.4	**	A/a						15	50	10	25		
12694.3 " A/a 12697 " A/a 12700.6 " SH, blk 12702.8 " SH, gy-blk 12704 " SH, dk gy 12706.9 " A/a 12709.3 " A/a	12691.5	"	A/a						*	10	*	90		
12697 " A/a * 15 * 85 12700.6 " SH, blk 30 20 * 50 12702.8 " SH, gy-blk 25 25 5 45 12704 " SH, dk gy 35 40 10 15 12706.9 " A/a 25 60 15 * 12709.3 " A/a * 30 * 70	12694	"	A/a						15	15	10	60		
12700.6 "SH, blk 30 20 * 50 12702.8 "SH, gy-blk 25 25 5 45 12704 "SH, dk gy 35 40 10 15 12706.9 "A/a 25 60 15 * 12709.3 "A/a * 30 * 70	12694.3	11	A/a						*	15	*	85		
N2702.8 " SH, gy-blk 25 25 5 45 12704 " SH, dk gy 35 40 10 15 12706.9 " A/a 25 60 15 * 12709.3 " A/a * 30 * 70	12697	**	A/a						*	15	*	85		
12704 " SH, dk gy 12706.9 " A/a 12709.3 " A/a	12700.6	и	SH, blk						30	20	*	50		
12706.9 " A/a 12709.3 " A/a 12709.4	.2702.8	"	SH, gy-blk						25	25	5	45		
12709.3 " A/a * 30 * 70	12704	H	SH, dk gy						35	40	10	15		
	12706.9	"	A/a						25	60	15	*		
12711.8 " A/A 10 50	12709.3	"	A/a						*	30	*	70		
	12711.8		A/a						*	40	10	50		
												1		
									-					
			-											