Prøve	Dybde	<				r	n/z191 -									[m/z191 -							>
nr.	(m)	Intens.	23/3	24/4	27Ts	27Tm	28ab	nor30	29ab	30d	29ba	300	30ab	30ba	31abS	31abR	32abS	32abR	33abS	33abR	34abS	34abR	35abS	35abR
\$8719		9310208	21	22	21	23	91	34	37	15	20	0	91	23	22 ·	42	13	20	14	12	٩	7	7	10
58722	HBB	1152	-1	2		5	129	0	6	12	6	ň	21	7	5	10	2	5	0	12	ő	, 0	,	0
S8724		18567168	6	8	18	20	21	25	43	14	15	õ	104	20	30	20	18	16	15	12	a	7	6	5
S8712		23146496	ă	ğ	18	19	20	26	40	13	15	ŏ	104	17	30	26	18	16	17	13	10	7	6	5
58726		27107440	5	8	15	22	20	20	47	13	15	ň	105	21	31	20	15	17	14	11	10	7	1	4
S8714	нрр	86	12	4	22	13	6	5	80	11	41	ň	125	51	62	71	20	38	0	14	5	, 0	- -	7
S8715	HBP	201	8	3	4	22	ő	Ă	38	5	13	ň	50	21	42	30	12	17	5	6	3	۵ ۵	3	, 3
59729		16502806	7	8	15	30	21	25	50	14	10	ő	104	27	38	30	17	21	14	12	0	- -	6	6
S8703		48726016	2	6	5	42	10	7	53	14	25	ŏ	107	34	39	35	18	23	8	10	6	7	4	6
																								_
S8676		7792640	20	19	40	27	24	58	52	30	15	0	92	14	30	22	23	17	22	15	16	10	11	7
S8735		12939264	12	14	35	28	26	65	47	35	16	0	94	17	29	19	24	17	23	15	16	11	10	8
S8678		20242432	8	10	29	23	23	55	45	26	16	0	97	17	31	21	25	19	25	17	17	11	10	8
S8679		12783616	8	10	31	24	25	57	46	26	16	0	97	16	30	21	25	19	25	16	18	11	11	9
S8680		8325120	13	15	40	29	25	93	39	34	15	0	70	15	15	10	20	17	26	16	19	12	12	9
S8681		7799808	40	29	37	25	21	23	65	15	17	0	99	15	30	24	18	15	15	11	10	7	7	5
S8731		17965056	4	5	18	17	23	26	40	16	15	0	99	17	29	25	19	17	18	13	12	9	8	6
S8684		19058688	7	7	18	15	23	24	42	16	16	0	99	16	29	26	21	17	20	15	13	10	9	7
S8685		14766080	5	6	20	17	25	29	42	20	17	0	99	18	30	25	20	17	21	15	12	8	8	6
S8698		10760192	4	5	19	18	25	30	42	18	15	0	98	17	29	24	19	17	18	13	12	8	9	7
S8686		11046912	7	7	22	18	22	32	45	22	16	0	97	19	32	25	23	20	24	16	15	11	11	9
S8732		15572992	5	6	20	17	20	30	42	21	16	0	96	18	30	25	23	18	24	16	15	11	11	9
S8688		11165696	6	7	22	17	15	34	41	25	15	0	81	19	27	22	23	19	. 23	15	16	10	10	9
S8733		12099584	6	7	22	19	20	40	47	26	17	0	89	20	31	25	26	23	30	18	20	12	13	11
S8689		9297920	6	9	24	18	18	39	45	28	18	0	94	22	31	26	26	20	25	17	17	11	11	9
S8734		11845632	5	7	25	21	20	44	52	28	19	0	88	21	31	26	29	22	29	19	20	12	15	10
Fluids			_	c.								_					-		_					
S8737	HRP	854	5	9	33	24	29	63	52	37	21	0	119	20	33	24	26	19	24	15	16	10	11	7
S8738	HRP	492	7	14	37	28	29	82	55	41	19	0	115	22	37	26	30	21	23	13	13	7	9	5

S8719 6213632 38 30 26 79 23 26 32 100 S8719 3104788 46 29 68 66 63 68 10 11 12574720 106 114 S8724 5027840 48 35 30 35 54 59 95 S8715 492144 58 48 52 64 89 98 17 17 4136960 96 48 S8775 7223 26 52 97 53 51 55 98 58715 492144 58 48 52 66 91 99 16 16 6191104 100 62 S8716 HRP 14 43 30 03 81 71 13 10 .	Prøve nr.	Dybo (m)		Intens 2	27DbS 2	7DbR	27aaS	1/z217 27aaR	29aaS	2966 R :	29bbS	> 29aaR	Prøve nr.	Dybo (m)	de •	<intens 2<="" th=""><th>27bbR 2</th><th>27bbS</th><th>28bbR</th><th>√z218- 28bbS</th><th>29bbR</th><th>29bbS 3</th><th>0bbR</th><th>30bbS</th><th>m/z219 Intens</th><th>27D2</th><th>ppm</th></intens>	27bbR 2	27bbS	28bbR	√z218- 28bbS	29bbR	29bbS 3	0bbR	30bbS	m/z219 Intens	27D2	ppm
S8722 HRP 262 10 11 17 105 41 15 21 124 S8724 3767296 55 40 53 61 88 96 S87715 7223952 42 33 29 40 50 50 50 50 50 51 65 40 53 61 68 66 71 17 410660 96 48 S8726 6880406 46 33 30 19 99 20 34 40 107 S8715 HRP 96 50 50 68 39 110 S8715 HRP 98 31 30 81 77 13 10 10 10 10 123 33 30 30 81 17 17 100600 107 123 35 3673 2109264 57 42 55 63 33 94 17 17 17100600 107 123 35 567 56 53 56 56 56 56 56 56 5	S871	9		6213632	38	30	26	79	23	26	32	100	S8719	Ð		3104768	46	29	68	66	63	68	10	11	12574720	106	114
S8724 5027840 48 35 30 39 53 54 59 95 S8715 4221344 55 46 89 96 17 17 813600 96 48 S8715 7239524 233 29 37 53 51 55 98 S8715 4921344 56 48 52 64 99 81 71 17 8017200 101 93 S8714 HRP 14 43 30 19 92 38 40 107 S8714 HRP 98 33 40 30 81 77 13 10 17 1700000 17 123 S8702 25192208 9 7 14 8 96 867 22 50 33 94 17 17 1700000 17 123 S8703 25192208 9 7 14 8 96 867 62 87 60 2461696 65 43 51 63 86 84 18 17	S872	2 HRP		262	10	11	17	105	41	15	21	124	S8722	2 HRP	2	149	19	15	43	31	30	31	6	6	•		
S8715 7239352 42 33 29 40 50 50 53 98 S8715 4421344 58 48 52 64 89 98 17 17 6011920 0011920 001920 S8726 6680406 46 30 19 99 20 34 40 107 S8726 449664 57 44 56 610 102 99 11 13 - S8726 4371456 42 31 25 43 47 48 96 S8726 2699264 57 42 55 63 93 94 17 17 17100800 107 123 S8735 413140 63 46 47 106 S8735 4142080 60 40 47 66 87 87 18 17 213522 81 54 S8678 6220672 48 38 27 41 51 56 S679 3234912 58 47 60 87 87 18 17 <	S8724	4		5027840	48	35	30	39	53	54	59	95	S8724	4		3767296	55	40	53	61	88	96	17	17	4136960	96	48
S8726 6890496 46 35 29 37 53 51 55 98 S8726 4449664 57 44 56 50 102 99 16 16 6191 04 100 62 S8714 HRP 24 27 22 20 38 26 38 39 10 S8714 HRP 9 36 33 40 30 81 77 13 10 * S8728 4371465 42 31 25 43 47 48 96 S8728 2699264 57 42 55 63 93 41 17 17100500 107 123 S8730 25182208 9 7 14 16 56 58703 14094336 48 8 37 22 105 10 0 12722176 105 49 56 5676 2461696 65 43 51 63 86 84 18 17 2813952 81 54 S8676 0 4131840	S871	5		7293952	42	33	29	40	50	50	53	98	S871	5		4921344	58	48	52	64	· 89	98	17	17	8017920	101	93
S8714 HRP 14 43 30 19 99 20 34 40 07 S8714 HRP 9 36 33 40 30 81 77 13 10 * S8715 HRP 24 27 22 20 38 26 38 39 110 S8715 HRP 12 57 44 56 50 50 99 11 13 * S8703 25182208 9 7 14 18 30 46 47 106 S8703 14094336 48 8 37 22 105 105 0 0 12722176 105 49 S8676 0 4131840 63 46 30 29 38 45 41 42 S8676 0 2461696 65 43 51 65 87 48 8 260755 20 20 316 31 45 35 56 8673 426176 56 35 47 60 87 80	S872	6		6890496	46	35	29	37	53	51	55	98	S8726	6		4849664	57	44	52	65	91	99	16	16	6191104	100	62
S8715 HRP 24 27 22 20 38 26 38 39 10 S8715 HRP 12 57 44 56 50 102 99 11 13 · S8703 25182208 9 7 14 18 30 46 47 106 S8703 14094336 48 37 22 105 105 0 0 12722176 105 49 S8703 25182208 9 7 14 18 30 46 45 43 S8735 414094336 48 36 78 722 105 105 0 0 12722176 105 48 58 58 58 58676 0 2461696 65 43 51 63 86 84 18 17 2813952 81 54 58 58 58 58 58 51 66 35 47 66 57 87 18 18 16 16 56 58 58 58 58	S8714	4 HRP		14	43	30	19	99	20	34	40	107	S8714	4 HRF	2	9	36	33	40	30	81	77	13	10	*		
S8728 4371456 42 31 25 43 47 47 48 96 S8728 2699264 57 42 55 63 93 94 17 17 171 171 171 171 <td>S871</td> <td>5 HRP</td> <td></td> <td>24</td> <td>27</td> <td>22</td> <td>20</td> <td>38</td> <td>26</td> <td>38</td> <td>39</td> <td>110</td> <td>S871</td> <td>5 HRF</td> <td>2</td> <td>12</td> <td>57</td> <td>44</td> <td>56</td> <td>50</td> <td>102</td> <td>99</td> <td>11</td> <td>13</td> <td>•</td> <td></td> <td></td>	S871	5 HRP		24	27	22	20	38	26	38	39	110	S871	5 HRF	2	12	57	44	56	50	102	99	11	13	•		
S8703 25182208 9 7 14 18 30 46 47 106 S8703 14094336 48 8 37 22 105 105 0 0 12722176 105 49 S8676 0 4131840 63 46 30 29 38 45 41 42 S8676 0 2461696 65 43 51 63 86 84 18 17 2813952 81 54 S8678 682672 48 88 27 35 44 50 47 75 58679 528679 5114680 56 40 27 35 44 50 47 66 58 87 85 20 20 316184 85 50 S8667 5114680 56 40 27 25 24 77 28 33 31 S8680 1651200 64 31 42 68 87 85 20 20 3165184 85 50 50 66 95	S872	8		4371456	42	31	25	43	47	47	48	96	S872	8		2699264	57	42	55	63	93	94	17	17	17100800	107	123
S8876 0 4131840 63 46 30 29 38 45 41 42 S8676 0 2461696 65 43 51 63 86 84 18 17 2813952 81 54 S8735 6804352 59 41 27 27 39 46 45 43 S8735 4142080 60 40 47 65 87 87 18 18 3607552 80 49 S8679 5114880 56 40 27 35 44 50 47 75 S8679 3238912 58 37 46 58 78 52 20 20 3165184 85 50 S8680 3763200 61 46 25 22 27 28 33 31 S6860 1651200 64 31 42 68 59 71 15 18 2403328 82 51 S8681 2232320 51 40 53 55 56 85 88681	S870	3		25182208	9	7	14	18	30	46	47	106	S8703	3		14094336	48	8	37	22	105	105	0	0	12722176	105	49
S8735 6684352 59 41 27 27 39 46 45 43 S8735 414200 60 47 65 87 87 18 18 3607552 80 49 S8678 8220672 48 38 28 27 41 51 56 S8679 51426176 56 35 47 60 87 90 20 19 4405248 83 51 S8679 5114880 56 47 75 S8679 533861 746 68 87	S867	6	0	4131840	63	46	30	29	38	45	41	42	S867	6	0	2461696	65	43	51	63	86	84	18	17	2813952	81	54
S8678 6220672 48 38 28 27 41 51 51 56 S8678 5426176 56 35 47 60 87 90 20 19 4405248 83 51 S8679 5114880 56 40 27 35 44 50 47 75 S8679 323912 58 37 46 58 87 85 20 20 3165184 85 50 S8680 3763200 61 46 25 23 61 85 88 15 15 3795968 92 58 S8681 232320 51 40 39 43 53 55 56 85 S8684 4751360 46 51 62 90 95 16 17 18 3759104 92 20 18 3759104 92 20 18 3759104 92 20 18 3759104 92 20 18 3759104 93 53 56 58 59 90 S8684	S873	5		6884352	59	41	27	27	39	46	45	43	S873	5		4142080	60	40	47	65	87	87	18	18	3607552	80	49
S8679 5114880 56 40 27 35 44 50 47 75 S8679 3238912 58 37 46 58 87 85 20 20 3165184 85 50 S8680 3763200 61 46 25 22 27 28 33 31 S8680 1651200 64 31 42 68 59 71 15 18 2403328 82 51 S8681 223220 51 40 39 53 55 56 85 S8681 1781504 68 52 53 61 87 87 90 95 90 90 8684 4751360 46 37 47 56 84 94 16 17 336588 85 53 58 51 81 37 46 36 46 53 92 20 18 3759104 92 58 53 51 62 90 95 17 18 3576904 93 53 58 58	S867	8		8220672	48	38	28	27	41	51	51	56	S867	8		5426176	56	35	47	60	87	90	20	19	4405248	83	51
S8680 3763200 61 46 25 22 27 28 33 31 S8680 1651200 64 31 42 68 59 71 15 18 2403328 62 51 S8681 2232320 51 40 39 43 53 55 56 85 S8681 1781504 68 52 53 61 85 88 15 15 3795968 92 58 S8731 553696 40 31 26 32 57 57 92 S8684 4751360 46 37 47 56 84 94 16 17 3365888 65 53 S8685 5129216 35 31 26 34 49 57 57 92 S6685 3822592 50 40 51 62 90 95 17 18 3579904 33 53 56 58 58 53 93 16 18 210704 86 52 53 31 42 <td< td=""><td>S867</td><td>9</td><td></td><td>5114880</td><td>56</td><td>40</td><td>27</td><td>35</td><td>44</td><td>50</td><td>47</td><td>75</td><td>S867</td><td>9</td><td></td><td>3238912</td><td>58</td><td>37</td><td>46</td><td>58</td><td>87</td><td>85</td><td>20</td><td>20</td><td>3165184</td><td>85</td><td>50</td></td<>	S867	9		5114880	56	40	27	35	44	50	47	75	S867	9		3238912	58	37	46	58	87	85	20	20	3165184	85	50
S8681 2232320 51 40 39 43 53 55 56 85 S8681 1781504 68 52 53 61 85 88 15 15 3795968 92 58 S8731 5533696 40 31 26 32 51 61 56 91 S8731 423216 50 39 50 60 95 92 20 18 3759104 92 53 53 56 84 423216 50 39 50 60 95 92 20 18 3759104 92 53 53 55 56 85 59 90 S8684 4751360 46 37 47 56 84 94 16 17 3365888 55 53 58 53 55 56 85 90 S8698 322592 50 40 51 62 90 18 2120704 86 52 53 51 26 46 52 53 92 90 19 18	S868	0		3763200	61	46	25	22	27	28	33	31	S868	0		1651200	64	31	42	68	59	71	15	18	2403328	82	51
S8731 5633696 40 31 26 32 51 61 56 91 S8731 4233216 50 60 95 92 20 18 3759104 92 62 S8684 6047744 32 30 27 29 46 59 90 S8684 4751360 46 37 47 56 84 94 16 17 3365898 85 53 S8685 5129216 35 31 26 34 49 57 57 92 S6685 3822592 50 40 51 62 90 19 18 375904 93 53 S8698 3313664 41 31 29 34 57 60 90 S8698 2725888 46 36 46 58 85 93 16 18 2994176 90 51 S8732 5298176 34 32 27 29 45 61 63 87 S8732 4370432 46 36 46 56 </td <td>S868</td> <td>1</td> <td></td> <td>2232320</td> <td>51</td> <td>40</td> <td>39</td> <td>43</td> <td>53</td> <td>55</td> <td>56</td> <td>85</td> <td>S868</td> <td>1</td> <td></td> <td>1781504</td> <td>68</td> <td>52</td> <td>53</td> <td>61</td> <td>85</td> <td>88</td> <td>15</td> <td>15</td> <td>3795968</td> <td>92</td> <td>58</td>	S868	1		2232320	51	40	39	43	53	55	56	85	S868	1		1781504	68	52	53	61	85	88	15	15	3795968	92	58
S8684 6047744 32 30 27 29 46 58 59 90 S8684 4751360 46 37 47 56 84 94 16 17 3365888 85 53 S8685 5129216 35 31 26 34 49 57 57 92 S8685 3822592 50 40 51 62 90 95 17 18 3579904 93 53 S8688 3313664 41 31 29 34 53 65 60 89 S8698 2725888 46 36 46 53 92 90 19 18 2120704 86 52 S8686 4005888 36 31 43 57 60 90 S8686 3123200 49 36 46 56 82 92 16 18 2994176 90 51 82 92 91 16 17 3644416 91 50 S8733 4793344 35 35 28 <td>S873</td> <td>1</td> <td></td> <td>5533696</td> <td>40</td> <td>31</td> <td>26</td> <td>32</td> <td>51</td> <td>61</td> <td>56</td> <td>91</td> <td>S873</td> <td>1</td> <td></td> <td>4233216</td> <td>50</td> <td>39</td> <td>50</td> <td>60</td> <td>95</td> <td>92</td> <td>20</td> <td>18</td> <td>3759104</td> <td>92</td> <td>62</td>	S873	1		5533696	40	31	26	32	51	61	56	91	S873	1		4233216	50	39	50	60	95	92	20	18	3759104	92	62
S8685 5129216 35 31 26 34 49 57 57 92 S8685 3822592 50 40 51 62 90 95 17 18 3579904 93 53 S8698 3313664 41 31 29 34 53 65 60 89 S8698 2725888 46 36 46 53 92 90 19 18 2120704 86 52 S8686 4005888 36 34 28 31 43 57 60 90 S8698 3123200 49 38 48 58 85 93 16 18 2994176 90 51 S8732 5298176 34 32 27 29 45 61 63 87 S8732 4370432 46 36 46 56 82 92 17 16 3552256 89 50 S8733 479344 35 35 28 20 42 63 62 77 S8733	S868	4		6047744	32	30	27	29	46	58	59	90	S868	4		4751360	46	37	47	56	84	94	16	17	3365888	85	53
S8698 3313664 41 31 29 34 53 65 60 89 S8698 2725888 46 36 46 53 92 90 19 18 2120704 86 52 S8686 4005888 36 34 28 31 43 57 60 90 S8686 3123200 49 38 48 58 85 93 16 18 2994176 90 51 S8732 5298176 34 32 27 29 45 61 63 87 S8732 4370432 46 36 46 56 82 92 17 16 3552256 89 50 S8688 3962860 31 36 29 40 60 61 86 S8688 322768 48 37 49 60 82 92 16 17 3644416 91 50 S8733 479344 36 37 28 29 41 61 63 85 S8689 3036160 <td>S868</td> <td>5</td> <td></td> <td>5129216</td> <td>35</td> <td>31</td> <td>26</td> <td>34</td> <td>49</td> <td>57</td> <td>57</td> <td>92</td> <td>S868</td> <td>5</td> <td></td> <td>3822592</td> <td>50</td> <td>40</td> <td>51</td> <td>62</td> <td>90</td> <td>95</td> <td>17</td> <td>18</td> <td>3579904</td> <td>93</td> <td>53</td>	S868	5		5129216	35	31	26	34	49	57	57	92	S868	5		3822592	50	40	51	62	90	95	17	18	3579904	93	53
S8686 4005888 36 34 28 31 43 57 60 90 S8686 3123200 49 38 48 58 93 16 18 2994176 90 51 S8732 5298176 34 32 27 29 45 61 63 87 S8732 4370432 46 36 46 56 82 92 17 16 3552256 89 50 S8688 3962880 31 36 29 29 40 60 61 86 S8688 3232768 48 37 49 60 82 91 16 17 3644416 91 50 S8689 3549184 36 37 28 29 41 61 63 85 S8689 3036160 45 36 46 59 82 92 16 17 3041280 90 50 S8689 3549184 36 37 28 29 21 40 64 63 75 S8734	S869	8		3313664	41	31	29	34	53	65	60	89	S869	8		2725888	46	36	46	53	92	90	19	18	2120704	86	52
S8732 5298176 34 32 27 29 45 61 63 87 S8732 4370432 46 36 46 56 82 92 17 16 3552256 89 50 S8688 3962880 31 36 29 29 40 60 61 86 S8688 3232768 48 37 49 60 82 91 16 17 3644416 91 50 S8733 4793344 35 35 28 20 42 63 62 77 S8733 4034560 45 33 43 51 82 88 14 17 3267584 83 50 S8689 3549184 36 37 28 29 41 61 63 85 S8689 3036160 45 36 46 59 82 92 16 17 3041280 90 50 S8734 5017600 33 32 29 21 40 64 63 75 S8734	S868	6		4005888	36	34	28	31	43	57	60	90	S868	6		3123200	49	38	48	58	85	93	16	18	2994176	90	51
S8688 3962880 31 36 29 29 40 60 61 86 S8688 3232768 48 37 49 60 82 91 16 17 3644416 91 50 S8733 4793344 35 35 28 20 42 63 62 77 S8733 4034560 45 33 43 51 82 88 14 17 3267584 83 50 S8689 3549184 36 37 28 29 41 61 63 85 S8689 3036160 45 36 46 59 82 92 16 17 3041280 90 50 S8734 5017600 33 33 29 21 40 64 63 75 S8734 4265984 48 35 45 56 86 89 15 17 3717120 85 51 Fluids Fluids Fluids Fluids Fluids 61 77 115 113 26 <	S873	2		5298176	34	32	27	29	45	61	63	87	S873	2		4370432	46	36	46	56	82	92	17	16	3552256	89	50
S8733 4793344 35 35 28 20 42 63 62 77 S8733 4034560 45 33 43 51 82 88 14 17 3267584 83 50 S8689 3549184 36 37 28 29 41 61 63 85 S8689 3036160 45 36 46 59 82 92 16 17 3041280 90 50 S8734 5017600 33 32 29 21 40 64 63 75 S8734 4265984 48 35 45 56 86 89 15 17 3717120 85 51 Fluids Fluids Fluids Fluids Fluids Fluids Fluids 56 48 61 77 115 113 26 29 281 83 56 S8738 HRP 210 96 62 31 42 63 69 71 78 S8738 HRP 179 63 <td< td=""><td>S868</td><td>8</td><td></td><td>3962880</td><td>31</td><td>36</td><td>29</td><td>29</td><td>40</td><td>60</td><td>61</td><td>86</td><td>S868</td><td>8</td><td></td><td>3232768</td><td>48</td><td>37</td><td>49</td><td>60</td><td>82</td><td>91</td><td>16</td><td>17</td><td>3644416</td><td>91</td><td>50</td></td<>	S868	8		3962880	31	36	29	29	40	60	61	86	S868	8		3232768	48	37	49	60	82	91	16	17	3644416	91	50
S8689 3549184 36 37 28 29 41 61 63 85 S8689 3036160 45 36 46 59 82 92 16 17 3041280 90 50 S8734 5017600 33 33 29 21 40 64 63 75 S8734 4265984 48 35 45 56 86 89 15 17 3717120 85 51 Fluids S8737 HRP 311 63 45 36 77 115 113 26 29 281 83 56 S8738 HRP 210 96 62 31 42 63 69 71 78 S8738 HRP 179 63 53 67 85 111 115 26 29 281 83 56 S8738 HRP 210 96 62 31 42 63 69 71 78 S8738 HRP 179 63 53	S873	3		4793344	35	35	28	20	42	63	62	77	S873	3		4034560	45	33	43	51	82	88	14	17	3267584	83	50
S8734 5017600 33 33 29 21 40 64 63 75 S8734 4265984 48 35 45 56 86 89 15 17 3717120 85 51 Fluids S8737 HRP 311 63 45 32 45 69 80 75 83 S8737 HRP 280 56 48 61 77 115 113 26 29 281 83 56 S8738 HRP 210 96 62 31 42 63 69 71 78 S8738 HRP 179 63 53 67 85 111 115 26 29 244 55 51	S868	9		3549184	36	37	28	29	41	61	63	85	S868	9		3036160	45	36	46	59	82	92	16	17	3041280	90	50
Fluids S8737 HRP 311 63 45 32 45 69 80 75 83 S8737 HRP 280 56 48 61 77 115 113 26 29 281 83 56 S8738 HRP 210 96 62 31 42 63 69 71 78 S8738 HRP 179 63 53 67 85 111 115 26 29 244 55 51	S873	4		5017600	33	33	29	21	40	64	63	75	S873	4		4265984	48	35	45	56	86	89	15	17	3717120	85	51
S8/37 HHP 311 63 45 32 45 69 80 75 83 S8737 HRP 280 56 48 61 77 115 113 26 29 281 83 56 S8738 HRP 210 96 62 31 42 63 69 71 78 S8738 HRP 179 63 53 67 85 111 115 26 29 244 55 51	Fiuld	18											Fluid	8	_												
S8738 HHP 210 96 62 31 42 63 69 71 78 S8738 HHP 179 63 53 67 85 111 115 26 29 244 55 51	5873	HHP		311	63	45	32	45	69	80	75	83	5873	/ HRF	2	280	56	48	61	77	115	113	26	29	281	83	56
	5873	8 HRP		210	96	62	31	42	63	69	71	78	S873	8 HRF	٢	179	63	53	67	85	111	115	26	29	244	55	51

Derivation of biomarker ratios reported in Table 6.

Ratio	Derivation	<u>m/z</u>
Triterpanes		
22S	$32\alpha\beta S/(32\alpha\beta S+32\alpha\beta R)$	191
Ts/Tm	27Ts/27Tm	191
TtX	30d/29βα	191
30D/H	30d/30αβ	191
29/30H	29αβ/30αβ	191
30αβ	30αβ/(30αβ+30βα)	191
28αβ/Η	28αβ/30αβ	191
3R/H	(23/3)/30αβ	191
4R/H	(24/4)/30αβ	191
35/34H	(35αβR+35αβS)/(34αβR+34αβS)	191
Dem/H	25nor30αβ/30αβ	191
O/H	30Ο/30αβ	191
G/H	30G/30αβ	191
рртН'	ppm 27Ts+27Tm+29αβ+29βα+30αβ+30βα+31αβS+31αβR+32αβS+32αβR+33αβS+33αβR +34αβS+34αβR+35αβS+35αβR	191
Steranes		
20S	29ααS/(29ααR+29ααS)	217
ββ	(29ββR+29ββS)/(29ββR+29ββS+29ααR+29ααS)	217
%C27	100*(27ββR+27ββS)/(27ββR+27ββS+28ββR+28ββS+29ββR+29ββS)	218
%C28	100*(28ββR+28ββS)/(27ββR+27ββS+28ββR+28ββS+29ββR+29ββS)	218
%C29	100*(29ββR+29ββS)/(27ββR+27ββS+28ββR+28ββS+29ββR+29ββS)	218
C30/st	(30ββR+30ββS)/(27ββR+27ββS+28ββR+28ββS+29ββR+29ββS)	218
Dia/reg	(27dβR+27dβS)/(27ααR+27ααS)	217
ppmS	ppm 27ββR+27ββS+28ββR+28ββS+29ββR+29ββS	218
H/S	Intensities(27Ts+27Tm+29αβ+29βα+30αβ+30βα+31αβS+31αβR+32αβS+32αβR+33αβS+33αβR+34αβS+34αβR +35αβS+35αβR)/Intensities(27ββR+27ββS+28ββR+28ββS+29ββR+29ββS)	

* ppm calculated from comparison with m/z 219 intensity for D2-cholestane

Dept. of Geochemistry, Statoill

-

Biomarker codes used in derivation of ratios

Compound name	Old code	NEW CODE
Triterpanes		
C ₂₃ H ₄₂ tricyclic terpane	Р	23/3
C ₂₄ H ₄₄ tricyclic terpane	Q	24/3
$C_{25}H_{46}$ tricyclic terpane ¹	R	25/3
C ₂₄ H ₄₂ tetracyclic terpane	S	24/4
		26/3
$18\alpha(H)-22,29,30$ -trisnomeonopane	27A	2/15
$1/\alpha$ (H)-22,29,30-trisnornopane	278	27Tm
$1/\alpha(H)$, $21\beta(H)$ -25,28,30-trisnorhopane		25nor28 αβ
$17\alpha(H)$, $21\beta(H)$ -28,30-bisnorhopane	28A	28 αβ
17 α (H), 21β(H)-25-norhopane		25nor30αβ³
17 α (H), 21β(H)-30-norhopane	C29A	29 αβ
18α(H)-30-norneohopane		29Ts
15α-methyl-17α(H)-27-norhopane (TtX)	Х	30D
17β(H), 21α(H)-30-norhopane (normoretane)	C29B	29 βα
18α(H)-oleanane		300
17 α (H), 21β(H)-hopane	C30A	30 αβ
17β(H), 21α(H)-hopane (moretane)	C30B	30βα
Gammacerane		30G
17α(H), 21β(H), 22(S)-homohopane	C31S	31αβS
17α(H), 21β(H), 22(R)-homohopane	C31R	31αβR
17 α (H), 21β(H), 22(S)-bishomohopane	C32S	32αβS
17α(H), 21β(H), 22(R)-bishomohopane	C32R	32αβR
17α(H), 21β(H), 22(S)-trishomohopane	C33S	33αβS
17 α (H), 21β(H), 22(R)-trishomohopane	C33R	33αβR
$17\alpha(H)$, $21\beta(H)$, $22(S)$ -tetrakishomohopane	C34S	34αβS
$17\alpha(H)$, $21\beta(H)$, $22(R)$ -tetrakishomohopane	C34R	34αβR
$17\alpha(H)$, $21\beta(H)$, $22(S)$ -pentakishomohopane	C35S	35αβS
$17\alpha(H)$, $21\beta(H)$, $22(R)$ -pentakishomohopane	C35R	35 αβR

1 may be broad peak or doublet Dept. of Geochemistry, Statoil

2 may be doublet 3 listed in Statoil spreadsheats as "nor30" for convenience

Steranes

13β(H), 17α(H), 20(S)-cholestane (diasterane)	27a	27dβS
13 β (H), 17 α (H), 20(R)-cholestane (diasterane)	27b	27dβR
13 α (H), 17 β (H), 20(R)-cholestane (diasterane)	27c	27dαR
13 α (H), 17 β (H), 20(S)-cholestane (diasterane)	27d	27dαS
5α(H), 14α(H), 17α(H), 20(S)-cholestane	27e	27ααS
5α(H), 14β(H), 17β(H), 20(R)-cholestane	27f	27ββR
5α(H), 14β(H), 17β(H), 20(S)-cholestane	27g	27ββS
5α(H), 14α(H), 17α(H), 20(R)-cholestane	27h	27ααR
24-methyl-13 β (H), 17 α (H), 20(S)-cholestane (diasterane)	28a	28dβS
24-methyl-13 β (H), 17 α (H), 20(R)-cholestane (diasterane)	28b	28dβR
24-methyl-13 α (H), 17 β (H), 20(R)-cholestane (diasterane)	28 c	28dαR
24-methyl-13 α (H), 17 β (H), 20(S)-cholestane (diasterane)	28d	28dαS
24-methyl-5α(H), 14α(H), 17α(H), 20(S)-cholestane	28e	28ααS
24-methyl-5α(H), 14β(H), 17β(H), 20(R)-cholestane	28f	2866R
24-methyl-5α(H), 14β(H), 17β(H), 20(S)-cholestane	28 g	28 6 85
24-methyl-5α(H), 14α(H), 17α(H), 20(R)-cholestane	28h	28ααR
24-ethyl-13 β (H), 17 α (H), 20(S)-cholestane (diasterane)	29a	29d βS
24-ethyl-13 β (H), 17 α (H), 20(R)-cholestane (diasterane)	29b	29dβR
24-ethyl-13 α (H), 17 β (H), 20(R)-cholestane (diasterane)	2 9c	29dαR
24-ethyl-13 α (H), 17 β (H), 20(S)-cholestane (diasterane)	29 d	29dαS
24-ethyl-5 α (H), 14 α (H), 17 α (H), 20(S)-cholestane	29e	29ααS
24-ethyl-5 α (H), 14 β (H), 17 β (H), 20(R)-cholestane	29f	2966R
24-ethyl-5 α (H), 14 β (H), 17 β (H), 20(S)-cholestane	29 g	296BS
24-ethyl-5 α (H), 14 α (H), 17 α (H), 20(R)-cholestane	29h	29ααR
24-propyl-5α(H), 14α(H), 17α(H), 20(S)-cholestane	30e	30aaS
24-propyl-5α(H), 14β(H), 17β(H), 20(R)-cholestane	30f	3066R
24-propyl-5α(H), 14β(H), 17β(H), 20(S)-cholestane	30g	3088S
24-propyl-5 α (H), 14 α (H), 17 α (H), 20(R)-cholestane	30h	30ααR
4-methyl-14α(H), 17α(H)-cholestanes		Μ28αα
4,24-dimethyl-14α(H), 17α(H)-cholestanes		Μ29αα
4-methyl-24-ethyl-14 α (H), 17 α (H)-cholestanes		Μ30αα
4,23,24-trimethyl-14 α (H), 17 α (H)-cholestanes (dinosteranes)		M30D

Dept. of Geochemistry, Statoil

-

TABLE 7. THOMPSON'S INDICES FROM LIGHT HYDROCARBON ANALYSIS, WELL 6204/11-1

Depth	Sample	Sample	A	B	X	W	C	I	F	н	U	R	S
mRKB	type	no.#									1		
1938.00	RCI 3B	Fluidlab	0.89	4.49	5.53	0.20	0.18		0.16		2.44		
2032.50	FMT 3D	Fluidlab	1.44	7.69	11.60	0.19	0.12		0.11		2.84		
2043.90	RCI 3A	Fluidlab	1.85	5.69	6.71	0.31	0.14		0.13		2.79		

"Fluidlab" = sample analysed by Statoil's Fluidlab

DEFINITIONS OF THOMPSON'S INDICES :

AROMATICITY :

	Benzene	Toluene	m	<u>+p xylene</u>	Be	nzene*10
A=	n-hexane	B= n-heptane	X=	nC8	W=	cC6

PARAFINICITY :

nC6+nC7	<u>2mC6+3mC6</u>		nC7
C=cC6+mcC6	I=1c3dmcC5+1t3dmcC5+1t2dmcC5	F=	mcC6

nC7*100

H=cC6+2mC6+2,3dmcC5+3mC6+1c3dmcC5+1t3dmcC5+1t2dmcC5+nC7+mcC6

NAPHTHENES/ISOCOMPOUNDS:

<u>cC6</u> U= mcC5

.

PARAFINS/ISOCOMPOUNDS :

	nC7		nC6
R=	2mC6	S=	2,2dmC4

TABLE 8. CARBON ISOTOPE DATA FOR OILS, EXTRACTS AND FRACTIONS, WELL 6204/11-1

.

Codes	Depth	Sample	Sample	le d13C					
in figs.	m RKB	type	no.	EOM	Sats	Arom	Pol	Asph	Ker
							1		
C1	2134.39	CORE-CHIP	S8719						
C2	2157.60	CORE-CHIP	S8722						
U1s	2619.00	CUTTINGS	S8724	-26.82	-28.16	-26.89	-26.11	-25.08	-24.63
U2s	2642.00	SWC	S8712	-26.83	-28.20	-26.96	-26.03	-24.68	-23.80
U3s	2670.00	CUTTINGS	S8726	-25.91	-28.09	-26.44	-25.36	-24.22	-22.79
U4	2680.00	SWC	S8714	-24.62					
U5	2731.00	SWC	S8715	-24.38					
U6s	2757.00	CUTTINGS	S8728						
M1	2871.00	CUTTINGS	S8703	-24.30	-25.98	-24.63	-24.49	-24.01	
CR1	2015.75	PLUG	S8676						
CR2	2017.70	CORE-CHIP	S8735	-27.38	-27.99	-26.54	-27.22	-26.91	
CR3	2148.48	PLUG	S8678	-27.47	-28.05	-26.97	-27.23	-26.95	
CR4	2150.25	PLUG	S8679						
CR5	2154.25	PLUG	S8680	-27.72	-28.11	-27.04	-27.80	-27.26	
JR1	2779.00	PLUG	S8681	-26.50	-27.79	-26.69	-26.39	-24.60	
JR2	2789.00	CORE-CHIP	S8731	-27.36	-27.86	-26.92	-27.06	-25.55	
JR3	2797.25	PLUG	S8684	-27.42	-27.83	-26.89	-26.91	-25.56	
JR4	2804.50	PLUG	S8685				······································		
JR5	2808.60	CORE-CHIP	S8698						
JR6	2814.50	PLUG	S8686	-27.21	-27.68	-26.86	-26.46	-25.33	
JR7	2815.82	CORE-CHIP	S8732						
JR8	2819.75	PLUG	S8688	-27.26	-27.66	-26.71	-26.52	-26.01	
JR9	2821.31	CORE-CHIP	S8733	-27.23	-27.68	-26.62	-26.29	-29.40	
JR10	2821.50	PLUG	S8689						
JR11	2823.30	CORE-CHIP	S8734	-27.24	-27.66	-26.57	-26.20	-25.53	
	Fluids								
F1	2032.50	FMT 3D	S8737	-26.99	-27.72	-26.80	-26.94	-27.45	
F2	2043.90	RCI 3A	S8738	-27.03	-27.74	-26.76	-26.81	-27.39	

TABLE 9. CHEMICAL AND ISOTOPIC COMPOSITIONS OF GASES, WELL 6204/11-1

Codes in figs.	%C1	%C2	%C3	%IC4	%nC4	%C5	CO2	SumC1-C5	Wetness	Dryness
CR	94.1	3.2	0.2	0.26	0.08	0.17	1.7	98.01	0.04	0.96
JR	96.2	2.5	0.8	0.14	0.22	0.1	0.1	99.96	0.04	0.96

Test	Depth
	(mRKB)
RCI 3B	1938
RCI 3C	2787

Wetness = (C2-C5)/(C1-C5) Dryness = C1/(C1-C5)

	Codes in figs.	d13C C1	d13C C2	d13C C3	d13C iC4	d13C nC4	d13C C5	dD C1	d13C CO2	d18O CO2
	CR	-32.9	-27.0	-17.6	-24.4		-25.0	-163.0	-17.2	-6.4
-	JR	-36.5	-31.5	-28.7	-24.5	-28.5		-146.0	-19.0	-14.5

IFE Dala

Test	Depth
	(mRKB)
RCI 3B	1938
RCI 3C	2787

• .

.

-

REPORT ON VISUAL KEROGEN AND CARBON ISOTOPES, WELL NOCS 6204/11-1, STATOIL

Authors:

. •

lan Ferriday Kjell Arne Bakken

Geolab Nor AS P.O. Box 5740 Fossegrenda 7002 Trondheim Norway

Date:

13.01.95

Table 1 : Thermal Maturity Data for well STATOIL NOCS 6204/11-1

.

,

Depth unit of measure: m

.

Depth Typ Lithology	•	Vitrinite Reflectance (%)	Number of Readings	Standard Deviation	Spore Fluorescence Colour	SCI	Tmax (°C)	Sample
			یسی جورا میں این ایر ایر میں میں دین پرین ہیں			يانين هيدا هي الله، وينه علم التي وين بين وي الي الي الي الي الي الي الي الي الي ال	aria, add and dam	tan ma any ana fai sa an
2134.39 ccp bulk		-	-	-	-	4.5-5.0	-	0001-0B
2157.60 ccp bulk		-	-	-	-	5.0-5.5(?)	-	0002-0B
2619.00 cut bulk		-	-	-	-	5.5-6.0	-	0003-0B
2642.00 swc bulk		-	-	-	-	6.0-6.5	-	0004-0B
2670.00 cut bulk		-	-	-	-	6.0	-	0005-0B
2680.00 swc bulk		-	-	-	-	6.5	-	0006-0B
2731.00 swc bulk		-	-	-	-	6.0-6.5	-	0007-0B
2757.00 cut bulk		-	-	-	-	6.0	-	0008-0B

Page: 1

Code	Тур	Lithology	EOM	Saturated	Aromatic	NSO	Asphaltenes	Kerogen	Sample
	cut	bulk	-27.47	-28.05	-26.97	-27.23	-26.95	-	0012-0
59684	cut	bulk	-27.42	-27.83	-26.89	-26.91	-25.56	-	0014-0
50004	cut	bulk	-27.21	-27.68	-26.86	-26.46	-25.33	-	0015-0
50000	cut	bulk	-27.26	-27.66	-26.71	-26.52	-26.01	-	0016-0
50000 60710	cut	bulk	-26.83	-28.20	-26.96	-26.03	-24.68	-23.80	0010-0
50712	cut	bulk	-26.82	-28.16	-26.89	-26.11	-25.08	-24.63	0019-0
50724	cut	bulk	-25.91	-28.09	-26.44	-25.36	-24.22	-22.79	0011-0
50720	cut	bulk	-27.36	-27.86	-26.92	-27.06	-25.55	-	0013-0
50733	cut	bulk	-27.23	-27.68	-26.62	-26.29	-29.40	-	0017-0
20122	Cut	Duth					-29.22		0010 0
S8734	cut	bulk	-27.24	-27.66	-26.57	-26.20	-25.53	-	0018-0

Table 3 : Tabulation of carbon isotope data for EOM/EOM - fractions for well STATOIL NOCS 6204/11-1

.

-

Page: 1

Table 2: Visual Kerogen Composition Data, STATOIL NOCS 6204/11-1

2

Depth Units: m

.

Depth Spl	Sample No.	Amorpho AM% FA	us HA	Alga AP%	al/Phyt Cy Ta	:op] Bo	lan) Di	ton De	Hert HE%	sP	ous Cu	De	Woody WO% FL	NF	De	Coal CO%	y Fs 1	De
2134.39 ccp	S8719	Tr	*	5	*		*	*	5	**	*	*	30	*	*	60	*	
2157.60 ccp	S8722	Tr	*	5	*		*	*	10	*	*	* *	30	**	*	55	**	*
2619.00 cut	S8724	15	*	Tr	*	*		*	35	**	*	*	40	**	*	10	*	*
2642.00 cut	S8712	20	*	Tr	*		*	*	35	*	*	**	30	**	*	15	**	*
2670.00 cut	S8726	20	*	Tr	*		*	*	30	*	*	* *	35	**	*	15	**	*
2680.00 cut	S8714	20	*	Tr	*			*	30	*	*	* *	35	*	**	15	*	**
2731.00 cut	S8715	5	*	5	*		*	*	40	*	*	**	40	**	*	10	*	*
2757.00 cut	S8728	15	*	Tr	*			*	40	*	*	**	30	**	*	15	**	*

.

GEOLAB

Institutt for energiteknikk

ADDRESS TELEPHONE TELEX TELEFAX	KJELLER HAU Box 40, N-2007 Kjeller, Norway N-1 +47 63 806000 +47 76 361 isotp n 76 3 +47 63 815553 76 3	LDEN 751 Halden, Norway 69 183100 335 energ n	AVAILABILITY Private Confidential
REPORT	REPORT NO.		DATE
TYPE	IFE/KR/F-95/025		1995-02-15
	REPORT TITLE		DATE OF LAST REV.
	VITRINITE REFLECTANCE WI	ELL 6204/11-1	REV. NO.
	CLIENT		NUMBER OF PAGES
	Statoil		
	CLIENT REF.		NUMBER OF ISSUES
	Kristin Skadsem Eikelmann		14
SUMMARY	· · · · · · · · · · · · · · · · · · ·	<u> </u>	DISTRIBUTION
			Statoil (10)
		· · · · · · · · · · · · · · · · · · ·	Throndsen, T.
			File (2)
KEYWORDS			i
	NAME	DATE	SIGNATURE
PREPARED BY	Kristine Aasgaard	1995-02-15	1.0.1 0
			tristen program
			· /
REVIEWED BY	Torbjørn Throndsen	1995-02-15	Conta- Aturnal
APPROVED BY	Tor Bjørnstad	1995-02-15	Tor Bigernstuch

, *¢*

1 Introduction

This report gives the result of routine vitrinite reflectance analyses on 40 samples covering the interval from 564 to 2949 mRKB in well 6204/11/1 offshore Norway.

2 Material

2.1 Samples

The material was provided from the client as 31 unwashed cuttings, 7 side wall core chips and 2 core chips. The sample positions are indicated in figure 1.

2.2 Geological information and casing points

Information on stratigraphy in well 6204/11-1 was provided from the client and is shown in figure 1.

3 Analytical techniques

3.1 Preparation

The cuttings samples were washed and then treated with hydrochloric and hydrofluoric acid prior to further preparation. The aim was to avoid soft and expanding mineral phases in order to ensure good polishing quality. The side wall core chips and the core chips were treated as bulk material.

The sample material resulting from the acid treatment and the bulk samples were embedded in an epoxy resin to make briquettes, ground flat and polished using 0.25 micron diamond paste and magnesium oxide as the two final steps.

3.2 Analysis

The analytical equipment being used was a Zeiss MPM 03 photometer microscope equipped with an Epiplan-Neofluar 40/0.90 oil objective. The sensitive measuring spot was kept constant for all measurements at about 2.5 micron in diameter. The measurements were made through a green band pass filter (546 nm) and in oil immersion (refractive index 1.515 at 18°C). The readings were made without a polarizer and using a stationary stage. This procedure is called measurement of random reflectance (%Rm). The photometer is calibrated daily against a standard of known reflectance (%Rm= 0.588) and routinely (daily) checked against two other standards of significant different reflectances (%Rm=0.879 and 1.696). A deviation from these values of less than ± 0.01 and ± 0.02 respectively is considered as acceptable. The calibration is routinely checked during the course of measurements at least every hour, and a deviation of less than ± 0.005 is considered as acceptable. For each sample at least 20 points were measured if possible, and quality ratings are given to various important aspects which may affect the measurements. The aspects are abundance of vitrinite, uncertainties in the identification of indigenous vitrinite, type of vitrinite, particle size, particle surface quality and abundance of pyrite.

3.3 Presentation of results

The raw data from the measurements are presented in appendix for each sample both as tabulated data and histograms. A true vitrinite population is selected among the readings based on observations made during the measurements, and arithmetic mean values are calculated for this population and other populations. A quality rating is given to the true population. The results are listed in table 1.

The results are presented as vitrinite reflectance versus depht plots on linear and semilogarithmic scales (figure 1). A vitrinite reflectance versus depth trend is interpreted manually on the linear plot and transferred to the semilogarithmic plot. The interpreted trend is also listed in table 2.

4 Results

In the interval 850-2000mRKB the kerogen concentrate samples have a high content of pyrite which may affect the measurements towards higher values and must be avoided if possible. From the sample at 2046mRKB and downwards to about 2600mRKB there is an interval with a lot of hydrocarbon staining which may lower the reflectance value. In spite of these problems it has been possible to establish a fairly reliable vitrinite reflectance versus depth trend for well 6204/11/1.

Well

								6204/11-1
IFE no.	Depth, mRKB	Sample type	Lithology	%Rm	Std. dev.	N	Quality	Preparation
ST 1751	564	SWC	clst	0.25	0.05	22	Р	bulk
ST 1752	650	cut	clst/sst	0.33	0.06	24	Р	HF
ST 1753	758	SWC	sst	-	-	-	barren	bulk
ST 1754	850	cut	clst	0.30	0.04	20	М	HF
ST 1755	955	cut	clst	0.34	0.04	24	М	HF
ST 1756	1050	cut	clst	0.33	0.04	23	М	HF
ST 1757	1266.5	swc	clst	-	-	-	barren	bulk
ST 1758	1325	cut	clst	0.36	0.06	17	М	HF
ST 1759	1375	cut	clst	0.38	0.09	21	М	HF
ST 1760	1425	cut	clst	0.34	0.07	24	Р	HF
ST 1761	1492	swc	clst	0.36	0.05	4	Р	bulk
ST 1762	1525	cut	clst	0.38	0.06	21	М	HF
ST 1763	1575	cut	clst	0.44	0.06	23	М	HF
ST 1764	1625	cut	clst	0.38	0.06	21	М	HF
ST 1765	1675	cut	clst	0.32	0.04	15	М	HF
ST 1766	1725	cut	clst	0.37	0.05	26	М	HF
ST 1767	1780	cut	clst	0.42	0.09	22	М	HF
ST 1768	1805	swc	cist	0.39	0.05	19	М	bulk
ST 1769	1857	swc	cist	0.44	0.01	2	Р	bulk
ST 1770	1905	cut	cist	0.42	0.06	20	М	HF
ST 1771	1962	cut	cist	0.41	0.07	6	М	HF
ST 1772	2046	cut	cist	0.44	0.05	5	Р	HF
ST 1773	2015.69	core	clst	0.48	0.07	23	М	bulk
ST 1774	2106	cut	clst	0.45	0.05	8	P	HF
ST 1775	2157.7	core	cist	0.44	0.07	17	М	bulk
ST 1776	2205	cut.	clst	0.47	0.08	23	Р	HF
- ST 1777	2250	cut	clst	0.48	0.09	23	Р	HF
ST 1778	2298	cut	clst	0.46	0.04	17	М	HF
- ST 1779	2346	cut	clst	0.43	0.06	22	М	HF
ST 1780	2400	cut	clst	0.52	0.06	21	М	HF
ST 1781	2441.5	swc	clst	0.44	0.06	15	М	bulk
- ST 1782	2505	cut	clst	0.47	0.04	15	М	HF
ST 1783	2550	cut	clst	0.55	0.05	22	М	HF
- ST 1784	2601	cut	clst	0.47	0.06	22	М	HF
- ST 1785	2649	cut	clst	0.47	0.05	20	G	HF
- ST 1786	2703	cut	cist	0.47	0.04	21	М	HF
- ST 1787	2745	cut	cist	0.52	0.08	22	М	HF
ST 1788	2865	cut	clst/coal	0.37	0.04	24	Р	HF
ST 1789	2901	cut	cist	0.54	0.08	27	М	HF
ST 1790	2949	cut	clst	0.60	0.03	4	Р	HF

G	Good quality	Ρ	Poor quality	A	Mud additive	HF	HF-treated
M	Moderate quality	X	Not vitrinite	Barren	Barren of vitrinite	Bulk	Bulk rock

Institutt for energiteknikk

ADDRESS TELEPHONE TELEX TELEFAX	KJELLER Box 40, N-2007 Kjeller, Norway +47 63 806000 76 361 isotp n +47 63 815553	HALDEN N-1751 Halden, Norway +47 69 183100 76 335 energ n	AVAILABILITY In confidence
REPORT	REPORT NO.		DATE
TYPE	IFE/KR/F-95/060		1995-03-24
	REPORT TITLE		DATE OF LAST REV.
	DATAREPORT ON STABLE GAS SAMPLE FROM WELL (ref. IFE no. 2.3.0041.95)	ISOTOPES, 2 6204/11-1	REV. NO.
	CLIENT	NUMBER OF PAGES	
	Statoil	6	
	CLIENT REF.	NUMBER OF ISSUES	
	DTJ017075	10	
	, 		
SUMMARY	DISTRIBUTION		
One gas sample during March $\frac{1}{2}$ On the gas sam measured on C the δD value is The work is do Guide to Organ	Statoil (5) Andresen, B. Råheim, A. Throndsen, T. File (2)		
NB Corr			
KEYWORDS			
	NAME	DATE	SIGNATURE
PREPARED BY	Bjørg Andresen	1995-03-24	Bjørg Andrean
	Torbigen Throndson	1005 02 24	
		1775-03-24	Uning throwd
APPROVED BY	Arne Raheim	/mi Kahi -	

1 Introduction

One gas sample from well 6204/11-1, 1932.5 mRKB was received for isotope analysis March 1995.

On the gas sample $C_1 - C_5$ and CO_2 are quantified. The $\delta^{13}C$ value is measured on C_1 , C_2 , C_3 , iC_4 and nC_4 , iC_5 and nC_5 and CO_2 . In addition the δ D value is measured on methane.

2 Analytical procedures

Aliquots of the gas is sampled from the gas bottle with a syringe.

The gas composition is determined on a Carlo Erba Mega gas chromatograph equipped with a Porapak Q column and thermal conductivity- (TCD) and flame ionisation- (FID) detectors.

For isotopic determination the different gas components are separated by a Carlo Erba 4200 gas chromatograph, and then oxidised in separate CuO-ovens at 850°C. Separate ovens are used in order to prevent cross contamination. The combustion products CO_2 and H_2O are frozen into collection vessels and separated.

The combustion water is reduced with zinc metal in sealed quarts tubes at 900°C to prepare hydrogen for isotope analysis.

The isotopic measurements were performed on a Finnigan MAT 251 and a Finnigan Delta mass spectrometer.

IFEs value on NBS 22 is $29.77 \pm .06\%$ PDB.

3 Results

The volume composition of the gas sample is given in Table 1. The results have been normalised to 100%.

The stable isotope composition of the gas sample is given in Table 2. Due to low concentration of the individual components iC_4 and nC_4 are isotopically determined in one fraction. The carbon isotopic composition of iC_5 and nC_5 (determined in one fraction) is also included in the table.

Prior to the analysis of the present gas sample a laboratory standard gas mixture is analysed. The isotopic composition of the standard gas is within what can be expected. For the gas sample the uncertainty on the δ ¹³C value is estimated to be \pm 0.3‰ PDB and includes all the different analytical steps. The uncertainty in the δ D value is likewise estimated to be \pm 5‰.

The molecular composition related to carbon isotope variations in methane are plotted in Figure 1 (Schoell, 1983), the carbon and hydrogen variations in methane in Figure 2 (Schoell, 1983) and carbon isotope variations in ethane related to carbon isotope variations in methane in Figure 3 (Schoell, 1983).

Sample	IFE no	C ₁	C ₂	C ₃	iC4	nC ₄	iC5	nC ₅	CO ₂	$\Sigma C_1 - C_5$	Wet-	iC₄/
		%	%	%	%	%	%	%	%		ness	nC₄/
	· · · · · · · · · · · · · · · · · · ·		·									

Table 1	Volume composition of	f a gas sample	from well 6204/11-1
	•		

Table 2 Isotopic composition of a gas sample f	f rom well 6204/11 .	-1
--	-----------------------------	----

94.1

15021

1932.5m

Sample	IFE no	C ₁ δ ¹³ C ‰ PDB	C ₁ δ D ‰ SMOW	C ₂ δ ¹³ C ‰ PDB	C ₃ δ ¹³ C ‰ PDB	C ₄ δ ¹³ C ‰ PDB	C5 δ ¹³ C ‰ PDB	CO ₂ δ ¹³ C ‰ PDB	CO ₂ δ ¹⁸ Ο ‰PDB
1932.5m	15021	-32.9	-163	-27.0	-17.6	-24.4	-25.0	-17.2	-6.4

3.2 0.2 0.26 0.08 0.35 0.17

0.04

3.46

1.7

Institutt for energiteknikk

ADDRESS TELEPHONE TELEX TELEFAX	KJELLER H/ Box 40, N-2007 Kjeller, Norway N/ +47 63 806000 +4 76 361 isotp n 76 +47 63 815553	AVAILABILITY Private Confidential								
REPORT	REPORT NO.	DATE								
ТҮРЕ	IFE/KR/F-95/005	1995-01-12								
	REPORT TITLE	DATE OF LAST REV.								
	DATAREPORT ON STABLE IS GAS SAMPLE FROM WELL 6	REV. NO.								
	CLIENT									
	Statoil		6							
	CLIENT REF.		NUMBER OF ISSUES							
	DTJ 016072		15							
SUMMARY			DISTRIBUTION							
One gas sample recombination January 1995. On the sample measured on m addition the δD The work is do Guide to Organ	Statoil (10) Andresen, B. Råheim, A. Throndsen, T. File (2)									
KEYWORDS										
	NAME	SIGNATURE								
PREPARED BY	Bjørg Andresen	1995-01-12	Bjorg Andresen							
REVIEWED BY	Torbjørn Throndsen	1995-01-12	tols Aturnal							
APPROVED BY	Arne Råheim	1995-01-12	Ame Reha							

1 INTRODUCTION

One gas sample from well 6204/11-1, FMT 331664, 2787.0 m was received and analysed during December 1994 / January 1995.

On the sample $C_1 - C_5$ and CO_2 are quantified. The $\delta^{13}C$ value is measured on methane, ethane, propane, the butanes and CO_2 . In addition the δD value is measured on methane.

2 ANALYTICAL PROCEDURE

Aliquots of 1 ml of the gas sample is sampled with a syringe for analysis on a Porapak Q column connected with flame ionisation (FID) and thermal conductivity (TCD) detectors. The samples are compared with two standard gas mixtures containing CO₂ and C₁ - C₅ hydrocarbons in different concentrations. The detection limit for the hydrocarbon gas components is 0.01 μ l/ml and for CO₂ 0.1 μ l/ml.

For the isotope analysis gas is sampled with a syringe and then separated into the different gas components by a Carlo Erba 4200 gas chromatograph. The hydrocarbon gas components are oxidised in separate CuO-ovens in order to prevent cross contamination. The combustion products CO_2 and H_2O are frozen into collection vessels and separated.

The combustion water is reduced with zinc metal in a sealed quarts tube to prepare hydrogen for isotopic analysis.

The isotopic measurements are performed on a Finnigan MAT 251 and a Finnigan Delta mass spectrometer.

IFEs value on NBS 22 is $29.77 \pm .06\%$ PDB.

3 RESULTS

The volume composition of the gas sample is given in Table 1. The results have been normalised to 100%. The stable isotope results are given in Table 2.

The uncertainty on the δ ¹³C value is estimated to be \pm 0.3‰ PDB and includes all the different analytical steps. The uncertainty in the δ D value is likewise estimated to be \pm 5‰.

The δ ¹³C values of methane, ethane and propane are plotted in James maturity diagram (James, 1983), Figure 1. The molecular composition related to carbon isotope variations in methane are plotted in Figure 2 (Schoell, 1983), the carbon and hydrogen variations in methane in Figure 3 (Schoell, 1983) and carbon isotope variations in ethane related to carbon isotope variations in methane in Figure 4 (Schoell, 1983).

Sample	IFE no	C ₁ %	C2 %	C3 %	iC₄ %	nC ₄ %	iC5 %	nC5 %	CO ₂ %	ΣC ₁ -C ₅	Wet- ness	iC₄/ nC₄/
FMT 331664, 2787.0m	14772	96.2	2.5	0.8	0.14	0.22	0.06	0.04	0.1	99.9	0.04	0.65

Table 2Isotopic composition of a gas sample from well 6204/11-1.

Sample	IFE no	C ₁	C ₁	C ₂	C ₃	iC ₄	nC ₄	CO ₂	CO ₂
		δ ¹³ C ‰ PDB	δ D ‰ SMOW	δ ¹³ C ‰ PDB	δ ¹⁸ O ‰ PDB				
FMT 331664, 2787.0m	14772	-36.5	-146	-31.5	-28.7	-24.5	-28.5	-19.0	-14.5

4 REFERENCES

James, A.T. (1983). Correlation of natural gas by use of carbon isotopic distribution between hydrocarbon components. *The American Association of Petroleum Geologists Bulletin*, **67**, 1176-1191.

Robert, P. (1985). Methods and means of paleothermal analysis. Organic Methamorphism and Geothermal History, Elf-Aquitaine and D. Reidel Publishing Company.

Schoell, M. (1983). Genetic characterisation of natural gases. The American Association of Petroleum Geologists Bulletin, 67, 2225-2238.