(U - 375)

\$

ADDRESS Telephone Telex	KJELLER N-2007 Kjeller, Norway (02)712560 - 713560 76361 energ n	HALDEN N-1751 Halden, Norway (031)83100 76335 energ n	AVAILABILITY Private confidential
REPORT Type	REPORT NO. IFE/KR/F-84/021		DATE 1984-01-31
	REPORT TITLE		DATE OF LAST REV.
Service report	AN ORGANIC GEOCHEMICAL EVAL 6407/2-2 WELL OFFSHORE NORW	REV. NO.	
	CLIENT		NUMBER OF PAGES
	Saga Petroleum a/s		
	CLIENT REF.		NUMBER OF ISSUES 20
SUMMARY The 64 with s Clay F wherea conden The ma the tr early zone (reache The pr proves hydroc main r	07/2-2 well penetrated two s ignificant source rock poten ormation has a rich potentia s the Coal Unit has a rich p sate. turity increases continously ansitional zone (Ro = 0.35) mature zone (Ro = 0.55) arou Ro = 0.70) is not reached i d at approximately 4000 m. esence of reservoired hydroc that migration has occurred arbons occur over a wider we eservoir intervals. g_4-1375	tratigraphical units tial. The Kimmeridge 1 for oil generation, otential for gas and with depth reaching around 2150 m and the nd 3350 m. The peak n the well. It will be arbons in the well , however, migrated 11 section than the -BA	DISTRIBUTION Saga, 10 Andresen, B. Berg, J.O. Brevik, E.M. Garder, K. Gaudernack, B. Råheim, A. Throndsen. T.O.
KEYWORDS	SOURCE ROCKS, MATURITY, MIGR	ATION, LOWER TERTIARY-T	RIASSIC
	NAME	DATE	SIGNATURE
PREPARED	BY Torbjørn O. Throndsen Bjørg Andresen Einar M. Brevik Arne Råheim	1984-01-31	Vorajon Stronk
REVIEWED	ВҮ		
APPROVED	BY Karen Garder	1984-01-31	Kann Sander.

TABLE OF CONTENTS

Section	Page
1. EXPLORATION SUMMARY	ч 1
1.1 Source rocks (Figure I)	1
1.2 Maturity (Figure I and II)	2
1.3 Migrated hydrocarbons (Figure III)	2
2. DISCUSSION AND RESULTS	4
2.1 Introduction	4
2.2 Source rocks	5
2.2.1 Hordaland Group (Enclosure 1)	5
2.2.2 Rogaland Group (Enclosure 1)	6
2.2.3 Shetland Group (Enclosure 1)	6
2.2.4 Cromer Knoll Group (Enclosure 1)	7
2.2.5 Kimmeridge Clay Formation (Enclosure 1)	8
2.2.6 Heather Formation (Enclosure 1)	11
2.2.7 Drake Formation (Enclosure 2)	12
2.2.8 Lower Jurassic sandstone (Enclosure 2)	14
2.2.9 Coal Unit (Enclosure 2)	16
2.3 Maturity	19
2.4 Migrated hydrocarbons	21
3. REFERENCES	24

4. TABLES AND FIGURES

1

1. EXPLORATION SUMMARY

Well 6407/2-2 was drilled into Triassic grey beds with Middle and Lower Jurassic sandstones as the main targets. The well penetrated as expected the two sandstone intervals, and both proved to be gas condensate bearing. A drillstem test was carried out in the upper sandstone interval (DST 1, 2476-84 m).

This report contains an organic geochemical evaluation primarily of the Jurassic section with a brief note on the Lower Tertiary and Cretaceous sections. Items to be discussed include source rock identification, maturity evaluation, and detection of migrated hydrocarbons. An organic geochemical evaluation of the gas condensate has been reported previously (Throndsen et al. 1983).

1.1 Source rocks (Figure I)

The well encountered two stratigraphic units with significant source rock potential : the Kimmeridge Clay Formation and the Coal Unit.

The Drake Formation and claystone interbeds in the Lower Jurassic Sandstone unit have a marginal capacity for generation of gas with some liquids.

The remaining units being studied, the Rogaland Group, Shetland Group and the Heather Formation, have practically no potential for generation of hydrocarbons.

<u>The Kimmeridge Clay Formation</u> (11.5 m) consists of dark grey claystone. The content of organic carbon is very high, averaging at 9.04 weight percent. The pyrolysate yield (S2-peak) on the rock-eval pyrolysis is also very high averaging at 24.08 mg/g rock with a corresponding hydrogen index value of 259. Pyrolysis-GC, visual kerogen, maceral analysis and solvent extraction data support the enhanced quality of this unit. The kerogen is type II. <u>The Kimmeridge</u> <u>Clay Formation is a good although immature source rock for oil</u>. <u>The Coal Unit</u> (383 m) consists of alternating coal, shale and sandstone lithologies. Altogether the Coal Unit contains 39.35 m of coaly lithologies. The major portion of these are carbonaceous shales and carbominerites. Very little is true coal. The organic carbon values range up to 57-60 weight percent, the pyrolysate yield (S2-peak) up to 169.51 mg/g rock and the corresponding hydrogen index up to 320. Maceral analysis and solvent extraction data indicate that the organic matter is of humic nature. The composition is dominated by vitrinite with a potential principally for dry gas at high maturity levels (Ro > 1.0). Exinitic components with potential for heavier hydrocarbons are also abundant.

The Coal Unit has a considerable thickness, contain abundant organic matter and represent a rich potential for wet gas and condensate at relatively high maturity levels. Ro > 0.9.

1.2 Maturity (Figure I and II)

The maturity appears to increase continously with depth reaching the transitional zone (Ro = 0.35) around 2150 m, and the early mature zone (Ro = 0.55) at 3350 m. The peak mature zone (Ro = 0.70) is not reached in the well section. It will be reached at approximately 4000 m.

1.3 Migrated hydrocarbons (Figure III)

The presence of reservoired hydrocarbons in the well section proves that migration has occurred. In addition solvent extraction and headspace gas data suggest that migrated hydrocarbons occur over a much wider well section than the main reservoir interval. Migrated wet hydrocarbon gases are evident as high as 2000 m in the well section (Rogaland Group), and methane as high as 1750 m (Hordaland Group). The overlying well section contains only biogenic methane. The Coal Unit

below the main reservoir interval is totally dominated by indigenous hydrocarbons, indicating that migrated hydrocarbons are dominating over the interval from the Lower Jurassic Sandstone to the Rogaland Group with diffusion slightly into the Hordaland Group.

2. DISCUSSION AND RESULTS

2.1 Introduction

Well 6407/2-2 was drilled into Triassic grey beds with Middle and Lower Jurassic sandstones as the main targets. The well penetrated as expected the two sandstone intervals, and both proved to be gas condensate bearing. A drillstem test was carried out in the upper sandstone interval (DST 1, 2476-84 m).

This report contains an organic geochemical evaluation primarily of the Jurassic section with a brief note on the Lower Tertiary and Cretaceous sections. The Triassic grey beds below the Coal Unit is left out of discussion as the samples obtained were mainly sandstone heavily contaminated by cavings from the Coal Unit. Items to be discussed include source rock identifaction, maturity evaluation, and detection of migrated hydrocarbons. An organic geochemical evaluation of the gas condensate has been reported previously (Throndsen et al. 1983).

The methods being used represent well established routine analytical techniques and hence are not described here.

The organic carbon measurements, rock-eval pyrolysis, visual kerogen, maceral analysis and vitrinite reflectance have been carried out in the geological laboratory at Saga Petroleum A/S, whereas the pyrolysis gas chromatography, extraction, fractionation and GC of alkanes have been carried out by IKU. The headspace gas component and isotopic composition have been measured by IFE.

2.2 Source rocks

2.2.1 Hordaland Group (Enclosure 1)

The Hordaland Group has been penetrated with a total thickness of 571 m. Only the lowermost part of the unit (1920-55) is discussed here.

The lithology consists predominantly of greenish claystone interbedded with brownish grey and brick red claystones. The log responses are moderately homogenous with Gamma Ray values mostly between 40 and 50 API units. The interval considered is dated as being of Early Eocene age.

Four cuttings samples have been subjected to geochemical analysis by means of organic carbon measurements and rock-eval pyrolysis.

<u>Organic carbon</u>. The organic carbon data are shown in Table I. The values range from 0.35 to 0.45 weight percent averaging at 0.39 weight percent which is poor.

<u>Rock-eval pyrolysis</u>. The rock-eval pyrolysis results are given in Table II. The pyrolysate yields (S2-peak) are poor ranging from 0.11 to 0.17 mg/g rock with corresponding hydrogen index values ranging from 32 to 38. This gives average values of 0.14 mg/g rock and 36 which are poor and suggest type III kerogen.

<u>Hvdrocarbon potential</u>. The interpreted hydrocarbon potential is illustrated on Figure I. The lowermost part of the Hordaland Group has no potential for generation of hydrocarbons.

2.2.2 Rogaland Group (Enclosure 1)

The Rogaland Group has been penetrated with a total thickness of 133 m, and consists of the Balder and Lista/Sele Formations.

The lithology is variable ranging from tuffaceous variegated claystone in the Balder Formation to less tuffaceous grey claystone and siltstone in the Lista/Sele Formations. The log responses are moderately homogenous with gamma ray values slightly depressed compared to the unit above. The interval is dated as being of Late Paleocene to Early Eocene age.

Numerous sidewall core and cuttings samples have been subjected to geochemical analysis by means of organic carbon measurements and rockeval pyrolysis.

<u>Organic carbon</u>. The organic carbon data are shown in Table I. The values ranges from 0.11 to 1.67 weight percent averaging at 0.71 weight percent which is fair.

<u>Rock-eval pyrolysis</u>. The rock-eval pyrolysis results are given in Table II. The pyrolysate yields (S2-peak) are poor ranging from 0.04 to 0.87 mg/g rock with corresponding hydrogen index values ranging from 13 to 98. This gives average values of 0.34 mg/g rock and 43 which are poor and suggest type III kerogen.

<u>Hydrocarbon potential</u>. The interpreted hydrocarbon potential is illustrated on Figure I. The Rogaland Group has no potential for generation of hydrocarbons.

2.2.3 Shetland Group (Enclosure 1)

The Shetland Group has been penetrated with a total thickness of 240 m.

The lithology is homogenous consisting predominantly of medium grey

claystone. The log responses are homogenous with somewhat elevated Gamma Ray values around 60 API units compared to the unit above. The Densilog-Neutron trace shows consistant "mud-separation". The interval is dated as being of Middle Santonian to Santonian-Campanian age.

Numerous sidewall core and cuttings samples have been subjected to geochemical analysis by means of organic carbon measurements and rock-eval pyrolysis,

<u>Organic carbon</u>. The organic carbon data are shown in Table I. The content of organic carbon ranges from 0.56 to 1.26 weight percent averaging at 0.92 weight percent which is fair.

<u>Rock-eval pyrolysis</u>. The rock-eval pyrolysis results are given in Table II. The pyrolysate yields (S2-peak) are poor ranging from 0.10 to 0.56 mg/g rock with corresponding hydrogen index values ranging from 10 to 54. This gives average values of 0.24 mg/g rock and 26 which are poor and suggest type III kerogen.

<u>Hvdrocarbon potential</u>. The interpreted hydrocarbon potential is illustrated on Figure I. The Shetland Group has no potential for generation of hydrocarbons.

2.2.4 Cromer Knoll Group (Enclosure 1)

The Cromer Knoll Group has been penetrated with a thickness of only 81.5 m.

The lithology consists of grey claystone in the upper part and brick red calcareous claystone near the base of the formation. The log responses are homogenous with Gamma Ray values slightly increased compared to the Shetland Group above. The Densilog-Neutron trace shows clear "mud-separation". The unit is dated as being of Valanginian-Hauterivian to Albian age. Several cuttings and sidewall core samples have been subjected to geochemical analysis by means of organic carbon measurements and rock-eval pyrolysis.

<u>Organic carbon</u>. The organic carbon data are shown in Table I. The values are ranging from 0.74 to 1.20 weight percent giving an average value of 0.92 weight percent which is fair.

<u>Rock-eval pyrolysis</u>. The rock-eval pyrolysis results are given in Table II. The pyrolysate yields (S2-peak) are poor ranging from 0.02 to 0.54 mg/g rock with corresponding hydrogen index values ranging from 2 to 50. This give average values of 0.18 mg/g rock and 18 which are poor and suggest type III kerogen.

<u>Hydrocarbon potential</u>. The interpreted hydrocarbon potential is illustrated on Figure I. A non-source capacity can be inferred.

2.2.5 Kimmeridge Clay Formation (Enclosure 1)

The Kimmeridge Clay Formation (2409.5-21 m) is readily recognized from the "hot shale" response on the Gamma Ray trace reflecting high Uranium concentrations as inferred from the Spectralog. The Densilog-Neutron trace shows distinct "mud-separation". The lithology consists of dark grey laminated claystone. The formation is dated as being of Portlandian to Late Ryazanian age.

Three sidewall cores, one cuttings and one picked cuttings sample have been subjected to geochemical analysis. The programme includes organic carbon measurements, rock-eval pyrolysis, pyrolysis gas chromatography, solvent extraction, fractionation, gas chromatography of alkanes, visual kerogen estimates and maceral analysis.

<u>Organic carbon</u>. The organic carbon data are shown in Table I. The values range from 6.80 (1.64) to 10.90 weight percent averaging at 9.04 (7.56) weight percent which is very rich. The numbers in brackets include the 2414-25 m cuttings sample which is significantly contami-

nated by caved material and not representative for the unit.

<u>Rock-eval pyrolysis</u>. The rock-eval pyrolysis results are given in Table II. The pyrolysate yields (S2-peak) range from 14.97 (0.75) to 38.63 mg/g rock with corresponding hydrogen index values ranging from 203 (46) to 354. This give average values of 24.08 (18.25) mg/g rock and 259 (206) which is very rich. The numbers in brackets again include the 2414-23 m sample.

<u>Pyrolysis-GC</u>.- The three sidewall core samples and the picked cuttings sample (2405-23 m) have been analysed in more detail using pyrolysis gas chromatography. The pyrograms are shown in Figure IV a-d. The uppermost sidewall core sample (2410 m) shows a very depressed but still a long range $n-C_7$ to $n-C_{27}$ aliphatic homology (Figure IV b). The remaining samples show distinct n-alkene/n-alkane homologies ranging beyond $n-C_{25}$, and the proportion of aromatic compounds are low relative to the aliphatics. Generally these pyrograms show kerogen type II fingerprints.

<u>Visual kerogen and maceral analysis</u>. The three sidewall core samples being analysed for pyrolysis-GC have also been studied microscopically in transmitted and reflected light combined with fluorescence. The data are given in Table VI and VII.

Examination of ordinary strew mounts in transmitted light combined with incident light fluorescence (visual kerogen analysis) shows that the kerogen in all the three samples are highly dominated by amorphous organic material associated with minor amounts of herbaceous, woody and coaly material. The amorphous components show predominantly weak brownish fluorescence and abundant herbaceous inclusions.

Analysis of polished rock specimens in reflected light (maceral analysis) shows that the maceral composition in all three samples are dominated by exinite over vitrinite and inertinite. The 2416 m sample differs from the 2410 m and 2418 m samples in that the major

proportion of the exinite macerals have a more intense and brighter yellowish fluorescence typical of algal derived material, whereas the others are dominated by more deep orange yellow fluorescent exinite macerals typical for terrestrially derived material. This effect is also seen in the rock-eval pyrolysis data. The pyrolsate yield (S2-peak) and hydrogen index in the 2416 m sample is roughly twice as high as in the 2410 m and 2418 m samples. All three samples have a weak brownish fluorescent groundmass (rock matrix) and abundant pyrite.

Solvent extraction. The picked cuttings sample (2405-23 m) has been subjected to solvent extraction, fractionation and gas chromatography of alkanes. The extraction data are given in Table V a-d, and the gas chromatogram is shown in Figure V a. The abundance of extractable bitumen is 2120 ppm of rock which is high. The ratio of extractable bitumen normalised to organic carbon is moderate, 22.8 mg/g organic carbon. Extractrable bitumen crossplotted versus organic carbon falls in the field of good oil source rocks. There is reason to believe that the extracted bitumen is indigenous to the formation ; aromatics are more abundant than saturates, non-hydrocarbons are more abundant than hydrocarbons and the gas chromatogram of the alkanes shows distinct immature features. The gas chromatogram shows a bimodal n-alkane distribution peaking at $n-C_{17}$ and $n-C_{29}$. The $n-C_{17}$ centered hump is the more prominent indicating a predominantly algal marine character of the parent organic matter. An odd over even predominance is prominent beyond $n-C_{24}$ (CPI = 1.5). The pristane to phytane ratio of 1.3 is modest and indicative of sapropelic conditions.

<u>Hvdrocarbon potential</u>. The interpreted hydrocarbon potential is illustrated in Figure I. The Kimmeridge Clay Formation is a good although immature source rock for oil, and it could possibly be even more prolific in off-structure areas supposed the dominance of algal derived material as reveiled by reflected/fluorescent light microscopy in one of the samples (2416 m, swc) is prevalent.

2.2.6 Heather Formation (Enclosure 1)

The Heather Formation has been penetrated with a total thickness of 39.5 m.

The lithology is homogenous consisting predominantly of medium grey silty claystone. The log responses are homogenous with relatively high Gamma Ray values around 90 to 100 API units. The Densilog-Neutron trace shows consistant "mud-separation". The interval is dated as being of Bathonian to Callovian-Early Oxfordian age.

A number of sidewall core and cuttings samples have been subjected to geochemical analysis by means of organic carbon measurements, rockeval pyrolysis, pyrolysis gas chromatography, solvent extraction, fractionation, gas chromatography of alkanes and visual kerogen.

<u>Organic carbon</u>. The organic carbon data are shown in Table I. The values range from 0.98 to 2.26 weight percent averaging at 1.65 weight percent which is moderate.

<u>Rock-eval pyrolysis</u>. The rock-eval pyrolysis results are given in Table II. The pyrolysate yields (S2-peak) range from 0.56 to 1.80 mg/g rock with corresponding hydrogen index values ranging from 34 to 92. This give average values of 1.00 mg/g rock and 51 which are poor and suggest type III kerogen.

<u>Pvrolvsis-GC</u>. Two picked cutting samples (2441-50 m and 2450-59) have been analysed in more detail using pyrolysis gas chromatography. The pyrograms are shown in Figure IV e-f. Both samples show distinct toluene and xylene peaks and a depressed short range $n-C_7$ to $n-C_{20}$ aliphatic homology. Generally the pyrograms show rather inert kerogen type III fingerprints. The depressed aliphatic homology could reflect trace of caved material from the overlying Kimmeridge Clay Formation.

<u>Visual kerogen</u>. The two picked cuttings samples being analysed for pyrolysis-GC have also been studied microscopically. The data are given in Table VI. Examination of ordinary strew mounts in transmitted light combined with incident light fluorescence (visual kerogen analysis) shows that the kerogen in the upper sample (2441-50 m) is dominated by amorphous material over woody, coaly and herbaceous components, whereas the lower sample is dominated by herbaceous over amorphous, woody and coaly components. The amorphous material is non-fluorescent.

Solvent extraction. The picked cuttings sample 2450-59 m has been subjected to solvent extraction, fractionation and gas chromatography of alkanes. The extraction data are given in Table V a-d, and the gas chromatogram is shown in Figure V b. The abundance of extractable bitumen is only 173 ppm of rock which is very low. The ratio of extractable bitumen normalised to organic carbon is 17.7 mg/g organic carbon. Extractable bitumen crossplotted versus organic carbon falls in the field of poor sources. The gas chromatogram shows a bimodal n-alkane distribution peaking at $n-C_{17}$ and $n-C_{25}$. The $n-C_{17}$ centered hump is the more prominent. The odd over even predominance is prominent only beyond $n-C_{25}$ (CPI = 1.5). The pristane to phytane ratio of 1.6 is relatively high. There is reason to believe from the ratios of saturates to aromatics, hydrocarbons to non-hydrocarbons and the n-alkane distribution patterns that the extracted bitumen is to some degree contaminated by non-indigeneous hydrocarbons presumably by gas-condensate migrated from the main reservoir immediately below the analysed sample.

<u>Hydrocarbon potential</u>. The interpreted hydrocarbon potential is illustrated in Figure I. The Heather Formation has virtually no _ potential for generation of hydrocarbons.

2.2.7 Drake Formation (Enclosure 2)

The Drake Formation has been penetrated with a total thickness of 107 m.

The lithology is relatively homogenous consisting predominantly of medium grey silty claystone. The log responses are homogenous with

Gamma Ray values mostly between 70 and 90 API units. The Densilog -Neutron trace shows consistant "mud-separation". The formation is dated as being of Toarcian age.

A number of sidewall core and cuttings samples have been subjected to geochemical analysis by means of organic carbon measurements, rock-eveal pyrolysis, pyrolysis gas chromatography, solvent extraction, fractionation, gas chromatography of alkanes and visual kerogen.

<u>Organic carbon</u>. The organic carbon data are shown in Table I. The values range from 0.58 to 1.95 weight percent averaging at 1.19 weight percent which is moderate.

<u>Rock-eval pyrolysis</u>. The rock-eval pyrolysis results are given in Table II. The pyrolysate yields (S2-peak) range from 0.23 to 2.80 mg/g rock with corresponding hydrogen index values ranging from 21 to 167. This give average values of 0.98 mg/g rock and 83 which are poor and suggest type III kerogen.

<u>Pvrolvsis-GC</u>. Two picked cuttings samples (2627-36 m and 2663-72 m) have been analysed in more detail using pyrolysis gas chromatography. Both samples show distinct toluene and xylene peaks followed by a medium range aliphatic homology extending to $n-C_{25}$. The pyrograms can be interpreted as kerogen type II fingerprints.

<u>Visual kerogen</u>. The two picked cuttings samples analysed for pyrolysis-GC have also been studied microscopically. The data are given in Table VI. Examination of ordinary strew mounts in transmitted light combined with incident light fluorescence (visual kerogen analysis) shows that the kerogen in both samples is dominated by amorphous and herbaceous material. The amorphous material is nonfluorescent.

Solvent extraction.

The two picked cuttings samples have also been subjected to solvent

extractions, fractionation and gas chromatography of alkanes. The extraction data are given in Table V a-d, and the gas chromatograms are shown in Figure V c-d. The abundance of extractable bitumen is 382 and 673 ppm of rock in the 2727-36 m and 2663-72 m sample respectively. These are fair values. The ratio of extractable bitumen normalised to organic carbon is 41.5 and 51.0 mg/g organic carbon respectively. Extractable bitumen crossplotted versus organic carbon falls in the field of poor to fair oil sources. The two gas chromatograms are nearly identical. They show a strong unimodal n-alkane distribution peaking at $n-C_{16}$. An odd over even predominance is distinct only beyond $n-C_{25}$ (CPI = 1.2 and 1.4 respectively). The pristane to phytane ratio of 1.5 and 1.8 respectively for the two samples is relatively high. The presence of non-indigenous hydrocarbon is suspected based on the high extractable bitumen to organic carbon ratio and the dominance and mature appearance of the $n-C_{2n}$ alkanes. This effect, however, cannot be verified from other sensitive parameters like the saturates to aromatics and the hydrocarbon to nonhydrocarbon ratios.

<u>Hvdrocarbon potential</u>. The interpreted hydrocarbon potential is illustrated in Figure I. The rock-eval pyrolysis indicates a poor source rock capacity for the Drake Formation, and pyrolysis-GC and extraction data indicate some potential for generation of heavier C_{15+} hydrocarbons. These features can be interpreted as a mixed kerogen type with an overall poor capacity predominantly for gas with some oil. The potential is coming mainly from the herbaceous kerogen constituents.

2.2.8 Lower Jurassic sandstone (Enclosure 2)

The Lower Jurassic sandstone unit has been penetrated with a total thickness of 183 m. The lithology is heterogeneous consisting predominantly of sandstone interbedded with grey claystone and siltstone. The log responses are equally heterogenous. The Gamma Ray

- 14

values for the interbedded finegrained lithologies are mostly between 70 and 90 API units. The unit is dated as being of Pliensbachian-Sinemurian to Toarcian age.

One sidewall core and two picked cuttings samples have been subjected to geochemical analysis by means of organic carbon measurements, rockeval pyrolysis, pyrolysis gas chromatography, solvent extraction, fractionation, gas chromatography of alkanes, and visual kerogen.

<u>Organic carbon</u>. The organic carbon data are shown in Table I. The values range from 1.14 to 1.96 weight percent averaging at 1.54 weight percent which is moderate.

<u>Rock-eval pyrolysis</u>. The rock-eval pyrolysis results are given in Table II. The pyrolysate yields (S2-peak) range from 1.78 to 1.96 mg/g rock with corresponding hydrogen index values ranging from 100 to 169. This gives average values of 1.89 mg/g rock and 123 which are poor to fair and suggest type III kerogen.

<u>Pvrolvsis-GC</u>. The two picked cuttings samples have been analysed in more detail using pyrolysis gas chromatography. The pyrograms are shown in Figure IV i-j. Both samples show distinct toluene and xylene peaks followed by a medium range aliphatic homology extending to $n-C_{25}$. The pyrograms can be interpreted as kerogen type II fingerprints.

<u>Visual kerogen</u>. The two picked cuttings samples analysed for pyrolysis-GC have also been studied microscopically. The data are given in Table VI. Examination of ordinary strew mounts in transmitted light combined with incident light fluorescence (visual kerogen analysis) shows that the kerogen in both samples is dominated by herbaceous and woody material over amorphous (non to weak fluorescent) and coaly material.

<u>Solvent extraction</u>. The two picked cuttings samples have also been subjected to solvent extraction, fractionation and gas chromatography of alkanes. The extraction data are given in Table V a-d, and the gas

chromatograms are shown in Figure V e-f. The abundance of extractable bitumen is 486 and 515 ppm of rock in the 2717-26 m and 2735-44 m sample respectively. The ratio of extractable bitumen normalised to organic carbon is 31.8 and 45.2 mg/g organic carbon respectively. Extractable bitumen crossplotted versus organic carbon falls in the field of poor to fair oil sources. The two gas chromatograms show a unimodal n-alkane distribution peaking at $n-C_{17}$, however, with a distinch hump around $n-C_{29}$. An odd over even predominance is significant beyond $n-C_{21}$ (CPI = 1.8 and 1.7 respectively). The pristane to phytane ratio of 2.0 and 1.7 for the two samples is high. The presence of non-indigenous hydrocarbons is suspected especially in the lower sample (2735-44 m) based on the high extractable bitumen to organic carbon, saturates to aromatics, hydrocarbon to non-hydrocarbon ratios and the dominance and mature appearance of the $n-C_{20}$ alkanes.

<u>Hydrocarbon potential</u>. The interpreted hydrocarbon potential is illustrated in Figure I. The rock-eval pyrolysis indicates a poor to fair source rock capacity for the finegrained lithologies. The pyrolysis-GC data indicate some potential for heavier C₁₅₊ hydrocarbons. These features can be interpreted in terms of a mixed kerogen type with an overall poor capacity predominantly for gas with some oil. The potential is mainly due to the herbaceous kerogen constituents.

2.2.9 Coal Unit (Enclosure 2)

The Coal Unit has been penetrated with a total thickness of 383 m.

The sequence consists of alternating coal, shale and sandstone lithologies, and is dated as being of Late-Middle Rhaetian to Pliensbachian-Sinemurian age.

<u>Amount of coal and carbonaceous shale.</u> The amount of coal and carbonaceous shale in the Coal Unit can be estimated from the Densilog trace. The principle behind this approach is the density contrast between organic and mineral matter. Organic matter in coal-bearing

series has densities in the range of 1.0 to 1.5 g/cm³, whereas mineral matter has densities ranging from 2.65 to 2.87 g/cm³ for clay minerals, quartz and the most common carbonates. Associations of organic and mineral matter thereby result in intermediate densities. A density of 1.5 g/cm³ corresponds to approximately 55 weight percent organic carbon, 1.7 g/cm³ to 45 weight percent, and 2.0 g/cm³ to 30 weight percent.

The cumulative thickness of coal and carbonaceous are given in Table X. Altogether the Coal Unit contains 39.35 m of low density (< 2.0 g/cm³) coaly lithologies. Complementary to these carbon enriched lithologies the Coal Unit bears considerable amounts of shaly lithologies with variable and in parts high organic matter contents.

A number of picked cuttings samples have been subjected to geochemical analysis by means of organic carbon measurements, rock-eval pyrolysis, pyrolysis gas chromatography, solvent extraction, fractionation, gas chromatography of alkanes, and maceral analysis. The samples being analysed are not representative for the Coal Unit as a whole, but give an idea of the size and variability in organic richness in the carbonaceous lithologies.

<u>Organic carbon</u>. The organic carbon data are shown in Table I. The values range from 4.30 to 57.60 weight percent averaging at 33.59 weight percent which is very high.

<u>Rock-eval pyrolysis</u>. The rock-eval pyrolysis results are given in Table II. The pyrolysate yields (S2-peak) range from 9.31 to 169.51 mg/g rock with corresponding hydrogen index values ranging from 186 to 320. This gives average values of 89.57 mg/g rock and 260 which are very high and moderate values respectively and suggests type III to II kerogens.

<u>Pyrolysis-GC</u>. Several picked cuttings samples have been analysed in more detail using pyrolysis gas chromatography. The pyrograms are shown i Figure IV k-n. The samples show distinct low molecular weight aromatics followed by a long range aliphatic homology extending beyond

 $n-C_{25}$ indicating a significant input of lipid material (spores, cuticles, resins). The pyrograms can be interpreted as kerogen type II fingerprints.

Maceral analysis. Polished rock specimens of the picked cuttings samples analysed for pyrolysis-GC have been studied microscopically in reflected light combined with incident light fluorescence (maceral analysis). All the samples are dominated by mineral matter making up 55.5 to 71.7% of the total sample. This is in accordance with the organic carbon data. Pyrite is not a major component among the minerals (0.5-2.3%). The maceral composition is dominated by vitrinite (43.3-68.8%) over inertinite (21.6-39.0%) and exinite (7.1-21.6%), a typical succession in humic coal series. The exinite concentration is, however, relatively high and in good agreement with the rather aliphatic pyrolysis-GC fingerprints. The exinite macerals have a yellow to orange-yellow fluorescence typical for terrestrially derived exinite (sporinite, cutinite, resinite). Alginite is not a significant component.

Solvent extraction. The picked cuttings samples have also been subjected to solvent extraction, fractionation and gas chromatography of alkanes. The extraction data are given in Table V a-d, and the gas chromatograms are shown in Figure V g-j. The abundance of extractable bitumen is ranging from 6568 to 7722 ppm weight of rock averaging at 6984 ppm of rock which is very high. The ratio of extractable bitumen normalised to organic carbon is, however, moderate ranging from 17.4 to 29.9 mg/g organic carbon with an average at 21.8 mg/g. Extractable bitumen crossplotted versus organic carbon falls in the field of good oil source rocks. The extracted bitumen is indigenous to the formation ; aromatics are more abundant than saturates, non-hydrocarbons are more abundant than hydrocarbons and the gas chromatograms of the alkanes show distinct immature features. The gas chromatograms are characterised by a marked pristane peak and a dominance of C₂₃₊ n-alkanes indicating a terrestrially derived nature of the parent organic matter. An odd over even predominance is prominent beyond $n-C_{10}$ (CPI = 1.8-2.0). The pristane to phytane ratio ranging from 4.9 to 7.7 is very high and supports the humic nature of the organic

matter.

<u>Hydrocarbon potential</u>. The interpreted hydrocarbon potential is illustrated in Figure I. The Coal Unit has a considerable thickness, contain abundant organic matter, and represent a rich potential for hydrocarbon generation. The major portion of the organic matter is contained in carbonaceous shales, carbominerites, and only to a limited extent in pure coal. The organic matter is of humic nature. The composition is dominated by vitrinite with a potential principally for dry gas at high maturity levels (Ro>1.0). Exinitic components with potential for heavier hydrocarbons are also abundant.

The above consideration can be summarised with respect to hydrocarbon potential as follows: The Coal Unit has a considerable thickness, contain abundant organic matter and represent a rich potential for wet gas and condensate at relatively high maturity levels, Ro > 0.9.

2.3 Maturity

<u>Vitrinite reflectance</u>. Although the material quality in this well for the main part is unfavourable, it has been possible to establish a reliable vitrinite reflectance versus depth profile (Figure II) owing to the excellent material obtained from the Coal Unit. The vitrinite reflectance profile represents the base to which the maturity level will be referred. More secondary maturity indicators including spore colour, rock-eval pyrolysis and solvent extraction data are used primarily to confirm the vitrinite reflectance data.

The vitrinite reflectance data are given in Table VIII and IX.

The vitrinite reflectance appears to increase continously with depth reaching Ro = 0.35 at approximately 2150 m and Ro = 0.55 at 3350 m. A vitrinite reflectance value of Ro =0.70 is not reached in this well. It will be reached at approximately 4000 m based on extrapolation of the above trend. <u>Spore colour</u>. Spore colour estimates have been run over the Lower Jurassic Sandstone to Kimmeridge Clay Formation interval. The results are contained in Table VI. A TAI value of 2.0 is inferred for all the samples, which is in accordance with the vitrinite reflectance data.

<u>Rock-eval pyrolysis</u>. The rock-eval pyrolysis data are given in Table II. The pyrolysis T-max values measured are variable mostly due to very low pyrolysate yield (S2-peak) and thereby difficult T-max pick. Reliable values, however, appears to increase from around 412⁰C in the Kimmeridge Clay Formation to around 423⁰C in the Coal Unit. This is in agreement with the vitrinite reflectance data.

<u>Solvent extraction</u>. Several cuttings samples over the interval from the Coal Unit to the Kimmeridge Clay Formation have been subjected to solvent extractions, fractionation and gas chromatography of alkanes. The results are shown in Table V a-d and Figure V.

All the GC-chromatograms show at least some immature features (odd over even predominance) although contamination from non-indigenous hydrocarbons is suspected in some of the samples. Prominent immature features are evident in the Kimmeridge Clay Formation and Coal Unit samples.

The Kimmeridge Clay Formation sample (2405-23 m) shows clarly immature features with a typical bimodal distribution with a maximum for pristane and around n-C₂₉. The proportion of high carbon number biomarker compounds is relatively high. This proportion will diminish considerably with increasing maturity. In addition there is a notable odd over even predomonance (CPI = 1.5), pristane and phytane are more abundant than their associated n-alkanes, C₂₂₊ n-alkanes are relatively abundant and the ratio of saturates to aromatics is less than unity altogether supporting the immature setting of this sample.

The Coal Unit samples also show clearly immature characters with a marked odd over even predominance (CPI = 1.8 to 2.0), marked predominance of pristane over the associated n-alkane $n-C_{17}$ (pristane/n-C₁₇ = 2.2 - 6.8), C_{22+} n-alkanes are abundant and the

ratio of saturates to aromatics is mostly below 0.5 altogether supporting the immature setting of these samples.

<u>Maturity levels</u>. Based on the discussion above, it is reasonable to interpret the established vitrinite reflectance profile as reliable. The vertical maturity trend can be summarized as shown in Figure II. The maturity increases continously with depth reaching the transitional zone (Ro = 0.35) around 2150 m, and the early mature zone (Ro = 0.55) at 3350 m. The peak mature zone (Ro = 0.70) is not reached in the well section. It will be reached at approximately 4000 m.

2.4 Migrated hydrocarbons

The presence of reservoired hydrocarbons in the well section proves that migration has occurred. This effect is reflected in various parameters which are sensitive to thermogenic non-indigenous hydrocarbons.

<u>Solvent extraction</u>. Altogether 10 cuttings samples covering the interval from the Coal Unit to the Kimmeridge Clay Formation have been subjected to solvent extraction, fractionation and gas chromatography of alkanes. The results are shown in Table V a-d and Figure V. Solvent extraction data are sensitive to migration of thermogenic C₁₅₊ hydrocarbons into immature sections.

The uppermost sample, from the Kimmeridge Clay Formation (2405-23 m) shows no clear evidence of migrated hydrocarbons. All the parameters from this sample point toward an indigenous origin for the extracted bitumen.

The following five samples, however, covering the interval from the Lower Jurassic Sandstone to the Heather Formation are suspected to contain some non-indigenous hydrocarbons. The ratios of extractable organic matter to organic carbon, saturates to aromatics and hydrocarbons to non-hydrocarbons are not very high, but high enough to suspect some degree of contamination. In addition the gas chromatograms are relatively similar with respect to overall pattern, pristane to phytane and pristane to $n-C_{17}$, and furthermore they bear striking similarities in the $n-C_{21}$ range alkane distribution with the reservoired condensate (see Throndsen et al. 1983)

The underlying Coal Unit samples show no evidence of migrated hydrocarbons. All the parameters indicate an indigenous origin for the extracted bitumens.

<u>Headspace gas</u>. The headspace gas in numerous canned cuttings samples covering the interval from 400 m (Nordland Group) to 3347 m (Triassic Grey Beds, T.D.) has been analysed by means of component and carbon isotope composition. The results are given in Table III and IV and illustrated in Figure III.

Throughout the Nordland and Hordaland Groups the abundance of gaseous hydrocarbons is high. The wetness $(C_2 - C_4 / C_1 - C_4)$ of the gas is low, for the main part below 0.01, whereas the isobutane to n-butane ratio $(i-C_4 / n-C_4)$ is high, normally above 1.5. These data indicate a low maturity and indigenous origin for these gases. The isotopic composition of the methane clearly indicates biogenic gas down to 1750 m with δ^{13} C values mainly below -55 0 /oo. At this depth there is an incipient change-over to more positive values, probably reflecting diffusion of thermogenic methane from below.

In the Rogaland Group the picture is different. The abundance of gaseous hydrocarbons is till high. On the contrary the wetness (C_2-C_4/C_1-C_4) is turning to higher values, around 0.05, and the isobutane to n-butane ratio is turning to much lower values, around 0.50. The turning point occurs at 2000 m. The various data suggest that this zone below 2000 m contains some mature migrated hydrocarbon gases. The isotopic composition of the methane clearly indicates a thermogenic origin. The turning point of 2000 m is considerable deeper than the turning point indicated by the carbon isotopic composition of the methane at 1750 m. This discrepancy probably reflects the different ability for diffusion between methane and the wet hydrocarbon gases. Methane diffuses more easily than the wet

hydrocarbon gases.

Through the underlying interval from the Shetland Group to the Lower Jurassic Sandstone the headspace gas is relatively homogenous with respect to abundance, wetness, isobutane to n-butane ratio and carbon isotopic composition. The abundance is high to very high, the wetness (C_2-C_4/C_1-C_4) is moderate ranging from around 0.20 to 0.70, the isobutane to n-butane ratio is low, around 0.60, and the δ^{13} C values for methane are around -40^0 /oo. All the data are very similar to the reservoired gas condensate and clearly indicate a thermogenic and migrated origin for these hydrocarbon gases.

In the underlying Coal Unit the picture is again different. The abundance of gaseous hydrocarbons is very high, the wetness $(C_2 - C_4 / C_1 - C_4)$ is relatively low, around 0.10, and the isobutane to n-butane ratio is high, for the main part above 2.0. This is in strong contrast to the reservoir section above, and suggest an indigenous origin for the Coal Unit gases. The carbon isotopic composition with δ^{13} C values for methane around -40 0 /oo indicate significant generation of thermogenic gases in the Coal Unit. These gases are, however, not released from the coal structure at the present maturity level. Significant release of gaseous hydrocarbons from coal-bearings series occurs at relatively high maturity levels, above Ro = 1.0.

<u>Migrated hydrocarbons</u>. The presence of the reservoired hydrocarbons in the well section proves that migration has occurred, however, the discussion above confirms that migrated hydrocarbons occur over a wider well section than the main reservoir intervals. Migrated wet hydrocarbon gases are evident as high as 2000 m in the well section, and methane as high as 1750 m. The overlying well section contains only bacterially formed biogenic methane. The Coal Unit below the reservoir is totally dominated by indigenous hydrocarbons.

3. <u>REFERENCES</u>

THRONDSEN, T.O., ANDRESEN, B., BREVIK, E.M. AND RAHEIM, A. (1983) An organic geochemical evaluation of a gas-condensate (DST 1) in Saga's 6407/2-2 well offshore Norway. Institute for energy technology report No. IFE/KR/F-83/081, 18 pp. 4. TABLES AND FIGURES

LIST OF TABLES

Table	I	:	Lithology and organic carbon
Table	II	:	Rock-eval pyrolysis
Table	III	:	Headspace gas
Table	IV	:	Isotopic composition of headspace gas δ^{13} C
Table	Ŷ	:	Solvent extraction
Table	VI	:	Visual kerogen and spore colour
Table	VII	:	Maceral composition
Table	VIII	:	Vitrinite reflectance, Ro
Table	IX	:	Vitrinite reflectance raw data
Table	x	;	Coal Unit : cumulative thickness of coal and carbonaceous
			shale.

TABLE : I a

Sample	Sample			Organic
depth m	type	Ana	alysed lithology	carbon % wt
HORDALAND C	₽ 1384-195	55 m		
1920-30	ctgs	60%	<u>Claystone</u> , light grey to greenish grey, blocky to subfissile, firm to soft, predominantly non-calcareous, occa- sionally glauconitic	0.45
		30%	Claystone/siltstone, brownish grey, firm to soft, non to slightly calca- reous	
		10%	<u>Claystone</u> , brick red, blocky, soft to firm, non to slightly calcareous	
1930-40	ctgs	60%	<u>Claystone</u> , light grey to greenish grey, blocky to subfissile, firm to soft, predominantly non-calcareous, occasionally glauconitic	0.40
		20%	Claystone/siltstone, brownish grey, firm to soft, non to slightly calca- reous	
		20%	Claystone, brick red, blocky, soft to firm, non to slightly calca- reous	·
1940 – 50	ctgs	75%	<u>Claystone</u> , light grey to greenish grey, blocky to subfissile, firm to soft, predominantly non-calcareous, occasionally glauconitic	0.34
	•	20%	Claystone, brick red, blocky, soft to firm, non to slightly calcareous	
		5%	<u>Claystone/siltstone</u> , brownish grey, firm to soft, non to slightly calca- reous	
		Tr	Purite, limestone, sand	

TABLE : I b

LITHOLOGY	AND ORGANIC CARBON					
Sample depth m	Sample type	Analysed lithology	Organic carbon % wt			
1950–60	ctgs	70% <u>Claystone</u> , light grey to greenish grey, blocky to subfissile, firm to soft, predominantly non-calcareous, occasionally glauconitic	0.35			
		20% <u>Claystone</u> , brick red, blocky, soft to firm, non to slightly calcareous				
		10% <u>Claystone/siltstone</u> , brownish grey, firm to soft, non to slightly cal- careous				
	a	Tr Pyrite, sand, limestone				

ROGALAND GROUP 1955-2088 m

1960-70	ctgs	50% <u>Claystone</u> , light grey to greenish 7 0.57 grey, blocky to subfissile, firm to soft, predominantly non-calcareous, occasionally glauconitic
		20% <u>Claystone</u> , brick red, blocky, soft to firm, non to slightly calcareous
		20% <u>Tuffaceous claystone</u> , light grey with black specs, soft, non-calcareous
÷		10% <u>Claystone/siltstone</u> , brownish grey, firm to soft, non to slightly calcareous
		Tr Limestone, sand, glauconite, pyrite

TABLE : I C

LITHOLOGY	AND ORG	ANIC CARBON	
Sample depth m	Sample type	Analysed lithology	Organic carbon % wt
1970-80	ctgs	50% Tuffaceous claystone, light grey with black specs, soft, non-calcareous	0.46
		20% <u>Claystone</u> , light grey to greenish grey, blocky to subfissile, firm to soft, predominantly non-calcareous, occasionally glauconitic	
		20% <u>Claystone</u> , brick red, blocky, soft to firm, non to slightly calcareous.	
		10% <u>Claystone/siltstone</u> , brownish grey, firm to soft, non to slightly cal- careous.	
	٠,	Tr Sand, pyrite, limestone	
1975.0	SWC	<u>Claystone</u> , medium to dark grey, firm, blocky, silty, non to slightly cal- careous	0.38
1980-90	ctgs	60% <u>Tuffaceous claystone</u> , light to medium grey with black specs, firm, blocky to subfissile, non to slightly calcareous.	0.41
		30% <u>Claystone</u> , light grey to greenish grey, blocky to subfissile, firm to soft, predominantly non-calcareous, occa- sionally glauconitic	
		10% <u>Claystone</u> , brick red, blocky, soft to firm, non to slightly calcareous	
		Tr Sand, pyrite, limestone	
1989.0	SWC	<u>Claystone</u> , medium to dark grey, firm, blocky, slightly calcareous	1.16
1990-00	ctgs	60% <u>Tuffaceous claystone</u> , medium to dark grey with black specs, firm, blocky to subfissile, non to slightly calca- rous	0.82
		40% <u>Cement</u>	

Tr <u>Claystone</u>, light grey to greenish grey

TABLE : I d

LITHOLOGY	AND ORC	ANIC	CARBON	
Sample depth m	Sample type	Anal	ysed lithology	Organic carbon % wt
2000.0	SWC	<u>Clays</u> ł	stone, medium to dark grey, firm blocky, slightly calcareous	1.67
2000-10	ctgs	85% j č k t	Puffaceous claystone, medium to dark grey with black specs, occ prownish, blocky to subfissile, non to slightly calcareous	1.06
		10% 🤆	Cement	
		5% <u>I</u>	Limestone, crystalline, clear	
2010–20	ctgs	100% <u>1</u> c	Fuffaceous claystone, medium to dark grey with black specs, occ brownish, blocky to subfissile, non to slightly calcareous	1.20
		Tr I c	Light greenish grey claystone, pyrite, cement, limestone	
2012.0	SWC	<u>Clays</u> k	stone, medium to dark grey, firm, blocky to subfissile, non-calcareous	1.24
2019.0	SWC	Sampl	le a/a	0.70
2020-30	ctgs	95% <u>1</u> 2 1	Puffaceous claystone, medium to dark grey with black specs, occ brownish, blocky to subfissile, non to slightly calcareous	1.08
		5% <u>C</u> t	Claystone, light to greenish grey, firm to soft, blocky, in parts glauconitic, non-calcareous	
		Tr I	Limestone	
2030–40	ctgs	50% <u>1</u> 9 1	Fuffaceous claystone, medium to dark grey with black specs, occ brownish, blocky to subfissile, non to slightly calcareous	0.35
		40% <u>C</u> f	Laystone, light to greenish grey, firm to soft, blocky, in parts glauco- nitic, non to slightly calcareous	
		10% <u>C</u> t	Llaystone, redbrown occasionally with suffaceous specs, firm, blocky, non to slightly calcareous	

TABLE : I e

LITHOLOGY	AND ORG	ANIC CARBON	· · · · · · · · · · · · · · · · · · ·
Sample depth m	Sample type	Analysed lithology	Organic carbon % wt
		Tr Limestone, cement	
2038.0	SWC	<u>Claystone</u> , light green interlaminated with redbrown claystone, firm, blocky, non-calcareous	0.11
2040–50	ctgs	50% <u>Claystone</u> , light to greenish grey, firm to soft, blocky, in parts glau- conitic, non to slightly calcareous	0.35
		25% <u>Tuffaceous claystone</u> , medium to dark grey with black specs, occ brownish, blocky to subfissile, non to slightly calcareous	
		25% <u>Claystone</u> , redbrown occasionally with tuffaceous specs, firm, blocky, non- calcareous	·
		Tr Limestone, cement, pyrite	·
2050-60	ctgs	Sample a/a	0.35
2056.0	SWC	<u>Claystone</u> , light to medium greenish grey, firm to hard, non-calcareous	0.28
2060-70	ctgs	50% <u>Claystone</u> , medium grey, firm, blocky to subfissile, non-calcareous, occa- sionally tuffaceous	0.40
		40% <u>Claystone</u> , light to medium greenish of grey, firm to hard, non-calcareous, in parts glauconitic	
		10% <u>Claystone</u> , redbrown occasionally light brown, firm, blocky, non-calcareous	
		Tr Limestone, glauconite, pyrite	
2070.0	SWC	<u>Claystone</u> , medium grey, firm, blocky to subfissile, non-calcareous	0.60

TABLE : I f

.

Sample depth m	Sample type	Analysed lithology	Organi carbon % wt
2070-80	ctgs	70% <u>Claystone</u> , medium grey, firm,block to subfissile, non-calcareous, occ nally tuffaceous	y asio-
		25% <u>Claystone</u> , light to medium greenist grey, firm to hard, non-calcareous in parts glauconitic	n . ,
		5% <u>Claystone</u> , redbrown occasionally 1 brown, firm, blocky, non-calcareou	ight s
		Tr Limestone, pyrite	
2080-90	ctgs	Sample a/a	0.90
SHETLAND GP	2088-2328	• • • • • • • • • • • • • • • • • • •	
2090-00	ctgs	Sample a/a	0.76
2100-10	ctgs	60% <u>Claystone</u> , medium grey, firm, block to subfissile, non-calcareous	c <u>i</u> r 0.98
		35% <u>Claystone</u> , light grey to greenish of firm, blocky, non-calcareous, in paglauconitic	grey, arts
a.		5% <u>Claystone</u> , redbrown occasionally 1. brown, firm, blocky, non-calcareou	ight s
		Tr Limestone, pyrite, glauconite	
2110-20	ctgs	Sample a/a	0.61
2120-30	ctgs	Sample a/a	1.26
2130-40	ctgs	80% <u>Claystone</u> , medium grey, firm,block to subfissile, non-calcareous	2
		15% <u>Claystone</u> , light grey to greenish grey, firm, blocky, non-calcareous in parts glauconitic	,
		5% <u>Claystone</u> , redbrown, occasionally brown, firm, blocky, non-calcareous	light S
		Tr Limestone, pyrite, glauconite	

TABLE : I g

LITHOLOGY	AND ORG	ANIC CARBON	
Sample depth m	Sample type	Analysed lithology	Organic carbon % wt
2140-50	ctgs	Sample a/a	0.78
2150-60	ctgs	Sample a/a	0.80
2160-70	ctgs	Sample a/a	0.92
2170-80	ctgs	Sample a/a	0.87
2175.0	SWC	<u>Claystone</u> , medium grey, firm, blocky to subfissile, silty, slightly to non-calcareous	1.02
2180-90	ctgs	80% <u>Claystone</u> , medium grey, firm, blocky to subfissile, silty, non- calcareous	1.04
	•	15% <u>Claystone</u> , light grey to greenish grey, firm, blocky, non-calcareous, in parts glauconitic	
•		5% <u>Claystone</u> , redbrown, occasionally light brown, firm, blocky, non- calcareous	
		Tr Limestone, pyrite, glauconite	
2190-00	ctgs	Sample a/a	0.80
2200-10	ctgs	Sample a/a	1.00
2210-20	ctgs	Sample a/a	0.79
2220-30	ctgs	Sample a/a	1.20
2227.5	SWC	Claystone, medium grey, firm, blocky to subfissile, slightly calcareous	0.56
2230-40	ctgs	80% <u>Claystone</u> , medium grey, firm, blocky to subfissile, silty, non-calcareous	0.71
		15% <u>Claystone</u> , light grey to greenish grey, firm, blocky, non-calcareous, in parts glauconitic	
		5% <u>Claystone</u> , redbrown, occasionally light brown, firm, blocky, non-calcareous	5

., '

Tr Limestone, pyrite, glauconite

TABLE : I h

LITHOLOGY AND ORGANIC CARBON Organic Sample Sample carbon depth type Analysed lithology 8 wt m 0.87 2240-50 ctgs Sample a/a 0.95 2250-60 95% Claystone, medium grey, firm, blocky ctgs to subfissile, silty, non-calcareous 5% Claystone, light grey to greenish grey, firm, blocky, non-calcareous Tr Redbrown claystone, limestone 0.99 2258.0 Claystone, medium grey, firm, blocky to SWC subfissile, silty, slightly calcareous 1.11 2260-70 ctgs 90% Claystone, medium grey, firm, blocky to subfissile, silty, non-calcareous 10% Claystone, light grey to greenish grey, firm, blocky, non-calcareous Tr Redbrown claystone, limestone, glauconite 0.98 2270-80 Sample a/a ctgs 1.01 2280-90 ctgs Sample a/a 0.93 2290-00 Sample a/a ctgs 2293.0 SWC Claystone, medium grey, firm, blocky to 1.16 subfissile, silty, calcareous 1.00 2310-20 90% Claystone, medium grey, firm, blocky ctqs to subfissile, silty, non-calcareous 10% Claystone, light grey to greenish grey, firm, blocky, non-calcareous Tr Redbrown claystone, limestone, glauconite 0.81 2320-30 Sample a/a ctgs 0.80 Claystone, medium grey, firm, blocky 2326.0 SWC to subfissile, silty, slightly calcareous.
TABLE : I i

LITHOLOGY	AND ORG	ANIC CARBON	
Sample depth m	Sample type	Analysed lithology	Organic carbon % wt
CROMER KNOLL	LGP 2328	-2409.5 m	
2330-40	ctgs	90% <u>Claystone</u> , medium grey, firm, blocky to subfissile, silty, non to slightly calcareous	1.04
		10% <u>Claystone</u> , light grey to greenish grey, firm, blocky, non-calcareous	
		Tr Redbrown claystone, limestone, glauconite	
2340-50	ctgs	Sample a/a	0.92
2347.0	SWC	Claystone with interbeds of limestone, medium grey, firm, blocky to sub- fissile, silty	0.72
2350-60	ctgs	90% <u>Claystone</u> , medium grey, firm, blocky to subfissile, silty, slightly cal- careous	0.92
		10% <u>Claystone</u> , light grey to greenish grey, firm, blocky, non-calcareous	
		Tr Redbrown claystone, limestone, glauconite	
2360-70	ctgs	Sample a/a	0.87
2364.0	SWC	Claystone, medium grey, firm, blocky to subfissile, silty, non-calcareous	0.74
2370-78	ctgs	90% <u>Claystone</u> , medium grey, firm, blocky to subfissile, silty, slightly calcareous	0.89
		10% <u>Claystone</u> , light grey to greenish grey firm, blocky, non-calcareous	м., м.
		Tr Redbrown claystone, limestone, glauco- nite	
2375.0	SWC	<u>Claystone</u> , medium grey, firm, blocky to subfissile, silty, non-calcareous	1.11
2378-87	ctgs	85% <u>Claystone</u> , medium grey, firm, blocky to subfissile, silty, slightly calca- reous	0.85

TABLE : I j

Sample depth m	Sample type	Analysed lithology	Organic carbon % wt
	•	10% <u>Claystone</u> , light grey to greenish grey, firm, blocky, non-calcareous	
	·	5% <u>Claystone</u> , redbrown, firm, blocky, non to slightly calcareous	
		Tr Limestone, glauconite, pyrite	
2387–96	ctgs	70% <u>Claystone</u> , light to medium grey, firm, blocky to subfissile, silty, non to slightly calcareous	0.85
		30% <u>Claystone</u> , redbrown, firm, blocky, slightly to very calcareous, grading to marl.	
		Tr Limestone	
2388.0	SWC	<u>Claystone</u> , medium grey, firm, blocky to subfissile, silty, slightly calcareous	1.20
-10 africa 1 a		• • •	
2396-05	ctgs	60% <u>Claystone</u> , light to medium grey, firm, blocky to subfissile, silty, non to slightly calcareous	0.75
		40% <u>Claystone</u> , redbrown, firm, blocky, slightly to very calcareous, grading to marl.	
		Tr Limestone	
2405–14	ctgs	40% <u>Claystone</u> , light to medium grey, firm, blocky to subfissile, silty, non to slightly calcareous	1.09
		40% <u>Claystone</u> , redbrown, firm, blocky, slightly to very calcareous, grading to marl.	
		10% <u>Claystone</u> , dark grey, firm, fissile, carbonaceous, non-calcareous	-
		10% Limestone, white, hard	
		Tr Pyrite	

TABLE : I k

LITHOLOGY	AND ORG	ANIC CARBON	
Sample depth m	Sample type	Analysed lithology	Organic carbon % wt
KIMMERIDGE	CLAY FM 24	109.5 - 2421 m	
2405-23	ctgs	Picked : <u>Claystone</u> , dark grey, firm, fissile, carbonaceous, non-calcareous	9.28
2410.0	SWC	Sample a/a	6.80
2414–23	ctgs	40% <u>Claystone</u> , light to medium grey, firm, blocky to subfissile, silty, non to slightly calcareous.	1.64
		40% <u>Claystone</u> , redbrown, firm, blocky, slightly to very calcareous, grading to marl.)
		20% <u>Claystone</u> , dark grey, firm, fissile, carbonaceous, non-calcareous	
		Tr Limestone, pyrite	
2416.0	SWC	<u>Claystone</u> , dark grey, firm, fissile, car- bonaceous, non-calcareous	10.90
2418.0	SWC	Sample a/a	9.17
HEATHER FM	2421-2460.	<u>.5 m</u>	
2423.0	SWC	<u>Claystone</u> , medium grey, firm, blocky to subfissile, silty, non-calcareous	1.13
2423-32	ctgs	60% <u>Claystone</u> , light to medium grey, firm, blocky to subfissile, silty, non to slightly calcareous	1.85
		30% <u>Claystone</u> , redbrown, firm, blocky, slightly to very calcareous	
		10% <u>Claystone</u> , dark grey, firm fissile, carbonaceous, non-calcareous	
		Tr Limestone, pyrite, sand	
2426.0	SWC	Claystone, medium grey, firm, blocky to subfissile, silty, slightly calca-	2.26

TABLE : I 1

LITHOLOGY AND ORGANIC CARBON Organic Sample Sample carbon depth Analysed lithology type m 8 wt 1.79 2429.0 Sample a/a SWC 1.63 2432-41 70% Claystone, light to medium grey, ctgs firm, blocky to subfissile, silty, non to slightly calcareous 25% Claystone, redbrown, firm, blocky, slightly to very calcareous 5% Claystone, dark grey, firm, fissile, carbonaceous, non calcareous Tr Limestone, pyrite, sand Claystone, medium grey, firm, blocky to 1.69 2434.5 SWC subfissile, silty, slightly calcareous 2.25 2438.5 Sample a/a SWC 70% Claystone, light to medium grey, firm, 1.60 2441 - 50ctgs blocky to subfissile, silty, non to slightly calcareous 25% Claystone, redbrown, firm, blocky, slightly to very calcareous 5% Claystone, dark grey, firm, fissile, carbonaceous, non-calcareous Tr Limestone, pyrite, sand Picked: Claystone, light to medium grey, 2441-50 ctqs blocky to subfissile, silty, non to slightly calcareous. 2450.0 Claystone interbedded with finegrained 1.36 SWC sandstone, medium grey, firm, blocky to subfissile, calcareous, micromicaceous. 70% Claystone, light to medium grey, firm, 2450-59 1.60 ctqs blocky to subfissile, silty, non to slightly calcareous. 25% Claystone, redbrown, firm, blocky, slightly to very calcareous. 5% Claystone, dark grey firm, fissile, carbonaceous, non-calcareous

TABLE : I m

Sample depth m	Sample type	Analysed lithology	Organic carbon % wt
2450–59	ctgs	Picked : <u>Claystone</u> , light to medium grey firm, blocky to subfissile, silty, non to slightly calca- reous	0.98
2455.5	SWC	<u>Claystone</u> , medium grey, firm, blocky to subfissile, silty, non to slightly calcareous.	1.67
DRAKE FM 2	2602 - 2709 m		
2600-09	ctgs	85% <u>Claystone/siltstone</u> , medium to light grey, firm, blocky to subfissile, in parts micromicaceous, non to slightly calcareous	1.95
		10% Sand/sandstone	
		5% <u>Claystone</u> , redbrown, firm, blocky, slightly calcareous	
		Tr Pyrite, limestone, dark grey claystone	
2600–09	ctgs	Picked : Claystone/siltstone, medium to light grey, firm, blocky to subfissile, non to slightly cal- careous.	0.97
2609–18	ctgs	Picked : <u>Claystone/siltstone</u> , medium grey, occasionally light and dark grey, firm, blocky to subfissile, occa- sionally laminated claystone and siltstone, in parts micaceous, non to slightly calcareous	0.90
2612.0	SWC	Siltstone/claystone, grey, firm, blocky to subfissile, non to slightly calcareous, micaceous	0,58
2618–27	ctgs	90% <u>Claystone/siltstone</u> , medium to light grey, firm, blocky to subfissile, in parts micromicaceous, non to slightly calcareous	1.16

5% Sand/sandstone

TABLE : In

LITHOLOGY	AND OR	GANIC CARBON	
Sample depth m	Sample type	Analysed lithology	Organic carbon % wt
a La Sena a		5% <u>Claystone</u> , redbrown, firm, blocky slightly calcareous	
		Tr Pyrite, limestone, dark grey claystone	
2618–27	ctgs	Picked : <u>Claystone</u> /siltstone, medium to light grey, firm, blocky to subfissile, in parts micromica- ceous, non to slightly calcareous.	1.11
2627-36	ctgs	Picked: Sample a/a	0.92
2636-45	ctgs	100% <u>Claystone/siltstone</u> , medium to light grey, firm blocky to subfissile, non to slightly calcareous, in parts micromicaceous	1.33
		Tr Redbrown claystone, sand, pyrite, limestone	
2645–54	ctgs	Picked : <u>Claystone/siltstone</u> , medium to light grey, firm, blocky to subfissile, non to slightly cal- careous, in parts micromicaceous	1.78
2663-72	ctgs	Picked : Sample a/a	1.32
2672-81	ctgs	100% Claystone/siltstone, medium to light grey, firm, blocky to subfissile, non to slightly calcareous, in parts micromicaceous.	1.51
		Tr Redbrown claystone, sand, pyrite, limestone	
2681–90	ctgs	Picked : <u>Claystone/siltstone</u> , medium to light grey, firm, blocky to subfissile, non to slightly cal- careous, in parts micromicaceous	1.30
2690–99	ctgs	100% <u>Claystone/siltstone</u> , medium to light grey, firm, blocky to subfissile, non to slightly calcareous, in parts micromicaceous	1.23
		Tr Redbrown claystone, sand, pyrite, limestone	

TABLE : IO

LITHOLOGY	AND ORG	ANIC CARBON	<u></u>
Sample depth m	Sample type	Analysed lithology	Organic carbon % wt
2699–08	ctgs	Picked : <u>Claystone/siltstone</u> , medium to light grey, firm, blocky to sub fissile, non to slightly calca- reous, in parts micromicaceous.	0.60
LOWER JURAS	SIC SANDS	CONE 2709-2892 m	
2717-26	ctgs	Picked : Sample a/a	1.53
2735-44	ctgs	Picked : Sample a/a	1.14
2797.0	SWC	<u>Claystone</u> , brownish grey, firm, lami- nated, silty, calcareous	1.96
COAL UNIT 2	2892-3275 n	<u>n</u>	
2906-15	ctgs	Picked : <u>Coal/carbominerite</u> , black, firm to brittle occasionally vitri- nittic, non-calcareous	n 57.60
2924-33	ctgs	Picked : Sample a/a	44.31
2942–51	ctgs	Picked : <u>Coal/carbominerite/carbonaceous</u> <u>shale</u> , black to dark brown, fir to brittle occasionally vitrini tic, fissile, non-calcareous	s 24.10 m t-
2960–69	ctgs	Picked : <u>Coal/carbominerite</u> , black, firm to brittle occasionally vitri- nittic, non-calcareous	n_ 32.90
2978-87	ctgs	Picked : Sample a/a	25.80
		Picked : <u>Claystone/carbonaceous shale</u> , light grey to black, firm, bloc to fissile, plant fragments, in parts micromicaceous, non calca reous	16.60 ky -
2996-05	ctgs	Picked : <u>Coal/carbominerite</u> , black, firm to brittle occasionally vitri- nittic, non-calcareous	a 42.38
3014-23	ctgs	Picked : Sample a/a	56.08

TABLE : I r

LITHOLOGY	AND ORG	ANIC CAF	BON	
Sample depth m	Sample type	Analyse	d lithology	Organic carbon % wt
· · · · · ·				
3032-41	ctgs	Picked :	Sample a/a	37,82
3050–59	ctgs	Picked :	50% <u>Coal/carbominerite</u> , black firm to brittle, occasio- nally vitrinittic, non- calcareous 50% <u>Claystone/carbonaceous shale</u> light grey to black, firm, blocky to fissile, plant fragments, in parts micaceous non-calcareous	27.69
		Picked :	Claystone/carbonaceous shale, light grey to black, firm, blocky to fissile, plant frag- ments, in parts micaceous, non- calcareous	4.30
3068–77	ctgs	Picked :	50% <u>Coal/carbominerite</u> , black, firm to brittle, occasionally vitrinittic, non-calcareous	22.80
			50% <u>Claystone/carbonaceous shale</u> , light grey to black, firm, blocky to fissile, plant frag- ments, in parts micaceous, non-calcareous	-
3086–95	ctgs	Picked :	Coal/carbominerite/carbonaceous shale, black to dark brown, firm to brittle, occasionally vitrinit- tic, fissile, non-calcareous	55.09
3104-13	ctgs	Picked :	Sample a/a	26.44
3122-31	ctgs	Picked :	Coal/carbominerite/carbonaceous shale, black to dark brown, firm to brittle, occasionally vitri- nittic, fissile, non-calcareous	47.65
		Tr	Light to dark grey claystone	

TABLE : I q

LITHOLOGY	AND ORG	ANIC CAR	BON	
Sample depth m	Sample type	Analyse	d lithology	Organic carbon % wt
3140-49	ctgs	Picked :	50% <u>Coal/carbominerite</u> , black, firm to brittle, occasio- nally vitrinittic, non- calcareous	31.55
			50% <u>Claystone/carbonaceous shale</u> , light grey to black, firm, blocky to fissile, plant frag- ments, in parts micaceous, non- calcareous	- -
3158–67	ctgs	Picked :	Coal/carbominerite/carbonaceous shale, black to dark brown, firm to brittle, occasionally vitrinit- tic, fissile, non-calcareous	49.80
		Tr	Light to dark grey claystone	
3176-85	ctgs	Picked :	Sample a/a	33.55
3194–03	ctgs	Picked :	50% <u>Coal/carbominerite</u> , black, firm to brittle, occasionally vitrinittic, non-calcareous	31.49
- - -			50% <u>Claystone/carbonaceous shale</u> , light grey to black, firm, blocky to fissile, plant fragments, in parts micaceous, non-calcareous.	
3212-21	ctgs	Picked :	Sample a/a	30.14
3230-39	ctgs	Picked :	Sample a/a	22.00
3248-57	ctgs	Picked :	Sample a/a	32.16
3266-75	ctgs	Picked :	Sample a/a	20.32

TABLE : IIa

Sample depth m	Sample type	Organic carbon % wt	Sl	S 2	S 3	 S1+S2	<u>52</u> 53	HI	OI	T max C
HORDALA	ND GP 138	34-1955 m	L					-		
1920-30 1930-40	ctgs ctgs	0.45	0.02	0.17	1.00	0.11 0.12	0.17	38 37 22	222 292	427 427
1940-50 1950-60	ctgs	0.34	0.02	0.13	0.92	0.14	0.14	37	262	427
ROGALANI	O G₽ 1955	5-2088 m	•		-•					
1960-70	ctgs	0.57	1.22	0.32	2.20	0.79	0.20	56	385	391
1975.0	SWC	0.38	0.13	0.20	5.64	0.41	0.03	52	1484	472
1980-90	ctgs	0.41	0.04	0.07	0.87	0.40	0.08	17	212	425
1989.0	SWC	1.16	0.06	0.43	0.30	0.12	1.43	37	25	433
1990-00	ctgs	0.82	0.09	0.29	2.91	0.24	0.09	35	354	424
2000.0	SWC	1.06	0.13	0.6/	0.58	0.10	1.15	40 50	34	411
2000-10	ctas	1 20	0.05	0.54	0.88	0.09	0.15	70	73	420
2010 20	SWC	1.24	0.18	0.87	0.33	0.17	2.63	70	26	415
2019.0	SWC	0.70	0.09	0.69	0.27	0.12	2.55	98	38	442
2020-30	ctas	1.08	0.07	0.69	0.77	0.09	0.89	63	71	427
2030-40	ctgs	0.35	0.02	0.11	0.60	0.17	0.18	31	171	391
2038.0	SWC	0.11	0.09	0.09	0.42	0.50	0.21	81	231	362
2040-50	ctgs	0.35	0.04	0.18	0.72	0.18	0.25	51	205	422
2050-60	ctgs	0.35	0.03	0.04	0.77	0.50	0.05	11	220	439
2056.0	SWC	0.28	0.30	0.16	0.65	0.65	0.24	57	232	468
2060-70	ctgs	0.40	0.00	0.05	0.68	0.00	0.07	13	170	421
2070.0	SWC	0.00	0.02	0.10	0.25	0.12	0.15	20	4.5	441
2000-90	cigs	0.90	0.06	_ V∙⊥∠ 	0.77	0.33	0.12		CO	422
SHETLAN	CG₽ 2088	<u>3–2328 m</u>	- ·	· ••• •				-		, ·
2090-00	ctas	0.76	0.02	0.10	0.74	9.17	0.13	13	85	425
2100-10	ctgs	0.98	0.03	0.10	0.63	0.25	0.15	10	64	423
2110-20	ctgs	0.61	0.10	0.11	1.60	0.50	0.06	18	262	367
2120-30	ctgs	1.26	0.06	0.18	0.73	0.25	0.24	14	57	424
2130-40	ctgs	0.80	0.05	0.20	0.67	0.21	0.29	25	83	426
2140-50	ctgs	0.78	0.04	0.22	0.57	0.15	0.38	28	13	426
2150-00	CTGS	0.00	0.05	0.20	1.32	0.21	0.15	20	702 102	440
2170-80	ctgs	0.92	0.03	0.19	0.70	0.14	0.25	20	0Z 88	42:
2175-00	SWC	1.02	0.10	0.15	0.15	0.15	3.72	54	14	42
2180-90	ctas	1.04	0.05	0.20	1.13	0.21	0.17	19	108	430
2190-00	ctas	0.80	0.04	0.21	0.65	0.17	0.32	26	81	430
2200-10	ctgs	1.00	0.03	0.26	0.79	0.11	0.32	26	79	428
2210-20	ctas	0.79	0.05	0.27	0.71	0.16	0.38	34	89	420

TABLE : II b

ROCK-EV	AL PYR	OLYSIS								·
Sample depth	Sample type	Organi carbon	CtoC .				<u>S2</u>			T max
m		% wt	Sl	S2	S3	S1+S2	S 3	HI	OI	°C
2220-30	ctgs	1.20	0.05	0.22	0.66	0.19	0.33	18	55	429
2227.5	SWC	0.56	0.01	0.12	0.23	0.08	0.52	21	41	410
2230-40	ctgs	0.71	0.08	0.20	0.71	0.29	0.28	28	100	416
2240-50	ctgs	0.87	0.02	0.19	0.41	0.10	0.46	22	67	428
2258.0	SWC	0.99	0.03	0.30	0.46	0.09	0.65	30	46	431
2260-70	ctgs	1.11	0.03	0.22	0.61	0.12	0.36	20	55	433
2270-80	ctgs	0.98	0.02	0.25	0.58	0.08	0.43	26	59	431
2280-90	ctgs	1.01	0.03	0.28	0.93	0.10	0.30	28	92	430
2290-00	ctqs	0.93	0.03	0.19	0.72	0.14	0.26	20	77	432
2293.0	SWC	1.16	0.03	0.50	0.19	0.06	2.63	43	16	427
2310-20	ctqs	1.00	0.08	0.33	0.96	0.20	0.34	33	96	430
2320-30	ctas	0.81	0.05	0.34	1.48	0.13	0.22	42	183	428
2326.0	SWC	0.80	0.02	0.21	0.02	0.09	10.50	26	2	455
CROMER K	NOLL GP	2328-24(09 . 5 m							
2230-40	otos	1 04	0.03	0.42	0.40	0.07	1.05	40	38	425
2340-50	ctas	0.92	0,000							
2347 0	CLQ5	0.72	0.12	0.21	0.32	0.37	0.65	29	44	343
2350-60	otae	0.92	0.01	0.13	0.38	0.07	0.34	14	41	430
2350-00	ctgs	0.92	0 01	0.12	0.59	0.08	0.20	14	68	432
2364 0	cuys	0.74	0.01	0.02	0.56	0.50	0003	2	75	369
2304.0	SWC	0.74	0.02	0.15	0.68	0.12	0.22	17	75	431
2370-70	cuys	1 11	0.02	0.13	0.00	0.30	0.17	7	42	356
2375.0	SWC	0.85	0.03	0.00	0.52	0.17	0.19	12	61	429
2370-07	clys	0.05	0.02	0.10	0.32	0.10	0.22	12	52	429
2307-90	cugs	1 20	0.01	0.10	0 11	0 10	1.72	15	9	415
2300.0	SWC	0.75	0.02	0.17	0.50	0 12	00.19		67	382
2396-05	ctgs ctgs	1.09	0.13	0.54	1.56	0.20	0.34	50	143	413
KIMMERIC	GE CLAY	FM 2409	.5-242]	<u>m</u>						
2405-23	ctas P	9.28								4
2410.0	SWC	6.80	0.99	14.97	1.53	0.06	9.78	220	22	411
2414-23	ctas	1.64	0.07	0.75	0.43	0.09	1.74	46	26	424
2416.0	SWC	10.90	1.59	38.63	2.44	0.04	15.83	354	22	412
2418.0	SWC	9.17	10.17	18.63	2.14	0.35	8.70	203	23	413
HEATHER	FM 2421-	-2460.5	m							
2423.0	SWC	1.13	0.09	0.96	0.27	0.09	3.55	84	23	422
2423-32	ctas	1.85	0.13	1.70	0.56	0.07	3.03	92	30	425
2426-0	SWC	2.26	0.13	1.80	0.40	0.07	4.50	79	17	423
2429.0	SWC	1.79	0.11	0.93	0.28	0.11	3.32	51	15	426
2432-41	ctos	1.63	0.05	1.03	0.40	0.05	2.57	63	25	422
2434.5	SWC	1,69	0.42	0.73	0.76	0.37	0.96	43	44	423
2438.5	SWC	2.25	0.19	0.78	0.81	0.20	0.96	34	36	427
2441-50	ctqs	1.60	0.05	0.54	0.54	0.09	1.00	34	34	427

TABLE : IIC

ROCK-EV	AL PYR	OLYSIS	-							
Sample depth	Sample type	Organic carbon	-			Sl	<u>52</u>			T max
m		% wt	Sl	S2	S 3	S1+S2	S 3	HI	OI	°C
			·····	· · · · · · · · · · · · · · · · · · ·					<u></u>	<u>.</u>
2450.0	SWC	1.36	0.29	0.56	1.25	0.35	0.44	41	91	430
2450-59	ctgs	1.60	0.09	0.82	0.52	0.10	1.57	51	33	428
2450-59	ctgs P	0.98	0 22	1 1 2	0 27	0 22	1 10	67	16	126
2455.5	SWC	1.01	0.33	T•T3	0.27	0.25	4.10	07	TO	420
DRAKE FM	1 2602-27	<u>09 m</u>	•							
2600-09	ctas	1.95	1.97	2.80	1.44	0.41	1.94	143	74	419
2600-09	ctgs P	0.97	0.26	0.31	1.22	0.46	0.25	32	126	415
2609-18	ctgs P	0.90	0.19	0.52	2.00	0.27	0.26	58	222	521
2612.0	SWC	0.58	0.21	0.57	0.42	0.27	1.35	98	72	435
2618-27	ctgs	1.16	0.13	0.46	0.67	0.22	0.68	40	58	426
2618-27	ctgs P	1.11	0.09	0.23	1.15	0.28	0.20	21	104	421
2627-36	ctgs P	0.92	0.16	0.45	1.86	0.27	0.24	49	202	425
2636-45	ctgs	1.33	0.31	0.70	1.19	0.31	0.59	53	89	426
2645-54	ctgs P	1.78	0.23	1.00	2.25	0.19	0.44	56	126	427
2663-72	ctgs P	1.32	0.34	1.61	1.88	0.18	0.85	122	142	428
2672-81	ctgs_	1.51	0.21	1.19	1.07	0.15	1.11	97	87	430
2681-90	ctgs P	1.30	0.12	1.43	0.98	0.08	1.45	110	75	429
2690-99	ctgs	1.23	0.21	1.50	1.27	0.17	1.18	121	T03	426
2699-06	CTGS P	0.60	0.1/	T.00	2.91	0.15	0.35	101	495	447
LOWER JU	JRASSIC S	SANDSTONE	2709-	-2892 m						
2717-26	ctgs P	1.53	0.33	1.78	1.38	0.15	1.28	116	90	424
2735-44	ctgs P	1.14	0.58	1.93	6.22	0.23	0.31	169	545	428
2797.0	SWC	1.96	0.12	1.96	8.92	0.06	0.21	100	455	434
COAL UNI	т 2892-3	3275 m								
2906-15	ctas P	57.60	6.94	121.03	6.19	0.05	19.55	210	11	421
2924-33	ctas P	44.31	5.74	109.46	5.86	0.05	18.67	247	13	423
2942-51	ctas P	24.10	2.33	44.53	3.33	0.05	13.37	184	14	423
2960-69	ctgs P	32.90	2.53	76.42	1.78	0.03	42.93	217	5	422
2978-87	ctgs P	25.80	2.26	67.08	1.39	0.03	48.25	260	.5	420
2978-87	ctgs P	16.60	1.36	30.99	1.06	0.04	29.23	186	6	421
2996-05	ctgs P	42.38	2.37	95.76	2.19	0.02	43.72	226	5	425
3014-23	ctgs P	56.08	5.01	153.28	2.76	0.03	55.53	273	5	424
3032-41	ctgs P	37.82	2.66	104.13	1.64	0.02	63.49	275	4	425
3050-59	ctgs P	27.69	2.18	65.06	2.48	0.03	26.23	234	. 9	425
3050-59	ctgs P	4.30	0.25	9.31	0.57	0.03	16.33	217	13	428
3068-77	ctgs P	22.80	2.30	61.18	1.20	0.04	50.98	268	5	423
3086-95	ctgs P	55.09	4.86	169.51	4.48	0.03	37.83	307	8	425
3104-13	ctgs P	26.44	1.63	62.78	1.81	0.03	34.68	237	1	427
3122-31	ctgs P	4/.05	5.02	152.59	2.11	0.03	55.08	320	6	420

TABLE : II d

ROCK-EV	AL PYR	DLYSIS					•			
Sample depth m	Sample type	Organic carbon % wt	Sl	S 2	S3	 S1+S2	<u>52</u> 53	HI	OI	T Max C
3140-49 3158-67 3176-85 3194-03 3212-21 3230-39 3248-57	ctgs P ctgs P ctgs P ctgs P ctgs P ctgs P ctgs P ctgs P	31.55 49.80 33.55 31.49 30.14 22.00 32.16	4.00 4.26 3.01 2.59 2.89 2.12 2.82	96.23 147.10 99.32 90.51 84.14 62.25 101.28	1.64 2.70 1.87 1.66 1.92 1.44 1.69	0.04 0.03 0.03 0.03 0.03 0.03 0.03 0.03	58.74 54.58 53.11 54.52 43.82 43.22 59.92	305 295 296 287 279 282 315	5 5 6 5 6 7 5	422 426 426 427 426 424 429

TABLE : III a

HEADSPACE	E GAS				•				
Sample depth	C ₁ -C ₄	с ₂ -с ₄	c1	с ₂	с _з	iC4	nC4	<u>c2-c4</u>	iC ₄
m	PP	m		ЗC	of c ₁ -(4		C1-C4	nC ₄
					•.** *				
400-20 420-40 440-60 460-80 480-00 520-40 540-60 560-80 580-00 600-20 620-40 640-60 660-80 680-00 700-20 720-40 740-60 760-80 800-20 820-40 840-60 860-80 920-40 940-60 960-80 920-40 1020-40 1020-40 1040-60 1080-00 1120-40 1160-80 1200-20 1320-40 1360-80	46675 100315 66762 54596 105651 45072 39227 21029 57969 36450 39000 51849 62649 58197 89053 60989 73409 66657 129161 99132 98361 112442 15477 124122 162462 165093 112314 62494 40655 50273 95850 27615 61402 125405 24509 69270 52133 80121	$\begin{array}{c} 675\\ 315\\ 462\\ 96\\ 451\\ 72\\ 227\\ 29\\ 269\\ 50\\ -\\ 49\\ 249\\ 97\\ 153\\ 89\\ 109\\ 147\\ 261\\ 132\\ 361\\ 142\\ 77\\ 122\\ 464\\ 93\\ 314\\ 694\\ 55\\ 273\\ 450\\ 315\\ 502\\ 405\\ 209\\ 270\\ 133\\ 1121 \end{array}$	98.5 99.7 99.1 99.7 99.8 99.8 99.8 99.8 99.8 99.8 99.8	0.4 0.2 0.4 0.2 0.1 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.3 0.2 0.1 - - 0.1 - - 0.1 - - 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.2 0.1 - - - - - - - - - - - - -	0.6 0.2 0.2 - 0.3 - 0.1 - - 0.1 - - 0.1 - - 0.1 - - 0.1 - - 0.1 - - 0.1 - - 0.3 - - 0.1 - - - 0.3 - - - - - - - - - - - - -	0.015 0.003 0.009 0.003 0.005 0.002 0.003 0.002 0.001 0.002 0.001 0.005 0.001 0.001 0.005 0.001 0.001 0.003 0.001 0.003 0.001 0.003 0.001 0.003 0.001 0.005 0.001 0.003 0.001 0.003 0.001 0.005 0.001 0.003 0.001 0.005 0.001 0.005 0.001	0.30 2.10 0.58 2.50 0.18 2.30 0.06 2.00 0.05 1.50 - 1.20 1.00 1.10 2.50 1.40 3.30 1.80 2.10 2.10 1.90 - 1.20 0.39 1.00 0.39 1.00 0.39 0.01 0.02 0.03 0.27
1400-20 1440-60 1480-00 1510-20	27655 17224 916 5953	1955 824 6 53	92.9 95.2 99.3 99.1	0.2 0.2 0.2 0.2	0.1 0.2 0.4 0.4	0.1 0.1 0.1	6.6 4.3 - - 0.2	0.071 0.048 0.007 0.001	0.02 0.02 - 0.80

TABLE : III b

HEADSPACE GAS

Sample depth	C ₁ -C ₄	C ₂ -C ₄	cl	с ₂	c3	iC4	nC4	^C 2 ^{-C} 4	'iC4
m	pp	m		8 (of C ₁ -(24		C ₁ -C ₄	nC4
<u> </u>								······································	
1530-40	137712	1412	99.0	0.3	0.4	0.2	0.2	0.010	1.03
1540-50	128558	1258	99.0	0.4	0.3	0.2	0.1	0.010	2.10
1560-70	160934	2334	98.5	0.4	0.6	0.4	0.1	0.015	4.70
1570-80	106403	1403	98.7	0.3	0.5	0.4	0.1	0.013	4.20
1580-90	121493	1493	98.8	0.3	0.5	0.4	0.1	0.012	5.10
1590-00	173814	2314	98.7	0.4	0.5	0.3	0.1	0.013	5.00
1610-20	T10888	1888	98.0	0.5	0.4	0.2	0.1	0.012	2.70
1620-30	181940	1940	98.9	0.4	0.4	0.2	0.1	0.011	2.90
1640-50	184925	1925	98.9	0.4	0.4	0.2	0.1	0.011	2.70
1670-80	186791	1641	99.1	0.4	0.3	0.2	0.1	0.009	2.50
1720-30	121441	941	99.2	0.4	0.2	_ 7	0.2	0.008	0.07
1790-00	T03806	3220	96.7	1.2	0.7	0.7	0.7	0.033	0.99
1010 20	62915	1312	97.9	0.3	0.4	0.0	0.9	0.021	0.07
1810-20	00300	360	99.4	0.4	U.L	0.1	0.1	0.000	1 20
1040-50	04032	1004	99.2	0.5	0.1	0.1	0.1	0.008	1 70
1040-50	144120	1220	99.1	0.5	0.1	0.1	0.1	0.009	T•10
1070-00	20070	27/	99.7 00 E	0.4	0.1		_	0.003	1 10
1000-10	02609	2/4	99.0	0.4	0.1	0 1		0.004	1 80
1010-10	93000	1907	07 0	17	0.1	0.1	0 1	0.007	2 80
1910-20	75011	1007	08 8	1 0	0.5	0.1	0.1	0.022	1 50
1940-30			20.0	±. 0	V.+	**	V • <u>1</u>	0.014	
1960-70	85870	1870	97.8	19	0.2	0.1	-	0.022	1.80
1980-90	97340	2240	97 7	2.0	0.3	0.1		0.023	2.10
1990-00	57415	2415	95.8	3.4	0.7	_	. ingin	0.042	1.20
2000-10	103610	8610	91.6	6.6	1.5	0.1	0.1	0.084	0.95
2030-40	94215	6215	93.4	4.1	1.8	0.2	0.4	0.066	0.62
2060-70	86463	4363	94.9	2.9	1.4	0.3	0.5	0.051	0.46
		229 m			•				
		.520 III							
2090-00	89412	9312	89.6	4.3	3.5	0.6	2.0	0.104	0.31
2120-30	174970	32270	83.9	6.0	2.7	2.4	5.1	0.184	0.46
2150-60	193960	49480	74.5	7.1	8.8	2.7	6.9	0.255	0.39
2160-70	288770	82070	71.5	7.0	9.3	4.0	8.⊥	0.284	0.49
2180-90	219900	59890	12.8	6.7	9.2	3.8	/ 4	0.272	0.5L
2200-10	255200	84200	67.0	/.ŏ	11.4	4.9	9.3	0.330	0.54
2220-30	332900	TTT900	03.4 70 F	/• <u>⊥</u>	11.4	2./ / 7	ジ・4 フ 1	0.330	0.00
2230-40	542200	T00000	. /U.5	.0.Z	9.0 10 2	4./	7 0	0.290	0.07
2200-70	212700	62600	70.0	0.L	10 0 T0°2	⊃.∠ ∕`>	7.0	0.203	0.07
2270-00	361600	02000	74 0	8.2	85	~	51	0.255	0.64
2770-20	201000	20000	13.3	0.2	U.• J	J • 6	т. о т.		₩ , ₩ , ₩ , ₩ ,

analar.

TABLE : III c

HEADSPAC	e gas		-						
Sample depth	c ₁ -c ₄	с ₂ -с ₄	c1	с ₂	c3	iC4	nC4	^C 2 ^{-C} 4	iC ₄
m	PE	, m		8	of C ₁ -	^C 4	<u></u>	c ₁ -c ₄	nC ₄
2340-50 2360-70	192400 187500	45400 49700	76.4 73.5	6.6 7.0	8.4 9.1	3.0 3.6	5.6 6.8	0.236 0.265	0.54 0.53
2370-78 2378-87 2387-96	87220 73260 77765	28515 19260 23465	70.4 73.7 69.8	8.0 8.6 7.5	10.0 9.2 10.2	3.6 2.7 4.0	7.9 5.8 8.5	0.327 0.263 0.302	0.47 0.47 0.47
2396-05	81500	27500	66.3	7.5	11.2	5.3	9.7	0.'337	0.54
2423-32 2450-59	237700 163570	103400 64570	56.5 60.5	14.6 13.1	13.0 12.9	6.5 5.1	9.4 8.3	0.435 0.395	0.69 0.61
				12	m				
2477-86 2495-04 2504-13 2513-22 2531-40 2549-58 2573-82 2582-91 2591-00	197650 130400 107500 150850 71840 74650 80850 154980 147300	86250 63700 45400 76550 44700 38950 47250 72480 65900	56.4 51.5 47.4 49.3 37.8 47.8 41.6 63.2 55.3	12.6 12.5 14.4 13.7 14.0 14.7 16.5 17.0 13.7	13.4 14.7 15.6 15.3 18.9 16.6 18.1 14.7 13.7	6.9 7.8 8.7 8.4 10.2 7.1 8.8 6.0 6.6	10.8 13.4 13.8 13.4 19.1 13.7 15.2 9.1 10.9	0.436 0.485 0.526 0.507 0.622 0.528 0.584 0.568 0.447	0.64 0.58 0.63 0.62 0.53 0.52 0.58 0.65 0.61
2618-27 2627-36 2636-45 2654-63 2672-81 2681-90 2699-08 2708-17	119340 81150 90900 167150 109350 113250 108950 108000	52200 35400 46600 83650 57250 43250 41050 62500	56.3 56.4 48.7 50.0 47.7 61.8 62.3 42.1	11.7 12.6 14.2 15.5 15.4 11.6 11.4 15.9	13.8 14.5 16.0 16.4 18.2 14.0 13.8 20.7	6.9 5.7 7.3 7.2 7.1 4.5 4.3 8.5	11.3 10.8 13.8 10.3 11.7 8.4 8.3 12.7	0.437 0.436 0.513 0.500 0.523 0.382 0.377 0.579	0.61 0.52 0.53 0.66 0.61 0.54 0.52 0.67
2726-35 2744-53 2762-71 2780-89 2807-16 2816-25 2843-52 2861-70 2886-95	84500 18830 38200 39000 15910 18720 6063 4460 324080	53000 13230 24500 21500 10660 13470 4163 1360 40080	37.3 29.7 35.9 44.9 33.0 28.0 31.3 69.5 87.6	21.5 23.4 24.1 18.0 20.5 15.4 15.3 16.4 7.8	21.2 28.7 24.4 20.4 27.7 29.5 30.2 10.4 3.7	7.9 6.1 5.5 6.2 6.5 9.4 8.5 1.1 0.3	12.1 12.1 10.2 10.5 12.3 17.6 14.7 2.6 0.5	0.627 0.703 0.641 0.551 0.670 0.720 0.687 0.305 0.124	0.66 0.50 0.54 0.59 0.53 0.53 0.53 0.43 0.43 0.62

TABLE : III d

HEADSPAC	E GAS								
Sample depth	с ₁ -с ₄	^C 2 ^{-C} 4	c1	C ₂	с _з	iC4	nC4	<u><u></u><i>C</i>₂-<i>C</i>₄</u>	iC4
m	PF	m		ያ (of C ₁ -	C ₄		$C_{1} - C_{4}$	nC4
					• -				
2906-15 2915-24 2942-51 2978-87 2996-05 3005-14 3023-32 3041-50 3059-68 3077-86 3095-04 3113-22 3131-40 3149-58 3167-76 3185-94 3203-12 3221-30 3239-48 3257-66	67333 254850 266340 208448 524480 688100 480960 327408 377195 631370 598390 331060 648770 409840 641350 436990 565450 355850 524710 427210	12133 54850 51340 40448 65480 66100 53960 58608 44195 45370 45390 27060 48770 40840 45350 45990 55450 48550 51210 47210	82.0 78.5 80.7 80.6 87.5 90.4 88.8 82.1 88.3 92.8 92.4 91.8 92.5 90.0 92.9 89.5 90.2 86.4 90.2 89.0	14.2 13.7 12.0 13.1 9.2 7.3 8.6 14.6 8.9 5.7 5.9 6.6 5.8 7.5 5.4 7.9 7.1 9.7 7.1 9.7 7.9	3.4 6.5 5.9 5.5 2.9 2.1 2.3 2.9 2.4 1.3 1.4 1.3 1.5 2.0 1.4 2.3 3.3 2.2 2.8	0.2 0.5 0.7 0.4 0.2 0.1 0.2 0.3 0.3 0.3 0.3 0.2 0.2 0.2 0.2 0.2 0.2 0.3 0.2 0.3 0.2 0.3 0.2 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3	0.3 0.8 0.4 0.1 - 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.180 0.215 0.193 0.194 0.125 0.096 0.112 0.179 0.117 0.072 0.076 0.082 0.075 0.096 0.071 0.106 0.098 0.136 0.098 0.111	0.52 0.67 0.82 0.91 1.60 2.11 2.12 3.33 2.32 3.08 2.06 1.80 2.12 2.21 2.46 2.31 2.13 1.67 1.57 1.45
° }		and an opposite the states of the	e a constant des signs a ser serandademente a						
3275-84 3284-93 3320-29 3338-47	404253 123039 156411 132848	49053 15039 18411 15248	87.9 87.8 88.2 88.5	8.9 9.3 9.6 9.4	2.6 2.3 1.9 1.8	0.3 0.4 0.2 0.2	0.2 0.3 0.1 0.1	0.121 0.122 0.118 0.115	1.41 1.04 1.38 1.49
GAS CONDI	INSATE DS	<u>r 1</u>							
2476-84			83.8	8.9	4.9	0.9	1.5	0.162	0.60

TABLE : IV a

ISOTOPIC	COMPOSITION OF	HEADSPACE	GAS $\partial^{13}C$ (°/∞)	
Sample depth m	cl	с ₂	c3	iC4	nC4
$\begin{array}{r} 480-00\\ 620-40\\ 680-00\\ 840-60\\ 920-40\\ 1040-60\\ 1200-20\\ 1320-40\\ 1360-80\\ 1530-40\\ 1660-70\\ 1750-60\\ \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$				
1840-50 1960-70 2090-00 2160-70 2230-40 2310-20 2370-78 2423-32	$\begin{array}{r} - 49.1 \\ - 49.4 \\ - 40.0 \\ - 41.6 \\ - 46.3 \\ - 49.3 \\ - 44.5 \\ - 42.0 \end{array}$	- 27.8 - 28.6	- 26.5 - 26.3	- 25.3 - 26.5 - 25.1	
2591-00 2 2654-63 2 2708-17 2780-89 2 2834-43	$\begin{array}{rcl} $	- 24.7 - 15.6	- 25.3 - 27.4 - 18.3	- 27.6 - 26.1 - 19.1	
2915-24 3005-14 3095-04 3167-76 3257-66	$\begin{array}{r} - 34.3 \\ - 36.6 \\ - 39.3 \\ - 41.3 \\ - 40.7 \\ - 39.9 \end{array}$	- 27.5 - 28.1 - 30.4 - 28.8 - 29.2	- 26.3 - 27.3 - 28.4 - 27.4 - 26.7	- 23.5	
GAS CONDE	I TPC TE DET 1				
GAD CONDI	T TOU LITUUE				
2476-84	- 41.9	- 25.4	- 25.2	- 24.3	- 26.5

x) Bacterial degradation in the can

TABLE : V a

SOLVENT I	EXTRACTIO	N	•			,				
Sample	Sample	Organic	Ab	Abundance (ppm wt of rock)						
m type		carbon % wt	EOM	Sat	Aro	HC	non-HC			
KIMMERIDGE	KIMMERIDGE CLAY FM 2409.5-2421 m									
2405-23	ctgs P	9.28	2120	267	301	568	1533			
HEATHER FM	2421-2460.	<u>5 m</u> .								
2450-59	ctgs P	0.98	173	40	52	92	81			
DRAKE FM 2	DRAKE FM 2602-2709 m									
2627–36 2663–72	ctgs P ctgs P	0.92 1.32	- 382 673	50 103	114 112	164 216	218 457			
LOWER JURA	SSIC SANDST	ONE 2709-289	92 m							
2717-26 2735-44	ctgs P ctgs P	1.53 1.14	486 515	34 140	78 136	112 276	374 240			
COAL UNIT	2892-3275 n	<u>1</u>								
2924-33 3032-41 3140-49 3230-39	ctgs P ctgs P ctgs P ctgs P	44.31 37.82 31.55 22.00	7722 6669 6976 6568	1646 787 509 578	1990 1710 1451 1007	3636 2497 1961 1585	4086 4172 5016 4983			

TABLE : Vb

SOLVENT EXTRACTION									
Sample	Sample	Organic	Ał	oundance	(mg/g	(mg/g organic carbon)			
m		earbon % wt	EOM	Sat	Aro	HC	non-HC		
KIMMERIDGE	e clay fm 24	09.5-2421 m							
2405-23	ctgs P	9.28	22.8	2.9	3.2	6.1	16.7		
HEATHER FM	1 2421-2460.	<u>5m</u> .							
2450-59	ctgs P	0.98	17.7	4.1	5.3	9.4	8.2		
DRAKE FM 2	2602-2709 m								
2627-36 2663-72	ctgs P ctgs P	0.92 1.32	41.5 51.0	5.4 7.8	12.4 8.5	17.8 16.3	23.7 34.6		
LOWER JURA	SSIC SANDST	ONE 2709-2892	<u>2 m</u>						
2717-26 2735-44	ctgs P ctgs P	1.53 1.14	31.8 45.2	2.2 12.3	5.1 11.9	7.3 24.2	24.5 21.0		
COAL UNIT	<u>2892-3275 m</u>	:							
2924-33 3032-41 3140-49 3230-39	ctgs P ctgs P ctgs P ctgs P	44.31 37.82 31.55 22.00	17.4 17.6 22.1 29.9	3.7 2.1 1.6 2.6	4.5 4.5 4.6 4.6	8.2 6.6 6.2 7.2	9.2 11.0 15.9 22.7		

TABLE : V C

SOLVENT	EXTRACTI	ON						
Sample depth m	Sample type	<u>Sat</u> EOM	Aro EOM	HC EOM	<u>Sat</u> Aro	<u>non-HC</u> EOM	HC non-HC	
KIMMERIDGE	CLAY FM 2	409.5-24	21 m		<u>y angongan (rayan raya).</u>	<u>,</u>		
2405-23	ctgs P	0.13	0.14	0.27	0.89	0.73	0.73	
HEATHER FM	2421-2460	<u>.5 m</u>						
2450-59	ctgs P	0.23	0.30	0.59	0.79	0.47	1.14	
DRAKE FM 2	DRAKE FM 2602-2709 m							
2627–36 2663–72	ctgs P ctgs P	0.13 0.15	0-30 0.17	0.43 0.32	0.44 0.92	0.57 0.68	0.75 0.47	
LOWER JURA	SSIC SANDS	PONE 270	9–2892 n	1				
2717-26 2735-44	ctgs P ctgs P	0.07 0.27	0.16 0.26	0.23 0.54	0.44 1.03	0.77 0.47	0.30 1.15	
COAL UNIT	2892-3275 1	<u>n</u>						
2924-33 3032-41 3140-49 3230-39	ctgs P ctgs P ctgs P ctgs P	0.21 0.12 0.07 0.09	0.26 0.26 0.21 0.15	0.47 0.37 0.28 0.24	0.83 0.46 0.35 0.57	0.53 0.63 0.72 0.76	0.89 0.60 0.39 0.32	
	÷							

TABLE : V d

SOLVENT EX	TRACTION									
Sample : depth m	Sample type	pristane n-Cl7	pristane phytane	CPI						
	x = 0.00									
KIMMERIDGE (LAY FM 2409.5-24	21 m								
2405–23	ctgs P	1.4	1.3	1.5						
HEATHER FM	HEATHER FM 2421-2460.5 m									
2450-59	ctgs P	0.8	1.6	1.5						
DRAKE FM 26	DRAKE FM 2602-2709 m									
2627-36 2663-72	ctgs P ctgs P	0.6 0.7	1.5 1.8	1.2 1.4						
LOWER JURAS	SIC SANDSTONE 27)9–2892 m								
2717-26 2735-44	ctgs P ctgs P	0.8 0.6	2.0 1.7	1.8 1.7						
COAL UNIT 2	892-3275 m									
2924-33 3032-41 3140-49 3230-39	ctgs P ctgs P ctgs P ctgs P	2.2 6.8 3.1 2.9	6.5 7.7 7.6 4.9	2.0 1.9 1.8 1.9						

TABLE : VI a

VISUAL	KEROGEN	AND SPORE COLOUR	
Sample depth m	Sample type	Visual kerogen	Spore colour TAI
2410.0	SWC	95% Amorphous, degraded and clotty masses occasionally subcolloidal, non to weakly brownish fluorescence, abundant herbaceous inclusions.	2.0
		5% Herbaceous, woody and coaly	
2416.0	SWC	Sample a/a	2.0
2418.0	SWC	85% Amorphous, degraded and clotty masses occasionally subcolloidal, non to weak brownish fluorescence, abun- dant herbaceous inclusions.	2.0
		5% Herbaceous	
		5% Woody	
		5% Coaly	
2441 - 50	ctgs P	70% Amorphous, subcolloidal to clotty, non fluorescent	2.0
	ĩ	10% Woody	
		10% Coaly	
		10% Herbaceous	
2450-59	ctgs P	40% Herbaceous	2.0
		30% Amorphous, clotty and degraded masses occasionally subcolloidal, non fluo- rescent	
		15% Woody	-
		15% Coaly	
2627-36	ctgs P	30% Amorphous, degraded, non occasio- sionally weak yellowish fluorescence	2.0
		20% Herbaceous	
		20% Woody	

20% <u>Coaly</u>

TABLE : VI b

VISUAL	KEROGEN	AND SPORE COLOUR	
Sample depth m	Sample type	Visual kerogen	Spore colour TAI
2663–72	ctgs P	40% Amorphous, degraded occasionally clotty masses, weak brownish to weak yellowish fluorescence, occa- sionally non fluorescent	2.0
		30% Herbaceous	
		15% Woody	
		15% Coaly	
2717-26	ctgs P	50% Herbaceous	2.0
		30% Moody	
		10% Amorphous, subcolloidal to degraded, non to weak yellowish fluorescence	
		10% Coaly	
2735-44	ctgs P	40% Herbaceous	2.0
		40% Moody	
		10% <u>Amorphous</u> , clotty to degraded, non to weak yellowish fluorescence	
		10% Coaly	

TABLE : VII a

MACERAL CO	OMPOSITIO	1	·				-
Sample depth m	Sample type	Min	Minerals Py	and ma	acerals Vi	8 Ex	Fluorescent groundmass
KIMMERIDG	E CLAY FM	2409.	.5-2421 m				
2410.0 2416.0 2418.0	SWC SWC SWC	85.0 75.6 83.0	10.2 8.9 8.7	0.3 0.8 0.4	1.1 3.0 0.1	3.4 11.7 7.8	(+) (+) (+)
COAL UNIT	2892-327	5 <u>m</u> .					
2924-33 3032-41 3140-49 3230-39	ctgs P ctgs P ctgs P ctgs P	55.0 57.5 61.5 70.6	0.5 2.3 0.9 1.1	17.4 12.5 8.1 6.8	19.3 19.0 21.8 19.4	7.9 8.7 7.7 2.0	

- Min : minerals
- Py : pyrite
- In : inertinite
- Vi : vitrinite
- Ex : exinite

TABLE : VII b

MACERAL	COMPOSITION					
Sample	Sample	M	acerals %	al anno de la companya de la company	Fluencecont	
m	суре	In	Vi	Ex	groundmmass	
KIMMERID	GE CLAY FM 2	2409.5-242	<u>l m</u>			
2410.0	SWC	6.3	22.9	70.8	(+)	
2416.0	SWC	5.2	19.4	75.5	(+)	
2418.0	SWC	4.8	1.2	94.0	(+)	
COAL UNI	T 2892-3275	m	•			
2924-33	ctgs P	39.0	43.3	17.7		
3032-41	ctgs P	31.1	47.3	21.6		
3140-49	ctgs P	21.6	57.9	20.5		
3230-39	ctgs P	24.1	68.8	7.1		

- In : inertinite
- Vi : vitrinite
- Ex : exinite

TABLE : VIII

Sample	Sample		Sample	Sample	
depth	type	Ro	depth	type	Ro
<u>m</u>	·····		<u> </u>		
2070.0	SWC	-	2669.0	SWC	0.44
2087.0	SWC	-	2678.0	SWC	0.40
2091.5	SWC	0.61	2705.5	SWC	0.54
2100.0	SWC	1.10	2717-26	ctgs	0.32
2175.0	SWC	0.40	2718.5	SWC	0.36
2220.0	SWC	0.42	2924-33	ctgs	0.47*
2310.0	SWC	0.46	2931.0	SWC	0:52*
2326.0	SWC	0.41	3000.0	SWC	0.48*
2333.0	SWC	-	3032-41	ctgs	0.53*
2347.0	SWC	0.42	3098.0	SWC	0.52*
2358.0	SWC	-	3140-49	ctgs	0.48*
2364.0	SWC	-	3167.0	swc	0,48*
2410.0	SWC	0.50	3174.5	SWC	0:49*
2410.0	SWC	0.38*	3230-39	ctgs	0.50*
2416.0	SWC	0.44	3251.0	SWC	0.51*
2418.0	SWC	0.46			
2423.0	SWC	0.45			
2450.0	SWC	0.46			
2455.5	SWC	0.48	•		
2461.3	core	0.48			
2515.5	SWC	0.54			
2526.5	core	0.45*			
2558.8	core	0.43*			
2582.0	core	0.45*			
2604.5	SWC	0.49			

VITRINITE REFLECTANCE, Ro

* good quality samples

TABLE : IX a

.

VITRINITE REFLECTANCE RAW DATA Sample depth : 2070.0 n : SWC Sample type Preparation : HF-residue Vitrinite reflectance (Ro) values : 0.2-0.3-0.4-0.5barren of vitrinite .56 0.6-0.7-0.8-0.9-1.0-1.1-1.2-1.3-1.4-1.5-1.6-1.7-

•

TABLE : IX b

VITRINITE REFLECTANCE RAW DATA Sample depth : 2087.0 m Sample type : SWC Preparation : HF-residue Vitrinite reflectance (Ro) values : 0.2-0.3-0.4-.40 barren of vitrinite 0.5-0.6-0.7-0.8-0.9-1.0-1.1-1.2-1.3-1.4-1.5-1.6-1.7-

TABLE : IX c

VITRINITE REFLECTANCE RAW DATA Sample depth : 2091.5 m Sample type : SWC Preparation : HF-residue Vitrinite reflectance (Ro) values : 0.2-0.3-.35 0.4-.48 difficult interpretation 0.5-.55 mean Ro = 0.610.6-.63-.61 0.7-.70 0.8-0.9-. 98 1.0-1.1-1.2-1.3-1.4-1.5-1.6-1.7TABLE : IX d

VITRINITE REFLECTANCE RAW DATA	
Sample depth Sample type Preparation	: 2100.0 m : swc : HF-residue
Vitrinite reflectance (Ro) values	;
0.2-	
0.3-	
0.4-	
0.5-	
0.6-	
0.7-	
0.8- .83 .87 0.9-	
1.0-	difficult interpretation
1.1- 1.12 1.19	mean Ro = 1.10
1.2-	
1.3-	
1.4- 1.45 1.5-	
1.6-	
1.7-	

TABLE : IX e

 $i_{\rm S}$

VITRINITE REFLECTANCE RAW DATA Sample depth : 2175.0 m Sample type : SWC Preparation : HF-residue Vitrinite reflectance (Ro) values : 0.2-0.3-<u>.30-.33</u> < .37 < true population 0.4-< mean Ro = 0.40 .44 ۲ <u>.49-.46</u> 0.5-0.6-.66 0.7-0.8-.80 0.9-. 94 .97 1.0-1.1-1.2-1.3-1.4-1.5-1.6-1.7TABLE : IX f

VITRINITE REFLECTANCE RAW DATA

Sample depth : 2220.0 m Sample type : SWC Preparation : HF-residue Vitrinite reflectance (Ro) values : 0.2-.23 0.3-<possibly true population</pre> .35 0.4-<u>.48</u> 0.5-< mean Ro = 0.42 .54 .55-.55 0.6-0.7-.72 .75-.76 0.8-0.9-1.0-1.06 1.1-1.2-1.3-1.4-1.5-1.6-1.7-

TABLE : IX g

VITRINITE REFLECTANCE RAW DATA

Sample depth : 2310.0 m : SWC Sample type Preparation : HF-residue Vitrinite reflectance (Ro) values : 0.2-0.3-<u>.39</u> < 0.4true population mean Ro = 0.460.5-< <u>.52</u> 0.6-.61 0.7-.74-.74 .76 0.8-. 85 0.9-1.0-1.1-1.2-1.3-1.4-1.5-1.6-1.7-

TABLE : IX h

VITRINITE REFLECTANCE RAW DATA Sample depth : 2326.0 m Sample type : swc Preparation : HF-residue Vitrinite reflectance (Ro) values : 0.2-0.3-.31 Κ. .38-.39 < true population mean Ro = 0.410.4-.49-.47 Ś 0.5-.58-.59-.57 0.6-0.7-.78-.76 0.8-0.9-1.0-1.1-1.2-1.3-1.4-1.5-1.6-1.7TABLE : IX i

VITRINITE REFLECTANCE	RAW DATA	
Sample depth Sample type Preparation	:	: 2333.0 m : swc : HF-residue
Vitrinite reflectance	(Ro) values :	:
0.2~		
0.3-		
0.4-		
0.5~		
0.6~		
0.7-		
0.8-	Darren	1
0.9~		
1.0~		
1.1-		
1.2-		
1.3-	t.	
1.4~		
1.5-		
1.6~		
1.7~		
TABLE : IX j

VITRINITE REFLECTANCE RAW DATA .. Sample depth : 2347.0 m Sample type : swc Preparation : HF-residue Vitrinite reflectance (Ro) values : 0.2-. 27 0.3-0.4-< possibly true value, Ro = 0.42 .42 0.5-0.6-0.7r 0.8-.83 0.9-1.0-1.1-1.2-1.3-1.4-1.5-1.6-1.7-

1

TABLE : IX k

VITRINITE REFLECTANCE RAW DATA

Sample depth	:	2358.Om	
Sample type	:	SWC	
Preparation	:	HF-residue	
Vitrinite reflectance (Ro)	values :		
0.2-			
0.3-			
0.4-			
0.5-			
D.6-	barren		
D.7-			
D.8-			
D.9-			
L.0-			
1.1-			
1.2-			
1.3-			
1.4-			
1.5-			
L.6-			
1.7-			

TABLE : IX 1

VITRINITE REFLECTANCE	RAW DATA
Sample depth Sample type Preparation	: 2364.0 m : swc : HF-residue
Vitrinite reflectance	(Ro) values :
0.2-	
0.3-	
0.4-	
0.5-	•
0.6-	Darren
0.7-	
0.8-	
0.9-	
1.0-	
1.1-	
1.2-	
1.3-	
1.4-	
1.5-	
1.6-	
1.7-	•

TABLE : IX m

VITRINITE REFLECTANCE RAW DATA : 2410.0 m Sample depth Sample type : SWC Preparation : HF-residue Vitrinite reflectance (Ro) values : 0.2-.24 . 29 0.3-.33 0.4- $0.5 - \frac{.47}{.53}$ < possibly true population < mean Ro = 0.50 0.6-0.7-0.8-0.9-1.0-1.1-1.2-1.3-1.4-1.5-1.6-1.7-

TABLE : IX n

VITRINITE REFLECTANCE RAW DATA Sample depth : 2410.0 m Sample type : SWC Preparation : bulk rock Vitrinite reflectance (Ro) values : 0.2-.29-.28-.29-.28 0.3-<u>.34</u>-.30-.31-.31-.31-.33-.30-.33-.32-.31-.30-.33-.32 < true .35-.36-.39-.38-.38-.37-.36-.35-.37-37 < population 0.4-< mean <u>.41-.41-.40-.43-.41-.41-.43</u> < Ro = 0.380.5-. 53 .59-.58-.57 0.6-.63-.61 . 65 0.7-.74-.70 0.8-0.9-1.0-1.1-1,2-1.3-1.4-1.5-1.6-1.7TABLE : IX o

VITRINITE REFLECTANCE RAW DATA

Sample depth : 2416.0 m Sample type : SWC Preparation : HF-residue Vitrinite reflectance (Ro) values : 0.2-0.3-.31 0.4-<u>.42-.41</u> < true population < mean Ro = 0.44 <u>.49</u> 0.5-0.6-0.7-0.8-0.9-.97 1.0-1.1-1.2-1.3-1.4-1.5-1.6-1.7-

34 14

TABLE : IX p

.

VITRINITE REFLECTANCE RAW DATA

Sample depth : 2418.0 m Sample type : SWC Preparation : HF-residue Vitrinite reflectance (Ro) values : 0.2-.28 0.3-.30 <u>.36</u> <true population 0.4-۲ .43-.40 mean Ro = 0.46<u>.49-.49</u> 0.5-< <u>.51-.52</u> .56 0.6-0.7-0.8-0.9-1.0-1.1-1.2-1.21 1.3-1.4-1.5-1.6-1.7TABLE : IX q

VITRINITE REFLECTANCE RAW DATA

Sample depth : 2423.0 m Sample type : swc Preparation : HF-residue Vitrinite reflectance (Ro) values : 0.2-0.3-0.4-<u>.40</u> 0.5-< possibly true population</pre> <u>.50</u> mean Ro = 0.45 0.6-.67 0.7-0.8-0.9-1.0-1.05 1.1-1.2-1.3-1.4-1.5-1.6-1.7-

TABLE : IX r

VITRINITE REFLECTANCE RAW DATA

Sample	depth	:	2450.0 m
Sample	type	3	SWC
Prepara	tion	:	HF-residue

Vitrinite reflectance (Ro) values :

0.2-

0.3-

• •	.39		<				ia+ia	
0.4-	. 43		۲ ۲	true	pol	pu.		n
	.49		<	mean	Ro	=	0.46	6
0.5-	52		<u>ج</u>					
0.6-	<u></u>		, j					
0.7-								
0.8-								
0.9-								
1.0-	4 94							
1.1-	1.01							
1.2-								
1.3-								
1.4-								
1.5-						*		
1.6-								
1.7-								

TABLE : IX s

VITRINITE REFLECTANCE RAW DATA Sample depth : 2455.5 m Sample type : SWC Preparation : HF-residue Vitrinite reflectance (Ro) values : 0.2-0.3-0.4-.48-.49-.46 < true population, mean Ro = 0.48</pre> 0.5-. .55-0.6-.61-0.7-0.8-0.9-1.0-1.1-1.2-1.3-1.4-1.5-1.6-1.7-

.....

TABLE : IX t

VITRINITE REFLECTANCE RAW DATA

Sample depth: 2461.3 mSample type: corePreparation: HF-residue

Vitrinite reflectance (Ro) values :

0.2-

14

0.3-.33-.31 0.4-.40-.44 ۲ .49-.45 < true population 0.5-8 <u>.52-.53</u> .56 0.6-0.7-.70-.73 . 75 0.8-0.9-.97-.95 1.0-1.1-1.11 1.2-1.3-1.4-1.5-1.6-1.7TABLE : IX u

VITRINITE REFLECTANCE RAW DATA Sample depth : 2515.5 m Sample type : SWC Preparation : HF-residue Vitrinite reflectance (Ro) values -0.2-0.3-0.4-0.5-.50 < possibly true population <u>.58</u> < mean Ro = .54 0.6-.66-.66 0.7-. 77 0.8-. 84 . 89 0.9-.97-.96-.98-.96 1.0-1.01 1.09-.1.09 1.1-1.19 1.2-1.29 1.3-1.4-1.43 1.5-1.59 1.6-1.7TABLE : IX V

3

当

個

VITRINITE REFLECTANCE RAW DATA Sample depth : 2526.5 m Sample type : core Preparation : HF-residue Vitrinite reflectance (Ro) values : 0.2-. 28 0.3-. 33 <u>.37-.39</u> < true population 0.4-< mean Ro = 0.45 .44-.42-.41-.43 .48-.46-.49-.48-.48-.49 0.5-0.6-. 64 .67 0.7-.70-.72 0.8-.84-.83-.83 ٠ .88-0.9-1.0-1.07 1.1-1.2-1.3-1.4-1.5-1.6-1.7-

TABLE : IX w

VITRINITE REFLECTANCE RAW DATA

- - -

Sample depth: 2558.8 mSample type: corePreparation: HF-residueVitrinite reflectance (Ro) values :

0.2-

0.3-

3

0.4-	<u>.36</u> - <u>.39</u> - <u>.39</u> <u>.43</u> - <u>.40</u> - <u>.42</u> - <u>.43</u> <u>.48</u>	< < < <	true mean	popula Ro = O	tion .43
0.6-	<u>.54</u> - <u>.50</u> - <u>.51</u> .6060				
0.8-					
0.9- 1.0-					
1.1-					
1.3- 1.4-		÷	, ,		
1.5- 1.6-					
1.7-					

TABLE : IX x

ß

VITRINITE REFLECTANCE RAW DATA Sample depth : 2582.0 m Sample type : core Preparation : HF-residue Vitrinite reflectance (Ro) values : 0.2-0.3-.30 <u>.39</u> < true population 0.4-< mean Ro = 0.45 .43-< .45-.49-.49 0.5-.59-.58-.59-.58 0.6-.64-.64-.63-.60 .67-.65 0.7-.72-.72-.70-.71 .75 0.8-. 82 .85-.86 0.9-.95 1.0-1.1-1.2-1.3-1.4-1.5-1.6-1.7TABLE : IX y

18

VITRINITE REFLECTANCE RAW DATA

Sample depth : 2604.5 m Sample type : SWC Preparation : HF-residue Vitrinite reflectance (Ro) values : 0.2-0.3-0.4-< possibly true .44 0.5-< population .54 < mean Ro = 0.49 0.6-.60-.64 .69 0.7-.71 0.8-0.9-1.0-1.1-1.2-1.3-1.4-1.5-1.6-1.7TABLE : IX z

Sample depth : 2669.0 m Sample type : swc Preparation : HF-residue Vitrinite reflectance (Ro) values : 0.2- 0.3- .3332 0.4- .44- (possibly true population, 0.4 (mean Ro = 0.44 0.5- 0.6- 0.7- 0.8- .80- 0.9- 1.1- 1.1- 1.2- 1.3- 1.4- 1.5- 1.6-	VITRINIT	E REFLECTANCE	RAW DATA
Sample type : swc Preparation : HF-residue Vitrinite reflectance (Ro) values : 0.2- 0.3- .3332 0.4- .44- < possibly true population, 0.4 (mean Ro = 0.44) 0.5- 0.6- 0.7- 0.8- 0.9- 1.0- 1.1- 1.2- 1.3- 1.4- 1.5- 1.6-	Sample c	lepth	: 2669.0 m
Preparation : HF-residue Vitrinite reflectance (Ro) values : 0.2- 0.3- .3332 0.4- .44- (possibly true population, .44- (mean Ro = 0.44 0.5- 0.6- 0.7- 0.8- .80- 0.9- 1.0- 1.1- 1.2- 1.3- 1.4- 1.5- 1.6- 1.7-	Sample t	ype	: SWC
<pre>Vitrinite reflectance (Ro) values : 0.2- 0.3- .3332 0.4- .44- 0.5- 0.6- 0.7- 0.8- .80- 0.9- 1.0- 1.1- 1.2- 1.3- 1.4- 1.5- 1.6- 1.7-</pre>	Preparat	ion	. : HF-residue
0.2- 0.3- .3332 0.4- .44- (possibly true population, (mean Ro = 0.44 0.5- 0.6- 0.7- 0.8- .80- 0.9- 1.0- 1.1- 1.2- 1.3- 1.4- 1.5- 1.6- 1.7-	Vitrinit	e reflectance	(Ro) values :
0.3- .3332 0.4- .44- (possibly true population, (mean Ro = 0.44 0.5- 0.6- 0.7- 0.8- .80- 0.9- 1.0- 1.1- 1.2- 1.3- 1.4- 1.5- 1.6- 1.7-	0.2-		
.3332 0.4- <u>.44</u> - (possibly true population, (mean Ro = 0.44 0.5- 0.6- 0.7- 0.8- .80- 0.9- 1.0- 1.1- 1.2- 1.3- 1.4- 1.5- 1.6- 1.7-	0.3-		
<u>.44</u> - < possibly true population, 0.4 0.5- 0.6- 0.7- 0.8- .80- 0.9- 1.0- 1.1- 1.2- 1.3- 1.4- 1.5- 1.6- 1.7-	0.4-	.3332	
0.6- 0.7- 0.8- .80- 1.9- 1.0- 1.1- 1.2- 1.3- 1.4- 1.5- 1.6- 1.7-	0.4 0.5-	<u>.44</u> -	< possibly true population, < mean Ro = 0.44
D.7- D.8- .80- D.9- 1.0- 1.1- 1.2- 1.3- 1.4- 1.5- L.6- 1.7-	0.6-		
0.8- .80- 1.0- 1.1- 1.2- 1.3- 1.4- 1.5- L.6- 1.7-	0.7-		
.80- 0.9- 1.0- 1.1- 1.2- 1.3- 1.4- 1.5- L.6-	0.8-		
1.0- 1.1- 1.2- 1.3- 1.4- 1.5- 1.5-	0.9-	.80-	
1.1- 1.2- 1.3- 1.4- 1.5- L.6-	1.0-		
1.2- 1.3- 1.4- 1.5- L.6-	1.1-		
1.3- 1.4- 1.5- L.6-	1.2-		
1.4- 1.5- L.6-	1.3-		
1.5- L.6-	1.4-		
L.6-	1.5-		
1.7-	1.6-		
	17-		

TABLE : IX aa

VITRINITE REFLECTANCE RAW DATA

Sample depth : 2678.0 m Sample type : SWC : HF-residue Preparation Vitrinite reflectance (Ro) values : 0.2-0.3-.30-.30 <u>. 39</u>-< true population 0.4-<u>.42-.40</u> < mean Ro = 0.400.5-0.6-.63-.62-0.7-.72 .79 0.8-0.9-1.0-1.00 1.1-1.11 1.2-1.3-1.4-1.5-1.6-1.7-

TABLE : IX ab

VITRINITE REFLECTANCE RAW DATA Sample depth : 2705.5 m Sample type : SWC Preparation : HF-residue Vitrinite reflectance (Ro) values : 0.2-0.3-0.4-0.5-.54 < true population, mean Ro = 0.54 0.6-0.7-0.8-. 87 0.9-1.0-1.04 1.1-1.2-1.3-1.4-1.5-1.6-1.7-

TABLE : IX ac

VITRINITE REFLECTANCE RAW DATA Sample depth : 2717-26 m Sample type : ctgs Preparation : bulk rock (coal) Vitrinite reflectance (Ro) values : 0.2-.28-.26-.28-.29-.27-.29-.29-.28-.29-.29-.29-.29 0.3-.33-.31-.33-.33-.34-.34-.30-.30-.33-.32-.33-.34-.32-.34-32-.31 <u>.35-.37-.37-.37-.35-.35-.37-.39-.36-.37-.35-.35</u> 0.4-True population, mean Ro 0.32 0.5-0.6-0.7-0.8-0.9-1.0-1.1-1.2-1.3-1.4-1.5-1.6-1.7-

TABLE : IX ac

VITRINITE REFLECTANCE RAW DATA

Sample depth : 2717-26 m Sample type : ctgs Preparation : bulk rock (coal) Vitrinite reflectance (Ro) values : 0.2-0.3-.33-.30-.30-.32-.34-.32-.30-.30-.32 0.4-0.5-0.6-0.7-0.8-0.9-1.0-1.1-1.2-1.3-1.4-1.5-1.6-1.7-

TABLE : IX ad

VITRINITE REFLECTANCE RAW DATA

Sample depth : 2718.5 m Sample type : SWC Preparation : HF-residue Vitrinite reflectance (Ro) values : 0.2-0.3-<u>.33-.34</u> < true population . <u>.38-.35-.38-.37-.35</u> < mean Ro = 0.36 0.4-0.5-.55-0.6-0.7-0.8-0.9-1.0-1.1ł, 1.2-1.3-1.4-1.5-1.6-1.7-

TABLE : IX ae

. t

. . .

VITRINITE REFLECTANCE RAW DATA Sample depth : 2924-33 m Sample type : ctgs Preparation : bulk rock (coal) Vitrinite reflectance (Ro) values : 0.2-0.3-.34-.38-.37-0.4-.45-.47-.47-.47-.46-.48-.48-.49-.49-.47-.49-.49-.49-.49-.49-.45-.46 0.5-.53-.54-.53-.51-.52-.52-.52-.50-.52 .58-.56-.55-.55 0.6-0.7true population 0.8mean Ro = 0.470.9-1.0-1.1-1.2-1.3-1.4-1.5-1.6-1.7-

TABLE : IX ae cont'd

VITRINITE REFLECTANCE RAW DATA Sample depth : 2924-33 m Sample type : ctgs Preparation : bulk rock (coal) Vitrinite reflectance (Ro) values : 0.2-0.3-0.4-<u>.49-.46-.46</u> 0.5-0.6-0.7true population 0.8mean Ro = 0.470.9-1.0-1.1-1.2-1.3-1.4-1.5-1.6-1.7-

3

TABLE : IX af

g

VITRINITE REFLECTANCE RAW DATA . Sample depth : 2931.0 m Sample type : SWC Preparation : bulk rock (coal) Vitrinite reflectance (Ro) values : -0.2-0.3-<u>.39</u> 0.4-.40 .49-.45-.45-.49-.48-.49-.47-.46-.49-.48-.49-.48-.46 0.5-.50-.53-.53-.52-.50-.50-.53-.50-.52-.51-.52-.51-.53-.50-.50 .58-.57-.58-.58-.58-.56-.59-.56 0.6-.62-.60-.64-.60-.60-.63 0.7-0.8true population 0.9mean Ro = 0.521.0-1.1-1.2-1.3-1.4-1.5-1.6-1.7-

TABLE : IX af cont'd

VITRINITE REFLECTANCE RAW DATA

1

:

:

Sample depth Sample type Preparation Vitrinite reflectance (Ro) values : 0.2-0.3-0.4-0.5-.52-.51-.53-.51-.54-.53 0.6-0.7-0.8-0.9-1.0-1.1-1.2-1.3-1.4-1.5-1.6-1.7-

TABLE : IX ag

VITRINITE REFLECTANCE RAW DATA

Sample depth : 3000.0 m Sample type : SWC Preparation : bulk rock (coal) Vitrinite reflectance (Ro) values : 0.2-0.3-0.4-.44-.42-.43-.44-.43-.40-.41-.44 .48-.47-.48-.47-.49-.45-.45-.48-.47-.46-.48-.48-.49-.46-.48 0.5-.51-.50-.50-.52-.52-.54-.54-.51-.51-.51-.52-.51-.50-.50-.50 0.6-0.7true population 0.8mean Ro = 0.480.9-1.0-1.1-1.2-1.3-1.4-1.5-1.6-1.7-

TABLE : IX ag cont'd

VITRINITE REFLECTANCE RAW DATA Sample depth : Sample type ; Preparation • Vitrinite reflectance (Ro) values : 0.2-0.3-0.4-<u>.46-.49-.47-.48-.49-.45-.48-.49-.46-.49-.46-.49</u> 0.5-0.6-0.7-0.8-0.9-1.0-1.1-1.2-1.3-1.4-1.5-1.6-1.7-

TABLE : IX ah

18

VITRINITE REFLECTANCE RAW DATA

Sample depth : 3032-41 m Sample type : ctgs Preparation : bulk rock (coal) Vitrinite reflectance (Ro) values : 0.2-0.3-0.4-.43-.44-.44 .46-.45-.45-.48-.46-.49-.45-.47-.46-.48 0.5-<u>.50-.52-.52-.51-.53-.54-.50-.51-.50-.51-.52-.54-.50-.53-.51</u> .55-.59-.58-.56-.58-.58-.55-.55-.59-.56-.58 0.6-<u>.60-.61-.61-.64</u> <u>.69</u> 0.7-0.8true population 0.9mean Ro = 0.531.0-1.1-1.2-1.3-1.4-1.5-1.6-1.7TABLE : IX ah cont'd

VITRINITE	REFLECTANCE	RAW DATA
Sample dep Sample typ Preparatic	oth De Dn	
Vitrinite	reflectance	(Ro) values
0.2-		
0.3-		
0.4-		
0.5- <u>.51</u>	<u>515053-</u> .	53
0.6-		
0.7-		
0.8-		
0.9-		
1.0-		
1.1-		
1.2-		
1.3-		
1.4-		
1.5-		,
1.6-		
1.7-		

:

:

TABLE : IX ai

£,

VITRINITE REFLECTANCE RAW DATA Sample depth : 3098.0 m Sample type : SWC Preparation : bulk rock (coal) Vitrinite reflectance (Ro) values : 0.2-0.3-0.4-.44-.44 .48-.49-.49-.48-.47-.48-.49-.47-.46-.47-.48-.48-.45 0.5-.54-.54-.54-.53-.50-.52-.53-.51-.50-.51-.53-.53-.53-.50-.51 .59-.57-.58-.57-.55-.56-.55-.55-.59-.59-.56 0.6-<u>.63-.60-.63</u> 0.7-0.8true population 0.9-, mean Ro = 0.521.0-1.1-1.2-1.3-1.4-1.5-1.6-1.7-

.

TABLE : IX ai cont'd

VITRINITE REFLECTANCE RAW DATA Sample depth ; Sample type <u>;</u>: Preparation : Vitrinite reflectance (Ro) values : 0.2-0.3-0.4-0.5-.50-.54-.51-.53-.54 0.6-0.7-0.8-0.9-1.0-1.1-1.2-1.3-1.4-1.5-1.6-1.7-

TABLE : IX aj

VITRINITE REFLECTANCE RAW DATA : 3140-49 m Sample depth Sample type : ctgs Preparation : bulk rock (coal) Vitrinite reflectance (Ro) values : 0.2-0.3-<u>.39-.36</u> 0.4-.42-.44-.42-.40-.43-.44-.41-.43-.42-.44 .48-.48-.46-.46-.47-.49-.47-.45-.46-.47-.49-.48-.48-.46 0.5-.54-.54-.52-.53-.50-.51-.52-.51-.51-.54-.54 .56-.59-.55-.56-.55-.58 0.6-0.7true population mean Ro = 0.480.8-0.9-1.0-1.1-1.2-1.3-1.4-1.5-1.6-1.7-

TABLE : IX aj cont'd

Sample depth : Sample type : Preparation : Vitrinite reflectance (Ro) values : 0.2- 0.3- 0.4- 0.5- 0.5- 0.6- 0.6- 0.8- 0.8- 0.9- 1.0- 1.1- 1.2- 1.3- 1.4- 1.5- 1.6-	VIIRINITE REFLECTANCE RAW U			 	-
Sample type : Preparation : Vitrinite reflectance (Ro) values : 0.2- 0.3- 0.4- <u>-47-49-46-47-45-48</u> 0.5- 0.6- 0.7- 0.8- 0.9- 1.0- 1.1- 1.2- 1.3- 1.4- 1.5- 1.6-	Sample depth	:			
Preparation : Vitrinite reflectance (Ro) values : 0.2- 0.3- 0.4- 1.47-149-146-147-145-148 0.5- 0.6- 0.7- 0.8- 0.9- 1.0- 1.1- 1.2- 1.3- 1.4- 1.5- 1.6-	Sample type	:			
<pre>Vitrinite reflectance (Ro) values : 0.2- 0.3- 0.4- 0.5- 0.5- 0.6- 0.7- 0.8- 0.9- 1.0- 1.1- 1.2- 1.3- 1.4- 1.5- 1.6-</pre>	Preparation	:			
0.2- $0.3-$ $0.4-$ $0.5-$ $0.5-$ $0.6-$ $0.7-$ $0.8-$ $0.9-$ $1.0-$ $1.1-$ $1.2-$ $1.3-$ $1.4-$ $1.5-$ $1.6-$	Vitrinite reflectance (Ro)	values .			
0.2- $0.3-$ $0.4-$ $1.5-$ $1.6-$ $0.5-$ $1.7-$ $0.8-$ $0.9-$ $1.0-$ $1.1-$ $1.2-$ $1.4-$ $1.5-$ $1.6-$		Fulled 1			
$ \begin{array}{c} 0.3-\\ 0.4-\\ 1.5-\\ 1.6-\\ \end{array} $	0.2-				
$0.4 - \frac{.474946474548}{.474548}$ $0.6 - \frac{.474946474548}{.474548}$ $0.6 - \frac{.474946474548}{.474548}$	0.3-				
$ \frac{47 - 49 - 46 - 47 - 45 - 48}{47 - 45 - 48} $ $ \frac{47 - 49 - 46 - 47 - 45 - 48}{47 - 45 - 48} $ $ \frac{47 - 49 - 48 - 47 - 45 - 48}{48 - 48 - 48} $ $ \frac{10 - 4}{10} $ $ 10 -$	0,4-				
0.5- 0.7- 0.8- 0.9- 1.0- 1.1- 1.2- 1.3- 1.4- 1.5- 1.6-	.47494647454	<u>8</u>			
0.6- 0.7- 0.8- 0.9- 1.0- 1.1- 1.2- 1.3- 1.4- 1.5- 1.6-	0.5~				
0.7- 0.8- 0.9- 1.0- 1.1- 1.2- 1.3- 1.4- 1.5- 1.6-	0.6-				
0.8- 0.9- 1.0- 1.1- 1.2- 1.3- 1.4- 1.4- 1.5- 1.5-	0.7-				
D.9- L.O- 1.1- 1.2- 1.3- 1.4- 1.5- L.6-	0.8-				
L.O- 1.1- 1.2- 1.3- 1.4- 1.5- L.6-	D.9-		χ.		
1.1- 1.2- 1.3- 1.4- 1.5- 1.5-	1.0-				
1.2- 1.3- 1.4- 1.5- 1.6-	1.1-				
1.2- 1.3- 1.4- 1.5- 1.6-					
1.3- 1.4- 1.5- L.6-	1.2-				
1.4- 1.5- 1.6-	1.3-				
l.5- L.6-	1.4-				
L.6-	1.5-		. •		
	L.6-				
1-7-	1.7-			54	

TABLE : IX ak

VITRINITE REFLECTANCE RAW DATA Sample depth : 3167.0 m Sample type : SWC Preparation : bulk rock (coal) Vitrinite reflectance (Ro) values : 0.2-0.3-.38 0.4-.42-.44-.43-.43-.42-.41-.44-.44-.43 .45-.48-.45-.47-.47-.49-.49-.49-.49-.49-.49-.47-.46-.47-.48-.45 0.5-.54-.53-.54-.50-.54-.50-.52-.50-.53-.52-.51-.51 <u>.57</u> 0.6-0.7true population 0.8mean Ro = 0.480.9-1.0-1.1-1.2-1.3-1.4-1.5-1.6-1.7TABLE : IX ak cont'd

VITRINITE REFLECTANCE RAW DATA

Sample depth ; Sample type : Preparation : Vitrinite reflectance (Ro) values : 0.2-0.3-0.4-.48-.48-.49-.48-.49-.49-.49-.49-.47-.49-.47-.47 0.5-0.6-0.7-0.8-0.9-1.0-1.1-1.2-÷, 1.3-1.4-1.5-1.6-1.7-
TABLE : IX al

VITRINITE REFLECTANCE RAW DATA

: 3174.5 m Sample depth Sample type : SWC Preparation : bulk rock (coal) Vitrinite reflectance (Ro) values : 0.2-0.3-0.4-.37-<u>.47-.49-.45-.46-.49-.47-.49-.45-.46-.49-.49-.48-.46-.48-.48-.48</u> 0.5-<u>.51-.54-.52-.52-.51-.53-.51-.53-.53-.52-.54-.54-.52-.50-.51-.51-.50</u> <u>.58-.57-.55-.55-.56</u> 0.6-0.7-0.8true population mean Ro = 0.490.9-1.0-1.1-1.2-1.3-1.4-1.5-1.6-1.7-

TABLE : IX am

VITRINITE REFLECTANCE RAW DATA

Sample depth : 3230-39 m Sample type : ctgs Preparation : bulk rock (coal) Vitrinite reflectance (Ro) values : 0.2-0.3-0.4-.44-.43-.40-.41-.44-.42-.43 .46-.49-.45-.48-.49-.46-.49-.46-.49-.49-.45-.47-.47-.47-.49-.49-.46-.46 0.5 0.6-.64-.60 0.7-.70 0.8-0.9true population 1.0mean Ro = 0.501.1-1.2-1.3-1.4-1.5-1.6-1.7-

TABLE : IX an

VITRINITE REFLECTANCE RAW DATA

Sample depth : 3251.0 m Sample type : SWC Preparation : bulk rock (coal) Vitrinite reflectance (Ro) values : 0.2-0.3-<u>.39-.39</u> 0.4-.44-.40-.41-.44 .45-.45-.48-.48-.46-.48-.49-.45-.47-.45-.48-.46-.48-.49-.49-.49-.48-.48-.45 0.5-.54-.54-.50-.51-.51-.53-.52-.52-.51-.53-.54-.53-.51-.53-.52 .55-.58-.55-.57-.56-.56-.56-.59 0.6-62-.60-.63-.60 0.7-0.8-0.9true population 1.0mean Ro = 0.511.1-1.2-1.3-1.4-1.5-1.6-1.7-

TABLE : X

COAL UNIT . C	CUMULATIVE THICKNESS OF CO	AL AND CARBO	NACEOUS SHALE
Density	Lithology	Cumulative	thickness, m
< 1.5	Coal	0	
1.5 - 1.7	Carbonaceous shale	5.50	Ŷ
1.7 - 2.0	Carbonaceous shale	33.75	
	total	39.25	

LIST OF FIGURES

Figure	I	Source rock and maturity evaluation
	II	: Vitrinite reflectance profile
	III	Headspace gas composition
	IV	: Pyrogram (pyrolysis gas chromatography)
		a) 2410.0 m (swc)
		b) 2416.0 m (swc)
		c) 2418.0 m (swc)
		d) 2405-23 m (ctgs)
		e) 2441-50 m (ctgs)
		f) 2450-59 m (ctgs)
		g) 2627-36 m (ctgs)
		h) 2663-72 m (ctgs)
		i) 2717-26 m (ctgs)
		j) 2735-44 m (ctgs)
		k) 2924-33 m (ctgs)
		1) 3032-41 m (ctgs)
		m) 3140-49 m (ctgs)
		n) 3230-39 m (ctgs) .
	V	Gas chromatogram of alkanes
		a) 2405-23 m (ctgs)
		b) 2450-59 m (ctgs)
		c) 2627-36 m (ctgs)
		d) 2663-72 m (ctgs)
		e) 2717-26 m (ctgs)
		f) 2735-44 m (ctgs)
		g) 2924-33 m (ctgs)
		h) 3032-41 m (ctgs)
		i) 3140-49 m (ctgs)
		j) 3230-39 m (ctgs)

ABBREVIATIONS USED IN FIGURES

Figure IV : Numbered peaks - n-alkene/n-alkane doublets of the corresponding carbon number

> T = Toluene X = Xylenes (m+p) C_8 = C₃-alkylbenzenes Ρ = Phenol = C₄-alkylbenzenes СВ C₁p = Methylphenols (cresols) C₂P = Di-methylphenols N = Naphthalene C₁N = 2- and 1-methylnaphthalenes Pr = Pristenes

Figure V Numbered peaks - n-alkanes of the corresponding carbon number

pr - pristane ph - phytane FIGURE : I

SOURCE ROCK AND MATURITY EVALUATION

2 Heather Fm

FIGURE : []

6407/2-2

÷.

a,

\$

-

8

.

\$

FIGURE : V c

FIGURE : Ve

,

5

.

LIST OF ENCLOSURES

4

3

Enclosure 1 : Geochemistry summary chart. Well 6407/2-2 offshore Norway 1850-2600 m Hordaland GP-Middle Jurassic Sandstone

Enclosure 2 : Geochemistry summary chart. Well 6407/2-2 offshore Norway .2600-3347 m Middle Jurassic Sandstone - Triassic Grey Beds (T.D.)