11. TESTING

Two run of RFT have been performed, the first run being pretests and the second one for sampling.

The pretests were performed at the following depths:
at $2933 \mathrm{~m}, 2912 \mathrm{~m}$ (no seal), 2910 m.
at 2600 m (no seal), 2595 m 2598 m (seal failure),
2576 m, 2570 m.

Sampling was performed at 2909 m . The pressure went up to 6189 psi in 30 minutes. The pressure stabilization being very slow it was decided to open the other chamber. After 9 minutes the formation pressure reaching the mud hydrostatic pressure the tool was closed in order to get a representative sample.

9 liters of salted water ($\mathrm{NaCl} 115 \mathrm{gr} / \mathrm{lt}$) were recovered, slightly contaminated by the mud lignosulfonates. (The mud salinity was 47 gr NaCl per litre).

The formation pressure gradient has been estimated at $1.49 / 1.50$ mud weight equivalent.

Fina Exploration Norway Inc.

WELL N 3/7-2

Fina Exploration Norway Inc.

ANALYSES METHODOLOGY

All analyses were performed on instrumentation co-invented and/or developed by FINA.

1. SOURCE SCREEN ANALYSES

* Rock-Eval : IFP/FINA Procedure. Rock-Eval 2 generation of equipment with TOC attachment employed. Analyses calibrated against IFP 55000 Standard. Analysis procedure conforms with that required by NIGOGA.

2. SOURCE DETAIL ANALYSES

* Soxtec Extraction Procedure. Quantified analyses fulfil NIGOGA requirements.
* Pyrolysis-Gas Chromatography : GEOFINA HYDROCARBON METER Procedure. Individual component quantified analyses calibrated against IFP 55000 Standard. Being the benchmark equipment, FINA's specification conforms and exceeds that required by NIGOGA.

3. C ISOTOPE ANALYSES

* Kerogen/Kerogen Pyrolysate $D^{13} \mathrm{C}$ analyses : GEOCHEM/FINA AUTOPIP ${ }^{\text {TM }}$ Procedure. No equivalent NIGOGA specifications. Data reported vs NBS22 at D ${ }^{13} \mathrm{C}$ -29.8 ppt.

Source Screen and Source Detail analyses were performed by the Exploration Geochemistry Group, Petrofina Exploration and Production, c/o Fina Research, Zone Industrielle C, B-7181 Seneffe (Feluy), Belgium.
The C Isotope Analyses were performed by THE GEOCHEM GROUP, Chester Street, Chester CH4 8RD England.

SOURCE SCREEN FILE

SOURCE DETAIL FILE

DEPTH BRT		PLE	$\begin{aligned} & \text { PERIOD } \\ & / \text { EPOCH } \end{aligned}$	FORM	LIthology (ABBR)	$\begin{gathered} \mathrm{cos} \\ \mathrm{x} \end{gathered}$	visual kerogen description	$\begin{gathered} \text { TOC } \\ \mathbf{\%} \end{gathered}$	$\begin{gathered} \mathrm{S} 1 \\ \mathrm{KG} / \mathrm{TN} \end{gathered}$	$\begin{gathered} S 2 \\ \mathrm{KG} / \mathrm{TN} \end{gathered}$	HI	$\begin{array}{r} \text { RO } \\ \% \end{array}$	TR	$\begin{gathered} \text { GI } \\ (\mathrm{S} 1) \end{gathered}$	$\left\lvert\, \begin{gathered} \text { GI } \\ (T S E) \end{gathered}\right.$	$\begin{array}{\|c} \text { TKC } \\ \mathbf{x} \end{array}$	$\begin{gathered} \text { K2 } \\ \text { KG/TN } \end{gathered}$	$\begin{gathered} \mathrm{K3} \\ \mathrm{KG} / \mathrm{TN} \end{gathered}$	KPI	O1	GOPR	$\begin{gathered} K \\ H / C \end{gathered}$	$\begin{gathered} K \\ 0 / C \end{gathered}$	TM	TAI	$\begin{gathered} \text { TSE } \\ \mathrm{KG} / \mathrm{TN} \end{gathered}$	$\begin{gathered} 0-13 C \\ (\mathrm{~K}) \end{gathered}$	$\begin{aligned} & 0-13 C \\ & \text { (KPY) } \end{aligned}$	$\begin{aligned} & \mathrm{D}-13 \mathrm{C} \\ & (\text { TSE }) \end{aligned}$
2911.40	AKO	cc						. 45	. 43	. 84	187		. 34																
2912.40	AKQ	cc						. 46	. 52	. 89	193		. 37											1					
2913.50	AKQ	cc						. 44	. 36	. 83	189		. 30											419					
2915.80	AKQ	cc						. 24	. 25	. 77	321		. 25											425					
2916.60	AKQ	cc						. 61	. 36	. 97	159		. 27											433					
4330.00				to																									

KEY TO SUMMARY DATA FILE PARAMETERS

TOC-Total Organic Carbon; Sl-Productivity (free/thermovaporisable hydrocarbons); S2-Potential Productivity (hydrocarbons from kerogen/bitumen transformation) ; HI-Hydrogen Index (S2 normalised to TOC); RO (mean vitrinite reflectance); TR-Production Index (S1 normalised to S1+S2); GI (S1)-Generation Index ($100 x S 1$ normalised to TKC); GI (TSE)-Generation Index (100xTSE normalised to TKC) ; Bitumen-Free Analyses : TKC-Total Kerogen Carbon; K2-Precision Potential Productivity; K3-Precision Kerogen C02 Productivity; KPI-Kerogen Pyrolysis Index (Precision HI) ; OI-Precision Oxygen Index (100xK3 normalised to TKC); GOPR-Gas/Oil Production ratio (kerogen pyrolysis K2 product Cl-5 gas content normalised to total pyrolysate); PI-Paraffin Index (kerogen pyrolysis
K2/C9+alkane/alkene product normalised to TKC) ; TM-Rock-Eval Tmax (deg.C); TAI-Thermal Alteration Index (1-5 scale); TSE-Total Soluble Extract (rock hitumen); D-13C (K) (KPY) (TSE) - Stable Carbon Isotope Value of Kerogen, Kerogen Pyrolysate (K2) and Rock Bitumen (TSE), respectively.

