

5-

1

1

Report no. GEOLAB Copy no. 10 No. of copies 10

SECTOR FOR PETROLEUM TECHNOLOGY Geological laboratories

Grading confidential

ORGANIC GEOCHEMICAL CHAI	RACTERIZATION OF WELL	15/12-95
Requested by UND GEO/OP	Project	
Date 25.01.93	No. of pages	No. of enclosures

Keywords

Title

Source rocks, maturity, migrated hydrocarbons.

Abstract

This study has been performed in accordance with the Statoil standard guide for organic geochemistry.

BA-93-180-2 9 Juli. 1393 REGISTANDI OLJEDINEK, CHATET

Prepared by IKU Petroleumsforskning IFE	Approved by Zol 93 dictor And Sen Kjersti Knudsen, sen.geochemist 20.1.93 Jer an Grae Ger van Graas, section manager
Text operator	25 01.93 Maguettener

Trygve Meyer, dept. manager

IKU Petroleumsforskning a.s IKU Petroleum Research		REPORT					
		ORGANIC GEOCHEMICAL CHARACTERIZATION OF WELL 15/12-9 S					
N-7034 Tron Phone: +47 7 Fax: +47 7 5 Telex: 55 434	dheim, Norway 7 59 11 00 9 11 02 (aut.) 4 iku n	author(s) May Britt Myhr					
CLASSIFICATION Restricted		CLIENT(S) Statoil, Geolab, attn.: Kjersti Knudsen					
REPORT NO. 22.2139.00/01	1/93						
REG. NO. 93.008	date 18-JAN-93	PROJECT MANAGER May Britt Myhr Sign. May Britt Myhr					
NO. OF PAGES	NO. OF APPENDICES	SCIENTIFIC CONTROL Leslie T. Leith					
SUMMARY	I						
Altogether 24 different organ	sediment samples, 2 o ic geochemical analys	il samples and 1 gas sample from the Viking Group were subjected to es.					

The claystones from the upper part of the Viking Group contain Type II/III kerogen. They have a rich potential for oil and gas. In this well the claystones have just started oil generation (VR ~ 0.5 %Ro).

The "Oxfordian sandstones" gave high extraction yields. The extracts showed mature composition with high hydrocarbon contents. All of them have probably the same source and no significant vertical variations are seen. A mixed marine and terrestrial source, possibly a more mature version of the upper Viking Group claystones in this well is suggested.

A palaeo oil-water contact is suggested between 2907 m RKB and 2921 m RKB.

The oil samples from DST 2 (2810.0 m RKB) and from FMT (2863.5 m RKB) are moderately light with API gravities of 34.0° and 30.7°, respectively. They have low asphaltene contents and have a moderately mature composition. The two oil samples are probably generated from the same source as the sandstone extracts.

The natural gas sample from DST 2 (2810 m RKB) was a relatively dry (88.1 % methane) thermogenic gas.

The maturity of the indigenous organic material in this well is 0.55 %Ro in the Sleipner Formation (~ 3000 m RKB) which lies below the reservoir.

- 1	KEYWORDS ENGLISH	KEYWORDS NORWEGIAN	
Organic Geoc 15/12-9 S	hemistry	Organisk geokjemi 15/12-9 S	
	· · · · · · · · · · · · · · · · · · ·		

CONTENTS

PAGE

SUMMARY

$1.1 \\ 1.1 \\ 1.2$	INTROD Commen Person	UCTION4ts on some of the analyses4nel participating in the project4					
2. 2.1 2.2 2.3	RESULTS AND DISCUSSION7Characterization of potential source rocks7Characterization of reservoir hydrocarbons9Maturity level through the well13						
3.	CONCLU	SIONS 15					
4.	REFERE	NCES 16					
TABLE Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table	S 1.1 1.2 1.3 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10 2.11 2.12 2.13 2.14 2.15 2.16 2.17 2.18 2.19 2.20	Samples and analyses Formation tops Drilling information Lithology and total organic carbon content Data from Rock Eval pyrolysis Data from visual kerogen analysis Gas composition of gas compounds Gas composition of gas compounds Percentage of oil boiling below 210°C Density and API gravity of oils Composition of the C_2-C_8 fraction of oils Weight of chromatographic fractions (from MPLC) Concentration of EOM and chromatographic fractions (weight ppm of rock, from MPLC) Concentration of EOM and chromatographic fractions (mg/g TOC, from MPLC) Bulk composition of EOM and oils (from MPLC) Bulk composition of EOM and oils (from Iatroscan) Carbon isotope composition of EOM, oils and chromatographic fractions Ratios derived from gas chromatograms of saturated hydrocarbons Ratios derived from gas chromatograms of aromatic hydrocarbons Ratios derived from sterane and terpane mass chromatograms Molecular ratios from sterane and terpane mass chromatograms (maturity characteristic ratios) Molecular ratios from sterane and terpane mass chromatograms (maturity and source characteristic ratios) Internal distribution of C_{27} , C_{28} and C_{29} regular steranes					
FIGUR	ES						
Figure Figure Figure Figure Figure Figure	e 1.1 e 2.1 e 2.2 e 2.3 e 2.4 e 2.5 e 2.6 e 2.7	Location map Rock Eval pyrolysis data versus depth Rock Eval hydrogen index versus Tmax Vitrinite reflectance versus depth Abundance and composition of EOM versus depth Isotope plots for the genetic characterization of natural gas Isotope plot for maturity characterization of natural gas ¹³ C/ ¹² C isotope values of saturated versus aromatic hydrocarbons					
Figure	e 2.8	Isotope type curves (Galimov plot)					

Figure 2.9 Gas chromatograms of total oil Figure 2.10 Gas chromatograms of the C₂-C₈ fraction of oils Figure 2.11 Gas chromatograms of thermal extract and pyrolysate Figure 2.12 Gas chromatograms of saturated hydrocarbons Figure 2.13 Gas chromatograms of aromatic hydrocarbons (FID) Figure 2.14 GC-MS chromatograms of saturated hydrocarbons Figure 2.15 Internal distribution of C₂₇, C₂₈ and C₂₉ regular steranes APPENDIX 1: ANALYTICAL METHODS AND INTERPRETATION LEVELS APPENDIX 2: ROCK-EVAL ANALYSIS OF ROCK STANDARD

1. INTRODUCTION

Well 15/12-9 S was drilled on the Beta-structure 32 km south of the Sleipner field. A location map is shown in Figure 1.1.

IKU has performed organic geochemical analyses for Statoil under Contract T.121.450, Order no. 182875. The vitrinite reflectance and isotope measurements were performed at Institutt for energiteknikk (IFE).

A total of 24 sediment samples, 2 oil samples and 1 gas sample were subjected to the different analyses listed in Table 1.1.

Formation tops and drilling information were supplied by Statoil and are shown in Table 1.2 and Table 1.3, respectively. All depths referred to in the report text, the tables and figures are given as m RKB TVD, unless otherwise stated.

1.1 Comments on some of the analyses

The sandstone core from 2921.00 m smelled like "almond essence". The weight of the EOM of this sample was more difficult to stabilise than those of the other samples.

1.2 Personnel participating in the project

The analysis were performed by Torun Vinge, Cecilie Sneeggen and Kristin Lind. The lithological description was done by Deborah Ann Leith. Inger Lisbeth Skjervold drafted most of the figures and Jorunn B. Lundhaug typed the final version of the manuscript. Leslie Leith was responsible for the scientific control. May Britt Myhr was in charge of the project.

analyses	
ond	
Samples	
1.1	
Table	

IKUNO.	Depth (m)	Type	Rock- Eval	TOC	Visual Kerogen	Therm. extr.	EOM/MPLC	GC SAT/ARO	GC/HS SAT	Isotope ker. exti	H
G5666	2673	cutt	×	×	x	1					
G5667	2682	cutt	x	×							
G5650	2692.5	SWC	x	x			x	×	x		
G5668	2706	cutt	×	х							
G5669	2715	cutt	×	x			x	×	×	x	
G5670	2724	cutt	х	×	x	×				x	
G5651	2767.50	core	X								
G5652	2787.00	core	х			x	x	x	x	x	
G5653	2802.00	core	×								
G5654	2807.00	core	х				X	x	×	×	
G5683	2810.00	oil DST 2					x	×	×	×	
G5685	2810.00	gas DST 2									
G5655	2824.00	core	×								
G5656	2862.00	core	х				×	x	×	X	
G5684	2863.50	oil FMT					×	×	x	X	
G5657	2865.00	core	X			×					
G5658	2868.00	core	х				×	x	x		
G5659	2871.50	core	×				×	×	×		
G5660	2878.50	core	х			×					
G5661	2886.50	core	х				×	×	×		
G5662	2897.50	COTE	x								
G5663	2907.00	core	х				×	×	×	X	
G5664	2921.00	core	Х				×	×	×		
G5671	2934	cutt	х			×					
G5672	2943.5	cutt	Х								
G5673	2952.5	cutt	×								
G5674	2967.5	cutt	×								

Table 1.2 Formation tops

GROUP	FORMATION	ND RKB	m RKB TVD
Nordland		107	107
	Utsira	1357	1212
Hordaland		1400	1239
Rogaland	Balder	2930	2295
	Sele	2945	2310
	Lista	3005	2370
	Våle	3082	2447
Shetland	Tor	3091	2456
	Hod	3187	2552
	Blodøks	3260	2625
Cromer Knoll	Rødby	3295	2660
Viking		3304	2669
Vestland	"Oxfordian sst"	3385	2750
	Sleipner	3620	2985
?	Salt/Skagerak	3688	3053
TD		3848	3213

Table 1.3 Drilling information

							_			
KB:	23 m									
Water dept	:h: 84 m									
Casing MD	RKB:									
30"	167	m								
20"	599	m								
13 3/8"	2207	m								
9 5/8"	2677	m								
Oil water	contact:	3503	MD	RKB	=	2868.5	m	RKB	TVD	

2. RESULTS AND DISCUSSION

From well 15/12-9S only samples from the Viking Group (2669 - 2750 m, TD) and the Vestland Group were analysed by organic geochemical methods. The upper part of the Viking Group (2669 - 2724 m) consisted mainly of dark grey micaceous claystones which are considered as potential source rocks. Brown micaceous sandstones within the "Oxfordian sandstone" zone (2750 -2985 m) constituted the remaining part of the analysed section. All the analysed sandstone samples were oil- stained.

2.1 Characterization of potential source rocks

Six dark grey claystone samples from the interval 2673 - 2724 m in the upper part of the Viking Group were analysed (Table 2.1). The total organic carbon (TOC) content of the samples varied between 1.2 % and 3.1 % (Table 2.2, Figure 2.1). The Rock-Eval Tmax showed values between 430°C and 434°C, and the hydrogen index (HI) was between 195 mg HC/g TOC and 384 mg HC/g TOC (Table 2.2, Figure 2.1). This classifies the kerogen as Type II/III. Low Rock-Eval production indices suggest that the claystones have experienced little or no impregnation from the underlying reservoir.

The vitrinite reflectance profile (Figure 2.3) indicates a maturity around 0.5 % Ro for this claystone interval. This agrees well with thermal alteration indices (TAI) of 3-4 (Table 2.3) and the Tmax values (430 - 434°C). Sterane and hopane isomerization have reached completion or are close to it (Tables 2.18 and 2.19), which suggests a vitrinite reflectance equivalent maturity of 0.4 - 0.5 % Ro. All maturity data thus indicate that these claystones have reached a thermal maturity which is close to or just in the beginning of the oil generating stage.

The claystone samples from 2692.5 m and 2715 m were selected for solvent extraction and follow-up analyses. The yields of extractable organic matter (EOM) were 1453 ppm and 918 ppm of rock weight, respectively. This is regarded as rich, especially at the low maturity of these rocks. The Rock-Eval petroleum potential (S1 + S2 = 2.4 - 12.7 mg/g rock, Table 2.2) also indicates that the claystones are good to rich potential source rocks, The two uppermost samples (2673 m and 2682 m) show the best petroleum potential from Rock-Eval (12.6 mg/g rock and 11.2 mg/g rock, respectively).

The extractable organic material from the claystones consists of more than 50 % non-hydrocarbons, and the saturated to aromatic hydrocarbon ratio

(SAT/ARO) is lower than one (Table 3.9, Figure 2.4). Such a composition is often observed in EOM generated at low maturity.

Carbon isotope analysis was performed on the 2715 m sample. The EOM and extract fractions gave δ^{13} C values from -29.3 °/_{oo} PDB (saturates) to -28.3 °/_{oo} PDB (polar compounds and asphaltenes, Table 2.14, Figure 2.8). The kerogen gave somewhat heavier isotope values than the extract, as expected. The carbon isotope data point at a mixed marine-terrestrial source for the organic matter in the claystone (Figure 2.7).

The claystone sample from 2724.00 m was analysed by thermal extraction-gas chromatography and subsequent pyrolysis gas chromatography. The extract (S1, Figure 2.11) was dominated by compounds below $n-C_{12}$. The pyrolysate (S2, Figure 2.11) gave approximately as high peak intensity as the peak intensity of the thermal extract and was dominated by n-alkene and n-alkane homologues up to $n-C_{30}$. Aromatic hydrocarbons were moderately abundant. This pyrolysate composition is frequently observed in Type II/III kerogen (and asphaltenes).

The gas chromatograms of the saturated hydrocarbons (2692.5 m and 2715 m) show some typical immature features such as an unresolved hump in the biomarker region and high pristane/n- C_{17} ratio (Figure 2.12). The 2715 m sample also shows a high phytane/n- C_{18} ratio and a slight odd over even n-alkane predominance in the high molecular weight region. The most pronounced difference between the two chromatograms lies, however, in the different shape of the n-alkane envelope. The 2692.5 m sample is front end biased with a maximum at n- C_{18} , while the 2715 m sample is back end biased with maximum at n- C_{18} . The reason for these differences is not known. They could have been caused by a more terrestrial input to the latter sample but this would be in contrast to the higher HI of this sample. Maturity differences must also be ruled out due to the close spacing of the samples.

The aromatic hydrocarbon gas chromatograms (ARO GCs) of the two samples are fairly similar (Figure 2.13), their most pronounced feature being the large unresolved hump over the whole chromatographic range. This hump is probably due to low maturity and is consistent with the MPI-1 values of 0.54 and 0.52, respectively.

The terpane mass chromatograms (m/z 191, Figure 2.14) of the two claystones are almost identical, and they show the typical patterns of Upper Jurassic North Sea mudstones with the $17\alpha(H), 21\beta(H)$ -hopanes as the most dominating

peaks with the $C_{30}-17\alpha(H)$, $21\beta(H)$ -hopane as the most prominent one. The only significant difference in the terpane composition of the two samples seems to be the somewhat higher relative content of 27Tm in the 2692.5 m sample. The distribution of regular steranes is similar for the two samples (Table 2.20, Figure 2.15) and points to a mixed marine-terrestrial source.

Summary of characterization of potential source rocks

The analysed claystones from the upper part of the Viking Group contain Type II/III kerogen with input from both terrestrial and marine organic matter. They have a rich potential for oil and gas. In this well the claystones have just started oil generation (VR \sim 0.5 % Ro).

2.2 Characterization of reservoir hydrocarbons

Sandstone extracts

All eight extracted sandstone samples yielded very high EOM contents (Table 2.10, Figure 2.4). Six of the samples had EOM contents of 12500 - 33600 ppm of rock, while the samples at 2886.50 m and 2921.00 m showed lower EOM values of 4900 ppm and 1600 ppm, respectively.

With the exception of one sample (2921 m), all the extracted sandstones gave high hydrocarbon/non-hydrocarbon (HC/nonHC) ratios of between 2.6 and 9.3, which is consistent with mature EOM (Table 2.12, Figure 2.4). Also the high SAT/ARO ratios (1.5 - 2.0) point at mature hydrocarbons in all eight samples. The lowermost sandstone sample (2921.00 m) has a HC/non HC ratio of 0.28. This low HC/nonHC ratio is unlikely to be due to source or maturity differences (further discussion of this below), therefore it may be the result of a deeper oil-water contact (OWC) in the past. The present OWC was determined by Statoil to be at 2868.5 m (Table 1.3). Since the sample at 2907.00 m is not depleted in hydrocarbons, the palaeo oil water contact (POWC) could have been between 2907.00 and 2921.00 m. It should be noted that a deeper (than 2868.5 m) present OWC also could have given these effects, but it is assumed that the present OWC is correctly established by Statoil.

Four samples from the "Oxfordian sandstones" were analysed by thermal extraction-gas chromatography and following pyrolysis-gas chromatography. The three uppermost samples (2787.00 m, 2865.00 m and 2878.50 m) yielded thermal extracts of similar composition (S1, Figure 2.11). The resolved

peaks were mainly n-alkanes in the $n-C_{12}$ to $n-C_{23}$ range. The pyrolysate (S2, Figure 2.11) gave a low response compared to the thermal extract (S2:S1 < 1:10) and probably consisted mainly of pyrolysed asphaltenes since little kerogen is expected in these reservoir sandstones. The lowermost sample (2934.00 m) yielded a thermal extract dominated by compounds below $n-C_{12}$. In contrast to the three uppermost samples, the pyrolysate gave an equally high GC response as the thermal extract, which may indicate a higher non-HC/HC ratio. This suggests that this sample (2934.00 m) is located below the palaeo oil-water contact, in accordance with the indications from the extraction data above.

Carbon isotope data were obtained from four of the sandstone extracts (2787.00 m, 2807.00 m, 2862.00 m and 2863.00 m). The saturated hydrocarbon fraction is similar with values of -29.1 to -29.5 $^{\circ}/_{\circ\circ}$ PDB. Also the aromatic hydrocarbon fraction shows similar values for all four samples (-28.4 to - 28.6 $^{\circ}/_{\circ\circ}$ PDB, Table 2.14). These values are consistent with a mixed marine and terrestrial source for the hydrocarbons (Figure 2.7). The isotope type curves ("Galimov plots", Figure 2.8) of the four samples are nearly identical. The type curves also resemble that of the claystone sample which could indicate a similar source of the organic matter.

The saturated hydrocarbon gas chromatograms of the sandstones samples all show well developed n-alkane patterns with a maximum around $n-C_{17}$ and extending up to $n-C_{35}$ (Figure 2.12). The low isoprenoid to n-alkane ratios $(pr/n-C_{17} = 0.6-0.7, Table 2.15)$ and CPI values of 1.0 are typical of mature hydrocarbons, even though the $pr/n-C_{17}$ ratio suggests that the hydrocarbons have lower maturities than the most mature North Sea oils, which may have $pr/n-C_{17}$ ratios as low as 0.3. The broad n-alkane distributions indicate contribution from both marine and terrestrial sources. Although the saturated hydrocarbon GC patterns are broadly similar through the whole "Oxfordian sandstone" sequence, some variations are encountered. The sandstones between 2871.50 m and 2907.00 m show lower relative contents of high molecular weight n-alkanes compared to the sandstones at shallower depths. The pattern becomes more pronounced frontend-biased in the lower sample from this interval (2907.00 m).

The aromatic hydrocarbon gas chromatograms (Figure 2.13) show well developed alkylated naphthalenes and phenanthrenes. The largest variation between the aromatic hydrocarbon GCs is seen in the relative proportion of unresolved and resolved compounds. The relative size of the "hump" is low at 2807 m, 2871.50 m and 2907.00 m while it is largest in the gas

chromatogram of the deepest sample (2721.00 m). This gas chromatogram also differs from those of the other sandstone extracts in containing several prominent (unidentified) peaks in the high molecular weight area.

The sterane and terpane mass chromatograms of the eight sandstone extracts are almost identical. They show more mature patterns than the claystone extracts, e.g. higher relative contents of tricyclic terpanes and higher relative 27Ts contents. The C_{28} regular steranes content (Table 2.20, Figure 2.15) is somewhat higher relative to the C_{27} and C_{29} regular steranes content in the sandstone extracts compared to the claystone extracts. This relatively small difference should, however, not exclude more mature claystones of the upper Viking Group as source of the hydrocarbons in the sandstones.

Summary of sandstone extracts

The "Oxfordian sandstones" gave high extraction yields and the extracts were mature with high hydrocarbon contents. The EOM and hydrocarbon composition at different levels show a high degree of similarity which suggests that these extracts have the same source. The hydrocarbon fractions contain a significant proportion of high molecular weight alkanes of probably terrestrial origin, and therefore a mixed marine and terrestrial source is suggested. The source might be a more mature version of the upper Viking Group claystones in this well.

The most important difference in the extract composition through the "Oxfordian sandstones", is the significantly higher content of nonhydrocarbons in the lowermost sandstone sample. Assuming that the present oil-water contact is correctly determined, it is suggested that this reflects a palaeo oil-water contact between 2907.00 and 2921.00 m.

Oil samples

Two oil samples were received for analysis, one from drill stem test 2 (DST 2) at 2810.0 m and one from the formation test (FMT) at 2863.5 m. The density of the DST 2 sample was 0.855 g/ml and the API gravity was 34.0° (Table 2.7). The FMT sample had a somewhat higher density of 0.873 g/ml and an API gravity of 30.7°. The fraction of the oil boiling below 210°C constituted 18.6 % of the DST 2 sample and 23.8 % of the FMT sample (Table 2.6).

The asphaltene contents of the DST 2 and FMT samples were low (2.8 % and 2.1 %, respectively, Table 2.12) and so were the contents in polar compounds (8.5 % and 6.2 %, respectively). The saturated to aromatic hydrocarbon ratio (SAT/ARO) was somewhat lower for the DST 2 sample (1.2) than for the FMT sample (1.8), the last value being comparable to those of the sandstone extracts (1.5 - 2.0). The carbon isotope data of the two oils are identical (within \pm 0.1 °/_{oo} PDB) for EOM and the SAT, ARO and asphaltene fractions while the NSO fraction of the FMT sample is isotopically slightly heavier (Table 2.14). The isotope type curves of the oils resemble those of the sandstone extracts (Figure 2.8).

The gas chromatograms of the total oils (Figure 2.9) are similar and show a low molecular weight biased n-alkane distribution which has a maximum at n- C_7 and extends up to n- C_{35} . Also the detailed composition of the C_2 - C_8 fraction is similar for the two samples (Table 2.8, Figure 2.10). The DST sample and the FMT sample may be characterized as "aliphatic" oils.

The gas chromatograms of the saturated hydrocarbon fractions of the two oils (Figure 2.12) are overall similar, although the FMT sample shows a slightly lower relative content of $C_{16}-C_{21}$ n-alkanes, which is reflected in the respective molecular ratios listed in Table 2.16 $(n-C_{17}/n-C_{27}$ and n- $C_{31}/n-C_{19}$). There is a strong similarity between the saturated fractions of the oils and those of the sandstone extracts, especially those above the oil water contact.

The aromatic hydrocarbon gas chromatograms are essentially similar for the two oils (Figure 2.13). Methylated naphthalenes and phenanthrenes are the dominating compounds as they were in the sandstone extracts. The methylphenanthrene index (MPI-1, Table 2.16) of both samples is 0.64 which is similar to the sandstone extracts and indicate oils of low to moderate maturity.

The two oil samples have the same distribution of regular steranes as the sandstone extracts (Table 2.20, Figure 2.15).

Summary of oil samples

The oils from DST 2 (2810.0 m) and from FMT (2863.5 m) are moderately light with API gravities of 34.0° and 30.7°, respectively. They have a low asphaltene content (2.8 % and 2.1 %), contain a relatively high proportion of high molecular weight alkanes and have a moderately mature composition.

The two oil samples are similar in most respects and are probably from the same source, which is also similar to the source of the sandstone extracts. Claystones of the upper Viking Group are suggested to be the most likely source rock for these oils. The thermal maturity of these source rocks must, however, be higher than that of the Upper Jurassic claystones found in this well.

Gas sample

One natural gas sample from DST 2 at 2810.0 m was analysed. The gas contained 88.1% methane (wetness = 0.11, Table 2.4) which is fairly dry. The $\delta^{13}C$ value of methane (-37.5 °/₀₀ PDB, Table 2.5) clearly indicates a termogenic origin of the gas. The plot of $\delta^{13}C_1$ versus $\delta^{13}C_2$ suggests that methane and ethane are cogenetic, and the plot of $\delta^{13}C_1$ versus δDC_1 suggests wet gas maturity ("Schoell plots", Figure 2.5). According to James (1983) the maturity of the source of a thermogenic natural gas may be determined from the differences between the carbon isotope values of the individual gas components. For this gas sample the differences between $\delta^{13}C$ values for ethane - propane and for propane - n-butane are small (both 0.7 $^{\circ}/_{\circ\circ}$ PDB, Table 2.5, Figure 2.6) which is typical of a gas generated at high maturity. On the other hand the difference between the carbon isotope values of methane and ethane is relatively large (9.3 $^{\circ}/_{\circ\circ}$ PDB) and should indicate low maturity. It is, however, known that methane from the North Sea has lighter carbon isotope values than suggested by James' diagram, and therefore the larger methane - ethane difference should not be given too much attention. The gas from DST 2 is thus most probably of high maturity. The reason for the seemingly higher maturity of the gas compared to its associated oil, is not known.

Summary of gas sample

The natural gas sample from DST 2 (2810 m) was a relatively dry thermogenic gas with a methane content of 88.1 %. The maturity of the source of the gas is probably high.

2.3 Maturity level through the well

The thermal maturity level of the indigenous organic material in the well is described by the vitrinite reflectance profile in Figure 2.3 and the reflectance increases from around 0.25 % Ro at 800 m to 0.6 % Ro at 3200 m. At about 3000 m the vitrinite reflectance is 0.55 % Ro. The most reliable measurement was from this depth. The rest of the measurements were from EMS/IKU::D1\$:[IK22213900.REPORT]TEXT.AA0;52/report text/13/18-JAN-93

samples of moderate quality (according to IFE). The claystones in the upper part of the Viking Group show a slightly lower vitrinite reflectance of around 0.50 % Ro, which is consistent with the other analytical data from these claystones (see chapter 2.1).

The maturity of the non-indigenous extractable material is discussed under chapter 2.2.

3. CONCLUSIONS

Altogether 24 sediment samples, 2 oil samples and 1 gas sample from the Viking Group and the Vestland Group, were subjected to different organic geochemical analyses.

The analysed claystones of the upper part of the Viking Group contain a Type II/III kerogen with input from both terrestrial and marine organic matter. They have a rich potential for oil and gas. The maturity of the kerogen in these claystones is consistant with early phase of oil generation (VR ~ 0.5 % Ro).

The "Oxfordian sandstones" gave high extraction yields. The extracts showed a moderately mature composition with high hydrocarbon contents. EOM and hydrocarbon composition at different levels show a high degree of similarity, which suggests that these bitumens have the same source. The hydrocarbon fractions contain a significant proportion of high molecular weight alkanes of probably terrestrial origin, and therefore a mixed marine and terrestrial source is suggested. The source could be a more mature version of the upper Viking Group claystones in this well.

The most important difference in the extract composition through the "Oxfordian sandstones", is the significantly higher content of nonhydrocarbons in the lowermost sandstone sample. It is suggested that this reflects a palaeo oil-water contact between 2907.00 m RKB and 2921.00 m RKB.

The oils from DST 2 (2810.0 m RKB) and from FMT (2863.5 m RKB) are moderately light with API gravities of 34.0° and 30.7°, respectively. They have a low asphaltene content (2.8 % and 2.1 %), contain a relatively high proportion of high molecular weight alkanes and have a moderately mature composition. The two oil samples are similar in most respects and are probably from the same source, which is most likely similar to the source of the sandstone extracts.

The natural gas sample from DST 2 (2810 m RKB) was a relatively dry thermogenic gas with a methane content of 88.1 %. The maturity of the source of the gas is probably high.

The maturity of the indigenous material in the well is 0.55 % Ro in the Sleipner Formation (~ 3000 m RKB) which lies below the reservoir.

4. REFERENCES

- JAMES, A.T. 1983: Correlation of natural gas by use of carbon isotope distribution between hydrocarbon components. AAPG Bull. 67, 1176-1191.
- SCHOELL, M. 1983: Genetic characterization of natural gases. AAPG Bull. 67, 2225-2238.

SOFER, Z. 1984: Stable carbon isotope composition of crude oils. Application to source depositional environment and petroleum alteration. AAPG Bull. 68, 31-49.

Sample		Depth (m) r	TOC (% of ock wt)	Lithol	ogy
G5666	cuttings	2673	3.10	50% 30%	Claystone, micaceous, dark grey ¹⁾ Sandstone, light grey, micaceous,
				20% Sm.am.	Sandstone, red brown, fine grained Drilling fluids, Cement, Caving
G5667	cuttings	2682	2.99	90% 5% 5%	Claystone, micaceous, dark grey ¹⁾ Sandstone, red brown, fine grained Portland Cement (Drilling Contaminant)
				Sm.am.	Drilling fluids
G5650	SWC	2692.5	1.15	100%	Claystone, dark grey, micaceous
G5668	cuttings	2706	2.32	100% Sm.am.	Claystone, micaceous, dark grey Paint, Metal, Pyrite, Portland Cement, Sandstone, red brown, fine grained
G5669	cuttings	2715	2.34	100% Sm.am.	Claystone, micaceous, dark grey Paint, Metal, Pyrite, Baryte, Portland Cement
G5670	cuttings	2724	1.84	100% Sm.am.	Claystone, micaceous, dark grey Paint, Metal, Baryte, Portland Cement
G5651	core	2767.50		100%	Sandstone, medium brown, micaceous, fine-grained (oil stained)
G5652	core	2787.00		100%	Sandstone, brown, micaceous, carbonaceous laminae, fine grained (oil stained)
G5653	core	2802.00		100%	Sandstone, medium brown micaceous, medium grained (oil stained)
G5654	core	2807.00		100%	Sandstone, medium brown micaceous, medium grained (oil stained)
G5655	core	2824.00		100%	Sandstone, medium brown, micaceous, calcareous, fine grained (oil stained)
G5656	core	2862.00		100%	Sandstone, light brown, micaceous, fine grained (oil stained)
G56 5 7	core	2865.00		100%	Sandstone, medium brown, micaceous, medium grained (oil stained)

Table 2.1 Lithology and total organic carbon content

1) The underlined lithology was picked for analysis.

Sample		Depth (m)	TOC (% of rock wt)	Lithol	ogy
G5658	core	2868.00		100% Sm.am.	Sandstone, medium - dark brown, micaceous, fine - medium grained (oil stained) Drilling deposits (metal)
G5659	core	2871.50		100%	Sandstone, medium - dark brown, micaceous, fine - medium grained (oil stained)
G5660	core	2878.50		100%	Sandstone, light brown, micaceous, fine - medium grained (oil stained)
G5661	core	2886.50		100%	Sandstone, light brown, micaceous, calcareous, fine grained (oil stained)
G5662	core	2897.50		100%	Sandstone, light grey, brown, micaceous, calcareous, carbonaceous laminae, very fine-grained (oil stained)
G5663	core	2907.00		100%	Sandstone, medium - dark brown, micaceous, carbonaceous, fine - medium grained (oil stained)
G5664	core	2921.00		100% Sm.am.	Sandstone, light - medium grey, micaceous, fine - medium grained Drilling mud
G5671	cuttings	2934		95% 5% Sm.am.	Sandstone, light grey - grey, coarse grained, micaceous Sandstone, medium grey, very fine grained Paint, Metal, Plastic, Claystone, micaceous, dark grey
G5672	cuttings	2943.5		95% 5% Sm.am.	Sandstone, light grey - grey, coarse grained, micaceous Claystone, micaceous, dark grey Sandstone, medium grey, very fine grained, Metal plastic, Baryte
G5673	cuttings	2952.5		90% 10% Sm.am.	Sandstone, light grey - grey, coarse grained, micaceous Sandstone, medium grey, very fine grained Barytes, Metal, Plastic, Claystone, micaceous, dark grey
G5674	cuttings	2967.5		95% 5% Sm.am.	Sandstone, light grey - grey, coarse grained, micaceous Claystone, micaceous, dark grey Metal, Plastic, Baryte

Table 2.1	Lithology and total	organic	carbon	content
	Well no. 15/12-9S.			

IKUNO	LITH- OLOGY	DEPTH	SAMPLE TYPE	S1	S2	TOC	HYDRO. INDEX	PETR. POTEN. S1+S2	PROD. INDEX S1	Tmax
		(111)		(mg/g	rock)	(vt%)	(mg/g TOC)	(mg/g rock)	S1+S2	(°C)
15/12-09	9									
G5666	clst	2673	CUTT	0.76	11.89	3.10	384	12.65	0.06	430
G5667	clst	2682	CUTT	0.74	10.48	2.99	351	11.22	0.07	431
G5650	clst	2692.5	SWC	0.16	2.24	1.15	195	2.40	0.07	434
G5668	clst	2706	CUTT	0.50	7.63	2.32	329	8.13	0.06	432
G5669	clst	2715	CUTT	0.48	7.52	2.34	321	8.00	0.06	431
G5670	clst	2724	CUTT	0.35	5.79	1.84	315	6.14	0.06	434
G5651	sst	2767.50	CORE	16.14	4.25			20.39	0.79	420
G5652	sst	2787.00	CORE	23.31	7.57			30.88	0.75	420
G5653	sst	2802.00	CORE	10.75	2.19			12.94	0.83	416
G5654	sst	2807.00	CORE	21.80	7.59			29.39	0.74	350*
G5655	sst	2824.00	CORE	4.93	0.94			5.87	0.84	419
G5656	sst	2862.00	CORE	8.28	1.84			10.12	0.82	423
G5657	sst	2865.00	CORE	13.86	6.34			20.20	0.69	341*
G5658	sst	2868.00	CORE	14.17	2.91			17.08	0.83	420
G5659	sst	2871.50	CORE	13.28	4.10			17.38	0.76	342*
G5660	sst	2878.50	CORE	3.74	0.88			4.62	0.81	420
G5661	sst	2886.50	CORE	2.04	0.55			2.59	0.79	420
G5662	sst	2897.50	CORE	2.53	1.15			3.68	0.69	428
G5663	sst	2907.00	CORE	12.36	3.00			15.36	0.80	424
G5664	sst	2921.00	CORE	2.89	6.07			8.96	0.32	323*
G5671	sst	2934	CUTT	0.14	0.77			0.91	0.15	441
G5672	sst	2943.5	CUTT	0.08	0.38			0.46	0.17	442
G5673	sst	2952.5	CUTT	0.04	0.2			0.29	0.14	441
G5674	sst	2967.5	CUTT	0.01	0.3	aga dan waa way way aga a		0.04	0.25	436

- 19 -

Legend -1 - No data available.

* - Unreliable Tmax

IKUNO	Depth (m)	Com Am (X	posit Al of t	ion He otal	of res Wo resid	sidue Co lue)	Particle size	Preservation of palyno- morphs	Thermal Alteration Index (TAI)	Remarks
G 5666	2673	50	20	10	15	5	f-m-c	р	3 - 4	Artificially formed crystals in slide. Black minerals disturb. Equidimensional W/C fragments. Biodegraded Wo. Good yellow fluorescence from Al, poor from Am.
G 5670	2724	50	25	15	<10	<5	f-m-c	p - f	3 - 4	Degraded He, very thin walled or irregularly thick. Black minerals (?pyrite) disturb. Foraminifer linings. Some bladeshaped Co. He includes large cuticular fragments. Good fluoresence from Al and pollen. Contaminants Extracted residue.

Legend:	Cor	Composition			Particle size				Preservation of palynomorphs			
	Am Al He	H H	Amorphous organic material Algal material Herbaceous (lipoid) material and discourts	f m c	11 11 11	fine medium coarse	p f g	= =	poor fair good	1-10 scale		
	Wo Co	=	Woody material Coaly fragments	n.d n.d	.p.	= no o = not	leterm determ	inatio ined	on possible			

Table 2.4	Gas comp	ostion ($C_1 - C_2$	5)								
Sample		C ₁	C ₂	C ₃	iC ₄	nC ₄ volume	iC ₅ % —	nC ₅	CO ₂	ΣC ₁ -C ₅	Wet- ness	iC ₄ / nC ₄
G 5685	DST2	88.1	6.5	2.9	0.35	0.60	0.04	0.04	1.4	98.6	0.11	0.58

Table 2.5Isotope composition of gas compounds

Sample		C ₁ δ ¹³ C °/ ₀₀ PDB	C ₁ δ D °/ _∞ SMOW	C ₂ δ ¹³ C °/ _∞ PDB	C ₃ δ ¹³ C °/ _∞ PDB	iC ₄ δ ¹³ C °/ _∞ PDB	nC ₄ δ ¹³ C °/ _{∞0} PDB	CO ₂ δ ¹³ C °/ _∞ PDB	CO ₂ δ ¹⁸ Ο °/ ₀₀ PDB
G 5685	DST 2	-37.5	-203	-28.2	-27.5	-26.9	-28.2	-12.2	-14.2

Table 2.6 Percentage of oil boiling below 210°C

IKUNO	EXTERNAL	ID .	SAMPLI TYPE	E Crude oil (mg)	oil > 210°C (mg)	Low mole weight c (mg)	cular ompounds (%)
15/12-0 G5683 G5684	9 2810.0m, 3498.0m,	DST FMT	2 OIL OIL	781.7 335.2	636.5 255.5	145.2 79.7	18.6 23.8

Table 2.7 Density and API gravity of oils

IKUNO	EXTERNAL	ID		SAMPLE TYPE	TOTAL OIL DENSITY (g/ml)	TOTAL OIL DENSITY (°API)
G5683	2810.Om	DST	2	OIL	0.855	34.0
G5684	3498.Om	FMT		OIL	0.873	30.7

Table 2.8Composition of the C_2 - C_8 fraction of oils

Injection Report

Acquired	on	16-DEC-1992	at	09:03

Sample	Name	:	G-5683,	oil,	DST	2
Sample	Id	:				
Sample	Туре	:	Sample	Am	ount=	=1.00000
Bottle	No	:	1			

PEAK INFORMATION

Peak RT mins	Hont W	Area uvs	ul/ml	Peak name	
			0.475	~	
2 0.899	25286	11459	0.415	n-02	
3 1.160	165508	118812	4.305	n-C3	
4 1.917	51107	77357	2.804	1-C4	
5 2.827	182799	308408	11.1/8	n-C4	
7 5.963	121972	281748	10.212	1-05	
8 7.443	230191	488007	17.68/	n-05	
13 11.336	121453	286849	10.396	AND	
14 12.080	77528	175367	6.350	ALP	
15 13.179	260046	606936	21.997	n-06	
16 14.403	170082	405650	14.702	MCYCS	
19 16,107	207958	495394	17.955	Banzane	
22 16.877	97918	236642	8.577	Mb	
23 17.307	93714	219844	7.968	3MCb	
C1	142306	352388	12.772	IMLYCS	
24 17.483	3661.0	86646	3.140	- C1	
25 17.624	35018	81174	2.942	- C1	
26 17.779	70677	184568	6.689	- C1	
27 18.683	294329	694377	25.167	n-C7	
28 19,421	413579	1017108	36.864	MIYCE	
37 21.013	169170	41.3868		int.std.	
40 21.771	341516	882660	31.991	Tohere	
41 22.080	113563	274392	9.945	2+4MC7	
C2	155681	482588	17.491	DACTOR	
44 22.323	81.580	209353	7.588	- 02	
45 22.432	74101	273234	9.903	- C2	
54 23.813	279530	68701.7	24.900	n-08	
63 25.051	106160	319475	11.579	ELCYCE	
77 26.811	202805	747172	27.080	n+p-xylere	
81 27.213	53152	159345	5.775	2MC8	
84 27.680	47016	160548	5.819	4MC8	
86 27.859	105493	267604	9.699	o-xylere	
91. 28. 552	279997	765303	27.737	n-09	
(Deter) e					

Unknowns	7860779	27156008	N/A
Qantified	4509856	10936315	381.370
Grand Total	12370635	38092324	381.370

Injection Report

.

Acquired on 16-DEC-1992 at 11:15 Sample Name : G-5684, oil Sample Id : Sample Type : Sample Amount=1.00000 Bottle No : 2

PEAK INFORMATION

Peak	RT mins	Hopt W	Area uNS	ul/ml	Reak name	
2	0.952	31019	15344	0.322	n-C2	
3	1.253	172616	136796	2.869	n-C3	
4	2.173	48502	85068	1.784	iC4	
5	3.232	189050	334016	7.005	n-C4	
7	6.323	147118	306630	6.431	i-05	
8	7.699	254934	530736	11.131	n-C5	
12	11.443	139254	317201	6.652	2405	
13	12.165	91178	192860	4.045	3405	
14	13.245	302860	667379	13.996	n-06	
15	14.453	197118	448402	9.404	MCYCS	
18	16.141	220040	514760	10.795	Banzere	
21.	16.901	104211	254564	5.339	2405	
22	17.336	100186	238236	4.996	Mb	
CL	-	158447	393645	8.255	DACACE	
23	17.509	41887	96209	2.018	- Cl	
24	17.651	39085	90408	1.896	- CL	
25	17.808	7/4/4	20/028	4.342	- Cl	
26	18.709	314850	/45/63	15.640	n-C/	
21	19.443	424912	10/8318	22.614	МЦУСЬ	
30	21.035	283089	/15244	10.000	int.std.	
40	21./81	316/53	/9521/	16.6//	loluere	
41	22.093	119279	290932	6.101	2+4MC7	
2	~ ~~~	169289	5059/1	10.611	DILYCS	
44	22.333	88357	222/66	4.6/2	- 02	
45	22.435	80932	283205	5.939	-02	
23	23.824	291466	/1/331	15.044	n-08	
62	25.061	109469	334374		FRYD	
/0	20.819	203/73	139254	15.504	n⊪p-xyiere	
80	21.219	53478	100074	2.935	210	
04	27.000	100002	1009/4	5.502	441.0	
80	2/.004	T(0202	40003/	3.420	0-xylere	
31	20.000	CAT (22	101272	10.301	IFG	

Totals			
Unknowns	7984535	27839206	Ŋ⁄A
Qantified	4885827	11705192	230.480
Grand Total	12870362	39544400	230.480

Table 2.9 Weight of chromatographic fractions (from MPLC)

IKUNO	LITHO- LOGY	DEPTH	SAMPLE TYPE	ROCK EXTR.	EOM	ASPH	SAT HC	ARO HC	POLAR	HC	NONHC	TOC
		(m)		(g)	(mg)	(mg)	(mg)	(mg)	(mg)	(mg)	(mg)	(%)
15/12-0	09											
G5650	clst	2692.5	SWC	3.4	5.0	1.5	0.8	1.0	1.6	1.8	3.2	1.15
G5669	clst	2715	CUTT	21.6	19.8	6.7	3.2	4.5	4.8	7.7	12.1	2.34
G5652	sst	2787.00	CORE	23.5	789.5	29.6	498.0	283.9	89.4	781.9	7.6	
G5654	sst	2807.00	CORE	24.9	795.8	28.8	452.3	266.6	85.1	718.9	76.9	
G5683		2810.00	OIL DST		111.5	3.1	55.1	46.5	9.5	101.6	9.9	
G5656	sst	2862.00	CORE	25.7	320.0	13.2	187.6	95.4	33.3	283.0	37.0	
G5684		2863.50	OIL FMT		167.7	3.5	98.4	55.9	10.4	154.3	13.4	
G5658	sst	2868.00	CORE	25.8	523.7	24.6	288.9	152.8	57.6	441.7	82.0	
G5659	sst	2871.50	CORE	28.8	579.9	64.4	287.0	187.2	55.7	474.2	105.7	
G5661	sst	2886.50	CORE	16.1	64.1	4.0	29.3	17.1	4.9	46.4	17.7	
G5663	sst	2907.00	CORE	18.1	368.7	46.4	185.2	105.4	25.8	290.6	78.1	
G5664	sst	2921.00	CORE	18.3	29.7	3.6	4.0	2.6	12.1	6.6	23.1	
Legend:	:											

- NONHC is calculated as the difference : NONHC = EOM - HC

IKUNO	LITHO- LOGY	DEPTH (m)	SAMPLE TYPE	EOM	ASPH	SAT HC	ARO HC	POLAR COMP.	HC	NONHC #
15/12-0	09									
G5650	clst	2692.5	SWC	1453	436	241	286	454	527	926
G5669	clst	2715	CUTT	918	311	151	209	225	360	558
G5652	sst	2787.00	CORE	33643	1261	21222	12097	3808	33319	324
G5654	sst	2807.00	CORE	31944	1156	18155	10702	3417	28857	3087
G5683		2810.00	OIL DST							
G5656	sst	2862.00	CORE	12460	514	7303	3713	1297	11016	1444
G5684		2863.50	OIL FMT							
G5658	sst	2868.00	CORE	20322	955	11210	5929	2236	17139	3183
G5659	sst	2871.50	CORE	20129	2235	9962	6497	1933	16459	3670
G5661	sst	2886.50	CORE	3986	249	1825	1063	305	2888	1098
G5663	sst	2907.00	CORE	20315	2557	10202	5810	1422	16012	4303
G5664	sst	2921.00	CORE	1627	199	222	140	663	362	1265
Legend: # - N	: NONHC i	s calcul	ated as t	he diffe	rence :	NONH	C = EOP	f - HC		

Table 2.10

Concentration of EOM and chromatographic fractions (Weight ppm of rock, from MPLC)

IKUNO	LITHO- LOGY	DEPTH (m)	SAMPLE TYPE	EOM	ASPH	SAT HC	ARO HC	POLAR COMP.	HC	NONHC #
15/12-0	09									
G5650	clst	2692.5	SWC	126.3	37.9	21.0	24.9	39.5	45.9	80.4
G5669	clst	2715	CUTT	39.3	13.3	6.4	8.9	9.6	15.3	24.0
G5652	sst	2787.00	CORE	-1	-1	-1	-1	-1	-1	-1
G5654	sst	2807.00	CORE	-1	-1	-1	-1	-1	-1	-1
G5683		2810.00	OIL DST	-1	-1	-1	-1	-1	-1	-1
G5656	sst	2862.00	CORE	-1	-1	-1	-1	-1	-1	-1
G5684		2863.50	OIL FMT	-1	-1	-1	-1	-1	-1	-1
G5658	sst	2868.00	CORE	-1	-1	-1	-1	-1	-1	-1
G5659	sst	2871.50	CORE	-1	-1	-1	-1	-1	-1	-1
G5661	sst	2886.50	CORE	-1	-1	-1	-1	-1	-1	-1
G5663	sst	2907.00	CORE	-1	-1	-1	-1	-1	-1	-1
G5664	sst	2921.00	CORE	-1	-1	-1	-1	-1	-1	-1
Legend: # - 1 -1 - 1	: NONHC is No data	s calcula availabl	ated as the	ne differe	nce :	NONHC =	= EOM -	нс		*****

 Table 2.11
 Concentration of EOM and chromatographic fractions, (mg/g TOC, from MPLC)

- 26 -

IKUNO	FRAC	DEPTH	SAMPLE	ASPH	SAT	ARO	HC	POLAR	SAT	HC
	Malili			EOM	EOM	EOM	EOM	EOM	ARO	NONHC
		(m)		(%)	(%)	(%)	(%)	(%)	x 100	x 100
15/12-	-09									
G5650) clst	2692.5	SWC	30.0	16.6	19.7	36.3	31.3	84.1	57.0
G5669) clst	: 2715	CUTT	33.8	16.4	22.8	39.2	24.5	72.0	64.3
G5652	sst?	2787.00	CORE	3.7	63.1	36.0	99.1	11.3	175.4	1023.4
G5654	sst	2807.00	CORE	3.6	56.8	33.5	90.3	10.7	169.6	934.7
G5683	3	2810.00	OIL DST	2.8	49.4	41.7	91.1	8.5	118.5	1026.0
G5656	sst	2862.00	CORE	4.1	58.6	29.8	88.4	10.4	196.7	763.1
G5684	÷	2863.50	OIL FMT	2.1	58.7	33.3	92.0	6.2	176.2	1151.5
G5658	sst s	2868.00	CORE	4.7	55.2	29.2	84.4	11.0	189.1	538.4
G5659	sst	2871.50	CORE	11.1	49.5	32.3	81.8	9.6	153.3	448.4
G5661	sst	2886.50	CORE	6.2	45.8	26.7	72.5	7.7	171.6	262.9
G5663	sst	2907.00	CORE	12.6	50.2	28.6	78.8	7.0	175.6	372.1
G5664	sst	2921.00	CORE	12.3	13.6	8.6	22.2	40.7	158.4	28.6
Legend	l:					NOMIC	EOV			
₹ F —	NONHC	is calcula	iceu as t	me arriere.	nce :	NONUC	= LOU	- nu		

Table 2.12Bulk composition of EOM and oils (from MPLC)

EMS/IKU::D1\$:[IK22213900.REPORT]TEXT.AA0;43/report text/27/12-JAN-93

Table 2.13	Bulk composition	of EOM and oils	(from Iatroscan)
10010 2.15	Durk composition	of Loni and ons	() () () () () () () () () () () () () (

IKUNO	FRAC NAME	DEPTH (m)	SAMPLE TYPE	SAT EOM Z	ARO EOM Z	RESIN1 EOM Z	RESIN2 EOM Z	SAT ARO Z	RESIN1 RESIN2 Z
15/12-	09								
G5650		2692.5	SWC	19.18	28.29	43.97	8.57	67.80	513.07
G5669		2715	CUTT	23.39	31.58	39.11	5.94	74.07	658.42
G5652		2787.00	CORE	67.83	30.44	1.04	0.70	222.83	148.57
G5654		2807.00	CORE	63.77	34.89	0.91	0.45	182.77	202.22
G5683		2810.00	OIL DST	42.66	56.38	0.60	0.38	75.67	157.89
G5656		2862.00	CORE	63.00	35.10	1.47	0.44	179.49	334.09
G5684		2863.50	OIL FMT	55.45	43.55	0.64	0.36	127.32	177.78
G5658		2868.00	CORE	63.05	34.48	2.06	0.42	182.86	490.48
G5659		2871.50	CORE	56.10	40.40	1.99	1.52	138.86	130.92
G5661		2886.50	CORE	63.56	32.49	3.01	0.95	195.63	316.84
G5663		2907.00	CORE	65.96	30.22	1.80	2.03	218.27	88.67
G5664		2921.00	CORE	16.46	7.33	20.58	55.64	224.56	36.99
v 1									

Legend

-1 - No data available.

 Table 2.14
 Isotope composition of EOM, oils, chromatographic fractions and kerogen.

Sample	Depth m RKB	Sample type (e EOM δ ¹³ C ⁰ / ₀₀ PDB)	$\begin{array}{c} \text{SAT} \\ \delta^{13}\text{C} \\ (^{0}/_{00}\text{PDB}) \end{array}$	ARO δ ¹³ C (⁰ / ₀₀ PDB	NSO δ ¹³ C)(⁰ ∕ ₀₀ PDB)	$\begin{array}{c} \mathbf{ASPH} \\ \mathbf{\delta}^{13}\mathbf{C} \\ 0$	KEROGEN δ ¹³ C)(⁰ / ₀₀ PDB)
G 5669	2715	cut	-28.3	-29.3	-28.5	-28.3	-28.3	
G 5652	2787.00	core	-28.9	-29.1	-28.4	-28.0	-28.8	
G 5654	2807.00	core	-28.9	-29.4	-28.5	-28.2	-29.0	
G 5683	2810.00	oil	-28.9	-29.3	-28.6	-29.0	-28.9	
G 5656	2862.00	core	-28.9	-29.2	-28.4	-28.5	-28.8	
G 5684	2863.50	oil	-28.9	-29.2	-28.5	-28.4	-29.0	
G 5670	2724	cut						-27.7

Table 2.15

Ratios derived from gas chromatograms of saturated hydrocarbons

15/12-09 G5650 clst 2692.5 2.5 1.9 0.7 2.9 2.0 0.4 1.0 1.0 G5669 clst 2715 2.0 1.8 1.1 1.7 0.9 0.9 1.1 1.2 G5652 sst 2787.00 1.2 0.6 0.5 1.1 1.6 0.4 1.0 1.0 G5654 sst 2807.00 1.3 0.6 0.5 1.2 1.9 0.4 1.0 1.0 G5656 sst 2862.00 1.3 0.6 0.5 1.2 1.6 0.4 1.0 1.0 G5658 sst 2862.00 1.3 0.6 0.5 1.2 1.5 0.5 1.0 1.0 G5658 sst 2863.50 1.3 0.6 0.5 1.2 1.5 0.5 1.0 1.0 G5659 sst 2868.00 1.2 0.6 0.6 1.2 1.9 0.3 1.0 1.0 G5659 sst 2886.50 1.4 0.7 0	IKUNO	LITHOL	OGY DEPTH	Pri Phy	Pri A= n-C17	Phy B= n-C18	A B	n-C17 n-C27	n-C31 n-C19	CPI 1	CPI 2
	15/12-0 G5650 G5669 G5652 G5654 G5683 G5656 G5684 G5658 G5658 G5659 G5661 G5663 G5664	9 clst clst sst oil sst oil sst sst sst sst sst	2692.5 2715 2787.00 2807.00 2810.00 2862.00 2863.50 2868.00 2871.50 2886.50 2907.00 2921.00	2.5 2.0 1.2 1.3 1.3 1.3 1.3 1.3 1.2 1.2 1.4 1.5 1.2	1.9 1.8 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.7 0.7	0.7 1.1 0.5 0.5 0.5 0.5 0.5 0.6 0.6 0.5 0.5	2.9 1.7 1.1 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2	2.0 0.9 1.6 1.9 1.6 1.5 1.3 1.5 1.9 2.0 3.1 1.5	0.4 0.9 0.4 0.4 0.5 0.6 0.5 0.3 0.3 0.3 0.5	$1.0 \\ 1.1 \\ 1.0 $	$1.0 \\ 1.2 \\ 1.0 $

		1			C25+C27+C29+C31		C25+C27+C29+C31	
CPI1	=	-	*	(+)
		2			C24+C26+C28+C30		C26+C28+C30+C32	

 $CPI2 = 2 \star C27 / (C26+C28)$

Ratios involving pristane and phytane are calculated from peak areas. All other ratios are calculated from peak heights.

 Table 2.16
 Ratios derived from gas chromatograms of aromatic hydrocarbons

IKUNO	LITHO- LOGY	DEPTH	MPI-1	MPI-2
15/12-0)9			
G5650	clst	2692.5	0.54	0.50
G5669	clst	2715	0.52	0.49
G5652	sst	2787.00	0.65	0.66
G5654	sst	2807.00	0.62	0.61
G5683		2810.00	0.64	0.60
G5656	sst	2862.00	0.63	0.65
G5684		2863.50	0.64	0.61
G5658	sst	2868.00	0.62	0.58
G5659	sst	2871.50	0.68	0.68
G5661	sst	2886.50		
G5663	sst	2907.00	0.65	0.62
G5664	sst	2921.00	0.51	0.55
NDT 1	1.5 ((2MP+3MP)		
nri-i =	P+1	MP+9MP		

		3 (2MP)
MPI-2	=	
		P+1MP+9MP

All ratios are calculated from peak heights.

IKUNO	LITHO-	DEPTH	Pri	Pri A=	Phy B	A
	2001		Phy	n-C17	n-C18	В
15/12-0)9					
G5670	clst	2724	-1	-1	-1	-1
G5652	sst	2787.00	1.2	0.8	0.7	1.1
G5657	sst	2865.00	1.1	0.8	0.7	1.1
G5660	sst	2878.50	1.0	1.0	0.8	1.2
G5671	sst	2934	-1	-1	-1	-1

Ratios are calculated from peak areas.

IKUNO	DEPTH	αβ/αβ+βα	225	22S	22S	20S	ββ	ββ
	m	hopanes	hopanes	hopanes	hopanes	steranes	steranes	steranes
		1)	2)	3)	4)	5)	6)	7)
15/12-09								
G5650	2692.5	0.83	61	60	60	40	58	41
G5669	2715	0.84	60	60	61	40	56	39
G5652	2787.00	0.92	58	60	62	41	73	58
G5654	2807.00	0.92	59	61	62	41	73	58
G5683	2810.00	0.92	59	62	62	39	75	60
G5656	2862.00	0.92	58	61	62	41	74	58
G5684	2863.50	0.92	59	62	61	39	76	61
G5658	2868.00	0.92	59	61	62	43	74	59
G5659	2871.50	0.92	59	60	61	41	74	59
G5661	2886.50	0.92	60	60	62	40	74	59
G5663	2907.00	0.92	58	59	61	41	75	60
G5664	2921.00	0.92	58	62	63	43	76	62

Table 2.18	Aolecular ratios from sterane and terpane mass chromatograms (maturity characteristic	
	atios)	

Legend:

- 1) $30\alpha\beta/(30\alpha\beta+30\beta\alpha)$ in m/z 191.
- 2) 100 * 31αβS/(31αβS+31αβR) in m/z 191.
- 3) 100 \star 32 $\alpha\beta$ S/(32 $\alpha\beta$ S+32 $\alpha\beta$ R) in m/z 191.
- 4) 100 * average of 31αβS/(31αβS+31αβR),....,35αβS/(35αβS+35αβR) in m/z 191.
- 5) 100 * 29aaS/(29aaS+29aaR) in m/z 217.
- 6) 100 * 2 * (29ββR+29ββS)/(29ααS+29ααR+2(29ββR+29ββS)) in m/z 217.
- 7) 100 * (29ββR+29ββS)/(29ααS+29ααR+29ββR+29ββS) in m/z 217.

IKUNO	DEPTH	(24/3)/30αβ	27 Tm /27Ts	30d/30αβ	28αβ/30αβ	27dβS/
		terpanes	terpanes	terpanes	terpanes	27dBS+27aaR
		1)	2)	3)	4)	5)
15/12-09						
G5650	2692.5	0.03	5.26	0.08	-1	-1
G5669	2715	0.04	3.25	0.07	-1	0.55
G5652	2787.00	0.10	0.77	0.08	-1	0.63
G5654	2807.00	0.09	0.74	0.07	-1	0.63
G5683	2810.00	0.09	0.75	0.08	-1	0.65
G5656	2862.00	0.09	0.73	0.07	-1	-1
G5684	2863.50	0.10	0.75	0.06	-1	-1
G5658	2868.00	0.08	0.80	0.07	-1	0.63
G5659	2871.50	0.09	0.77	0.08	-1	0.62
G5661	2886.50	0.09	0.77	0.07	-1	0.62
G5663	2907.00	0.10	0.75	0.07	-1	0.63
G5664	2921.00	0.11	0.98	0.06	-1	-1

Table 2.19	Molecular ratios from sterane and terpane mass chromatograms (maturity and so	urce
	characteristic ratios)	

1) $(24/3)/30\alpha\beta$ in m/z 191.

2) 27Tm/27Ts in m/z 191.

3) 30d/30αβ in m/z 191.

4) 28αβ/30αβ in m/z 191.

.....

5) 27dβS/(27dβS+27ααR) in m/z 217.

Table 2.20 Internal distribution of C_{27} , C_{28} and C_{29} regular steranes

IKUNO	DEPTH	from	m m/z 217	1)	from	rom m/z 218	2)	
		C27	C28	C29	C27	C28	C29	
		(%)	(%)	(%)	(%)	(%)	(%)	

15/12-09								
G5650	2692.5	-1	-1	-1	39.2	17.7	43.1	
G5669	2715	45.1	18.5	36.4	36.0	20.8	43.2	
G5652	2787.00	52.8	18.8	28.4	37.9	28.0	34.1	
G5654	2807.00	53.6	18.9	27.4	36.9	28.6	34.5	
G5683	2810.00	52.5	19.5	28.1	39.2	27.4	33.3	
G5656	2862.00	-1	-1	-1	36.7	28.7	34.5	
G5684	2863.50	-1	-1	-1	- 38.8	26.5	34.8	
G5658	2868.00	53.3	19.7	27.0	36.9	28.6	34.5	
G5659	2871.50	52.6	19.9	27.5	37.6	27.9	34.6	
G5661	2886.50	53.5	19.3	27.2	37.6	28.6	33.8	
G5663	2907.00	54.2	18.8	27.0	38.0	27.3	34.7	
G5664	2921.00	-1	-1	-1	38.6	26.5	34.9	
Legend:				*****				
1)	distrib	ution of p	eaks 27a	αR , $28\alpha\alpha R$,	, 29aaR in m/z	217.		
2)	distribution of peaks							
	h+i: (28dβS+27ββR)+(27ββS+28dαR)							
	$n+o: (29d\alpha R+28\beta\beta R)+28\beta\beta S$							

r+s: 29ββR+29ββS.

-1 = Data are not available or cannot be calculated.

- 35 -

15/12-95 ROCK-EVAL PYROLYSIS DATA

Figure 2.1 Rock-Eval pyrolysis data versus depth

Figure 2.2 Rock-Eval hydrogen index versus Tmax

Figure 2.3 Vitrinite reflectance versus depth

15/12-09 ABUNDANCE AND COMPOSITION OF EOM

Figure 2.4 Abundance and composition of EOM versus depth

δDCH4 (‰SMOW) - 300 - 250 - 200 - 150 - 100 - 70 -B(t) B(m) - 60 Μ ⁵¹³ССН4 (%• РDВ) To - 50 40 2.0 Ro . Tc -3.0 -4.0 - 30 TT(m) mixed TT(h) mid - 20 -

Figure 2.5

Isotope plots for characterization of natural gas (after Schoell 1983). DST 2 gas sample (2810.00 m).

- a) Carbon isotope value of methane vs. C_{2+} -content.
- b) Carbon isotope value of methane vs. carbon isotope value of ethane.
- c) Carbon isotope value vs. hydrogen isotope value of methane.
 - B = bacterial gases

$$T = thermogenic (catagenetic) gases:
 T_0 associated with oil
 T_c associated with condensate$$

- (m) = marine source material
- (h) = humic source material

c)

Figure 2.6 Isotope plot for maturity characterization of natural gas (after James, 1983). Differences in carbon isotope values for individual gas components of the DST 2 gas sample (2810.00 m) are plotted. Note that other plotting positions are possible since the data do not match the curves perfectly. "Old" TAI (scale 1-5) is used.

Figure 2.7 $\delta^{13}C$ isotope values of saturated versus aromatic hydrocarbons (°/₀₀ PDB). After Sofer, 1984.

Figure 2.8

- 44 -

Isotope type curves (Galimov plot)

Figure 2.9

- 48 -

Gas chromatograms of total oil

+

- 49 -

- 50 -

.

Figure 2.10

Gas chromatograms of the C_2 - C_8 fraction of oils

1.2

Figure 2.11

.....

- 54 -

Gas chromatograms of thermal extract and pyrolysate

- 58 -

Figure 2.12

.

- 60 -

Gas chromatograms of saturated hydrocarbons

- 61 -

- 62 -

- 63 -

.

- 64 -

^{- 6}

.

65 -

- 67 -

- 68 -

- 69

ŧ

- 71 -

- 72 -

Figure 2.13

- 73 -

Gas chromatograms of aromatic hydrocarbons (FID)

- 74 -

6 aro_uke50.2.1

. 76 -

6 aro_uke50,13,1

- 78 -

- 79 -

- 80 -

6 aro_uke50,10,1

- 82 -

- 83 -

- 85 -

.

Figure 2.14

GC-MS chromatograms of saturated hydrocarbons

M/Z: 177, 191, 205, 217, 218, 231, 259

11

STERANES (m/z 217, 218)

Name	Previous Code		New
			Code
13 β (H), 17 α (H), 20(S)-cholestane (diasterane)	27a		27dβS
$13\beta(H)$, $17\alpha(H)$, $20(R)$ -cholestane (diasterane)	27b		27dβR
$13\alpha(H)$, $17\beta(H)$, $20(S)$ -cholestane (diasterane)	27c		27daS
$13\alpha(H)$, $17\beta(H)$, $20(R)$ -cholestane (diasterane)	27d		27daR
5α(H), 14α(H), 17α(H). 20(S)-cholestane	27e		27ααS
5α(H), 14β(H), 17β(H), 20(R)-cholestane	27f		27ββR
5α(H), 14β(H), 17β(H), 20(S)-cholestane	27g		27ββS
5α(H), 14α(H), 17α(H), 20(R)-cholestane	27h		27aaR
24-methyl-13 β (H), 17 α (H), 20(S)-cholestane (diasterane)	28a		28dβS
24-methyl-13 β (H), 17 α (H), 20(R)-cholestane (diasterane)	28b		28dβR
24-methyl-13 α (H), 17 β (H), 20(S)-cholestane (diasterane)	28c		28daS
24-methyl-13 α (H), 17 β (H), 20(R)-cholestane (diasterane)	28d		28daR
24-methyl- $5\alpha(H)$, $14\alpha(H)$, $17\alpha(H)$, $20(S)$ -cholestane	28e		28aaS
24-methyl-5 α (H), 14 β (H), 17 β (H), 20(R)-cholestane	28f		28ββR
24-methyl-5 α (H), 14 β (H), 17 β (H), 20(S)-cholestane	28g		28ββS
24-ethyl-13 β (H), 17 α (H), 20(S)-cholestane (diasterane)	29a		29dβS
24-ethyl-13 β (H), 17 α (H), 20(R)-cholestane (diasterane)	29b		29dβR
24-ethyl-13 α (H), 17 β (H), 20(S)-cholestane (diasterane)	29c		29daS
24-ethyl-13 α (H), 17 β (H), 20(R)-cholestane (diasterane)	29d		29daR
24-ethyl-5α(H), 14α(H), 17α(H), 20(S)-cholestane	29e		29aaS
24-ethyl-5 α (H), 14 β (H), 17 β (H), 20(R)-cholestane	29f		29β βR
24-ethyl-5 α (H), 14 β (H), 17 β (H), 20(S)-cholestane	29g		29ββS
4-ethyl-5α(H), 14α(H), 17α(H), 20(R)-cholestane	29h		29aaR
4-propyl-5α(H), 14α(H), 17α(H), 20(S)-cholestane	30e		30aas
4-propyl-5 α (H), 14 β (H), 17 β (H), 20(R)-cholestane	30f		30BBR
4-propyl-5 α (H), 14 β (H), 17 β (H), 20(S)-cholestane	30g		30ββ S
4-propyl-5 α (H), 14 α (H), 17 α (H), 20(R)-cholestane	30h		30aaR
-methyl-14 α (H), 17 α (H)-cholestanes ^x			Μ28αα
.24-dimethyl-14 α (H), 17 α (H)-cholestanes			Μ29αα
-methyl-24-ethyl-14 α (H), 17 α (H)-cholestanes			Μ30αα
,23.24-trimethyl-14 α (H), 17 α (H)-cholestanes [#] (dinosteran	es)		M30D

x various possible isomers at 4.5.20 positions

* various possible isomers at 4.5,20,24 positions

various possible isomers at 4,5,20,23,24 positions

TRITERPANES (m/z 177, 191)

×

Name	Previous	New	
	Code	Code	
$C_{23}H_{42}$ tricyclic terpane	Р	23/3	
C24H44 tricyclic terpane	Q	24/3	
C25H46 tricyclic terpane	R	25/3	
$C_{24}H_{42}$ tetracyclic terpane	S	24/4	
$C_{26}H_{48}$ tricyclic terpane	Т	26/3	
18α(H)-22.29,30-trisnomeohopane	27A	27Ts	
17α(H)-22,29,30-trisnorhopane	27B	27Tm	
17α(H), 21β(H)-28,30-bisnorhopane	28A	28αβ	
18α(H)-30-norneohopane		29Ts	
17α(H), 21β(H)-30-norhopane	C29A	29αβ	
17β(H), 21α(H)-30-norhopane	C29B	29βα	
15α -methyl- 17α (H)-27-norhopane (TtX)	Х	30 d	
18α(H)-oleanane		300	
17α(H), 21β(H)-hopane	C30A	30αβ	
$17\beta(H)$, $21\alpha(H)$ -hopane (moretane)	C30B	30βα	
Gammacerane		30G	
17α(H), 21β(H), 22(S)-homohopane	C31S	31αβS	
$17\alpha(H)$, $21\beta(H)$, $22(R)$ -homohopane	C31R	31αβR	
17 α (H), 21 β (H), 22(S)-bishomohopane	C32S	32αβS	
17 α (H), 21 β (H), 22(R)-bishomohopane	C32R	32αβR	
$17\alpha(H)$, $21\beta(H)$, $22(S)$ -trishomohopane	C33S	33αβS	
$17\alpha(H)$, $21\beta(H)$, $22(R)$ -trishomohopane	C33R	33αβR	
$17\alpha(H)$, $21\beta(H)$, $22(S)$ -tetrakishomohopane	C34S	34αβS	
$17\alpha(H)$, $21\beta(H)$, $22(R)$ -tetrakishomohopane	C34R	$34\alpha\beta R$	
$17\alpha(H)$, $21\beta(H)$, $22(S)$ -pentakishomohopane	C35S	35αβS	
$17\alpha(H)$, 21 $\beta(H)$, 22(R)-pentakishomohopane	C35R	35αβR	
17α(H), 21β(H)-25,28,30-trisnorhopan e		25nor28αβ	
$7\alpha(H)$, 21 $\beta(H)$ -25-norhopane		25nor30αβ	

36.0

34.0

38.0

40.0

42.0

44.0

46.0

48.0

G5669SAT

100-

Z.FS

ØMin

32.0

The TRIO-1 GC-MS Data System 17/12/1992 Instrument:trio-1

The TRIO-1 GC-MS Data System 17/12/1992 Instrument:trio-1

- 92 -

The TRIO-1 GC-MS Data System 16/12/1992 Instrument:trio-1

The TRIO-1 GC-MS Data System 16/12/1992

Instrument:trio-1

The TRIO-1 GC-MS Data System 16/12/1992 Instrument:trio-1

16/12/1992 Instrument:trio-1

The TRIO-1 GC-MS Data System 16/12/1992 Instrument:trio-1

VG LAB-BASE

,

The TRIO-1 GC-MS Data System 16/12/1992 Instrument:trio-1

16/12/1992 Instrument:trio-1

- 112 -

VG LAB-BASE The TRIO-1 GC-MS Data System 16/12/1992 22.2139.00 STATOIL 15/12-9S Instrument:trio-1 G5656SAT 2862.00 m 1307904 231 #1 100 7.FS Ø 35.0 40.0 45.0 50.0 55.0 60.0 65.0

- 123 -

÷ 1

11

1

.

è

-

Figure 2.15 Internal distribution of C_{27} , C_{28} and C_{29} regular steranes (from m/z 218)

APPENDIX I

ANALYTICAL MEHODS AND INTERPRETATION LEVELS

Lithological descriptions

Lithological examinations were carried out using a binocular microscope (maximum 50x magnification). Colour were described on dry samples according to the "Rock Colour Chart" published in 1979 by the Geological Society of America, Boulder, Colorado. Handpicking of the cuttings for organic geochemical analyses was based on the lithological descriptions.

Total Organic Carbon

Picked and bulk samples were crushed in a mortar. Aliquots of the samples were then weighed into Leco crucibles, then treated three times with hot 10% HCl in order to remove carbonate, and finally washed four times with distilled water in order to remove any traces of HCl. The crucibles were then placed on a hot plate (60°C) and dried for 24 hours. The total organic carbon (TOC) content of the dried samples was determined using a CS 244 carbon/sulphur analyser.

The instrument was calibrated using a sediment standard with 2.72% carbon. Calibration and blank runs were carried out every 15th measurement.

Rock-Eval pyrolysis

Powdered sample (100 mg shale, 5-10 mg coal) was weighed into a platinum crucible (the base and cover of which are made of sintered steel), and analysed on a modified Rock-Eval II pyrolyser (Girdel/IFP) under standard conditions (Carrier gas: helium; flow rate: 50 ml/min.; temperature programme: 300°C (3 min.) - 25°C/min. - 550°C).

Preparation of kerogen concentrates

The powdered and pre-extracted rock sample was treated overnight with concentrated HCl (200 ml), followed by treatment with hot 40% HF (100 ml, 70°C, overnight). The acid was removed by decanting and repeated washing with hot water (on a 10μ sieve), 10% ammonium carbonate solution was added after HF treatment (>2 hours), and the kerogen concentrate was washed with cold water (2x).

The kerogen concentrates for isotop analyses was dried in a vacuum oven.

Pyrolysis Gas Chromatography (Py-GC Programmed)

Thermal extraction (S1)

The whole rock sample (20-30 mg) was placed in a boat-shaped sample probe and thermo-extracted in a stream of helium at 340°C for 4 minutes.

Pyrolysis-Gas Chromatography (S2)

The thermo-extracted sample was pyrolysed in a helium atmosphere using a transformed injector system from Varian mounted on a Varian 3400 GC after the principles described by Solli et al. (1984). The pyrolysis temperature program was 340°C - 50°C/min. - 550°C. The outlet of the furnace was directly connected to a splitter (30:1) which enabled the pyrolysis products to be simultaneously recorded as a bulk "S2" peak by an FID and passed into a gas chromatograph. The pyrolysis products were trapped on the chromatographic column by cooling the front part of the column with liquid nitrogen. On completion of the pyrolysis programme, the collected pyrolysis products were injected on to the column by removing the nitrogen bath. The GC conditions are outlined below.

GC conditions

Column: S1: 30 m DB-1, i.d. 0.32 mm, fused silica capillary column. S2: 30 m DB-5, i.d. 0.32 mm, fused silica capillary column. Carrier gas: Helium, inlet pressure 7.5. psi; flow rate 1.5 ml/min.

Temp. programme: -10°C (16 min.) - 5°C/min. - 320°C (10 min.)

Extractable Organic Matter

Powdered rock was extracted by Soxhlet technique with boiling dichloromethane (DCM) containing 7%(v/v) methanol as solvent in a Soxhlet apparatus for 24 hours.

DCM of organic geochemical grade was used and blank analyses indicated that the occurrence of contaminating hydrocarbons was negligible. Activated copper fillings were used in order to remove any free sulfur from the samples.

After extraction, the solvent was evaporated off using a Büchi Rotavapor and the amount of extracted organic matter (EOM) was determined.

Evaporation of the light components in fluid samples

Prior to chromatographic separation, the oil/condensate samples were evaporated in a rotary evaporator for 10 min. The waterbath was about 90°C and the waterpump was at a maximum. This is equivalent to topping up to 210°C.

The fraction of light components was determined as the weight difference between the original sample and the residuum left after heating.

Medium-pressure liquid chromatography (MPLC)

The EOM or oil (>210°C) sample was diluted in DCM (1:3 mg/µl) and the asphaltenes were precipitated using excess n-pentane (40:1 pentane: (DCM+EOM)). The asphaltene fraction was weighed after drying at room temperature until constant weight was obtained.

The remaining maltenes were separated into saturated, aromatic and nonhydrocarbon fractions using an MPLC system with n-hexane as eluant (Radke et al. 1980). The various fractions were concentrated using a Büchi Rotavapor. Then they were transferred to glass vials. The remaining solvent was removed.

Iatroscan

The extractable organic material was diluted with DCM and ca. 20 μ g of the solution were applied to a precleaned and activated Chromarod (type SIII). Two replicates of each sample were analysed. The rods were fully developed with n-hexane (10-11 cm), then dried and redeveloped to half-rod height

(5.5 cm) in toluene, and finally developed in DCM+MeOH (93:7 v/v, 2.5 cm).

The rods were passed through the flame-ionisation detector (FID) of a Iatroscan TH-10 ($H_2 = 160 \text{ ml/min}$; air = 2 l/min; scan speed = 0.38 cm/sec (gear no. 30)). The FID response was recorded and integrated using a VG Multichrom lab data system. Relative response factors were determined by using an external standard.

Gas chromatographic analysis

The saturated hydrocarbon fractions were diluted with n-hexane and analysed on a Hewlett Packard 5730A gas chromatograph equipped with a 15 m DB-1 or fused silica column (0.25 mm id). Hydrogen was used as a carrier gas with a flow rate of about 1.5 ml/min. Injections were performed in split mode (split ratio 1:20). The temperature program used was 80°C (2 min.) -4°C/min. - 300°C.

The whole oil sample from hydrous pyrolysis was analysed using a Varian 3400 gas chromatograph fitted with a 30 m DB-5 fused silica column (0.32 mm id). 0.02 μ l of sample solution were injected in split mode (split ratio 1:20). Hydrogen with a flow rate of 2.5 ml/min. was used as a carrier gas, and the temperature programme used was -50°C (2 min.) - 4°C/min. - 300°C.

The total aromatic fractions were diluted with n-hexane and analysed on a Varian 3400 gas chromatograph, fitted with a DB-5 fused silica column (30 m x 0.32 mm i.d.), using a hydrogen carrier gas with a flow rate of 2.5 ml/min. The injection split ratio was 1:20. The temperature programme used was $80^{\circ}C$ (2 min.) - $4^{\circ}C/min$. - $300^{\circ}C$.

All the data from the GC analyses were processed on a VG Multichrom lab data system.

Gas chromatography - mass spectrometry (GC-MS)

GC-MS analyses of the saturated hydrocarbons were performed on a VG TRIO 1 quadrupol.

A HP 5890 Series II GC was fitted with a fused silica DB-5 capillary column (30 m x 0.25 mm i.d.). Helium was used as carrier gas with 7 psi as inlet pressure. The injections were performed in splitless mode.

The GC oven was programmed from 120°C (2 min.) to 300°C at 4°C/min.

The saturated hydrocarbons were analysed in multiple ion mode (MID) at a scan cycle time of approximately 2 secs. The mass spectrometers operated at 70eV electron energy with an ion source temperature of 200°C. Data acquisition was performed using VG data systems.

Peaks were identified by comparison with elution patterns in certain mass chromatograms. Peak ratios were calculated from peak heights in the appropriate mass chromatograms.

Evaluation of kerogen type and thermal maturity in transmitted light

The rock samples were crushed and treated with hydrochloric acid and hydrofluoric acid in order to remove the mineral matter and isolate the kerogen. The isolated kerogen was mounted in glycerine jelly on microscope slides as a strew-mount.

The treatment of the isolated kerogen varied according to the requirements and preservation of the samples. This included:

<u>T-slide</u> :	total acid residue.						
<u>O-slide</u> :	kerogen debris remaining after flotation in ZnBr_2 to remove						
	heavy minerals.						
<u>Si-slide</u> :	sieved residue.						
X-slide:	oxidised residue.						

T- and/or O-slides were necessary in order to evaluate the kerogen composition/palynofacies of the samples.

Si- and/or X-slides were required if it was necessary to concentrate larger kerogen fragments or spores/pollen for spore colouration and/or age determination, respectively, (N.B.: oxidised residue is not used for spore colour determination as oxidation will alter the colour).

The samples were examined using a Leitz Dialux microscope with a white

halogen light source. Objective lenses of 10x and 63x magnification were used. The higher magnification allowed a more detailed description of the kerogen, with resolution down to $2\mu m$ diameter.

Thermal alteration indices (TAI) were measured from the colour of spores and pollen. The techniques used for this are adapted from Staplin (1969) and Burgess (1974). IKU has used a 1-10 scale for thermal alteration index (TAI)/Spore colouration index (SCI) since December, 1986.

Kerogen terminology

The following kerogen terminology is used:

- Amorphous material degraded, unstructured material of unidentified origin.
- 2. Algal material particles of recogniseably algal origin.
- 3. Liptinitic material recogniseable spores, pollen, cuticle and cysts.
- 4. Woody material structured and unstructured woody tissue.
- 5. Coaly material black, reworked or oxidised material.

Comparison of microscopic thermal maturation systems at IKU

SPORE COLOUR VITRINITE REFLECTANCE SPORINITE FLUORESCENCE

TAI		NEW TAI	%	
1 -	2-	1.0- 3.5	0.25-0.40	1-4
2	2	3.5- 4.0	0.40-0.60	4-6
2 -	2+	4.0- 4.5	0.60-0.80	6-7
2+ -	3-	4.5- 5.5	0.80-1.00	7-8
3	3	5.5- 6.0	1.00-1.20	8-9
3 -	5	6.0-10.0	<1.20 A	bsent

At IKU, TAI determination is generally undertaken on bisaccates.

Relation between fluorescence colour and sporinite fluorescence zones:

		colour	G 	G/Y	Y	Y/0	L.0	M.O.	D.O.	0/R	R	
EXC. BAR.	400 n 530 n	nm nm	_									

- A.I.8 -

Isotope IFE

1

The δ^{13} C isotope analysis was performed by mass spectrometry at the Institute for Energy Technology (IFE) in Oslo according to their method. Their reference value for the standard NBS-22 is -29.8.

APENDIX II

ROCK-EVAL ANALYSES OF ROCK STANDARD

- A.II.1 -

ROCK-EVAL ANALYSIS OF ROCK STANDARD

Project : 22213900 Date : 93.01.05

Rock standard analysis number	Date	Weight mg	S1 mg∕g rock	S2 mg/g rock	Tmax °.C
Black Ven Marl (n	ominal values):		0.47	19.00	420
46	92.11.20	102.8	0.19	19.92	417
47	92.11.20	108.3	0.26	20.54	418*
48	92.11.20	100.3	0.25	19.32	419
49	92.11.20	97.0	0.21	18.90	419
50	92.11.20	101.4	0.21	19.30	419
51	92.11.20	102.3	0.24	19.29	~ 420
minimum			0.19	18.90	417
maximum			0.26	20.54	,420
average			0.23	19.55	419
standard deviatio	n		0.0	0.0	0
number of measure	ments		6	6	
Legend : -1 : Missing	value				****

* : not used