Mud consumption : Date : (((: 3/8-1992 : : (ooo) : System : BORE :-----: Well: 31/2-17S : Norsk : Mud company: Anchor Drlng Fluids : : ٠ : Hydro : 13: : Actual used : : ______ Drilling of 36 " hole . ______. BARITE Kg 145000 BENTONITE Ka 28000 460 LIME SODA ASH Kg Ka 1225 XC POLYMER Кg 200 Drilling of 24 " hole ------BARITE Kg 157000 BENTONITE Kg 54000 1860 CMC EHV Кg SODA ASH 300 Kg Drilling of 12 1/4" hole BARITE 189000 Kg BENTONITE 3000 Кg CLAYCAP 5559 Kg DESCO CF Хg 1600 Kg 5000 KCL PAC POLYMER LV Kg 4524 PAC POLYMER REG 1000 Kg SHALETROL Kg 75 425 SODA ASH Kg XC POLYMER 1305 Kα DEFOAMER 25 1 DRILLING DETERG 1 832 KCL BRINE 385000 1 PROPAC 1 1540 Drilling of 8 1/2" hole _____ BARITE 49000 Ka CLAYCAP 2210 Kg Kg 4000 KCL PAC POLYMER LV 4058 Kg PAC POLYMER REG 486 Kg

> Kg Kg

Кg

Kg

1

1

1675

100

2401

1019 93000

372

SHALETROL

SODIUM BICARB

XC POLYMER

KCL BRINE

SODA ASH

PROPAC

:

2

:

:

1

. -

- 30 -

36" hole

The hole was drilled without problems from 364 m to 453 m with seawater and high viscosity unweighted bentonite pills. After reaching TD, the hole was displaced to 1.2 sg high viscosity mud prior to a wiper trip and prior to pulling out of the hole for running casing. The 30" casing was run and cemented with no problems.

24" hole

Due to the possibility of encontering shallow gas sand, a 8 1/2" pilot hole was drilled to 530 m using 1.20 sg bentonite mud. After a flowdeck and displacing to seawater the hole was then opened to 24". At 530 m kick-off point, the hole angle was slowly increased to a maximum deviation of 29.1 at total depth 921 m. The hole was cleanded with seawater and bentonite pills while drilling with a pumprate of 3 - 3.8 m³/min. At TD the hole was displaced to 1.25 sg high viscosity mud prior to run the 30" casing.

40 m³ of 1.25 sg high viscosity mud was used to wash the casing to bottom. After the cementing the casing was displaced with 74 m³ of 1.30 sg mud.

12 1/4" hole

The cement, float collar and shoe were drilled with seawater and bentonite pills prior to displacing to 1.30 sg KCL/PHPA polymer.

While drilling ahead, the mudweight was increased to 1.35 sg at 1112 m and maintained at same to casing point. At 1514 m, powder of KCL was added to the active system due to more reactive clayston encountered.

Other than the pack offs at 1292 m and 1573 m, the hole was drilled trouble free to TD.

The 9 5/8" casing was run and cemented with no problems.

8 1/2" hole

The mud density was cut back from 1.36 sg to 1.25 sg. The cement was tagged at 1788 m and the shoe was drilled out at 1827 m. After 3 m of new formation a FIT was performed to 1.45 sg equipment mud density.

The mud performed good through out the drilling, coring and logging of the hole.

Sodium Bicarb. and shaletrol were added to the mud for the plug back and retrieving of the 9 5/8" casing and the mud was used to dress off the cement prior to change over to oil base mud for well 31/2-17A.

((() a i	==== 1 у 	==== m S	u d vstei	р: р: 	r o p BORE	e r	t i e	5 24	====	*=====		======	= 2 = = :		====	****	*===	====		====		Date 24/2-1	992
Norsk Hydro	Wel Mud Data	l: 31/2 Contra a: "Mic	2-17S actor: 1 dept	Ancl h" fi	hor rom	Drlng table	; F1 3,	uids othe	rwise	from	table 14.													14.		4
	Date	Mid. depth m,MD	Mud Dens. (SG)	PV cp	==== YP Pa	GEL 0 Pa	GEL 10 Pa		===== 100 psi (cc)		C1- inn/out mg/l	A1k	alinit Pm	===== y Mf	======= Ca++ inn/out mg/l	==== 0i1 %	Sol	H20 \ 6 % r	.G. 00 : pm 1	==== met 300 rpm	er a 200 rpm	t 11 100 rpm	5 gr 6 rpm	F 3 rpm	 Mud Type	
	911225 911226 911227 911228 911228 911229	0 0 365 453	1.03 1.03 1.20 1.20 1.20	99 99 19 19 19	 99 99 15 15 15	 3 3 3	 5 5			 									68 68 68	 49 49 49	 38 38 38	26 26 26	 4 4 4	 3 3 3	SPUD SPUD SPUD SPUD SPUD SPUD	
	911230 911231 920101 920102 920103	454 495 604 843 921	1.20 1.07 1.20 1.50 1.30	19 13 20 14 20	15 21 14 23 15	3 20 10 25 18	5 25 12 30 32	9.0 9.6 9.0											68 68 67 74 70	49 55 47 66 50	38 48 32 55 44	26 43 32 40 35	4 33 71 41 26	3 31 20 37 25	SPUD SPUD SPUD SPUD SPUD	
	920104 920105 920106 920106 920107 920108	921 921 1070 1514 1841	1.30 1.30 1.30 1.36 1.36	19 19 24 23 23	12 11 15 11 14	3 3 2 3 4	4 4 3 6 13	8.4 8.4 9.8 8.5 8.5	5.2 5.1 5.8 6.0 5.5		68000/68000 68000/68000 57000/57000 70000/70000 70000/70000	0.10	0.40	0.20 0.30 0.30	80/80 60/60 280/280 440/440 660/660		7 7 11 11		61 60 78 68 76	42 41 54 45 52	32 31 43 35 39	21 21 29 21 26	5 5 5 4 7	3 4 3 5	SPUD SPUD KCL KCL KCL	
	920109 920110 920111 920112 920112 920113	1841 1841 1912 1978 2016	1.35 1.31 1.25 1.25 1.25 1.25	24 19 22 20 21	8 10 14 9 10	3 3 3 3 2	8 7 7 4 3	7.5 7.5 8.7 8.7 8.6	6.0 6.0 4.0 3.8 3.8	8.2 7.5 9.4	71000/71000 81000/81000 75000/75000 74000/74000 73000/73000	0.01 0.02 0.15	0.80 0.05 0.05	0.01 1.20 0.07 0.05 0.35	760/760 760/760 480/480 280/280 320/320		11 10 8 7 8		65 59 72 58 62	41 40 50 38 41	34 31 33 30 31	22 21 22 20 20	6 5 6 4	4 4 3 3 3	KCL KCL KCL KCL	
	920114 920115 920116 920116 920117 920118	2117 2220 2220 2220 1775	1.25 1.26 1.26 1.26 1.26 1.34	22 24 24 24 24 25	11 14 13 14 15	2 3 3 3 3	3 4 4 4 3	8.4 8.3 8.3 8.3 10.9	3.4 3.2 3.2 3.1 3.1 3.4	9.6 8.9 8.9 8.8 9.5	72000/72000 72000/72000 72000/72000 72000/72000 72000/72000 72000/72000	0.10 0.10 0.10 0.10 0.10 0.10	0.30 0.25 0.20 0.20 1.10	0.30 0.30 0.30 0.20 0.40	340/340 360/360 360/360 320/320 440/440		8 8 8 8 10		65 75 74 75 79	43 51 50 51 51 54	33 40 39 41 43	21 28 28 29 29	4 5 5 5	34444	KCL KCL KCL KCL KCL	
	920119 920120	850 850	1.34	25 25	14 14	3 3	4	9.8	4.1	10.8	72000/72000 72000/72000	0.10	1.50 1.50	0.30	460/460 460/460		10 10		77 77 77	52 52	41 41	28 28	6	4	KCL KCL	

37

•

· · · M	lud consump	tion	Date :
: (000) :	System : BORE		470 1772 :
:: Well: 31/2-17A : Norsk : Mud company: AN	CHOR DRING FLUIDS		:
: Hydro :			13:
:			:
l de la constante de la consta		Actual used	:
Drilling	of 17 1/2" hole		
BARITE	Kg	101000	
CALSIUM	I CHLORID Kg	3700	
LIME	Kg	9063	
SAFEMUL	VIS Kg	7736	
SAFEIUN BASE OI		1250	
CARROMI		208	·
OTI BAS		30000	
SAFEMUL	MOD 1	3120	
SAFEMUL	OW 1	624	
SAFEMUL	PE 1	3120	
SAFEMUL	SE 1	1456	
SAFETON	EL 1	832	
Drilling	of 8 1/2" hole		
BARITE	Kg	21000	
CALSIUM	I CHLORID Kg	375	
LIME	Kg	2325	
SAFEMUL	VIS Kg	1003	
SAFEIUN		100	
SAFEMUL	ב עטויז ב	416	

17 1/2" hole

The hole was kicked off at 909 m and drilled to 1012 m where the displacement to oilbase mud took place.

The mud was treated immediately to adjust the mud properties. The mud weight was kept at 1.35 sg down to 1280 m where the mud weight was increased to 1.37 sg as cavings were observed.

The directional drilling of the 17 1/2" hole was continued to 1658 m MD with an average ROP of 18 m/hr without any further hole problems. The actual mud properties were out of values as specified in the programme. Especial the 3 RPM readings and the OWR.

8 1/2" pilot hole

The hole was drilled to 1924 m maintaining the same oilbase mud with a density of 1.26 sg. The mudproperties were held within the specifications and no hole problems occured that could be attributed to the drilling fluid. After logging was completed the section was plugged back.

		=====	===== D a i 	===== 1 y 	==== m 	====: u d	==== p : 	==== r o (t i e	s Dat - 25/2-	te - 1992	. = 2 5 5 2 1			= = = =		====	= = = = = =		====	z z z z	====	:===: 2!	Date 5/2-19	
(ooo) Norsk Hydro	Wel Mud Dat	1: 31/ Contr a: "Mi	2-17A hactor: id dept	ΛΝC :h" f	HOR rom	DRLN tabl	G FL e 3, ====	UIDS oth	erwis: =====:	e from	table 14.		======================================			 0i1	==== Sol	1120	==== V.G.	====: met(===== er at	====	1 ==== gr.	14. 		4
=======	Date	Mid. depth m,MD	Mud Dens. (SG)	PV cp	YP Pa	GEL 0 Pa 	GEL 10 Pa	pli	100 psi (cc) 	HP/HT (cc)	C1- inn/out mg/1 	Pf	Pm 	MF 	inn/out mg/l	× 60	% 19	% 21	600 rpm 	300 rpm 73	200 1 rpm r - 54	00 pm r - 35	6 pm/r 	3 13	Mud Type LIME	
- 9 9 9	20120 20122 20123 20123 20124	926 1546 1652 1652	1.35 1.38 1.38 1.38	49 50 44 46	12 11 10 10	9 10 10 10	10 12 12 13			2.9 2.4 23.0 2.2 2.4						63 62 61 62	17 19 20 18	20 19 19 20	122 107 112 108	72 63 66 64	53 47 47 49	34 30 31 32	13 14 14 15	12 13 13 14	LIME LIME LIME LIME	
9 9 9 9	20125 20126 20127 20128	1652 1703 1755 1847	1.38 1.26 1.26 1.26	44 31 29 29	10 9 10 10	 9 10 14	 11 15 19			2.9 3.0 4.1 4.2	112000/112000 303000/103000					67 68 81 67	15 14 19 17	18 18 0 16	79 78 77 92	48 49 48 57 54	36 38 37 45 44	24 26 26 31 30	10 14 14 17 16	11 13 13 16 15	LIME LIME LIME LIME LIME	
9 9 - 9	20129 20130 20131	1924 1924 1580	1.26 1.25 1.25	35 30 35	11 12 13	17 16 17	22 19			4.0				 		63	16	21	96	61	48	35	20	19	LIME	

1

- 64 -

and the second second

•

	Mud consumption	Date
		4/3-1992
(000)	System : BORE	
	Well: 31/2-17B	
Norsk	Mud company: ANCHOR DRLG FLUIDS	
Hydro	Well chemical consumption not planned.	
	A - 1	
	LEUTOA	
	used.	
	used	
	used	
	used Drilling of 12 1/4" hole	

BARITE	Kg	13.000
CALSIUM CHLORID	Kg	1.700
LIME	Kg	500
SAFETONE P	Kg	2.726
BASEOIL	1	20.000
SAFEMUL MOD	l	208
SAFEMUL PE	1	1.248
SAFEMUL SE	1	624
SAFETONE L	I	624

Drilling of 8 1/2" hole

,

÷

BARITE ZINC CARB BASEOIL SAFEMUL MOD	Kg Kg I I	23.000 25 23.500 208
Plug and Abandon		
BARITE CAUSTIC SODA XC POLYMER PROPAC FL-7 CITRIC ACID Mg 0 XANVIS WATESAL	Kg g g g g g g g g g g	18.000 200 120 416 225 25 25 25 100 2325

3.3.6 MUD REPORT

<u>12 1/4" section</u>

The hole was drilled using the safemul oilbase mud with density of 1.27 sg.

The 12 1/4" hole was drilled with a average ROP of 11 m/hr and the hole angle was increased from 44 deg to 58.9 deg at 1875 m. During tripping the hole was backreamed to ensure it was sufficient cleaned. In addition a hi-visc pill was pumped without noticing any positiv effect on hole cleaning.

In generell the HTHP fluid loss was on the high side and polymeres were therefore added in order to bring the value within the specification. The centrifuges were run during trips to keep the low gravity solids on the low side.

<u>8 1/2" section</u>

The hole was drilled only for obtaining a core. After drilled to 1829 m two cores were cut from 1829 m to 1838 m. The mud density was the same as for the 12 1/4" hole section.

On completion of the coring a 6 m^3 1.30 sg of NaCl kill pill was spotted in the open hole section in preparation of the temporary abandonment.

<u>P & A</u>

After a 9 5/8" bridgeplug was set at 1703 m, the casing was cleaned by pumping spacer, soap pills and seawater.

A balanced cementplug was set and the hole displaced to 1.20 sg NaCl brine. After set a 13 3/8" bridgeplug, a 100 m hi-visc NaCl pill was spotted from 700 m and a 200 m cement plug set from 600 m.

((((000) Nors Hydro) We: < Mu() Da	11: 31, d Contr ta: "Mi	D a í 2-17B actor	1 y AN(m HOR From	u d Syste DRLG tabl	p m : FLU Le 3,	r o BORE IDS oth	p e r	t i e e from	s Da 4/3- table 14.	te 1992	4	* # = = = = =											Date i/3-19	92
	Date	Mid. depth m,MD	Mud Dens. (SG)	PV cp	YP Pa	GEL O Pa	GEL 10 Pa	рH	100 psi (cc)	HP/HT (cc)	Cl- inn/out mg/l	Alka Pf	alinity Pm	y Mf	Ca++ inn/out mg/l	0i1 %	Sol %	H20 %	V.G. 600 rpm	met 300 rpm	er a 200 rpm	t 11 100 rpm	5 gr 6 rpm	. F 3 rpm	Mud Type	
	920201 920202 920203 920204 920204	1657 1764 1815 1815 1815	1.27 1.25 1.27 1.25 1.25 1.26	33 30 32 28 28	13 9 10 7 8	21 15 15 12 13	26 20 22 18 18			6.0 5.0 4.0 3.6 3.6	`		4.10			66 66 67 69 69	15 15 14 14	19 19 19 17 17	91 78 84 68 72	58 48 52 41 44	45 37 40 30 30	31 26 28 18 18	18 14 15 13 14	17 13 14 12 13	LIME LIME LIME LIME LIME	
	920206 920207 920208 920209 920209 920210	 1815 1815 1829 1838 1838	1.26 1.26 1.26 1.26 1.26 1.26	 31 30 31 31 31 31	11 10 11 10 11	 15 17 16 16 18	18 20 23 23 23 25			3.8 3.8 3.9 3.9 4.0	145000/145000					67 67 67 66 66	14 15 15 15 15	19 18 18 19 19 19	83 79 82 81 84	52 49 51 51 53	40 39 40 40 42	28 28 29 29 21 31	15 14 15 15 15	 14 13 14 14 14 16	LIME LIME LIME LIME LIME	
	920211 920212	 1838 1838	1.20	 36 36	 11 11	 18 18	 30 30			 4.8 4.8					72/72 72/72	59 59	12 12 12	 29 29	93 93	57 57 57	46 46	30 30	 13 13	12 12 12	 LIME LIME	

•

93

Щ.

Norsk Hydro

۰.

۲

20-apr-1993

.

Section Size	Product/Additive	Total Amount Planned	Total Amount Used	Unit 	Differ Amount	rence %	Differer 	nce in cost [kNOK]
 0.0 	BARITE BENIONITE IDVIS SODA ASH		116000.0 11000.0 350.0 150.0	kg kg kg kg				

TABLE 7: TOTAL CONSUMPTION OF MUD ADDITIVES ON WELL 31/2-17BR

Norsk Hydro

TABLE 8: CEMENT/ADDITIVE CONSUMPTION PER JOB ON WELL 31/2-17BR 20

20-apr-1993

Date	CsgSize	Jobtype	Cement/ Additive	Description	Unit	Arrou Planned Used	nt Actual Used	Dif Amount	ferenc	ce Cost [kNOK]
22-feb-1993	18 5/8"	PLUG	API CLASS C A-7L FP-6LN	API CLASS G ACCELERATOR: LIQUID CACL2 SPECIAL ADDITIVE: DEFOAMER FP-	MT 1 1		55.0 1340.0 10.0			

Norsk Hydro

20-apr-1993

TABLE 6: MUD RHEOLOGY PARAMETERS FOR WELL 31/2-17BR

.

••

1

Hole section:			WATER I	BASET) SYS	TEM			_							
Date	Depth Mud Type	Funnel Dens	Mudtmp			Fan	in Re	adir	ngs			Rheo	PV	YP	Gel0	Gello
		[sec] [sg]	[DegC]	600	300	200	100	60	30	6	3	[DegC]	[mPas]	[Pa]	[Pa]	[Pa]
13-feb-1993 23:59 14-feb-1993 23:59 16-feb-1993 22:00 17-feb-1993 23:59 18-feb-1993 23:59	0 0 KCL/POLYME 0 0 KCL/POLYME 0 0 KCL/POLYME 0 0 KCL/POLYME 0 0 KCL/POLYME	78.0 1.20 100.0 1.04 80.0 1.30 81.0 1.38 81.0 1.38	0.0 0.0 0.0 0.0	69 70 72 71	47 48 49 48	36 37 38 36	24 25 26 24			5 5 5 5 5	ິ ທີ່ ທູ	0.0 0.0 50.0 50.0 50.0	22.0 0.0 22.0 23.0 23.0	$12.0 \\ 0.0 \\ 12.5 \\ 12.5 \\ 12.0 \\ 12.0 \\$	$ \begin{array}{c} 1.0\\ 0.0\\ 4.0\\ 4.0\\ 4.0\\ 4.0 \end{array} $	3.0 0.0 5.0 5.0 5.0
19-feb-1993 22:00 20-feb-1993 23:59 21-feb-1993 22:00 22-feb-1993 22:00 23-feb-1993 10:00	0 0 KCL/POLYME 0 0 KCL/POLYME 0 0 KCL/POLYME 0 0 KCL/POLYME 0 0 KCL/POLYME	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 0.0 \\ 13.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \end{array}$	71 70 68 48	48 47 45 32	36 39 37 26	24 27 25 17			5 13 11 8	3 12 10 7	50.0 50.0 50.0 50.0 0.0	$23.0 \\ 23.0 \\ 23.0 \\ 16.0 \\ 0.0$	$ \begin{array}{c} 12.0\\ 11.5\\ 10.5\\ 7.7\\ 0.0 \end{array} $	4.0 7.0 6.0 5.0 0.0	5.0 18.0 17.0 16.0 0.0
24-feb-1993 10:00 25-feb-1993 10:00	0 0 KCL/POLYME	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.0									0.0 0.0	0.0 0.0	0.0	0.0	0.0

Norsk Hydro

TABLE 6: DAILY MUD PROPERTIES : OTHER PARAMETERS FOR WELL 31/2-17BR

Hole section:									WAT	ER B	ASED S	SYSTEM	1											
Date	Depth	Mud Type	Dens	Filti	rate	Filt	cake	HPHT Press/Temp	рн	Alo	calin:	ity Mf	Inhib	K+	CL-	Ca++	Mg++	Tot	Pe	rcenta	ge	CEC	ASG	LGS
	MD TVD		[sg]	(m1)	[[m]]	(mín)	[mm]	[psi/DegC]		[m]]	[[m]]	[[m]]	[Kg/m3]	(mg/1)	[mg/1]	[mg/1]	[mg/1]	(mg)	~{\$]~	(\$]	181	[Kg/m3]	[sg]	[Kg/m3]
13-feb-1993 23:59	8 8	KCL/POLYME	1.20	3.2	8.8	1	8	8/8	8.5	8.4	8.1	8.6	135	71	93	220	24	8	12.0	8.8	8.8	260	8.8	8
16-feb-1993 22:00	8 8	KCL/POLYME	1.30	3.2	8:8 8:8	ĺĺ	ğ	ŎŹŎ ŎŹŎ	8.5	0.4	<u>8</u> :1	0.6	+38	71888	83000	28Ŏ 28Ŏ	48	360	14.8		<u>8:8</u>	18	ŏ:ŏ	Ň
18-feb-1993 23:59	0 0	KCL/POLYME	1.38	3.2	0:0	1	0	0/0	8:5	0.4	0.1	0.6	130	71000	93000	280	48	360	17:0	0:0	0:0	18	0.0	Ŏ
19-feb-1993 22:00 20-feb-1993 23:59	8 8	KCL/POLYME	1:38	3:2	8:8		8	8/8	10:5	0.4	8:3	8.8	178	71000	83800	288	48	360	17:8	8:8	8:8	18	8:8	8
21-feb-1993 22:00	8 8	KCL/POLYME	11:38	3:4	8:8		8	8/8	8:8	1:8	8:3	0.9	1 118	64000	88000	288		248	17:8	0.0	8.8	27	8.8	8
23-IED-1993 10:00		KCL/POLYME	1.38	0.0	0.0	0		0/0	0.0	0.0	0.0	0.0	0		0	0	0	0	0.0	0.0	0.0	0	0.0	0
24-feb-1993 10:00	8 8	KCL/FOLYME	11:38	8:8	8:8	8	8	8/8	8:8	8:8	8:8	8:8	8	8	8	8	8	8	8:8	8:8	8:8	8	8:8	8

15

20-apr-1993

BA-92-2224-1 2 6 .KT. 1992

REGISTRERT

OLDEDIREKTORDITET

K

() - 7 + 16

NORSK HYDRO A/S

FINGERPRINT ANALYSIS

TROLL FIELD

WELLS: 31/2-17S and 31/2-17SA

CONTENT

Î

3.1

1

ŝ

1.1

]

		Page
SAMPLES		3
INTRODUCT	ION	3
SAMPLE PRI	EPARATION	4
REFERENCE	SAMPLES	5
PLUG SAMP	LES FROM WELL 31/2-17S	6
CONCLUSIO	Ν	6
PLUG SAMP	LES FROM WELL 31/2-17SA	7
CONCLUSIO	N	7
UV-ANALYS	IS	8
LABORATOR	Y PROCEDURE	9
FIGURES:	Chromatogram of referance samples	10-23
	Chromatogram of samples from well 31/2-175	24-25
	Chromatogram of samples from well 31/2-17SA	26-27
	UV-photos	28-29

SAMPLES

The following samples were supplied by Norsk Hydro a.s:

Three plug samples from well 31/2-17S taken at depths of 1942.00m, 1971.00 m and 1982.00 m. Two plug samples from well 31/2-17SA taken at depths 1723.91 m and 1729.13 m.

Reference samples.

Three oil samples from wells 31/2-16S, 31/3-2 and 31/5-4AS1.

Two condensate samples from wells 31/6-1 and 31/6-8.

Base oil, HDF 200, being used in the oil based mud at 31/2-17SA. Emulsifiers -Safemul PE and Safemul SE-, and Safetone L and Safemul MOD, all being added in small quantities to the mud.

Sample of waterbased mud used for drilling of 31/2-17S.

INTRODUCTION

The objective of the analysis was to identify possible reservoar hydrocarbons in the four plug samples to identify the condensate/oil contact in the reservoir.

The possible hydrocarbons should also be characterized as oil, condensate or oil being contaminated with condensate.

Well 31/2-17SA has been drilled with oil based mud which was likely to pollute the plug samples.

It was decided to perform fingerprint-analysis by Gas Chromatography on the hydrocarbons from the plugs and the reference samples mentioned above.

A fingerprint analysis gives a qualitative characteristic chromatogram with range C1-C30.

SAMPLE PREPARATION

Separation of the hydrocarbons from the plugs was performed either by extraction using toluene or by flooding of the plug using formation water.

Using the flooding method, the hydrocarbons could easily be separated from the inorganic phase and then analysed by GC without any further treatment.

For the extracted samples it was necessary to distill off toluene prior to GC-analysis and the distillation was performed in a Rotavapor.

The residue sample left in the boiler after distillation contained small amounts of toluene.

The light fraction below approx. 151°C (below C10+) was lost during distillation.

Fingerprint analysis was carried out on the residue samples.

REFERENCE SAMPLES

The reference samples includes three oil samples, two condensate samples, a sample of base oil and four different emulgate samples.

GECO PRAKLA Petroleum Laboratory

All samples were analysed by GC without any pretreatment.

0.1 μl pure sample was injected and the sample chromatograms are enclosed.

For the oil- and condensate-samples from wells 31/2-16S and 31/6-8 respectively, it was also decided to solute the samples with toluene prior to distillation using Rotavapor. GC anlysis was carried out on the residue- oil and -condensate samples.

Tests were also performed by mixing residue sample from well 31/2-16S with residue oil from well 31/2-16S and baseoil respectively. The reason for this was to give the referance sample the same treatment as the unkonown samples.

The mixing ratio was 1:1.

The chromatograms from these tests are enclosed and are used as comparison material.

CONCLUSION

The three oil samples seemed quite similar. The two condensate sample seemed also to be similar.

An oil from well 31/2-16S and a condensate from well 31/6-8 was chosen as representative samples for the comparison.

The baseoil differs principally from the stock tank oils and the condensates.

The emulsifiers contain hydrocarbons in the area C10 - C30, making it quite difficult to compare the fingerprint analyses between hydrocarbons from effluents in the plugs, the oils and the condensates from well 31/2-17SA.

PLUG SAMPLES FROM WELL 31/2-17S.

Water based mud was used by drilling at well 31/2-17S.

The plug samples from depths 1942.00m, 1971.00 m and 1982.00 m were extracted with toluene.

The residue sample being left after the preparation was analysed by GC.

Hydrocarbon was not identified in the plug sample from depth 1942.00 m.

No significant difference was observed in the two sample chromatograms, both having components in the area C10-C30.

The two samples chromatograms were compared with residue-oil and - condensate from wells 31/2-16S and 31/6-8 respectively.

- Residue condensate from well 31/6-8. Components above C16 was not observed.
- Residue condensate from well 31/2-165. Majority of components was in the C13-C30 range.

CONCLUSION.

The hydrocarbons from the plug are most likely oil, due to the observation of components above C16 which was not found in the residue condensate.

As the light fraction is lost during preparation it is impossible to state whether there has been a condensate contamination or not.

It was not possible to determine condensate/oil contacts from the suit of samples.

SAMPLES FROM WELL 31/2-17SA

By drilling of well 31/2-17SA oil based mud was used.

-7-

Plug sample from depth 1723.91 m was extracted with toluen prior to GC-analysis of residual hydrocarbons.

Plug from depth 1729.13 was flooded with formation water and fingerprint-analysis was performed on the organic phase.

The chromatograms from the two hydrocarbon samples was compared with chromatogram from baseoil and residue oil from well 31/2-16S.

CONCLUSION

Both samples seem to contain oil, contaminated with base oil.

The degree of contamination can not be established due to the qualitative character of the analysis, but the contamination of sample from depth 1723.91 is obviosly higher than for the sample from depth 1729.13 m.

A possible contamination of condensate can not be seen due to the abscence of the light fraction.

It is not possible to determine condensate/oil contact from the suit of samples.

UV-ANALYSIS.

A UV-test was carried out to find the fluoriscens properties of the plug samples and the relevant reference samples.

Two UV-pictures are enclosed to the report.

UV-picture no. 1 shows baseoil and emulsifiers used in the drillmud on well 31/2-175.

The UV-picture shows clearly that the emulsifiers are fluoriscent.

The baseoil does not fluoresce.

UV-picture no. 2 shows water based drillmud and the plug material at 1942.0 m depth of well 31/2-17SA.

The water based drillmud show weak fluoriscens. The plug material gives no fluoriscens, which means that the plug contains very limited amounts of hydrocarbons, if any.

LABORATORY PROCEDURE

Fingerprint-analysis

Fingerprint-analysis of oil samples was carried out by a Perkin Elmer Gas Chromatograph (SIGMA 300). The Gas Chromatograph was temperature programmed from 60-290°C at a temp. gradient of 10°C/min. A fused SILIA capillary column was used for the analysis. The determination was done by a FID at 320°C.

-9-

UV-PHOTO

The UV-photo was taken at a wavelength of 360nm i.e. in the medium UV range. The same wavelength as being chosen for the UV-photography of cores (ref. coro photos).

Distillation with ROTAVAPOR RE 121

A Rotavapor RE 121 is a simple distillation apparatur equiped with a rotatory evaporating bottle containing the sample, a condenser, a distillate receiver and a waterbath.

The system is evacuated during distillatition.

ł.

-

C10

injection volume: 0.1 μ l

C18

hours for the second

Injection volume: 0.1 μ i

C10

-Myph

C18

- 12 -

Condensate sample from well 31/6-8

Injection volume: 0.1 μ l

Norsk Hydro a.s

Condensate sample from well 31/6-1

Injection volume: 0.1 μ l

C16

:

C10

Baseoil HDF 200

Injection volume: 0.1 μ l

my flynn werther flynn

C11

C14

m

.

C22

YAYN,

SAFETONE L

\$

Injection volume: 0.1 μ l

SAFEMUL MOD

Injection volume: $0.1 \mu l$

Injection volume: 0.1 μ I

Baseoil and residue sample

ŧ

1

from well 31/2-17SA, depth 1723.91m mixed 1:1

Injection volume: 0.2 μ l

ł.

)

Norsk Hydro a.s Sample from well 31/2-17SA Depth: 1723.91m

. . .

4

Injection volume: 0.2 μ l

1

Injection volume: 0.14 μ l

