3

u-41

2/5-1 Lur Cret 4 2/11-1 Oppr Jur. (Kinn)

AMOCO PRODUCTION COMPANY RESEARCH CENTER

SOURCE ROCK EVALUATION

- Amoco Norway 2/5-1 & 2/11-1 wells, North Sea -

Geochemistry Group

R. L. Ames

BA-88-842-1 1 5 JUNI 1988 REGISTRERT OWEDIREKTORATET

Distribution: K. D. Soule, Amoco Europe

R. W. Craig, Amoco Norway

S. A. Antoniuk, AIOC

W. R. Walton

J. A. Momper

Technical Service 8269CC Amoco Europe Incorporated

James A Monefee

INTRODUCTION

Source rock analyses have been completed on 34 cuttings samples from the Amoco Norway 2/5-1 and Amoco Norway 2/11-1 wells. The purpose of this study was to evaluate the Lower Cretaceous and Upper Jurassic shales as possible source beds for the petroleum in the Cretaceous and Danian reservoirs of the North Sea Tertiary basin. Previous technical service reports (T.S. 7963CC and 7964CC) had evaluated the Tertiary shales in these wells, and they were found to be capable of generating gas or gas condensate type hydrocarbons.

CONTAMINATION

Although the samples are described as washed cuttings (letter Soule/Walton, 9-27-71), they are all heavily contaminated by oil from the drilling mud system. The Jurassic section in the 2/11-1 well was drilled with an oil base mud and the samples reeked of hydrocarbons. The data indicate that the shales are virtually saturated with diesel oil (Table 1). Chromatographic analysis indicates that diesel oil is the contaminant in the 2/5-1 well also (Figure 1). A different type contamination is present in the Lower Cretaceous samples in the 2/11-1, because the extracted hydrocarbons are similar to the crude oil recovered from the Cretaceous pay between 8624 and 8696 feet (Figure 2). This oil may have entered the mud system while drilling the pay section or during a formation test.

Because of the contamination, the analytical data have varying degrees of reliability. Total organic carbon is not reported because it is strongly affected by the extractable contamination; however, the non-extractable organic carbon is a reliable indicator of the source rock quality. Extracts are obviously inflated by contamination and are unreliable. Elemental analyses on the 2/5-1 were totally unreliable, and those from the Jurassic of 2/11-1 provide some useful data. Difficulty was encountered previously when treating the Jurassic outcrop samples from England (T.S. 8207C).

CONCLUSIONS

- 1) Based on the weight percent organic carbon, the Lower Cretaceous shales have poor to fair source quality ratings, whereas the Upper Jurassic shales generally have good to very good source quality.
- 2) Abundant hydrogen in the Jurassic organic matter in the 2/11-1 well, 6.4-8.7 percent, indicates a high convertibility to oil. Therefore, the Jurassic appears to contain PROBABLY EFFECTIVE source beds for oil. Despite the highly variable, and unreliable, elemental carbon values which preclude diagenesis determinations, time-temperature relations indicate that the Cretaceous and Jurassic shales should be equivalent to peak or past peak generation.
- 3) The Jurassic section appears to contain the principal source beds for the oil in the North Sea Tertiary basin.

RECOMMENDATION

Additional samples should be analyzed in order to obtain more reliable source rock data. Washed cuttings of Lower Cretaceous and Upper Jurassic shales in the Phillips Norway 2/7-lx well have been submitted for paleontologic age dating. We recommend that a suite of samples be selected for source rock evaluation. In particular, we would seek to correlate the indigenous extracts with the accumulated oils.

Roger L. Ames

RLA:glj

FICE	Amo	co Europe		AREA	North Sea		2000
UTHORIZED	BY	K. D. Soule	2	DATE	0-11-71		
ECHNICAL S	SERVICE	NUMBER.	8269CC			-	

Amoco Production Comp

RESEARCH CENTER SOURCE ROCK EVALUATIONS

TATE	(PRO	VINCE)		COUNTY WELL LOCATION Amoco Norway 2/5-1							
	TYPE	QUALITY	FORMATION	LITHOLOGY	DEPTH (ft)	INSOLUBLE RESIDUE %	ORGANIC CARBON TXWT. %	EXTRACTABLE ORGANIC Bbi/ACRE FT.	EXTRACT. HYDROCARBON	EXTRACT. ORG. TOTAL ORG.	RATING
~~~ <u>~~</u>	Cut-				11,930-96						
MO-86	tings	poor	Lower Cretaceous	gry arg. ls.	12,020	40.7	0.5	209.5	134.6	0.60*	poor
	11	f t	, ii	ti	12,030- っっ′ 12,120	49.9	1.1	233.1	162.1	0.45*	good
-88	11	71	ti	, ti	12,130- 90 12,220	44.0	0.6	250.4	187.2	0.60*	fair
-89	11	11	ri .	tt .	12,240- 80'	34.8	0.5	181.2	105.6	0.60*	poor
-90	11	ti .	'n	gry calc. sh.	12,330- g5'	53.9	0.6	230.5	191.8	0.61*	fair
-91	11	ŧτ	n	tr	12,430- 90' 12,520	56.3	0.6	249.0	164.8	0.60*	11
-92	11	- "	Upper Jurassic	Ħ	12,530- 90' 12,620	58.7	0.7	158.9	116.1	0.48*	11
<b>-</b> 93	11	11	ti .	11	12.720	60.6	0.8	165.2	118.4	0.43*	11
-94	ri .	11	· u	blk calc. sh.	12,730- 90' 12,820	66.8	1.2	189.7	122.0	0.38*	good
-95	11	11	ti .	11	12,830- 90'	73.8	2.3	110.7	77.9	0.16*	v. good
<del>-</del> 96	11	ŧŧ	11	T I	12,930- 13,030	66.8	1.2	249.2	150.4	0.45*	good
					440		164				
				•		1.3	, )				
						10				:	
							1,30				

MARKS:

*All samples are strongly contaminated by diesel oil used in the drilling mud. All of the extracts consist mostly of diesel oil.

Logging temp. 258°F @ 13,000 DST temp. 261°F @ 10,200'

ANALYST

TABLE

DEFICE	Amoco	Europe	AREA	North Sea	
AUTHORIZED I	3Y <u>K.</u>	D. Soule	DATE		
TECHNICAL SE	ERVICE N	UMBER_	8269CC		

Amoco Production Com:

SOURCE ROCK EVALUATIONS

RESEARCH CENTER

STATE	(PRO	ROVINCE)		COUNTY		WELL LOCATION Nonextractabl		Amoco Nor	Amoco Norway 2/11-1		<b></b>
	SAMPLE	E QUALITY	FORMATION	LITHOLOGY	DEPTH (ft)	INSOLUBLE RESIDUE %	ORGANIC CARBON WT. %	EXTRACTABLE ORGANIC Bbi/ACRE FT.	I FXTRACT.	EXTRACT.	RATING
ANO-97	Cut-		(Aptian-Albian)	gry arg. ls.	9,520	40.5	0.3	48.7	27.8		nonsource
-98			(Hauterivian- Barremian) L.Cret.		9,720	67.4	0.6	48.5	33.2	0.24*	fair
99	11	11	11	gry arg. ls.	9,920	40.8	0.5	70.4	41.9	0.33*	poor
-100	11	11	11	gry calc. sh.	10,120	56.5	0.4	46.7	30.5	0.32*	n
101_	11	, II.	11	11	10,320	51.7	0.4	64.3	36.3	0.37*	11
-102	ti	1 1	(Berriasian-Val- anginian) L.Cret.	11	10,520	54.7	0.5	61.1	38.4	0.31*	11
-103	11	Ħ	11	11	10,720	75.2	0.6	62.3	41.4	0.28*	fair
-104	ti -	11	11	11	10,920	73.5	0.6	49.1	32.8	0.24*	11
-105	11	11	11	ır	11,120	66.5	0.8	42.4	30.5	0.17*	n
106	11	11	11	11	11,320	69.5	0.6	34.9	21.7	0.18*	ir
107	îi		(Tithonian) Upper Jurassic	gry arg. (Is).	11,510	38.1	0.5	979.0	805.9	0.88**	poor
-108	u		(Kimmeridgian) Upper Jurassic	blk sh.	11,705	76.1	4.2	2034.1	1584.4	0.65**	v. good
-109	H.	11	11	11	12,210	75.5	4.6 ^	2459.8	1962.1	0.67**	11
110	11	11	11	11	12,360	67.3	3.6	2819.4	2313.8	0.74**	11
111	11	n	11	rı	12,760	65.7	3.4	3828.8	3120.3	0.81**	n

IEMARKS:

*All samples contaminated by oil similar to Torfeld-Ekofish oils.

**Invert oil mud system used below 11,320 ft. Samples are virtually saturated with ogl from the drilling muc. The extracts consist mostly of diesel and crude oil.

ANALYST

North Sea 10-11-71 K. D. Soule AUTHORIZED BY _ DATE .

Amoco Production Com

RESEARCH CENTER SOURCE ROCK EVALUATIONS

TECHNICAL SERVICE NUMBER _ 8269CC STATE (PROVINCE) Amoco Norway 2/11-1 COUNTY -WELL LOCATION

		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					Nonextractab	<u> 1e -                                  </u>				
NUMBER	TYPE		FORMATION			INSOLUBLE RESIDUE %	ORGANIC CARBON WT. %	EXTRACTABLE ORGANIC Bbi/ACRE FT.	EXTRACT. HYDROCARBON Bbi/ACRE FT.	ORG. TOTAL	RATING	
NUMBER		COALITI	<u> </u>		(ft)		W1. %	BDI/ACREFI.	BDI/ACRE FI.	ORG.		
ANO-112	Cut- ting	s poor	(Kimmeridgian) Upper Jurassic	blk sh.	12,960	65.8	3.1	2892.5	2303.9	0.78**	v. good	
-113	11	11	- 11	: 11	13,160	70.0	3.0	3032.4	2417.6	0.80**	11	
-114	11	11	11	ij	^ 13,360	68.5	2.2	924.6	734.8	0.61**	11	
	11	11	11	11	13,760	69.9	2.8	2979.6	2605.7	0.80**	. 11	
-116	11	11	11	11	13,960	63.9	2.4	2115.2	1808.1	0.77**	11	
-117	11	11	11	11	14,260	63.3	1.7	3824.1	3279.4	0.90**	11	
-118	11 .	11	***	11	14,660	64.0	2.0	2942.7	2535.3	0.85**	11	
<u>-119</u>	11	11	11	11	15,060	62.5	1.9	2525.0	2141.4	0.84**	11	
								•				
				•								
									'ann			
				•								
								2	•			
					) 2		·^					

EMARKS:

**See footnote, Table 1(b).

FICE	Amo	co Europe		AREA	North Sea	
THORIZED	вү	K. D. Soul	e	DATE	1 11-71	
CHNICAL S	ERVICE	NUMBER .	8269	9CC		

**Amoco Production Comp** 

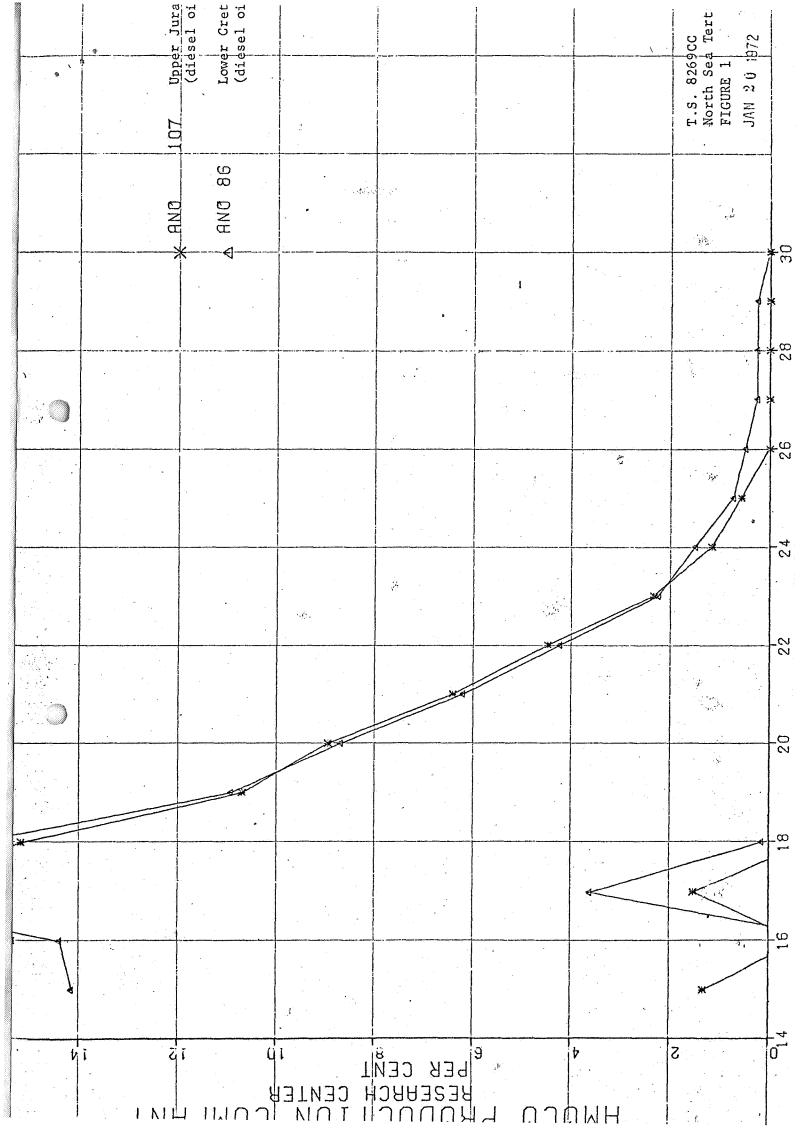
RESEARCH CENTER ORGANIC DIAGENESIS DATA

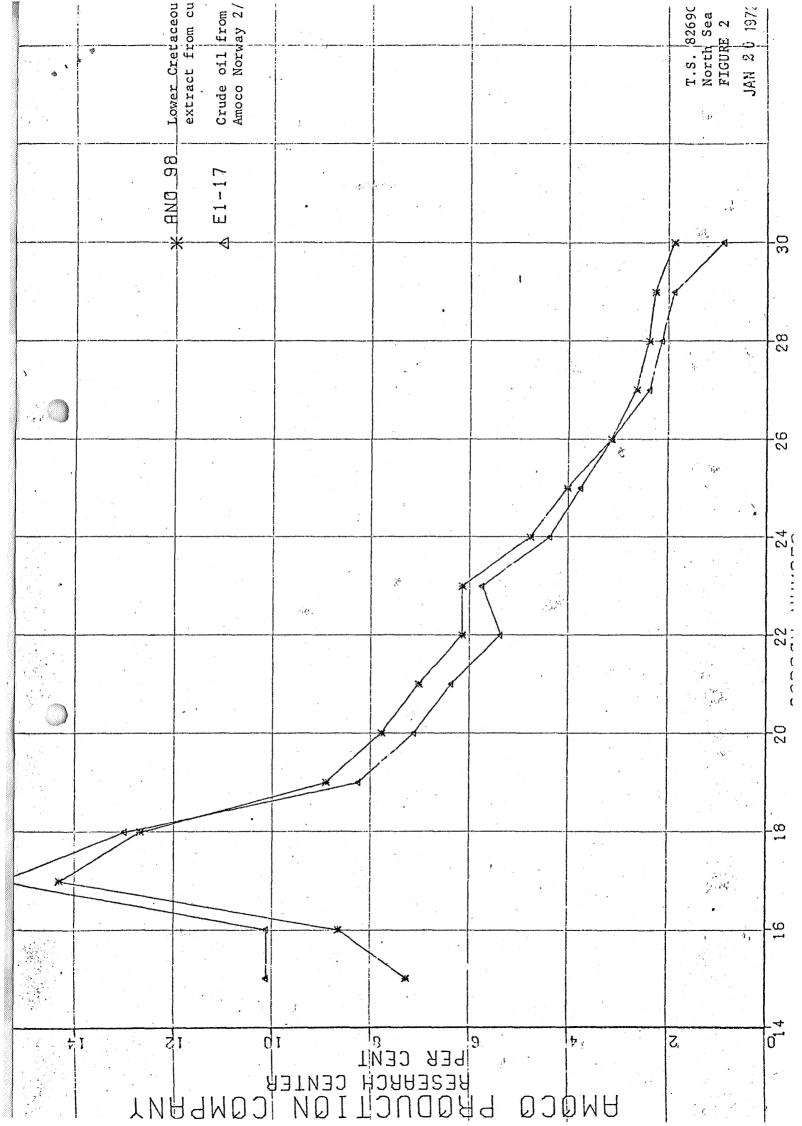
ATE (PROVINCE) COUNTY

WELL LOCATION

Amoco Norway 2/11-1

SAMPLE			FORMATION	LITUOLOGY		ELEM	IENTAL ANA	LYSIS, PER	CENT	RATIO	STATE OF DIAGENESIS	HYDROCAF	
MBER	TYPE	QUALITY	PURMATION	LITHOLOGY	DEPTH (ft)	CARBON	HYDROGEN		NITROGEN	<b>→</b> 1	DIAGENESIS	% HYDROGE	
0-108	Cut-	s poor	(Kimmeridge) Upper Jurassic	blk sh.	11,705	82.2	8.7	6.8	2.3	1.27	*	oil	
-109	) 11	11	11	tt	12,210	83.9	6.8	6.8	2.5	0.98	*	11-	
<u>-110</u>	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	11	11	11	12,360	81.0	7.8	8.9	2.2	1.16	*	11	
-111	11	11	11	11	12,760	81.0	7.9	8.9	2.2	1.18	*	11	
-112	2 "	n	11	11	12,960	79.4	7.8	10.5	2.3	1.18	* *	tt	
113	3 ''	11	11	11	13,160	67.2	6.5	18.5	1.9	1.16	*	ii	
-114	11	11	и	11	13,360	71.8	6.5	19.7	1.8	1.08	*	tt	
-115	5 11	- 11	п	11	13,760	74.0	6.6	17.6	1.8	1.07	*	11	
117	7 11	11	ıı	11	14,260	73.2	6.6	18.6	1.7 -	1.08	*	11	
-118	8 ''	11	ri .	1)	14,660	75.8	6.5	16.0	1.7	1.02	*	11	
<u>-119</u>	9 - 11	11	n	11	15,060	79.3	6.5	12.0	2.2	0.99	*	11	
				J									
					3.0								
							,					·	


MARKS:


*These samples were very difficult to process, and the resulting variable oxygen values obscire the state of diagen sis. However, the maximum carbonization (minimum oxygen content) is equivalent to peak hydrocarbon generation, which indicates that these shales are PROBABLY EFFECTIVE oil source beds.

ANALYST ROQUE. Sa Plante

DATE __JA

TABLE __2



