731

Report no. GEOLAB Copy no. No. of copies 10

SECTOR FOR PETROLEUM TECHNOLOGY

Geological laboratories

Grading

 GEOCHEMICAL ANALYSIS REPORT FOR WELL NOCS 30/2-3

 Requested by UND GEO/OP
 Project

 Date
 No. of pages
 No. of enclosures

 08.02.93
 No. of pages
 No. of enclosures

Keywords

Title

HULDRA, GEOCHEMISTRY, MATURITY, SOURCE POTENTIAL

Abstract

SEE NEXT PAGE

BA-93-285-1 2 3, 1993 RECOSTRER OLULOIREKTORATET

Prepared by GEOLAB NOR I.F.E. Phil Park GEOLAB	Approved by 3/2/93 Cor Jan Grees Ger van Greas, Section Manager 18.02.93 Mayor Menuel Trygve Meyer, Dept. Manager
Text operator	

Abstract:

MATURITY:

The interpreted vitrinite reflectance data, which are shown with respect to depth in Figures 1 and 2, were obtained by IFE and are tabulated and reported in report IFE/KR/F-93/016.

The results show that hydrocarbon staining has reduced the measured values in the Cretaceous but since the Brent coals are believed to give good reliable results then the proposed interpretation is believed reliable. Such an interpretation is supported by other geochemical data including Tmax values.

Thus the Draupne shales are mature and have reached a maturity (Ro = 0.9%), which is just beyond that of peak oil generation (Ro = 0.8%).

The Heather Formation shales are at the end of the oil window and are presently generating gas condensate.

The Brent Group is in the gas condensate zone as are the claystones of the Dunlin Group (Ro > 1.1%).

POTENTIAL:

The Draupne Formation shales are mature type II kerogens, which originally had good to very good potentials for oil, but presently, because of maturity, have good potentials for light oil and gas.

The shales of the Heather Formation have variable potentials, but where organically rich have fair to good potentials for light oils and gas. When less mature these shales could well have produced some oil.

The Middle Jurassic Brent Group shales have little or no potential, while the coals still have good to excellent potentials for gas and are unlikely to have produced any liquids.

On the other hand, the highly mature Dunlin Group claystones still have good and consistent TOC contents with fair remaining potentials for gas and could well have already generated some light oil.

Figure 1. Vitrinite reflectance (linear scale) versus depth well 30/2-3.

Figure 2. Vitrinite reflectance (log scale) versus depth, well 30/2-3.

Geochemical Report for

Well NOCS 30/2-3

Authors:

Henning Jensen lan L. Ferriday Kjell Arne Bakken

Geolab Nor A/S P.O. Box 5740 Fossegrenda 7002 Trondheim Norway

Date :

18.01.93

CONTENTS

		Page
SU	MMARY	1
Cha	apter 1: INTRODUCTION	3
1.1	General Comments	3
1.2	Analytical Program	4
1.3	Stratigraphy	5
Cha	apter 2: SCREENING ANALYSES	6
2	Lithology, TOC and Rock-Eval	6
Cha	apter 3: DETAILED GEOCHEMICAL ANALYSES	10
3.1	GHM - Thermal Extraction	10
3.2	GHM - Pyrolysis Gas Chromatography	12
3.3	Solvent Extraction and Chromatography	13
3.4	Visual Kerogen Microscopy	16
3.5	Gas Chromatography - Mass Spectrometry	18
Cha	apter 4: CONCLUSIONS	23

References Figures Interpretation Limits Abbreviations Experimental Procedures Appendix 1,2,3,4

LIST OF FIGURES

- 1. Location Map
- 2. Total Organic Carbon Data versus Depth
- 3. Production Index versus Depth
- 4. Tmax versus Depth
- 5. Tmax versus Hydrogen Index Plot
- 6a-d Selected GHM Thermal Extraction Chromatograms
- 7a-b Selected Pyrolysis GC Chromatograms
- 8. Pyrolysis Gas Chromatography Composition
- 9a-c Selected Saturated Fraction Chromatograms
- 10a-d Selected Aromatic Fraction Chromatograms
- 11. Kerogen Composition and Potential Hydrocarbon Products
- 12a-j Selected Fragmentograms

LIST OF ENCLOSURES

- 1. Rock-Eval Pyrolysis Data
- 2. Solvent Extraction Data
- 3. Saturated Hydrocarbon Data
- 4. Thermal Maturity Data
- 5. Summary Log

Appendix 1: TABLES

- 1. Lithology Description
- 2. Rock-Eval Table
- 3. Pyrolysis Gas Chromatography Composition
- 4a-d Solvent Extraction Data
- 5. Saturated Hydrocarbon Ratios
- 6. Aromatic Hydrocarbon Ratios
- 7. Thermal Maturity Data
- 8. Visual Kerogen Data
- 9a-i Gas Chromatography Mass Spectrometry Data

Appendix 2: GHM - THERMAL EXTRACTION GAS CHROMATOGRAMS AND GHM - PYROLYSIS GAS CHROMATOGRAPHY PYROGRAMS

Appendix 3: GAS CHROMATOGRAMS

- I. Saturated Fraction Chromatograms (FID)
- II. Aromatic Fraction Chromatograms (FID and FPD)

Appendix 4: GAS CHROMATOGRAPHY - MASS SPECTROMETRY, FRAGMENTOGRAMS

Summary

Source Rocks

The screening analyses include potential source rocks covering the Draupne Fm. -Dunlin Gp. interval (3669 - 4288 m), however, with the main objective being the Draupne Fm. shales and the Brent Gp. coals. The Upper Jurassic Draupne Fm. (3669 - 3705 m) is a mature marine type II kerogen source rock, with a good potential for generating light oil and gaseous hydrocarbons. The Upper Jurassic Heather Fm. (3705 - 3792 m) consists of land plant dominated type III kerogen source rocks with a fair potential for generating gaseous hydrocarbons. The mature Middle Jurassic Brent Gp. (3792 - 3980 m) coals have rich generation potential for gas, partly due to the maturity and partly due to the dominantly aromatic hydrocarbon pyrolysate. However, some minor potential for (?)waxy oil can also be expected. The Lower Jurassic Dunlin Gp. (3980 - 4288 m) claystones are highly mature type II/III kerogen source rocks, possibly consisting of mixed marine and terrestrial organic matter, with a fair generation potential for gaseous hydrocarbons.

Maturity

The maturity trend for well NOCS 30/2-3 suggests that the Draupne Fm. is well within the oil window, probably at peak oil generation (Tmax = 440° C for type II kerogen). The base of the oil window (450° C for type II kerogen) is at approx. 3900 m according to the established Tmax trend. Hence the Brent Gp. is believed to be at the base of the oil window, whereas the Dunlin Gp. claystones are considered to be within the condensate window.

Generation

The Draupne Fm. is considered to be at peak oil generation and consequently actively expelling hydrocarbons. The Heather Fm. shales and the Brent Gp. coals are past peak oil generation maturity, however, with fair to rich generation potentials left.

Migration

No analyses were performed on migrated hydrocarbons.

Chapter 1

INTRODUCTION

The well NOCS 30/2-3, analysed on behalf of Statoil, is located in the Norwegian North Sea Sector, in the North Viking Graben area. The well was drilled to a total depth of 4325 m in the Lower Jurassic Statfjord Fm. All depths given are relative to KB unless otherwise specified. The location of the well is shown in Figure 1.

The geochemical study included investigation of potential source rocks, ranging from the Upper Jurassic Draupne Fm. to the Lower Jurassic Dunlin Gp. Both screening and follow-up analyses were performed in order to evaluate the potential source rocks. The samples for follow-up analysis were selected by Statoil. The samples comprised twenty six cuttings samples, four side wall cores and nine core chips. The report is divided into chapters according to the various analytical methods used. Within the chapters the results are discussed mainly in a stratigraphic context.

1.1 General Comments

The NOCS 30/2-3 well is situated south of the NOCS 34/10-35 well. Geolab Nor carried out a geochemical study for the latter well on behalf of Statoil. This geochemical report for well NOCS 34/10-35 is referred to in section 3.3.3 in this report, due to similarities in benzothiophenic compounds seen in the Draupne Fm. for the two respective wells.

1.2 Analytical Program

The analytical program for well NOCS 30/2-3 was based on the samples selected by Statoil both for screening and detailed follow up analyses. The number of samples for the individual analyses are listed below:

Analysis type	No of samples	<u>Figures</u>	Tables
Washing	39		
Lithology description	39	2	1
TOC analysis (LECO)	39	2	1,2
Rock-Eval pyrolysis	27	3,4,5	2
Thermal Extraction (GHM, S ₁)	7	6a-d	
Pyrolysis GC (GHM, S ₂)	7	7a-b,8	3
Soxhlet Extraction of organic matter	6		
MPLC/HPLC separation	6		4a-d
Saturated hydrocarbon GC	6	9a-c	5
Aromatic hydrocarbon GC	6	10a-d	6
Visual kerogen microscopy	6	11	7,8
GC-MS of saturated and aromatic HC	6	12a-j	9a-i

1.3 Stratigraphy

The following stratigraphy was supplied by Statoil. The depths are given as measured depths.

Lithostratigraphic Unit	Age	Top RKB (m)	Thickness (m)
Seafloor		145	
Norland Gn	Plicoppo Miccopp	145	704
		140	/34
Utsira Fm.	Miocene	815	64
Hordaland Gp.	Oligocene-Eocene	879	1057
Rogaland Gp.	Paleocene	1936	225
Balder Fm.	Paleocene	1936	74
Sele Fm.	Paleocene	2010	67
Lista Fm.	Paleocene	2077	84
Shetland Gp.	Upper Cretaceous	2161	1463
Cromer Knoll Gp.	Lower Cretaceous	3624	45
Viking Gp.	Upper Jurassic	3669	123
Draupne Fm.	Upper Jurassic	3669	36
Heather Fm.	Upper Jurassic	3705	87
Brent Gp.	Middle Jurassic	3792	188
Dunlin Gp.	Lower Jurassic	3980	308
Statfjord Fm.	Lower Jurassic	4288	37
TD		4325	

TD = Total Depth

Chapter 2

SCREENING ANALYSES

A total of thirty nine samples covering the depth interval 1587.5 m to 4290 m was described lithologically. All cutting samples were washed and described together with side wall core and core chip samples. All thirty nine samples were analysed for TOC content by the LECO Carbon Analyser. A total of twenty seven samples were analysed using the Rock-Eval pyrolysis. The TOC-data are presented in Tables 1 and 2 and the Rock-Eval data are found in Table 2. The Total Organic Carbon versus Depth, the Production Index versus Depth and the Tmax versus Depth plots are presented in Figures 2, 3 and 4 respectively. The Tmax versus Hydrogen Index cross plot is shown in Figure 5. Enclosure 1 includes the Rock-Eval data.

2 Lithology, TOC and Rock-Eval

2.1 Source Rock Potential and Kerogen Type

The three side wall core samples from the Tertiary Hordaland Gp. (879 - 1936 m) consist of dark grey, light greenish brown, light greenish brown and dark greenish grey claystones. The TOC contents are poor to fair (0.11 - 0.97 % TOC). No Rock-Eval analyses were carried out for these samples.

The one sample form the Eocene - Paleocene Rogaland Gp. (1936 - 2161 m) consists of a medium grey claystone with a good TOC-content (1.51 %). However, the S2-yield of 1.0 mg HC/g rock is poor and gives a low Hydrogen Index value (HI) of 65 mg HC/g TOC, indicative of a type IV kerogen. Additionally the Petroleum Potential (PP) of 1.2 mg HC/g rock is poor.

The two cuttings samples from the Cromer Knoll Gp. (3624 - 3669 m) consist primarily of medium to dark grey calcareous and pyritic shale. Subordinate contributions of light arey silty claystone is registered in the upper sample (3639 m), whereas fine-grained white carbonate is seen in the lower sample (3651 m). The fair TOC-contents for the claystone fractions are 0.72 and 0.60 % TOC respectively for the two samples.

The seven cuttings samples from the Upper Jurassic Draupne Fm. (3669 - 3705 m) consist of greyish black and dark grey silty claystones, with minor contributions of light and medium grey claystones. The TOC-contents, ranging 1.68 to 6.51 % TOC, are classified as good to rich. The S₂-yields, ranging 2.07 to 13.80 mg HC/g rock, give HIvalues varying from 123 to 234 mg HC/g TOC. The relatively rich S₁-yields and high derived production index (PI) values indicates, that the source rocks have started to generate hydrocarbons, hence lowering the S₂-yields and the derived HI-values. The petroleum potential (PP) of the source rocks ranges from 3.0 to 19.1 mg HC/g rock, indicating that there is a rich potential mainly for generation of oil. However, the two upper samples (3672 m, 3675 m) have significantly lower PP-values, suggesting that the upper part of the Draupne Fm. has a fair source rock potential, possibly for generation of light oil and gas.

The five Upper Jurassic Heather Fm. (3705 - 3792 m) consist of dark to greyish black claystones, with TOC-contents ranging 1.57 to 5.84 %. The S₂-yields are considerably lower ranging 2.50 to 4.64 mg HC/g rock, except for the upper sample, 3711 m (S₂: 10.29 mg HC/g rock). This upper sample might be cavings from the Draupne Fm. due to the compatible Rock-Eval and TOC-values when compared with those of the Draupne Fm. The petroleum potential for the four lower samples (3729 - 3759.59 m), varying from 4.3 to 7.5 mg HC/g rock, is classified as fair to good for the highly mature source rock. The residual potential is probably for generation of light oil and gas.

The Middle Jurassic Brent Gp. (3792 - 3980 m) consists of black coal and interlayered dark grey claystones. The three coal samples have TOC-values ranging from 16.70 to 63.90 % TOC, whereas the three claystone samples have TOC-contents of 0.72, 1.78 and 7.83 %. The highly mature coals PP-values ranging 14.1 - 113.3 mg HC/g rock, whereas the carbonaceous claystones have PP-values ranging 0.5 to 11.1 mg

HC/g rock. The coal HI-values vary from 73 to 182 mg HC/g TOC and the low Olvalues (6 - 16 mg CO₂/g rock), which would indicate a mixed type II/III kerogen source rock. The claystone HI-values range 49 to 121 mg HC/g TOC and Ol-values range 39 to 219 mg CO₂/g TOC which suggest mainly type III kerogen source rock with potential for generation of mainly gaseous hydrocarbons.

The eight Lower Jurassic Dunlin Gp. (3980 - 4288 m) samples consist of medium to dark grey to greyish black silty claystones with organic carbon contents ranging 2.00 to 2.61 % TOC. The Rock-Eval analyses show that the S₂-yields are rather constant, ranging 2.52 to 3.37 mg HC/g rock, giving derived HI-values from 123 to 156 mg HC/g TOC. The low OI-values (5 - 11 mg CO₂/g TOC) indicate together with the HI-values a type II kerogen or type II/III kerogen source rock, taking the high maturity of the claystones into consideration. The fair PP-values (3.9 - 4.9 mg HC/g rock) indicate that the Dunlin Gp. claystones have some hydrocarbon generation potential.

2.2 Maturity

The Tmax versus depth plot in Figure 4 shows a broad regular distribution of Tmaxvalues (438°C - 470°C) in the interval covering the Draupne Fm. - Dunlin Gp. (3669 -4288 m). The Draupne Fm. samples all plot within the oil window (Tmax-values: 438 -447°C). The Heather Fm. samples have Tmax-values varying from 442°C to 455°C, indicating a higher maturity compared to the Draupne Fm. The Heather Fm. is considered either to be at the base of the oil window or within the condensate window. The high Tmax-values for the Brent coals and shales (459°C - 470°C) suggest that this unit has reached the condensate window maturity. The Dunlin Gp. claystones have relatively constant Tmax-values (451°C - 457°C), indicating that the source rocks are either at the base of the oil window or within the condensate window. The profound distribution of Tmax-values for the entire Draupne Fm. - Dunlin Gp. interval indicates that kerogen type and possibly organic carbon content have influenced on the Tmax-values. The significantly higher values for the Brent Gp. samples suggest that the dominantly type III kerogen source rocks have higher Tmax-values than type II or type II/III source rocks such as the Draupne, Heather and Dunlin Gp. samples.

2.3 Generation

From the previous sections (2.1 and 2.2) it follows that the source rocks, including the Draupne and Heather Fm. claystones, the Brent Gp. coals and the Dunlin Gp. claystones have started to generate hydrocarbons in significant amounts and most likely also expulsion. The Draupne Fm. claystones have poor to good S₁-yields for (S1: 0.90 - 6.61 mg HC/g rock) and high production index (PI) values (0.28 - 0.38), suggesting that the claystones are actively generating and expelling hydrocarbons, provided that the hydrocarbons are in-situ generated. The Heather Fm. samples show a slightly increasing trend in PI-values (0.33 - 0.42) relative to the Draupne Fm., probably due to slightly higher maturities (Section 2.2). The Brent coals have generated and probably expelled mainly gaseous hydrocarbons. The relatively low PIvalues might also indicate that these source rocks have a poor potential for generating oil. The Dunlin Gp. PI-values ranging 0.25 - 0.36 suggest generation and most likely expulsion of oil and gaseous hydrocarbons, due to the high maturity. Figure 5 shows that the source rocks from the Draupne and Heather Fms. and the Dunlin Gp. are placed in continuous sequence with decreasing hydrogen index values and increasing Tmax values reflecting increasing maturity with depth for a mixed type II/III kerogen source rocks.

2.4 Migrated Hydrocarbons

Migrated hydrocarbons from potential reservoir rocks have not been analysed by Rock-Eval. The previously mentioned high PI-values (Section 2.3) seen in the Draupne and Heather Fms. and the Dunlin Gp. are considered to reflect in-situ generated hydrocarbons and not staining from migrated hydrocarbons.

Chapter 3

DETAILED GEOCHEMICAL ANALYSES

3.1 GHM - Thermal Extraction

A total of seven samples was analysed using the combined GHM thermal extraction pyrolysis GC. The samples include cuttings (Draupne Fm.) and core chips (Brent Gp.). Selected thermal extract chromatograms are presented in Figures 6a-d. All the chromatograms are shown in Appendix 2.

The four Draupne Fm. (3669 - 3705 m) cuttings samples have thermal extracts dominated by n-alkanes in the nC₁₁ - nC₂₆ range, with nC₁₃ and nC₁₄ as the largest peaks for three of the samples (3678 m, 3681 m, 3693 m) (Figure 6a), whereas the sample 3684 m has a different n-alkane distribution dominated by intermediate range n-alkanes and with nC₂₀ as the dominant peak (Figure 6b). The pristane/nC₁₇- and phytane/nC₁₈-ratios are less than 0.5 for all samples. The pristane/phytane ratios are approx. 1.5 for three of the samples. The fourth sample, 3684 m, has a pristane/phytane ratio around 1.1. The paraffinic composition of the thermal extracts and the previously mentioned pristane/phytane ratios indicate a marine origin for these in-situ generated hydrocarbons. The hydrocarbons are considered to have generated from the oil window mature Draupne Fm. source rock, which is actively generating hydrocarbons in significant amounts. However, the sample 3684 m might be a slightly different source rock, with contribution from (?)algal derived organic matter owing to the earlier mentioned contribution from intermediate range n-alkanes and the lower pristane/phytane ratio.

The two coal samples, 3911.38 m and 3929.35 m, from the Brent Gp. (3792 - 3980 m) have thermally extractable hydrocarbons consisting mainly of light hydrocarbons (Figure 6c), believed mainly to be mono- and diaromatic(?) hydrocarbons, and

ł

subordinate contribution from n-alkanes. The composition of the hydrocarbons are indicative of a coaly source rock. Hence the thermally extractable hydrocarbons are considered to be in-situ generated. The heterogenous claystone/coaly sample, 3851.85 m, has the same dominantly aromatic hydrocarbons composition as well as a significant presence of n-alkanes, most clearly seen in the $nC_{10} - nC_{25}$ range (Figure 6d). The lithological heterogeneity of the sample taken into consideration suggests that the chromatogram is reflecting thermally extracted hydrocarbons from both coaly material as well as carbonaceous claystone.

3.2 GHM - Pyrolysis Gas Chromatography

Seven samples, the same as those chosen for the GHM thermal extraction GC, were chosen for GHM pyrolysis GC. The pyrolysis compositions are listed in Table 3 and the data are plotted in the pyrolysis products triangle in Figure 8. Exemplary pyrograms are presented in Figures 7a-b. All the pyrograms are presented in Appendix 2.

The four cuttings samples from the Upper Jurassic Draupne Fm. (3669 - 3705 m) have pyrograms dominated by n-alkenes/n-alkanes in the $nC_6 - nC_{30}$ range, with subordinate contributions from monoaromatic hydrocarbons (Figure 7a). Prist-1-ene, eluting between the nC_{17} and nC_{18} alkene/alkane doublets, is present in all the samples. The n-alkenes dominate clearly over the n-alkanes in the $C_6 - C_{14}$ range, suggesting that at least a part of the pyrolysate could originate from asphaltenic material. The $C_1 - C_5$, $C_6 - C_{14}$ and C_{15} + pyrolysate distributions shown in Figure 8 are compatible for all the samples. The pyrograms are typical for marine type II kerogen source rocks, which have generated hydrocarbons and still have a remaining potential for generating oil and gaseous hydrocarbons.

The three Brent Gp. pyrolysates (3851.85 m, 3911.38 m, 3929.35 m) are dominated by mono- and diaromatic hydrocarbons and the alkyl aromatic hydrocarbon moieties relative to n-alkenes/n-alkanes (Figure 7b). This predominance is most clearly seen in the two lower samples. Hence the Brent Gp. source rocks have a remaining potential for generating light hydrocarbons (wet gas and condensate), also reflected by the thermally extractable hydrocarbons discussed in section 3.1. The significant generation of aromatic hydrocarbons is indicative of land plant derived type III kerogen source rocks. Additionally, the high diaromatic hydrocarbon peak intensities confirm the coal origin.

3.3 Solvent Extraction and Chromatography

A total of six samples was solvent extracted using the Soxtec apparatus and the solvent extracts were subsequently fractionated using MPLC. The results from the extraction and fractionation are presented in Tables 4a-d, and the data are plotted in Enclosures 2 and 3. The hydrocarbon fractions (saturated and aromatic) were analysed using gas chromatography. The results from these analyses are presented in Tables 5 and 6 respectively. The chromatograms are presented in Appendix 3. Selected saturated hydrocarbon chromatograms are presented in Figures 9a-c and aromatic hydrocarbon chromatograms (FID and FPD) are presented in Figures 10a-d.

3.3.1 Extraction

The four Draupne Fm. (3669 - 3705 m) shale samples have very rich contents of extractable organic matter, ranging 7600 - 9345 wt ppm EOM/g rock. The extractable hydrocarbons (EHC) constitute the largest fraction (5234 - 7000 wt ppm EHC/g rock), whereas the non-hydrocarbons (NSOs and asphaltenes) constitute 2345 to 2842 ppm/g rock. However, the EOM contents relative to the TOC contents are classified as good to rich (142 - 326 mg EOM/g TOC). The hydrocarbon contents relative to the TOC are classified as rich to very rich (94 - 224 mg EHC/g TOC), indicative of significant active hydrocarbon generation from a mature source rock. Saturated hydrocarbons constitute the largest single fraction (42 - 50 % of EOM), whereas the aromatic hydrocarbons constitute approx. 25 - 26 %. The asphaltenes and NSOs constitute subequal quantities (11 - 20 % and 14 - 15 % respectively).

The two Brent Gp. (3792 - 3980 m) coal samples (3824.54 m, 3911.38 m) have very rich EOM contents (9170 and 31417 ppm EOM/g rock), consisting primarily of non-hydrocarbons, mainly asphaltenes (6269 and 26398 ppm/g rock). The hydrocarbons constitute 2901 and 5019 ppm EHC/g rock, with dominance of aromatic hydrocarbons (2383 and 4252 ppm/g rock respectively) relative to saturated hydrocarbons. However, the EHC content is classified as being poor to fair when normalized against TOC (17

and 8 mg EHC/g TOC), whereas the non-hydrocarbons constitute 37 mg/g TOC and 41 mg/g TOC respectively. The significant EOM contribution supports the high maturity of the Brent Gp. coals.

3.3.2 Saturated Hydrocarbon Chromatography

The four Draupne Fm. saturated hydrocarbon chromatograms consist of n-alkanes, ranging nC_{11} to nC_{35} with unimodal distributions, dominated by short chained n-alkanes (Figure 9a). The pristane/phytane ratios are relatively constant (1.20 - 1.50), indicative of marine source rocks. The pristane/ nC_{17} and phytane/ nC_{18} ratios (0.40 - 0.44 and 0.33 - 0.36 respectively) indicate, together with the front biased n-alkane distributions, generation from mature source rocks. However, the sample 3684 m shown in Figure 9b has more contribution from intermediate range n-alkanes, suggesting a slightly different source compared to the other Draupne Fm. samples.

The two Brent Gp. chromatograms (3824.54 m, 3911.38 m) from coal extracts consist of n-alkanes in the nC₁₁ to nC₃₁ range, with predominance of short chained n-alkanes and intermediate range n-alkanes (Figure 9c). The pristane/phytane ratios (3.67 and 2.46 respectively) are indicative of land plant contribution. The low pristane/nC₁₇- and phytane/nC₁₈ ratios are indicative of generation from mature source rocks. The upper sample has significantly higher values compared to the lower sample, possibly due to differences in source rather than maturity.

3.3.3 Aromatic Hydrocarbon Chromatography

The four Draupne Fm. FID chromatograms are dominated by the methyl- and dimethylnaphthalenes with slightly lower peak intensities for the phenanthrene and methyl-phenanthrene compounds (Figure 10a). The maturity parameters including the MNR-, DMNR-, 2/1MP-, MPI1- and the MPI2-ratios are all constant. Accordingly the calculated Rc-values range 0.79 - 0.81 %, suggesting that the hydrocarbons were generated from a mature source rock at peak oil generation. An interesting feature is

Schlumberger

GECO-PRAKLA

GEOLAB

the prominent 4MDBT peaks, seen in the FPD-chromatograms (Figure 10b), whereas the lack of DMBT, 1DMBT and 2+3DMBT either indicate a high maturity of the source rock (past oil generation), i.e. higher than those obtained from other geochemical data (Tmax, Rc), which indicate a source rock at peak oil generation. Alternatively, the lack of the aforementioned compounds might indicate a different type of source rock. An earlier project carried out for Statoil (October 1992), including the well NOCS 34/10-35, showed similar high 4DMBT peak intensities and absence of DMBT, 1DMBT and 2+3DMBT for Draupne Fm. shale extracts with compatible maturities (Rc \approx 0.80 %). Hence a source related distribution of dimethylbenzothiophene compounds are suggested as a plausible explanation.

The two Brent Gp. coal samples (3824.54 m, 3911.38 m) have methyl-naphthalenes, dimethyl naphthalenes and alkylphenanthrenes present as prominent peaks (Figure 10c). The high maturities of the samples are confirmed by the aromatic hydrocarbon ratios including 2/1MP-, MPI1- and MPI2-ratios. The MPI1-derived Rc-values of 0.94 % and 0.97 % indicate that the coals are close to the base of the oil window. The presence of sulphur containing dibenzothiophene (DBT) and alkyl-dibenzothiophenic compounds seen in the FPD-chromatograms (Figure 10d) supports a marine depositional environment. The high 4/1MDBT- and (3+2)/1MDBT-ratios support the high maturities for the coals.

Schlumberger G

3.4 Visual Kerogen Microscopy

Six samples from well NOCS 30/2-3 were optically examined, these covering the depth range 3675 - 3883.59 m of Upper to Middle Jurassic age. The detailed kerogen compositions are shown in Table 8, while the gross compositions are plotted in a triangular diagram, Figure 11. Thermal maturity data (Spore Colour Index) are included in Table 7.

3.4.1 Kerogen typing

Three samples from the Draupne Fm. interval were examined, all being from cuttings. These all have quite similar kerogen compositions, being strongly dominated by liptinite (55 - 75 %), which is overwhelmingly of low fluorescent amorphinite. Spores are common in the uppermost sample however and it can be commented that these samples otherwise show rather higher amounts of woody organic material than is usual in the Draupne Fm., i.e. a higher input of terrestrial organic matter. It is difficult to judge the original quality of the amorphous matter in these samples due to the advanced maturity, such that it is unknown whether or not this includes significant reworked or degraded matter. However, the presence of abundant pyrite infers a highly anoxic environment conductive to good preservation. It is tentatively concluded that it is most likely that the Draupne Fm. in this well have originally had a very good potential for oil generation, and that the present low potential is the result of mainly advanced maturity.

Three samples from the Brent Gp. were examined, all being from core chips. The two uppermost samples are of "coal", though the kerogen assemblages rather suggest them to be carbargillites since they have high liptinite/low vitrinite+inertinite contents. All the Brent Gp. samples have fairly similar compositions, the kerogen concentrates containing abundant liptinite (30 - 65 %), which consists mainly of spore material, together with amorphous/very fine-grained material which is often evidently of degraded spores. Cuticle is subordinate, while identifiable algal remains are scarce.

Vitrinite and inertinite, mainly as telinitic and semifusinitic clasts, range 20 - 60 % and 5 - 15 % respectively. These samples suggest the Brent Gp. shales to have good generation potential for gas, together with (?)waxy oil.

3.4.2 Maturity

Insufficient samples were analysed over too short a vertical interval from this well for establishment of a maturity gradient. The samples examined infer a maturity for the interval ranging SCI 7.0 - 7.5, i.e. at and above peak oil generation (top and base of oil window for type II kerogen: SCI 6.0 and SCI 8.0 respectively). This would correspond to a vitrinite reflectance of Ro 0.8 %+.

3.5 Gas Chromatography - Mass Spectrometry

Six samples, including four samples from the Upper Jurassic Draupne Fm. (3669 - 3705 m) and two samples from the Middle Jurassic Brent Gp. (3792 - 3980 m) were selected for GC-MS analyses. Both the saturated hydrocarbons and aromatic hydrocarbons were analysed, using multiple ion detection. All the data are presented in Tables 9A-I. Selected fragmentograms are shown in Figures 12a-j. All fragmentograms are found in Appendix 4.

3.5.1 Potential Source Rocks

Saturated Hydrocarbons

<u>Terpanes</u>

The triterpane distributions are shown in the M/Z 171 (demethylated triterpanes), 191, and the 205 (methylated triterpanes). The four Upper Jurassic Draupne Fm. samples have demethylated hopanes, represented by the M/Z 177 fragmentograms, with presence of the $C_{27} - C_{29}$ rearranged steranes and tricyclic terpanes, reflecting relatively high maturities for the samples (Figure 12a). There appear to be minor differences for the samples, with one sample, 3684 m, being slightly more enriched in (?) C_{27} rearranged steranes (eluting at low retention time at about 51 and 52 minutes) compared to the three other samples, due to minor differences in source rather than maturity.

The two Brent Gp. samples have demethylated hopanes significantly different to the Draupne Fm. samples by being depleted in tricyclic terpanes and rearranged steranes.

The Draupne Fm. triterpanes (M/Z 191 fragmentograms) have $C_{31} - C_{35}$ extended $\alpha\beta$ hopane distributions (peaks G/H to J1/J2) with homologous distributions, indicating a marine source rock (Figure 12b). There is a minor difference in the C_{34}/C_{35} extended

hopane ratio with the lowest sample, 3693 m, having a lower ratio compared to the three upper samples. This might indicate a less anoxic depositional environment for the lowest sample. T_m/T_s ratios range 0.10 - 0.15, supporting a relatively high maturity for the Draupne Fm. shales. The tricyclic terpanes (Peaks N, O, P, Q, R, S and T) are abundant peaks, supportive of high maturities, with the lowest sample (3693 m) having the highest peak intensities. Other parameters including the $C_{30} \alpha\beta$ diahopane/ $\alpha\beta$ hopane ratio (X/E) ranging 0.36 to 0.43 and the tricyclic C_{24} terpane/ $\alpha\beta$ hopane ratio (Q/E) ranging 0.27 to 0.35, with the 3693 m sample having significantly higher values, suggest a slightly different source compared to the other three samples rather than maturity differences. Using the relatively higher content of the C_{30} diahopane (X) in the lower sample suggests a relatively higher terrestrial input compared to the other samples. The peak eluting immediately after the $C_{29} \alpha\beta$ norhopane (C) is probably C_{29} neohopane (peak C1 in Figure 12c), which is present in abundant intensities, probably due to the relatively high maturity of the shales.

The two Brent Gp. coal samples (3824.54 m, 3911.38 m) have hopane compositions significantly different to the Draupne Fm. shale samples (Figure 12d). The $C_{30} \alpha\beta$ diahopane peaks (X) are dominant, also reflected by the $C_{30} \alpha\beta$ diahopane/ $\alpha\beta$ hopane ratios (1.41 and 4.95 respectively), indicating partly a higher maturity and partly a land plant derived source rock compared to the Draupne Fm. shales. The large differences in the X/E ratios could be due to maturity and/or a source related difference. The C_{29} neohopane (C1) is also more abundant than the $C_{30} \alpha\beta$ hopane. The $C_{31} - C_{33}$ extended hopanes are only present as minor peaks, whereas the C₃₄ and C₃₅ extended hopanes are nearly absent, believed to be due to the high maturities. The prominent presence of the C₂₄ tetracyclic terpane (peak S) confirms the terrestrial origin of the source rock.

Steranes:

The sterane distributions are shown in the M/Z 217, 218 (14ß 17ß-steranes), 231 (methyl steranes) and 259 (diasteranes) fragmentograms. From the M/Z 217 fragmentograms (Figure 12e) it appears that the four Draupne Fm. shale samples are dominated by the C₂₇ - C₂₉ rearranged steranes, and the C₂₇ rearranged steranes in particular (peaks a and b), reflecting a relatively high maturity for a predominantly marine source rock. The C₂₇/C₂₉-diasterane ratio (ratio 4 in Table 9B) ranging 1.52 - 1.69 supports a marine origin. The M/Z 259 fragmentograms show predominance of the C₂₇ diasteranes, with clearly minor and subequal contributions from the C₂₈ and C₂₉ diasteranes, supporting the mainly marine origin. The M/Z 218 fragmentograms, representing the 14 β 17 β sterane distributions are biased towards the C₂₇-steranes, with less contributions from the C₂₈-, C₂₉- and C₃₀-steranes, implying a marine source.

The Brent Gp. coal (3824.54 m, 3911.38 m) 14 β 17 β steranes (M/Z 218 fragmentograms) shown in Figure 12f are dominated by the C₂₉-steranes, indicating a mainly terrestrial source rock. The M/Z 259 fragmentograms show a predominance of C₂₉rearranged steranes supportive of a terrestrial origin, even though the peak intensities are low. In the lower sample, 3911.38 m, several unidentified compounds having prominent peak intensities, making the relative isomer distributions more uncertain. Unidentified compounds might coelute with the C₂₈- and C₂₉-rearranged steranes.

Aromatic Hydrocarbons

The four Draupne Fm. M/Z 106 fragmentograms show the presence of C_6 to C_{25} 1methyl, 2-alkyl and 1-methyl, 3-alkyl benzene series (doublets, Figure 12g). This distribution of alkylbenzenes is indicative of a marine source. The samples are considered to be mature, owing to the predominance of the 1-methyl, 3-alkyl peaks (the first peak of the doublets) relative to the corresponding 1-methyl, 2-alkyl peaks. The two Brent Gp. coal fragmentograms (3824.54 m, 3911.38 m) with C_6 to C_{25} 1methyl, 2-alkyl and 1-methyl, 3-alkyl benzene series are both highly mature, due to the higher 1-methyl, 3-alkyl peaks and the emergence of the (?) 1-methyl, 4-alkyl benzene series, eluting between the two previously mentioned peaks (Figure 12h).

The four Draupne Fm. M/Z 134 fragmentograms of the C_4 -alkylbenzenes are rather similar to each other, except for the variation in the relative abundance of the earliest eluting compounds. This is probably an evaporation effect. The two Brent Gp. coal

samples are also similar to each other (again except for the relative abundance of the earliest eluting compounds). The Brent Gp. coal samples are however different to the Draupne Fm. samples; the Brent Gp. samples having a very prominent peak just before 25 minutes retention time.

Generally Draupne Fm. alkylnaphthalene specific fragmentograms (M/Z 142, 156, 170) are similar, however, with minor variations. The three upper methylnaphthalene fragmentograms (M/Z 142) have subequal distribution of 1- and 2-methylnaphthalene, whereas the lowest sample (3693 m) has a clearly higher 1-methylnaphthalene peak. This might be due to evaporative loss. The Brent Gp. coals show predominance of 2- over the 1-methylnaphthalene, indicative of high maturity. The C₂-naphthalene fragmentograms (M/Z 156) of the Draupne Fm. are very similar to each other. The 2,6+2,7-C₂ naphthalene peak is fairly high compared with the other peaks, indicating a quite high maturity. The Brent Gp. coal samples have an even larger 2,6+2,7-C₂ naphthalene peak, indicating an even higher maturity. The C₃-naphthalene fragmentograms (M/Z 170) show a corresponding pattern with the early eluting compounds slightly more prominent for the Brent Gp. coal samples than for the Draupne Fm. shales.

The phenanthrene, anthracene and alkylphenanthrene specific fragmentograms (M/Z 178, 192, 206, 220) are relatively uniform for the Draupne Fm. shales. The M/Z 178 fragmentograms of all six samples show almost only phenanthrene. Anthracene is only present as an almost unidentifiable peak. The methylphenanthrenes (M/Z 192) are dominated by the 9- and 1-methylphenanthrene relative to the 3- and 2-methylphenanthrene, indicating relative moderate maturity as opposed to most of the other maturity data. Contrary, the 9- and 1-methylphenanthrene peaks of the Brent Gp. coal samples are smaller relative to the 3- and 2-methylphenanthrenes, indicating a high maturity. The C₂-phenanthrenes (M/Z 206) and C₃-phenanthrenes (M/Z 220) show a similar difference in maturity, with those of the Draupne Fm. suggesting a lower maturity than those of the Brent Gp. coals.

The C₁- and C₂-dibenzothiophene (M/Z 198, 212) fragmentograms are relatively uniform for the Draupne Fm. samples. The (2+3)-/1-methyldibenzothiophene (M/Z 198)

ratio is approximately 1.3 and indicative of a mature source rock (probably close to 0.8 % Ro equivalent). The 4-/1-methyldibenzothiophene ratio is larger than 10, supporting a maturity close to or past peak oil generation (see Figure 12i). The Brent Gp. coals have (2+3)-/1-methyldibenzothiophene ratios significantly higher (> 3) than the Draupne Fm. samples, reflecting a higher maturity (well past peak oil generation, 0.8 % Ro equivalent) (see Figure 12j). The C₂-dibenzothiophenes show similarity within the Draupne Fm. and the Brent Gp. respectively, but differences between these two suites of samples.

The fragmentograms of the triaromatic steranes (M/Z 231) are similar for the four Draupne Fm. samples. The early eluting compounds are very dominant and only traces at the later eluting compounds are present. This is indicative of a maturity at or past peak oil generation. The Brent Gp. coal samples have fragmentograms lacking the peaks found in the Draupne Fm. The lack of these peaks are usually interpreted as being due to a high maturity, i.e. well past peak oil generation. Similar observations apply for the monoaromatic steranes (M/Z 253) and the same interpretation applies. No ratios could be calculated for the Brent Gp. Those that could be calculated for the Draupne Fm. are similar for the four samples and indicate a fairly high maturity (see Table 9c-e).

Chapter 4

CONCLUSIONS

4.1 Source Rock Potential

The Upper Jurassic Draupne Fm. (3669 - 3705 m), consisting of dark grey to greyish black shales, is a mature marine type II kerogen source rock, with a good potential for generation of light oil and gaseous hydrocarbons. The mainly liptinitic kerogen source rocks contain relatively high contents of woody organic material, indicating a significant terrestrial contribution. The abundant pyrite contents seen in the visual kerogen descriptions however suggest an anoxic depositional environment. The Heather Fm. (3705 - 3792 m) clavstones are organic-rich grevish black clavstones having fair to good petroleum potentials. The lower petroleum potential values relative to the Draupne Fm. might be due to contribution from land derived organic matter rather than marine organic matter, giving a gas-prone source rock potential for the Heather Fm. The highly mature Middle Jurassic Brent Gp. (3792 - 3980 m) coals and carbonaceous shales have very rich petroleum potential. The coals have abundant liptinite contents, consisting mainly of spore material, whereas vitrinite and inertinite range 20 - 60 % and 5 - 15 % of the coal samples respectively. The maturity of the samples taken into consideration suggests that the coals are gas-prone. The GC-MS and aromatic hydrocarbon GC (FID/FPD) data suggest that the Brent Gp. coals are mainly terrestrial source rocks deposited in a marine environment. The highly mature Lower Jurassic Dunlin Gp. (3980 - 4288 m) claystones have good TOC-contents with fair petroleum potential for generating gaseous hydrocarbons.

4.2 Maturity

The Draupne Fm. shales are considered to be at peak oil generation, when Tmax and aromatic hydrocarbon GC (FID) ratios are applied (Rc = 0.8 %), with peak oil generation at Ro = 0.8 % for type II kerogen. The consistent derived Rc-values of about 0.8 % confirm a maturity close to peak oil generation. The Heather Fm. has Tmax-values ranging 442 - 455°C, suggesting that the Heather Fm. is past peak oil generation (Tmax = 440°C for type II kerogen). The Brent Gp. coals are highly mature, suggesting a maturity close to the base of the oil window (Ro = 1.0 %, Tmax = 450°C for type II kerogen). The calculated Rc-values in the 0.9 - 1.0 % range derived from the aromatic hydrocarbon GC (FID) confirm the high maturity of the coals. The Dunlin Gp. claystones are considered to be close to the base of the oil window or below.

4.3 Generation

The analysed potential source rocks, including the Upper Jurassic Draupne Fm. -Lower Jurassic Dunlin Gp. (3669 - 4288 m) have started to generate and expel hydrocarbons, owing to the high maturities and petroleum potentials. The oil- and gasprone Draupne Fm. is considered to be at peak oil maturity level, hence hydrocarbons are being generated and expelled actively, also obtained from rich bitumen contents obtained from solvent extraction. The Heather Fm., being past peak oil generation, is considered to generate and expel gaseous hydrocarbons and (?)light oil, however, to a less extent compared with the Draupne Fm. The Brent Gp. coals have generated hydrocarbons and are still generating mainly gaseous hydrocarbons.

4.4 Migration

No analyses have been performed on migrated hydrocarbons.

Schlumberger GECO-PRAKLA

LEGEND TO FIGURES 2, 3 AND 4

Figure 1: Location Map showing block 30/2.

GEOLABWOR

Schlu

iger

GECO-PRAKLA

GEOLAB

Figure 4

Client: STATOIL

Tmax Data for Well NOCS 30/2-3

Schlumberger GECO-PRAKLA

Figure 5 : Hydrogen Index v.s. Tmax values Well NOCS 30/2-3

Schlumberger GECO-PRAKLA

GEOLAB

Analysis Name : [62019] 23 PH9500111,1,1.

Multichrom

GEOLABWNOR

Analysis Name: [62019] 23 PH9500331,1,1.

Multichrom

Schlumberger GECO-PRAKLA GEOLABWNOR

Schlumberget GECO-PRAKLA

GEOLAB

Analysis Name : [62019] 24 PH9500121,1,1.

Multichrom

	to the design of the second seco
Schlumberger	GECO-PRAKLA

GEOLABWNOR

Analysis Name : [62019] 24 PH9500331,1,1.

Multichrom

Schlümberger GECO-PRAKLA

GEOLAB

Figure 8 : Pyrolysis GC Composition Well NOCS 30/2-3

Schlumberger GECO-PRAKLA

100% C15+

100% C1-C5

100% C6-C14

GEOLAB

Analysis Name : [62019] 5 SH9500101L,4,1.

Analysis Name : [62019] 30 AH9500101L,4,1.

1.00

Analysis Name : [62019] 29 AH9500101L.5.1.

Analysis Name : [62019] 30 AH9500101L.5.1.

Multichrom

Figure 11: Kerogen Composition and Potential Hydrocarbon Products Well NOCS 30/2-3

INERT (Inertinitic)

GAS PRONE (Vitrinitic)

Schlumberger GECO-PRAKLA

GEOLAB

GEOLABWNOR

) <u>8</u> .	T				E
					_4.7E5
		-X-		Figure 12h.	4.4E5
				Brent Gp. coal.	4.2E5
				Highly mature.	_3.9E5
				5 7	-3.7E5
					_3.4E5
					-3.2E5
					3.0E5
					2.7E5
		CID			2.5E5
		019			2.2E5
		ø			2.0E5
		enzer			-1.7E5
		alkylb			_1.5E5
		1yl, 4-			1.2E5
		met			_9.8E4
		(<i>i</i>)			-7.4E4
					_4.9E4
				L	2.5E4
	LILMANA	MAR Malle March Marchen	Mullimenterle	undendendendendenden and and and and and and and and and an	E0.0E0
10:00 15:00 20	25:00	30:00 35:00	40:00 45:00	50:00 55:00 1:00	:00 TI

4			F ^{1.4E7}
		Figure 12i.	-1.4E7
		Draupne Fm. shale.	1.3E7
			1.2E7
			1.2E7
			_1.1E7
			L1.0E7
			_9.4E6
			-8.6E6
			7.9E6
			7.2E6
			_6.5E6
			5.8E6
			5.0E6
			4.3E6
			_3.6E6
			2.9E6
			2.2E6
			1.4E6
			27.2E5
	A 27.00 28.00 29.00 40.00	41:00 42:00 43:00	E0.0E0
:00 31:00 32:00 33:00 34:00 35:00 36:00	37:00 38:00 39:00 40:00	41:00 42:00 43:00	44:00 TIME

le:STATARO5 #1-2759 Acg:16-JAN-1993 16:38:56 EI+ Magnet SIR ample#7 Text:WELL 30/2-3, 3911.38M, AROMATIC FRACTION	Exp:ARO1	
18.0503 S:7		8.2E6
¥5_	Figure 12j. Bront Co. coal	-7.8E6
	bient op. coal.	-7.4E6
35_		-6.9E6
30_		_6.5E6
75_		-6.1E6
10-		5.7E6
i5_		5.3E6
; 0_		_4.9E6
5.		_4.5E6
o-		_4.1E6
5.		_3.7E6
		_3.3E6
·5_		_2.9E6
o_		-2.5E6
5_		_2.0E6
0_		L1.6E6
5_		_1.2E6
0_		-8.2E5
5_		L4.1E5
0 30:00 31:00 32:00 33:00 34:00 35:00 36:00 37:00 38:00	9:00 40:00 41:00 42:00 43:	0.0E0 00 44:00 TIME
Schlumberger GECO-PRAKLA		GEOLAB

Abbreviations

List of abbreviations used for lithology description (sorted alphabetically)

ang	=	angular
bar	=	Baryte (mud additive)
bit	=	bituminous
bl	=	blue/blueish
blk	=	black
br		brittle
brn	=	brown/brownish
Ca	=	Carbonate (limestone/chalk/dolomite/siderite)
calc	=	calcareous
carb	=	carbonaceous
cem	H	cement used as additive (under "cont") or to describe cemented S/Sst
Chert	=	Chert
chk	=	Chalk/chalky
cly	=	clayey/shaly
cngl	=	conglomeratic
Coal	Ξ	Coal
Coal-ad	=	Coal-like additive (e.g. chromlignosulfonate)
Congl	=	Conglomerat
Cont	=	Contamination(s)
crs	=	coarse grained
dd	=	dried drilling mud
dol	=	Dolomite/dolomitic
drk	=	dark (colour)
dsk	=	dusk/dusky (colour)
evap	=	Salt/Gypsum/Halite (natural "Other" or as additive "Cont"
f	=	fine grained
fe	=	ferruginous
fib	=	fibres (mud additive/contamination)
fis	=	fissile
fos	=	fossiliferous
glauc	=	glauconite/glauconitic
gn	=	green/greenish
gy	=	grey/greyish
hd	=	hard
ign	=	Igneous (material derived from igneous source)
Kaolin	=	Kaolin(ite)
kln	=	kaolinitic
	=	loose
lam	=	laminated/laminae
lt	=	light (colour)
m	=	medium (colour or grain size)
Marl	=	Marl (calcareous claystone/mudstone)
mic	=	micaceous
Mica-ad	Ξ	Mica used as mud additive

mrl	= marly
No Mat.	= No material left over after washing
ns	= nutshells (mud additive)
ol	= olive
001	= Oolite/oolitic
or	= orange
Other	= Other lithology/mineral, specified after this word
pi	= pink/pinkish
pl	= pale (colour)
prp	= paint/rust/plastic contaminations/additives
pu	= purple
pyr	= Pyrite/pyritic
red	= red/reddish
rnd	= round/rounded
S	= sandy
sft	= soft
S/Sst	= Sand and/or sandstone
Sh/Clst	= Shale and/or claystone
sid	= Siderite/sideritic
sil	= siliceous/cherty
slt	= silty
Sltst	= siltstone
st	= stained (with natural oil or oil-like additive)
tar-ad	= Tar-like additive (e.g. "Black Magic")
trbfgs	= turbodrilled fragments
Tuff	= Tuff
tuff	= tuffaceous
v col	= various colours
w	= white
WX	= waxy
у	= yellow/yellowish

List of abbreviations used for parameters, ratios and analytical methods (sorted alphabetically)

CPI	=	Carbon Preference Index,
		0.5 x <u>C25+C27+C29+C31+C33</u> + <u>C25+C27+C29+C31+C33</u>
		C24+C26+C28+C30+C32 C26+C28+C30+C32+C34
EOM	=	Extractable Organic Matter
FID	=	Flame Ionisation Detector
FPD	=	Flame Photometric Detector
GC	=	Gas Chromatograph
GC-MS	Ξ	Gas Chromatograph - Mass Spectrometer
GHM	=	Geofina Hydrocarbon Meter (combined thermal
		extraction - pyrolysis gas chromatograph)
HC	=	Hydrocarbons
HI	=	Hydrogen Index (100 x S2/TOC)
HPLC	=	High Pressure Liquid Chromatograph
MDBT(4/1)	=	Ratio of 4-/1-methyl dibenzothiophene
MNR	=	Ratio of 2-/1-methyl naphthalene
MP		Methyl phenanthrene
MPI1	=	Methyl phenanthrene Index,
		1.5x(3MP+2MP) / P+9MP+1MP
MPLC	=	Medium Pressure Liquid Chromatograph
NSO	=	Nitrogen-, Sulphur- and Oxygen-compounds
01	=	Oxygen Index (100 x S3/TOC)
Р	=	Phenanthrene
PI	=	Production Index (S1/(S1+S2))
PP	=	Petroleum Potential (S1+S2)
Ro (%)	=	Measured Vitrinite Reflectance in Percent
Rock-Eval	=	Oil show and source rock evaluation instrument
S1	=	Amount of Free Hydrocarbons, Rock-Eval
S2	=	Amount of Kerogen pyrolysate, Rock-Eval
S3	=	Amount of Oxidised Organic Material
SCI	Ξ	Spore Colour Index (maturity indicator)
TCD	=	Thermal Conductivity Detector
TAI	=	Thermal Alteration Index (maturity indicator)
Tmax	=	Temperature of maximum pyrolysate yield, Rock-Eval
TOC	=	Total Organic Carbon

Experimental

Total Organic Carbon (TOC) and Total Carbon Analysis

This analysis is performed using a LECO CS244 Carbon Analyser.

Hand-picked lithologies from cuttings samples are crushed with a mortar and pestle and approximately 200 mg (50 mg for coals) are accurately weighed into LECO crucibles. The samples are then treated three times with 10 % hydrochloric acid to remove oxidized (carbonate) carbon, and washed four times with distilled water. The samples are dried on a hotplate at 60 - 70°C before analysis of total organic carbon. Total carbon is also analysed on the same instrument using approximately 200 mg of untreated crushed whole rock. Oxidized (carbonate) carbon is calculated by weight difference.

Total organic carbon can also be analysed on the Rock-Eval II Pyrolyser during the normal run of the instrument.

Rock-Eval Pyrolysis

This analysis is performed by using a Rock-Eval II Pyrolyser. Approximately 100 mg crushed whole rock is analysed. The sample is first heated at 300°C for three min in an atmosphere of helium to release the free hydrocarbons present (S1 peak) and then pyrolysed by increasing the temperature from 300°C to 600°C (temp. gradient 25°C/min) (S2 peak). Both the S1 and S2 yields are measured using a flame ionization detector (FID). In the temperature interval between 300°C and 390°C, the released gases are split and a proportion passed through a carbon dioxide trap, which is connected to a thermal conductivity detector (TCD). The value obtained from the TCD corresponds to the amount of oxygen contained in the kerogen of the sample and is reported as the S3 peak.

The Rock-Eval II Pyrolyser also analyses the TOC of each sample during the normal

run of the instrument.

Thermal Extraction/Pyrolysis Gas Chromatography

The instrument used for this analysis is a Varian 3400 Gas Chromatogaph interfaced to a pyrolysis oven (the pyrolyser). Up to 15 mg of whole rock sample is loaded on the pyrolyser and heated isothermally, at 300°C, for 4 min, during which time thermal extraction of the free hydrocarbons occurs (equivalent to the S1 peak of the Rock-Eval). The released gases pass to a 25 m OV1 column with a liquid nitrogen-cooled trap.

After 4 min the pyrolysis oven is temperature programmed up to 530°C, at a rate of 37°C/min, causing bound hydrocarbons to be released from the kerogen (equivalent to the S2 peak of the Rock-Eval). The released gases pass to a 25 m OV1 column with a liquid nitrogen-cooled trap.

The temperature program of the gas chromatograph oven, in which the columns are housed is -10°C to 290°C at a rate of 6°C/min. Both the columns are linked to a FID.

Solvent Extraction of Organic Matter (EOM)

The samples are extracted using a Tecator Soxtec HT-System. Carefully weighed samples are taken in a pre-extracted thimble. Some activated copper is added to the extraction cup and dichloromethane/methanol (93/7) is used as an extraction solvent. The samples are boiled for 1 hour and then rinsed for 2 hours. If the samples contain more than 10 % TOC, then the whole procedure is repeated once. The resulting solution is filtered and the solvent removed by rotary evaporation (200 mb, 30°C). The amount of EOM is gravimetrically established.

2

Removal of Asphaltenes

The EOM is dissolved in tetrahydrofuran in a flask and n-pentane is added to precipitate the asphaltenes. The solution is then stored in the dark and at ambient temperature for at least 8 hours. The solution is then filtered (Baker 10-spe system) and the precipitated asphaltenes returned to the original flask by dissolution in dichloromethane. The solvent is removed by rotary evaporation at 200 mB and 30°C.

Chromatographic Separation of deasphaltened EOM

Chromatographic separation is performed using an MPLC system developed by the company. The EOM (minus asphaltenes) is injected into the MPLC and separated using hexane as an eluent. The saturated and aromatic hydrocarbon fractions are collected and the solvent removed using a rotary evaporator at 30°C. The fractions are then transferred to small pre-weighed vials and evaporated to dryness in a stream of nitrogen. The vials are re-weighed to obtain the weights of both the saturated and the aromatic fractions. The weight of the NSO fraction which is retained on the column, is obtained by weight difference.

Gas Chromatographic Analyses

Saturated hydrocarbon fractions:

The instrument used for this analysis is a PERKIN ELMER 8320 Gas Chromatograph equipped with an FID detector and an OV1 column. The carrier gas is helium and the temperature program runs from 80°C to 300°C at a rate of 4°C/min. Final hold time is 20 mins. The saturated hydrocarbon fraction is diluted by 1:30 and a 1 microlitre aliquot of this is injected into the instrument.

Aromatic hydrocarbon fractions:

The instrument used is a Varian 3400 Gas Chromatograph with a 25 m SE 54 capillary column, split injector and a column splitter leading to FID and FPD detectors, which allows simultaneous analysis of co-eluting hydrocarbons and sulphur compounds. The carrier gas is helium and the temperature program runs from 40°C to 290°C at a rate of 4°C/min. Final hold time is 10 mins. The aromatic hydrocarbon fraction is diluted by 1:30 and a 1 microlitre aliquot of this is injected into the instrument.

4

Visual Kerogen Misroscopy

Kerogen concentrates are obtained from samples prepared by HCI and HF digestion followed by zinc bromide flotation to remove pyrite and other heavy mineral residues. The cleaned concentrates are mounted on slides by smearing, these being analysed microscopically in transmitted white light and UV light (530 nm barrier filter) to determine the Spore Colour or Thermal Alteration Indices (SCI or TAI) and the colour and intensity of spore fluorescence. The spore colour index ,backed by spore fluorescence, is used as an alternative maturity parameter to verify the results obtained from vitrinite reflectance.
Schlumberger GECO-PRAKLA

Fluorescence Colour	Colour	Corresp. Vitrinite
	Index	Reflectance
Green	1	0.2 %
Green/yellow	2	0.2-0.3 %
Yellow	3	0.3 %
Yellow/orange	4	0.4 %
Light orange	5	0.5 %
Moderate-orange	6	0.6 %
Dark orange	7	0.8 %
Dark orange/red	8	1.0 %
Spore fluorescence extinction	9	1.3 %

NB. This table only provides a rudimentary correlation as vitrinite reflectance and spore fluorescence colour are both independently affected by factors such as depositional environment and categanic history.

Combined Gas Chromatography - Mass Spectrometry (GC-MS)

The GC-MS analyses are performed on a VG TS250 system interfaced to a Hewlett Packard 5890 gas chromatograph. The GC is fitted with a fused silica SE54 capillary column (40 m x 0.22 mm i.d.) directly into the ion source. Helium (12 psi) is used as carrier gas and the injections are performed in splitless mode. The GC oven is programmed from 45°C to 150°C at 35°C/min, at which point the programme rate is 2°C/min up to 310°C where the column is held isothermally for 15 min. For the aromatic hydrocarbons, the GC oven is programmed from 50°C to 310°C at 5°C/min. and held isothermally at 310°C for 15 min. The mass spectrometer is operated in electron impact (EI) mode at 70 eV electron energy, a trap current of 500 uA and a source temperature of 220°C. The instrument resolution used is 2500 (10 % value).

The data system used is a VG PDP11/73 for acquiring data, and a Vax station 3100 for peak processing the data. The samples are analysed in multiple ion detection

mode (MID) at a scan cycle time of approximately 1.1 sec.

Calculation of peak ratios is performed from peak heights in the appropriate mass fragmentograms.

Saturated Fractions

Terpanes

The most commonly used fragment ions for detection of terpanes are M/Z 163 for detection of 25,28,30 trisnormoretane or 25,28,30 trisnorhopane, M/Z 177 for detection of demethylated hopanes or moretanes, M/Z 191 for detection of tricyclic, tetracyclicand pentacyclic terpanes and M/Z 205 for methylated hopanes or moretanes. The molecular ions M/Z 370 and 384 are also recorded for identification of C₂₇ and C₂₈ triterpanes respectively.

Steranes

The most commonly used fragment ions for detection of steranes are M/Z 149 to distinguish between 5α and 5β steranes, M/Z 189 and 259 for detection of rearranged steranes, M/Z 217 for detection of rearranged and normal steranes and M/Z 218 for detection of $14\beta(H)$ $17\beta(H)$ steranes.

The M/Z 231 fragment ion is used to detect possible aromatic contamination of the saturated fraction. It is also used for detection of methyl steranes.

Aromatic Fractions

Alkyl-substituted Benzenes

The M/Z 106 fragment ion is often used to detect the alkyl-substituted benzenes. It is especially useful for the detection of di-substituted benzenes. M/Z 134 can also be used for the detection of C₄-alkylbenzenes, but benzothiophene will also give a signal with this fragment ion.

Naphthalenes

Methyl naphthalenes are normally detected by the M/Z 142 fragment ion, while C₂naphthalenes are detected by M/Z 156 and C_3 -naphthalenes by M/Z 170.

Benzothiophenes and Dibenzothiophenes

Benzothiophene can be detected, as mentioned above, by M/Z 134. The M/Z 184 fragment ion is used to detect the dibenzothiophenes. The M/Z 198 and M/Z 212 fragment ions are used for methyl-substituted dibenzothiophenes and dimethylsubstituted dibenzothiophenes respectively.

Phenanthrenes

Phenanthrene is detected using the M/Z 178 fragment ion. Anthracene will, if present, also give a signal in the M/Z 178 fragment ion. Methyl-substituted phenanthrenes give signals in the M/Z 192 fragment ion, while the M/Z 206 fragment ion shows the dimethyl-substituted phenanthrenes and the M/Z 220 fragment ion shows the C₃ substituted phenanthrenes.

8

Aromatic Steranes

Monoaromatic steranes are detected using the M/Z 253 fragment ion, while the triaromatic steranes are detected using the M/Z 231 fragment ion.

Mass Fragmentograms representing Terpanes (M/Z 163, 177, 191, 205, 370, 384, 398, 412 and 426)

Peak Identification: (α and β refer to hydrogen atoms at C-17 and C-21 respectively unless indicated otherwise)

Α.	18 α trisnorneohopane (T _s)	$C_{27}H_{44}$	()
В.	17 α trisnorhopane (T _m)	$C_{27}H_{46}$	(II, R=H)
Ζ.	Bisnorhopane	C ₂₈ H ₄₈	(IV)
C.	$\alpha\beta$ norhopane	C ₂₉ H ₅₀	(II, R=C ₂ H ₅)
D.	$\beta \alpha$ norhopane	$C_{29}H_{50}$	(III, $R=C_2H_5$)
E.	αβ hopane	C ₃₀ H ₅₂	(, R=i-C ₃ H ₇)
F.	βα hopane	$C_{30}H_{52}$	(III, R=i-C ₃ H ₇)
G.	22S $\alpha\beta$ homohopane	$\mathrm{C_{31}H_{54}}$	(II, R=i-C ₄ H ₉)
Н.	22R $\alpha\beta$ homohopane	C ₃₁ H ₅₄	(II, R=i-C ₄ H ₉)
I.	$\beta \alpha$ homohopane	C ₃₁ H ₅₄	(III, R=i-C ₄ H ₉)
J.	22S $\alpha\beta$ bishomohopane	$C_{32}H_{56}$	(II, R=i-C ₅ H ₁₁)
	22R $\alpha\beta$ bishomohopane	$C_{32}H_{56}$	(II, R=i-C ₅ H ₁₁)
К.	22S $\alpha\beta$ trishomohopane	C33H28	(II, R=i-C ₆ H ₁₃)
	22R $\alpha\beta$ trishomohopane	C33H28	(II, R=i-C ₆ H ₁₃)
L.	22S $\alpha\beta$ tetrakishomohopane	C34H60	(II, R=i-C ₇ H ₁₅)
	22E $\alpha\beta$ tetrakishomohopane	C34H60	(II, R=i-C ₇ H ₁₅)
М.	22S $\alpha\beta$ pentakishomohopane	$C_{35}H_{62}$	(II, E=i-C ₈ H ₁₇)
	22E $\alpha\beta$ pentakishomohopane	C35H62	(II, R=i-C ₈ H ₁₇)
Ρ.	Tricyclic terpane	C ₂₃ H ₄₂	(V, R=i-C ₄ H ₉)
Q.	Tricyclic terpane	$C_{24}H_{44}$	(V, R=i-C ₅ H ₁₁)
R.	Tricyclic terpane (17R, 17S)	$C_{25}H_{66}$	(V, R=i-C ₆ H ₁₃)
S.	Tetracyclic terpane	$C_{24}H_{42}$	(VI)
Τ.	Tricyclic terpane (17R, 17S)	$C_{26}H_{48}$	(V, R=i-C ₇ H ₁₅)
N.	Tricyclic terpane	C ₂₁ H ₃₈	(V, R=C ₂ H ₅)
О.	Tricyclic terpane	$C_{22}H_{40}$	(V, R=C ₃ H ₇)
Υ.	25,28,30-trisnorhopane/moretane	C ₂₇ H ₄₆	(VII)
Х.	$\alpha\beta$ diahopane	C30H22	(VIII)

STRUCTURES REPRESENTING TERPANES

Mass Fragmentograms representing Steranes

(M/Z 149, 189, 217, 218, 259, 372, 386, 400 and 414)

Peak Identifications: α and β refer to hydrogen atoms at C-5, C-14 and C-17 in regular steranes and at C-13 and C-17 in diasteranes).

a.	20S $\beta\alpha$ diacholestane	C ₂₇ H ₄₈	(I, R=H)
b.	20R $\beta\alpha$ diacholestane	C ₂₇ H ₄₈	(I, R=H)
C.	20S $\alpha\beta$ diacholestane	C ₂₇ H ₄₈	(II, R=H)
d.	20R $\alpha\beta$ diacholestane	C ₂₇ H ₄₈	(II, R=H)
e.	20S $\beta\alpha$ 24-methyl-diacholestane	C ₂₈ H ₅₀	(I, R=CH ₃)
f.	20R $\beta\alpha$ 24-methyl-diacholestane	C ₂₈ H ₅₀	(I, R=CH ₃)
g.	20S $\alpha\beta$ 24-methyl-diacholestane	C ₂₈ H ₅₀	(II, $R=CH_3$)
	+ 20S $\alpha\alpha\alpha$ cholestane	C ₂₇ H ₄₈	(III, R=H)
h.	20S $\beta\alpha$ 24-ethyl-diacholestane	C ₂₉ H ₅₂	(II, $R=C_2H_5$)
	+ 20R $\alpha\beta\beta$ cholestane	C ₂₇ H ₄₈	(IV, R=H)
i.	20S $\alpha\beta\beta$ cholestane	C ₂₇ H ₄₈	(IV, R=H)
	+ 20R $\alpha\beta$ 24-methyl-diacholestane	C ₂₈ H ₅₀	(II, R=CH ₃)
j.	20R aaa cholestane	C ₂₇ H ₄₈	(III, R=H)
k.	20R $\beta\alpha$ 24-ethyl-diacholestane	$C_{29}H_{52}$	(I, R=C ₂ H ₅)
Ι.	20R $\alpha\beta$ 24-ethyl-diacholestane	$C_{29}H_{52}$	(II, $R=C_2H_5$)
m.	20S $\alpha\alpha\alpha$ 24-methyl-cholestane	C ₂₈ H ₅₀	(III, R=CH ₃)
n.	20R $\alpha\beta\beta$ 24-methyl-cholestane	C ₂₈ H ₅₀	(IV, $R=CH_3$)
	+ 20R $\alpha\beta$ 24-ethyl-diacholestane	$C_{29}H_{52}$	(II, R=C ₂ H ₅)
0.	20S $\alpha\beta\beta$ 24-methyl-cholestane	C ₂₈ H ₅₀	(IV, $R=CH_3$)
p.	20R ααα 24-methyl-cholestane	C ₂₈ H ₅₀	(III, R=CH ₃)
q.	20S ααα 24-ethyl-cholestane	$C_{29}H_{52}$	(III, $R=C_2H_5$)
r.	20R $\alpha\beta\beta$ 24-ethyl-cholestane	$C_{29}H_{52}$	$(IV, R=C_2H_5)$
S.	20S $\alpha\beta\beta$ 24-ethyl-cholestane	C ₂₉ H ₅₂	$(IV, R=C_2H_5)$
t.	20R ααα 24-ethyl-cholestane	$C_{29}H_{52}$	(III, $R=C_2H_5$)
u.	5α sterane	C ₂₁ H ₃₆	(VI, $R=C_2H_5$)
v.	5α sterane	C ₂₂ H ₃₈	(VI, R=C ₃ H ₇)

STRUCTURES REPRESENTING STERANES

÷.

Mass Fragmentograms representing Monoaromatic Steranes (M/Z 253)

Description of C-ring monoaromatic steroid hydrocarbons

Peak	R ₁	Substi R ₂	ituents R₃	R₄	Abbreviation of Compound
A1					C ₂₁ M
B1		*********			C ₂₂ MA
C1	β(H)	CH₃	S(CH ₃)	Н	βSC ₂₇ MA
	β(H)	CH₃	R(CH₃)	Н	βRC ₂₇ MA
D1	CH3	Н	R(CH ₃)	Н	RC ₂₇ DMA
	α(H)	CH_3	S(CH ₃)	н	$\alpha SC_{27}MA$
E1	β(H)	CH₃	S(CH ₃)	CH₃	βSC ₂₈ MA
	CH₃	Н	S(CH ₃)	CH3	SC ₂₈ DMA
F1	α(H)	CH₃	R(CH₃)	Н	αRC ₂₇ MA
	α(H)	CH₃	S(CH ₃)	CH3	$\alpha SC_{28}MA$
	β(H)	CH₃	R(CH₃)	CH₃	βRC ₂₈ MA
G1	СН₃	Н	R(CH₃)	CH₃	RC ₂₈ DMA
	β(H)	CH₃	S(CH ₃)	C_2H_5	βSC ₂₉ MA
	CH3	Н	S(CH ₃)	C_2H_5	SC ₂₉ DMA
*******	α(H)	CH3	R(CH ₃)	CH3	αRC ₂₈ MA
H1	β(H)	СН3	R(CH ₃)	C_2H_5	βRC ₂₉ MA
	CH3	Н	R(CH₃)	C₂H₅	RC ₂₉ DMA
1	α(H)	CH3	R(CH ₃)	C₂H₅	αRC ₂₉ MA

Schlumberger GECO-PRAKLA

÷,

RUCTURES REPRESENTING MONOAROMATIC STERANES

Mass Fragmentograms representing Triaromatic Steranes (M/Z 231)

Description of ABC-ring triaromatic steroid hydrocarbons

Substituents		Abbreviation		
R ₁	R₂	of Compound		
CH3	Н	C ₂₀ TA		
CH ₃	CH3	C ₂₁ TA		
S(CH ₃)	C_6H_{1-3}	SC ₂₆ TA		
R(CH ₃)	C ₆ H ₁₃	RC ₂₆ TA		
S(CH ₃)	C ₇ H ₁₅	SC ₂₇ TA		
S(CH ₃)	C ₈ H ₁₇	SC ₂₈ TA		
S(CH ₃)	C ₇ H ₁₅	RC ₂₇ TA		
R(CH ₃)	C ₈ H ₁₇	RC ₂₈ TA		
	Substituents R1 CH3 CH3 S(CH3) R(CH3) S(CH3) S(CH3)	Substituents R2 R1 R2 CH3 H CH3 CH3 S(CH3) C6H13 R(CH3) C6H13 S(CH3) C7H15 S(CH3) C8H17 S(CH3) C7H15 S(CH3) C7H15 S(CH3) C8H17 S(CH3) C7H15 S(CH3) C7H15		

STRUCTURES REPRESENTING TRIAROMATIC STERANES

1.1

Appendix 1

Tables

Schlumberger GECO-PRAKLA

GEOLAB

- 1-

Table 1 : Lithology description for well NOCS 30/2-3

Int	Cvd	TOC%	040	Lith	ology	description		
Dept	h	Type		Grp	Frm	Age	Trb	Sample

1587.50	SWC		Hord	Tertiary	0036
	0.97	100	Sh/Clst:	drk gy	0036-1L
1744.00	SWC		Hord	Tertiary	0037
	0.51	100	Sh/Clst:	lt gn brn	0037-1L
1910.00	swc		Hord	Tertiary	0038
	0.11	100	Sh/Clst:	drk gn gy	0038-1L
2015.00	swc		Roga Sele	e Eocene - Paleocene	0039
	1.54	100	Sh/Clst:	m dλ	0039-1L
2164.00			Shet	Upper Cretaceous	0001
	0.66	100 tr tr tr	Sh/Clst: Sh/Clst: Sh/Clst: Other :	lt gy to m gy to brn gy, slt, mic drk brn to gy brn, slt dsk y gn, glauc pyr	0001-1L 0001-2L 0001-3L 0001-4L
2236.00			Shet	Upper Cretaceous	0002
	0.70	85	Sh/Clst:	lt gy to m gy to brn gy, slt, mic drk brn to gy brn, slt	0002-1L

0.70	αЭ	Sh/Cist:	it gy to m gy to bin gy, sit, mit	0002-10
	10	Sh/Clst:	drk brn to gy brn, slt	0002-2L
	- 5	Other :	pyr	0002-3L
	tr	Sltst :	lt gy	0002-4L
	tr	Cont :	prp	0002-5L

GEOLAB

Schlumberger GECO-PRAKLA

- 2-

Table 1 : Lithology description for well NOCS 30/2-3

Depth	Туре		Grp Frm	Age	Trb	Sample
Int Cvd	TOC%	%	Lithology	description		
2430.00			Shet	Upper Cretaceous		0003
	0.65	85 15 tr tr	Sh/Clst: Cont : Sltst : Sh/Clst:	m gy to drk gy, calc, slt, pyr prp, bar brn gy or gy	:	0003-1L 0003-2L 0003-3L 0003-4L
2760.00			Shet	Upper Cretaceous		0004
	0.56	90 5 5	Sh/Clst: Sltst : Cont :	m gy to drk gy, calc, slt, pyr brn gy dd	:	0004-1L 0004-2L 0004-3L
3240.00			Shet	Upper Cretaceous		0005
	0.54	95 5 tr	Sh/Clst: Sh/Clst: Sh/Clst:	lt gy to m gy, calc, slt, pyr drk gy, slt or gy		0005-1L 0005-2L 0005-3L
3603.00			Shet	Upper Cretaceous		0006
	0.64	100	Sh/Clst:	lt gy to m gy to drk gy, calc, slt, pyr, mic	,	0006-1L
3639.00			Crom	Lower Cretaceous		0007
	0.72	75 25 tr tr	Sh/Clst: Sh/Clst: Sltst : Cont :	m gy to drk gy, slt, carb, py lt gy, calc, slt lt gy w, glauc prp	r	0007-1L 0007-2L 0007-3L 0007-4L
3651.00			Crom	Lower Cretaceous		8000
	0.60	70 25 5	Sh/Clst: Ca : Cont :	<pre>m gy to drk gy, slt, carb, py lt gy w to w, f prp</pre>	r	0008-1L 0008-2L 0008-3L

Table 1 : Lithology description for well NOCS 30/2-3

Depth	Type	Grp Frm Age Trb	Sample
Int Cvd	TOC%	<pre>% Lithology description</pre>	
3672.00		Viki Drau Upper Jurassic	0009
	1.68	90 Sh/Clst: gy blk to drk gy, slt 5 Sh/Clst: m gy, slt 5 Ca : lt gy w, f	0009-1L 0009-2L 0009-3L
3675.00		Viki Drau Upper Jurassic	0010
	2.33	90 Sh/Clst: gy blk to drk gy, slt, trbofgs 5 Sh/Clst: lt gy, slt 5 Ca : lt gy w, f tr Sltst : m gy, mic	0010-1L 0010-2L 0010-3L 0010-4L
3678.00		Viki Drau Upper Jurassic	0011
	5.13	95 Sh/Clst: gy blk, slt, trbofgs 5 Sh/Clst: lt gy, slt tr Ca : lt gy w, f tr Sltst : m gy, mic	0011-1L 0011-2L 0011-3L 0011-4L
3681.00		Viki Drau Upper Jurassic	0012
	5.89	95 Sh/Clst: gy blk, slt, trbofgs 5 Sh/Clst: lt gy, slt tr Sltst : lt gy, mic	0012-1L 0012-2L 0012-3L
3684.00		Viki Drau Upper Jurassic	0013
	4.36	95 Sh/Clst: gy blk, slt, trbofgs 5 Sh/Clst: m gy, slt tr Sltst : lt gy, mic, st	0013-1L 0013-2L 0013-3L

Schlumberger GECO-PRAKLA

- 4-

Table 1 : Lithology description for well NOCS 30/2-3

Depth	Туре		Grp Frm Age	Trb	Sample
Int Cvd	TOC%	%	Lithology description		
3693.00			Viki Drau Upper Jurassic		0014
	5.34	95 5 tr	Sh/Clst: gy blk, slt, trbofgs Sh/Clst: lt gy, slt Sltst : lt gy, mic, st		0014-1L 0014-2L 0014-3L
3702.00			Viki Drau Upper Jurassic		0015
	6.51	100 tr	Sh/Clst: gy blk, slt, trbofgs Sh/Clst: lt gy, slt		0015-1L 0015-2L
3711.00			Viki Heat Upper Jurassic		0016
	5.84	100 tr tr	Sh/Clst: gy blk, slt, trbofgs Sh/Clst: lt gy, slt Sltst : lt gy, st		0016-1L 0016-2L 0016-3L
3729.00			Viki Heat Upper Jurassic		0017
	3.95	70 20 10	Cont : prp, dd, bar Sh/Clst: gy blk to drk gy, slt Sh/Clst: m gy, slt		0017-1L 0017-2L 0017-3L
3750.00			Viki Heat Upper Jurassic		0018
	3.16	70 30 tr tr	Sh/Clst: gy blk to drk gy, carb, slt Cont : prp Sh/Clst: lt gy, calc Sltst : m brn		0018-1L 0018-2L 0018-3L 0018-4L
3751.56	ccp		Viki Heat Upper Jurassic		0027
	2.15	100	Sh/Clst: drk gy, slt, hd		0027-1L

Table 1 :	Lithology	description for well N(DCS 30/2-3	
Depth uni	t of measu	e: m		
Depth	Туре	Grp Frm Age	Trb	Sample
Int Cvd	TOC% %	Lithology description		
3759.59	ccp	Viki Heat Upper Jurass	ic	0028
	1.57 100	Sh/Clst: drk gy, slt, h	nd	0028-1L
3824.54	ccp	Bren Middle Juras:	sic	0029
:	16.70 100	Coal : brn blk, hd, p	pyr	0029-1L
3833.65 (ccp	Bren Middle Jurass	sic	0030
	0.72 100	Sh/Clst: m gy, slt, mic	, hd, carb	0030-1L
3851.85 0	ccp	Bren Middle Jurass	sic	0031
	7.83 80 20	Sh/Clst: gy blk, hd, s] Coal : blk, hd	.t	0031-1L 0031-2L
3883.59	ccp	Bren Middle Jurass	sic	0032
	1.78 100	Sh/Clst: m gy to lt gy,	slt, hd, lam, fos	0032-1L
3911.38 0	ccp	Bren Middle Jurass	sic	0033
e	63 .9 0 50 50	Coal : blk, hd Sh/Clst: gy blk, hd, ca	ırb	0033-1L 0033-2L
3929.35 0	ccp	Bren Middle Jurass	sic	0034
	57.80 100	Coal : blk, hd		0034-1L

J

Schlumberger GECO-PRAKLA

GEOLAB

- 6-

Table 1 : Lithology description for well NOCS 30/2-3

Depth	Туре		Grp Frm	Age Tr	:b	Sample
Int Cvd	TOC%	%	Lithology	/ description		
3981.28	сср		Dunl	Lower Jurassic		0035
	2.61	100	Sh/Clst:	drk gy, slt, hd		0035-1L
3993.00			Dunl	Lower Jurassic		0019
	2.00	90	Sh/Clst:	m gy to drk gy to gy blk, carb,		0019-1L
		10 tr tr	Sltst : Coal : Cont :	lt gy to lt ol gy blk prp		0019-2L 0019-3L 0019-4L
4011.00			Dunl	Lower Jurassic		0020
	2.02	75 15 5 tr	Sh/Clst: Cont : Sltst : Sh/Clst: Coal :	drk gy to gy blk, carb, slt prp lt gy to m gy brn gy blk		0020-1L 0020-2L 0020-3L 0020-4L 0020-5L
4035.00			Dunl	Lower Jurassic		0021
	2.13	55 35 5 tr	Sh/Clst: Cont : Sltst : Sh/Clst: Coal :	drk gy to gy blk, carb, slt prp lt gy to m gy brn gy blk		0021-1L 0021-2L 0021-3L 0021-4L 0021-5L
4089.00			Dunl	Lower Jurassic		0022
	2.26	80 10 5 5	Sh/Clst: S/Sst : Cont : Ca : Sltst :	gy blk, carb, slt lt gy w, f prp lt gy w to lt gy, cly, f gy brn to lt gy		0022-1L 0022-2L 0022-3L 0022-4L 0022-5L

Table 1 : Lithology description for well NOCS 30/2-3

Depth	Туре	Grp Frm Age Trb	Sample
Int Cvd	TOC%	<pre>% Lithology description</pre>	
4158.00		Dunl Lower Jurassic	0023
	2.34	85 Sh/Clst: gy blk to drk gy, carb, slt 10 Cont : prp 5 Ca : lt gy w to lt gy, cly, f tr Sltst : gy brn to lt gy	0023-1L 0023-2L 0023-3L 0023-4L
4257.00		Dunl Lower Jurassic	0024
	2.05	70 Sh/Clst: drk gy to gy blk, carb, slt 25 Cont : prp, bar 5 Sltst : gy brn to lt gy tr Ca : lt gy, f	0024-1L 0024-2L 0024-3L 0024-4L
4287.00		Dunl Lower Jurassic	0025
	2.46	85 Sh/Clst: drk gy to gy blk to brn gy, carb,	0025-1L
		10 Cont : prp, bar 5 Sltst : gy brn to lt gy tr Coal : blk	0025-2L 0025-3L 0025-4L
4290.00		Stat Lower Jurassic	0026
	0.18	45 S/Sst : w, f, cem, l 45 Sh/Clst: drk gy to gy blk, slt 10 Cont : prp	0026-1L 0026-2L 0026-3L

Table 2 : Rock-Eval table for well NOCS 30/2-3

Depth unit of measure: m

Depth	Typ Lithology		S2	S3	S2/S3	TOC	HI	01	PP	PI	Tmax	Sample
2015.00	swc Sh/Clst: m gy	0.16	1.00	0.26	3.85	1.54	65	17	1.2	0.14	413	0039-1L
3672.00	cut Sh/Clst: gy blk to drk gy	0.90	2.07	0.14	14.79	1.68	123	8	3.0	0.30	447	0009-1L
3675.00	cut Sh/Clst: gy blk to drk gy	1.63	3.74	0.23	16.26	2.33	161	10	5.4	0.30	443	0010-1L
3678.00	cut Sh/Clst: gy blk	4.46	11.82	0.41	28.83	5.13	230	8	16.3	0.27	441	0011-1L
3681.00	cut Sh/Clst: gy blk	5.35	13.80	0.31	44.52	5.89	234	5	19.1	0.28	441	0012-1L
3684.00	cut Sh/Clst: gy blk	6.03	9.87	0.51	19.35	4.36	226	12	15.9	0.38	439	0013-1L
3693.00	cut Sh/Clst: gy blk	5.65	10.23	0.32	31.97	5.34	192	6	15.9	0.36	438	0014-1L
3702.00	cut Sh/Clst: gy blk	6.61	12.30	0.38	32.37	6.51	189	6	18.9	0.35	440	0015-1L
3711.00	cut Sh/Clst: gy blk	5.82	10.29	0.23	44.74	5.84	176	4	16.1	0.36	442	0016-1L
3729.00	cut Sh/Clst: gy blk to drk gy	2.89	4.64	0.23	20.17	3.95	117	6	7.5	0.38	452	0017-2L
3750.00	cut Sh/Clst: gy blk to drk gy	2.20	3.02	0.24	12.58	3.16	96	8	5.2	0.42	455	0018-1L
3751.56	ccp Sh/Clst: drk gy	2.10	4.32	0.11	39.27	2.15	201	5	6.4	0.33	452	0027-1L
3759.59	ccp Sh/Clst: drk gy	1.84	2.50	0.24	10.42	1.57	159	15	4.3	0.42	452	0028-1L
3824.54	ccp Coal : brn blk	1.88	12.26	2.64	4.64	16.70	73	16	14.1	0.13	467	0029-1L
3833.65	ccp Sh/Clst: m gy	0.11	0.35	1.58	0.22	0.72	49	219	0.5	0.24	459	0030-1L

Schlumberger GECO-PRAKLA

GEOLAB

Table 2 : Rock-Eval table for well NOCS 30/2-3

I	Depth Typ Lithology		S2	53	S2/S3	TOC	HI	OI	PP	PI	Tmax	Sample
385	51.85 ccp Sh/Clst gy blk	1.60	9.46	3.03	3.12	7.83	121	39	11.1	0.14	468	0031-1L
388	83.59 ccp Sh/Clst: m gy to lt gy	0.34	1.37	1.46	0.94	1.78	77	82	1.7	0.20	464	0032-1L
391	11.38 ccp Coal : blk	10.41	83.75	3.54	23.66	63.90	131	6	94.2	0.11	470	0033-1L
392	29.35 ccp Coal : blk	8.12	105.20	6.66	15.80	57.80	182	12	113.3	0.07	465	0034-1L
398	81.28 ccp Sh/Clst: drk gy	1.25	3.40	0.33	10.30	2.61	130	13	4.7	0.27	457	0035-1L
399	93.00 cut Sh/Clst: m gy to drk gy to gy blk	0.90	2.74	0.13	21.08	2.00	137	7	3.6	0.25	454	0019-1L
401	11.00 cut Sh/Clst: drk gy to gy blk	1.43	3.12	0.12	26.00	2.02	154	6	4.5	0.31	452	0020-1L
403	35.00 cut Sh/Clst: drk gy to gy blk	1.36	3.32	0.12	27.67	2.13	156	6	4.7	0.29	451	0021-1L
408	89.00 cut Sh/Clst: gy blk	1.44	3.20	0.14	22.86	2.26	142	6	4.6	0.31	450	0022-1L
415	58.00 cut Sh/Clst: gy blk to drk gy	1.56	3.09	0.14	22.07	2.34	132	6	4.7	0.34	450	0023-1L
425	57.00 cut Sh/Clst: drk gy to gy blk	1.40	2.52	0.22	11.45	2.05	123	11	3.9	0.36	451	0024-1L
428	87.00 cut Sh/Clst: drk gy to gy blk to brn gy	1.53	3.37	0.12	28.08	2.46	137	5	4.9	0.31	451	0025-1L

Depth unit of measure: m

Depth Typ Lithology	C1	C2-C5	C6-C14	C15+	S2 from Rock-Eval	Sample
3678.00 cut Sh/Clst: gy blk	4.75	17.82	40.04	37.40	11.82	0011-1L
3681.00 cut Sh/Clst: gy blk	4.52	16.97	39.77	38.73	13.80	0012-1L
3684.00 cut Sh/Clst: gy blk	4.71	18.44	40.11	36.74	9.87	0013-1L
3693.00 cut Sh/Clst: gy blk	4.05	18.54	41.29	36.11	10.23	0014-1L
3851.85 ccp Coal : gy blk	18.64	17.91	30.09	33.35	9.46	0031-1L
3911.38 ccp Coal : blk	20.59	14.75	23.90	40.76	83.75	0033-1L
3929.35 ccp Coal : blk	20.23	14.71	21.81	43.25	105.20	0034-1L

GEOLAB

. . .

Depth	Тур	Litholog	У	Rock Extracted (g)	EOM (mg)	Sat (mg)	Aro (mg)	Asph (mg)	NSO (mg)	HC (mg)	Non-HC 1 (mg)	.OC(e) (%)	Sample
3675.00	cut a	Sh/Clst:	gy blk to drk gy	6.0	45.3	19.3	11.9	7.3	6.8	31.2	14.1	2.33	0010-1L
3681.00	cut :	Sh/Clst:	gy blk	5.7	47.9	19.2	12.5	9.5	6.7	31.7	16.2	5.89	0012-1L
3684.00	cut :	Sh/Clst:	gy blk	5.5	51.4	25.7	12.8	5.6	7.3	38.5	12.9	4.36	0013-1L
3693.00	cut :	Sh/Clst:	gy blk	6.1	51.6	24.2	12.8	6.7	7.9	37.0	14.6	5.34	0014-1L
3824.54	сср (Coal :	brn blk	1.9	17.7	1.0	4.6	10.4	1.7	5.6	12.1	16.70	0029-1L
3911.38	сср (Coal :	blk	2.6	82.0	2.0	11.1	66.9	2.0	13.1	68 .9	63.90	0033-1L

Table 4 b: Concentration of EOM and Chromatographic Fraction (wt ppm rock) for well NOCS 30/2-3 Depth unit of measure: m

Depth 7	Typ Litho	ology	EOM	Sat	Aro	Asph	NSO	HC	Non-HC	Sample
3675.00 d	cut Sh/Cl	lst: gy blk to drk gy	7600	3238	1996	1224	1140	5234	2365	0010-1L
3681.00 c	cut Sh/Cl	lst: gy blk	8403	3368	2192	1666	1175	5561	2842	0012-1L
3684.00 c	cut Sh/Cl	lst: gy blk	9345	4672	2327	1018	1327	7000	2345	0013-1L
369 3.0 0 c	cut Sh/Cl	st: gy blk	8528	4000	2115	1107	1305	6115	2413	0014-1L
3824.54 c	ccp Coal	: brn blk	9170	518	2383	5388	880	2901	6269	0029-1L
3911.38 c	ccp Coal	: blk	31417	766	4252	25632	766	5019	26398	0033-1L

Sch	lumberger GECO	D-PRAKLA

GEOLAB

Depth	Typ Lithol	оду	EOM	Sat	Aro	Asph	NSO	HC	Non-HC Sample
3675.00	cut Sh/Cls	t: gy blk to drk gy	326.21	138.98	85.69	52.57	48.97	2 24.67	101.54 0010-1
3681.00	cut Sh/Cls	t: gy blk	142.67	57.19	37.23	28.30	19.96	94.42	48.25 0012-1
3684.00	cut Sh/Cls	t: gy blk	214.35	107.17	53.38	23.35	30.44	160.55	53.79 0013-1
3693.00	cut Sh/Cls	t: gy blk	159.72	74.91	39.62	20.74	24.45	114.53	45.19 0014-1
3824.54	ccp Coal	: brn blk	54.92	3.10	14.27	32.27	5.27	17.37	37.54 0029-11
3911.38	ccp Coal	: blk	49.17	1.20	6.66	40.11	1.20	7.85	41.31 0033-1

Depth unit of measure: m

	Sat	Aro	Asph	NSO	HC	Non-HC	Sat	HC	
Depth Typ Lithology	EOM	EOM	EOM	EOM	EOM	EOM	Aro	Non-HC	Sample
3675.00 cut Sh/Clst: gy blk to d	drk gy 42.60	26.27	16.11	15.01	68.87	31.13	162.18	221.28	0010-1L
3681.00 cut Sh/Clst: gy blk	40.08	26.10	19.83	13.99	66.18	33.82	153.60	195.68	0012-1L
3684.00 cut Sh/Clst: gy blk	50.00	24.90	10.89	14.20	74.90	25.10	200.78	298.45	0013-1L
3693.00 cut Sh/Clst: gy blk	46.90	24.81	12.98	15.31	71.71	28.29	189.06	253.42	0014-1L
3824.54 ccp Coal : brn blk	5.65	25.99	58.76	9.60	31.64	68.36	21.74	46.28	0029-1L
3911.38 ccp Coal : blk	2.44	13.54	81.59	2.44	15.98	84.02	18.02	19.01	0033-1L

 Schlumberger	GECO-PRAKLA

GEOLAB

Table 5 : Saturated Hydrocarbon Ratios for well NOCS 30/2-3

Depth unit of measure: m

	Pristane	Pristane	Pristane + Phytane	Phytane		
Depth Typ Lithology	nC17	Phytane	nC17 + nC18	nC18	CPI	Sample
3675.00 cut Sh/Clst: gy blk to drk gy	0.40	1.49	0.37	0.33	1.15	0010-1L
3681.00 cut Sh/Clst: gy blk	0.40	1.42	0.38	0.36	1.18	0012-1L
3684.00 cut Sh/Clst: gy blk	0.43	1.20	0.39	0.35	0.87	0013-1L
3693.00 cut Sh/Clst: gy blk	0.44	1.50	0.40	0.36	0.78	0014-1L
3824.54 ccp Coal : brn blk	0.32	3.67	0.21	0.10	1.05	0029-1L
3911.38 ccp Coal : blk	0.15	2.46	0.11	0.07	1.28	0033-1L

...

Table 6 : Aromatic Hydrocarbon Ratios for well NOCS 30/2-3

Depth unit of measure: m

Depth	Typ Lithology	MINR	DMNR	BPhR	2/1MP	MPI1	MPI2	Rc	DBT/P	4/1mdbt	(3+2) /1MDBT	Sample
3675.00	cut Sh/Clst: gy blk to drk gy	1.04	1.43	0.22	0.82	0.67	0.77	0.80	-	-	-	0010-1L
3681.00	cut Sh/Clst: gy blk	1.02	1.44	0.23	0.79	0.65	0.75	0.79	_	-	-	0012-1L
3684.00	cut Sh/Clst: gy blk	1.00	1.44	0.21	0.82	0.66	0.75	0.80	_	-	-	0013-1L
3693.00	cut Sh/Clst: gy blk	0.98	1.40	0.21	0.85	0.68	0.79	0.81	-	+	-	0014-1L
3824.54	ccp Coal : brn blk	1.55	3.73	0.49	1.21	0.90	1.06	0.94	0.20	46.85	8.46	0029-1L
3911.38	ccp Coal : blk	1.43	2.97	0.56	1.17	0.95	1.13	0.97	0.36	41.83	12.09	0033-1L

Schlumberger	GECO-PRAKLA

GEOLAB

Table 7 : Thermal Maturity Data for well NOCS 30/2-3

Depth	Typ Litholog	У	Vitrinite Reflectance (%)	Number of Readings	Stancard Deviation	Spore Fluorescence Colour	SCI	Tmax (°C)	Sample
3675.00	cut Sh/Clst:	gy blk to drk gy	_	_	-	-	7.0-7.5	443	0010-1L
3681.00	cut Sh/Clst:	gy blk	_		-	-	7.5	441	0012-1L
3693.00	cut Sh/Clst:	gy blk	_	-			7.5	438	0014-1L
3824.54	ccp Coal :	brn blk	-		-	-	7.0	467	0029-1L
3851.85	ccp Sh/Clst:	gy blk	-	-	-	_	7.5	468	0031-1L
3883.59	ccp Sh/Clst:	m gy to lt gy	_	-	-	-	7.5	464	0032-1L

Depth unit of measure: m

Depth Typ Lithology	L I P T &	A m o r L	L p D e t	S p / P 0 1	C u t i c l	R e s i n	A J g a e	D i n o f l	A c r i t	B i t L	I N E R T %	F u s i n	S e m F u s	I n D e t	M i c r i n	S C l e r o	B i t I	V I T R %	T e 1 i n	C o l l i n	V i D e t	A m o r V	B i t V Sample	
3675.00 cut Sh/Clst: gy blk to drk gy	55	**		*			*	*			20		*	**				25	*		**		0010-1	L
3681.00 cut Sh/Clst: gy blk	75	**		*			*			?	20		*	**				5	*		*		0012-1	L
3693.00 cut Sh/Clst: gy blk	60	**		*			*				30		*	**				10	*		*		0014-1	L
3824.54 ccp Coal : brn blk	65	*	?	*	*		?				15		*	*				20	*		*		0029-1	L
3851.85 ccp Sh/Clst: gy blk	50	*		**	*		*				5		*	*				45	*	*	*		0031-1	L
3883.59 ccp Sh/Clst: m gy to lt gy	30			**	*		?				10		*					60	**	*	*		0032-1	L

nlumberger	GECO-PRAKLA	
1	lumberger	lumberger GECO-PRAKLA

GEOLAB

Table 9A: Variation in Triterpane Distribution (peak height) SIR for Well NOCS 30/2-3

Depth unit of measure: m

				В									C+D		J1	
Depth	Lithology	B/A	B∕B +A	B+E+F	C/E	C/C+E	X/E	Z/E	Z/C	Z/Z+E	Q/E	E/E+F	C+D+E+F	D+F/C+E	J1+J2%	Sample
3675.00	Sh/Clst	0.15	0.13	0.09	0.26	0.21	0.36	_	_	_	0.27	0.94	0.24	0.11	60.93	0010-1
3681.00	Sh/Clst	0.12	0.10	0.07	0.24	0.19	0.37	-	_		0.25	0.94	0.21	0.10	59.81	0012-1
3684.00	Sh/Clst	0.13	0.12	0.07	0.24	0.19	0.37	_	_	_	0.29	0.93	0.18	0.06	61.40	0013-1
3693.00	Sh/Clst	0.10	0.09	0.07	0.22	0.18	0.43	-	-	-	0.35	0.94	0.17	0.05	60.05	0014-1
3824.54	Coal	0.24	0.19	0.21	0.49	0.33	1.41	0.06	0.12	0.05	0.09	0.93	0.31	0.05	63.25	0029-1
3911.38	Coal	0.10	0.09	0.22	0.50	0.33	4.95	0.22	0.44	0.18	0.20	0.88	0.31	0.09	62.02	0033-1

Schlumberger GECO-PRAKLA

GEOLAB

Page: 1

Depth unit of measure: m

Depth	Lithology	Ratio1	Ratio2	Ratio3	Ratio4	Ratio5	Ratio6	Ratio7	Ratio8	Ratio9	Ratio10	Sample
3675.00	Sh/Clst	0.84	55.66	77.07	1.52	0.75	0.72	0.57	0.63	1.26	3.79	0010-1
3681.00	Sh/Clst	0.84	56.82	76.54	1.54	0.74	0.71	0.56	0.62	1.32	3.78	0012-1
3684.00	Sh/Clst	0.86	56.11	76.87	1.69	0.75	0.71	0.56	0.62	1.28	3.79	0013-1
3693.00	Sh/Clst	0.86	53.49	77.59	1.66	0.76	0.73	0.57	0.63	1.15	3.72	0014-1
3824.54	Coal	0.63	51.29	70.90	0.35	0.70	0.17	0.15	0.55	1.05	2.50	0029-1
3911.38	Coal	0.62	44.32	72.01	0.50	0.74	0.24	0.21	0.56	0.80	2.31	0033-1

Ratio1: a / a + jRatio2: q / q + t * 100% Ratio3: 2(r + s)/(q + t + 2(r + s)) * 100% Ratio4: a + b + c + d / h + k + 1 + nRatio5: r + s / r + s + q Ratio6: u + v / u + v + q + r + s + t
Ratio7: u + v / u + v + i + m + n + q + r + s + t
Ratio8: r + s / q + r + s + t
Ratio9: q / t
Ratio10: r + s / t

GEOLAB

Table 9C: Variation in Triaromatic Sterane Distribution for Well Well NOCS 30/2-3

Depth unit of measure: m

Depth	Lithology	Ratio1	Ratio2	Ratio3	Ratio4	Ratio5	Sample	
3675.00	Sh/Clst	0.95	0.94	0.86	0.87	0.90	0010-1	
3681.00	Sh/Clst	0.96	0.95	0.86	0.88	0.90	0012-1	
3684.00	Sh/Clst	0.95	0.94	0.84	0.85	0.88	0013-1	
3693.00	Sh/Clst	0.95	0.94	0.86	0.87	0.90	0014-1	
3824.54	Coal	1.00	1.00	1.00	1.00	1.00	0029-1	
3911.38	Coal	1.00	1.00	1.00	1.00	1.00	0033-1	

 Ratio1: al / al + gl
 Ratio4: al / al + el + fl + gl

 Ratio2: bl / bl + gl
 Ratio5: al / al + dl

 Ratio3: al + bl / al + bl + cl + dl + el + fl + gl

Schlumberger GECO-PRAKLA

GEOLAB

Depth unit of measure: m

Depth	Lithology	Ratiol	Ratio2	Ratio3	Ratio4	Sample
3675.00	Sh/Clst	0.86	0.75	0.80	0.70	0010-1
3681.00	Sh/Clst	0.85	0.74	0.77	0.67	0012-1
3684.00	Sh/Clst	0.83	0.72	0.75	0.67	0013-1
3693.00	Sh/Clst	0.85	0.75	0.78	0.70	0014-1
3824.54	Coal		_	-	-	0029-1
3911.38	Coal	-			_	0033-1

Ratio1: Al / Al + El Ratio2: Bl / Bl + El Ratio3: A1 / A1 + E1 + G1 Ratio4: A1+B1 / A1+B1+C1+D1+E1+F1+G1+H1+I1

Schlumberger	GECO-PRAKLA	

Table 9E: Aromatisation of Steranes for Well NOCS 30/2-3 Depth unit of measure: m

Depth	Lithology	Ratiol	Ratio2	Sample
			descent .	
3675.00	Sh/Clst	0.41	0.79	0010-1
3681.00	Sh/Clst	0.40	1.00	0012-1
3684.00	Sh/Clst	0.43	1.00	0013-1
3693.00	Sh/Clst	0.40	1.00	0014-1
3824.54	Coal	_	_	0029-1
3911.38	Coal	_	-	0033-1

C1+D1+E1+F1+G1+H1+I1

Ratio2: g1 / g1 + I1

C1+D1+E1+F1+G1+H1+I1 + c1+d1+e1+f1+g1

Schlumberger GECO-PRAKLA
Table 9F: Raw GCMS triterpane data (peak height) SIR for Well NOCS 30/2-3

Depth unit of measure: m

Depth	Lithology	р	q	r	S	t	a	b	z	С	Sample
		x	đ	e	f		g	h i	j1		
	D.A	j2	k1	k2	11	12	m1	m2			
3675.00	Sh/Clst	79674.1 87710 48852.5	65062.2 .6 1769 61347.4	35577.6 2.6 244899 42851.2	46424.0 9.5 1604 36002.9	23392.0 8.0 903 25810.5	175312.0 892.8 634 31312.0	26108.0 46.9 13310 25960.4	0.0 .2 7620	64603.8 1.6	0010-1
3681.00	Sh/Clst	47745.2 63664 35237.3	43776.0 .0 858 42502.0	18308.5 9.8 172132 26144.0	28648.7 2.2 1167 29713.4	16310.8 7.4 540 17891.0	111604.0 080.0 360 23552.0	12888.0 56.0 10061 14517.3	0.0 .6 5244	41107.5 4.8	0012-1
3684.00	Sh/Clst	98542.9 110480 62072.0	85753.6 .0 84961.8	38853.3 0.0 300666 51769.5	51986.7 5.7 2164 53318.2	30051.4 4.7 1081 38917.3	194995.2 96.6 774 48247.8	25610.6 00.8 20509 39306.8	0.0 .8 98753	71193.1 2.0	0013-1
3693.00	Sh/Clst	83333.4 91115 46112.9	75741.9 .8 53581.5	36153.4 0.0 213817 34459.3	45240.9 7.1 1322 33672.8	25784.0 5.5 743 24368.0	167298.9 330.7 486 36299.2	16576.0 12.9 16258 24544.0	0.0 .9 69308	47740.8 3.9	0014-1
3824.54	Coal	16656.0 140315 17944.0	9004.9 .2 13080.0	0.0 0.0 99742 10461.4	90710.0 2.2 808 7870.8	0.0 1.4 277 9512.8	121504.0 32.0 266 0.0	28610.0 80.0 13313. 0.0	5772.5 1 3087	48430.2 7.3	0029-1

Table 9F: Raw GCMS triterpane data (peak height) SIR for Well NOCS 30/2-3

Depth unit of measure: m

Depth	Lithology	р	q	r	S	t	a	b	Z	c Sample
		x		d	е	f	g	h :	i j1	
	-	j2	k1	k2	11	12	m1.	m2		
3911.38	Coal	25900.0 39480	15738.9	0.0) 125998.9	9 0.0	0 271601.5 6233.7 18	25896.0 253.9 281	17716.5 57.0 25253	40136.6 0033-1

15462.0 10144.9 6970.2 0.0 0.0 0.0 0.0

Schlumberger GECO-PRAKLA

GEOLABNOR

Page: 2

Table 9G: Raw GCMS sterane data (peak height) SIR for Well NOCS 30/2-3

Depth unit of measure: m

Depth	Lithology	u	v	a	b	с	d	е	f	g	Sample
		h	i	j	k	1	m	n	0		
		p	q	r	S	t					
3675.00	Sh/Clst	213402.7 149271 13134.9	99173.2 .8 6210 25209.7	208765.3 3.8 3900 42120.6	135164.3 4.7 83797 33999.5	54395.3 .9 27722 20081.9	50451.1 2.9 15963.	99026.3 2 33640.	59204.8 0 47212.	35991.8 0	0010-1
3681.00	Sh/Clst	124229.3 92442 9768.8	61720.4 .3 3983 16178.7	126313.3 0.6 2407 26214.5	84385.5 4.5 52059 20241.5	34211.6 .9 15486 12294.1	36995.5 5.7 9653.	63937.3 9 23600.	35123.2 3 31465.	21395.5 6	0012-1
3684.00	Sh/Clst	270631.3 160033 15332.6	120115.5 .0 8060 33771.9	278359.4 9.0 4505 55100.2	181238.7 7.0 109665 44904.4	69352.3 .0 37875 26414.4	70091.2 1 5.5 22018.	43574.4 0 47106.0	30779.1) 72386.	43521.0 0	0013-1
3693.00	Sh/Clst	226223.5 139401 13620.8	94533.7 .2 6381 23452.4	223002.7 7.2 3692 42139.4	147308.4 4.3 84609 33748.0	58601.1 .3 30004 20389.8	60589.7 1 1.1 13675.	13618.3 (6 40760.0	54984.0) 52077.	39529.2 9	0014-1
3824.54	Coal	15120.3 30512 8533.6	9268.0 .7 6110 26997.2	8987.0 6.7 517 34583.7	16044.7 7.6 21397 29551.0	0.0 .6 6846 25642.2	0.0 5.0 4941.	11139.2 4 12041.9	4507.1 9 12226.	4246.3 4	0029–1

Table 9G: Raw GCMS sterane data (peak height) SIR for Well NOCS 30/2-3

Depth unit of measure: m

Depth	Lithology	u		v		a		b		с		d		е		f		g	Sample
			h		i		j		k		1		m		n	1.9	0		
		р		q		r		S		t									
		 			•														

3911.38 Coal 64820.4 28046.4 22089.9 50393.0 4336.0 20196.3 17950.4 0.0 11717.4 0033-1 55225.5 20477.0 13483.4 59178.0 15135.5 12781.2 25219.2 27169.3 18110.5 56732.5 89597.6 75041.5 71284.1

Page: 2

Depth unit of measure: m

Depth	Lithology	a1	bl	c1	d1	e1	f1	g1	Sample
3675.00	Sh/Clst	1048536.2	835897.5	46143.4	113186.5	53162.7	48894.7	55505.3	0010-1
3681.00	Sh/Clst	1110089.8	913857.9	46305.5	117979.8	52073.0	53701.3	49584.0	0012-1
3684.00	Sh/Clst	593055.1	494529.3	31256.6	77735.8	38403.9	31383.1	30794.0	0013-1
3693.00	Sh/Clst	880888.1	711609.3	41373.0	99840.0	41708.0	36232.0	49230.5	0014-1
3824.54	Coal	30272.0	19567.0	0.0	0.0	0.0	0.0	0.0	0029-1
3911.38	Coal	42808.6	30460.1	0.0	0.0	0.0	0.0	0.0	0033-1

Schlumberger	GECO-PRAKLA	

1

Table 91: Raw GCMS monoaromatic sterane data (peak height) for Well NOCS 30/2-3

Page: 1

Depth unit of measure: m

Depth	Lithology	al	b1	c1	d1	el	f1	g1	hl	il Sa	mple
3675.00	Sh/Clst	337953.1	173681.8	41278.2	33252.3	57168.0	17873.9	29121.8	24664.3	14490.2 00	10-1
3681.00	Sh/Clst	288987.5	145709.3	47012.2	32474.9	50042.3	17172.8	34306.5	30486.5	0.0 00	12-1
3684.00	Sh/Clst	217694.0	114116.8	29794.8	25445.7	44050.0	17820.9	27154.7	15967.5	0.0 00	13–1
3693.00	Sh/Clst	271718.2	143194.2	36243.4	24827.4	47802.5	16399.0	27754.8	23107.6	0.0 00	14-1
3824.54	Coal	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0 00	29–1
3911.38	Coal	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0 00	33-1

Appendix 2

GHM-Thermal Extraction Gas Chromatograms and Pyrolysis Gas Chromatography (Pyrograms)

Analysis Name : [62019] 23 PH9500111,1,1.

Schlumberger GECO-PRAKLA

Schlumberger GECO-PRAKLA

GEOLAB

Analysis Name : [62019] 23 PH9500121,1,1.

Analysis Name : [62019] 23 PH9500131,1.1.

Multichrom

GEOLAB

Analysis Name : [32019] 23 PH9500141,1,1.

Multichrom

Schlumberger GECO-PRAKLA

GEOLAB

Analysis Name : [62019] 23 PH9500331,1,1.

Analysis Name : [62019] 23 PH9500341,1,1.

Multichrom

Schlumberger GECO-PRAKLA

Analysis Name : [62019] 24 PH9500111,1,1.

Schlumberger GECO-PRAKLA

GEOLAB

Analysis Name : [62019] 24 PH9500121,1,1.

Schlumberger	GECO-PRAKLA

GEOLAB

Analysis Name : [62019] 24 PH9500131,1,1.

Schlumberger GECO-PRAKLA

GEOLAB

-

Analysis Name : [62019] 24 PH9500141,1,1.

	and the second	
Schlumberger	GECO-PRAKLA	

GEOLAB

-

Analysis Name : [62019] 24 PH9500311,1,1.

Schlumberger GECO-PRAKLA

Analysis Name : [62019] 24 PH9500331,1,1.

Schlumberger	GECO-PRAKLA

GEOLAB

Analysis Name : [62019] 24 PH9500341,1,1.

Multichrom

GEOLABNOR

Analysis Name : [62019] 24 PH9500341,1,1.

Multichrom

Appendix 3

- I Saturated Fraction Chromatograms (FID)
- II Aromatic Fraction Chromatograms (FID& FPD)

Saturated Fraction Chromatograms (FID)

Analysis Name : [62019] 5 SH9500101L,2,1.

Analysis Name : [62019] 5 SH9500101L,3,1.

Analysis Name : [62019] 5 SH9500101L,4,1.

Analysis Name : [62019] 5 SH9500101L,6,1.

Analysis Name : [62019] 5 SH9500101L,7,1.

3911.38m 520 nC15 480 nC17 ≨440 ≝ nC18 Intensity 00 360 nC24 PRISTANE nC25 nC26 TANE nC27 nC28 nC29 nC30 nC31 nC32 nC33 nC33 320 70 20 30 40 50 60 10 Time (minutes) 3911.38m ccp WELL NOCS 30/2-3 SATURATED GC Reported on 21-DEC-1992 at 13:59 Coal: blk Schlumberger **GECO-PRAKLA** GEOLAB