No.	Depth.	P.H.I.	P.F.	P.H.A.	Perm/remarks
	(mRKB)	psia	psia	psia	
		f	RUN 3 A		
1/3A	2030	3834.8	3097.8	3835.2	Supercharged
2/3A	2031.5	3837.8	3092.8	3837.9	Low perm
3/3A	2033.7	3842.0	3098.2	3842.3	Low perm.
4/3A	2030	3835.4	3097.8	3835.4	Supercharged
5/3A	2035.5	3846		3846.2	Tight
6/3A	2035.2	3845		3845.3	Tight
7/3A	2036.5	3845.9		3846.4	Tight
8/3A	2038.7	3849.9		3850.5	Tight
9/3A	2045.5	3862.9	3129.5	3863	V. poor perm.
10/3A	2048.5	3868.4	-	3868.7	Tight
11/3A	2120	4001.7	3191.3	4002.4	Poor perm.
12/3A	2031.5	3837.1	3092.8	38 36.1	Segr. sample and recovered 5.7 litre
mud filtra	te and thin oil f				
			RUN 3 B		
1/3B	2031.2	3834.0	3092.7	3834.2	Low perm/lost se
2/3B	2030.5	3832.6		3832.8	Tight
3/3B	2030	3831.4		3831.9	Tight
4/3B	2031	3833.8		3833.8	Tight
5/ 3B	2033.7	3838.5		3838.5	Tight
6/3B	2031.5	3834.6	-	3834.5	Seal failure
		F	RUN 4 C		
1/4C	2030	3987.2	3098.9	3988.0	Supercharged
2/4 C	2031.5	3990.9	3094.2	3991.0	Low perm.
3/4 C	2033.7	3995.4		3995.7	Tight
4/4 C	2035.5	3998.8		3999.0	Tight
5/4 C	2045.5	4017.9	3135.4	4018.5	V. poor perm
6/4 C	2120	4162.2	3198.3	4162.8	Poor perm.
7/4 C	2237	4387.6	3308.3	4387.9	Good perm.
8/4 C	2243.7	4401.2	3318.0	4401.6	V. good perm.
9/4 C	2247.8	4409.6	3324.3	4409.5	Fair perm.
10/4 C	2391.2	4685.3	3549.8	4685.0	Fair perm.
11/4 C	2393.7	4690.6	3551.8	4690.5	V. good perm.
12/4 C	2396	4695.5	3554.3	4695.8	V. good perm.
13/4 C	2397.7	4698.8	3556.0	4698.7	V. good perm.
14/4 C	2400.5	4703.6	3558.8	4703.5	V. good perm.
15/4 C	2406.5	4715.3	3564.8	4715.0	V. good perm.
16/4 C	2417	4736.0	3580.6	4736.2	V. good perm.
17/4 C	2429	4758.6	3597.5	4758.8	V. good perm.
18/4 C	2436.5	4773.3	3608.3	4773.2	V. good perm.
19/4 C 20/4 C	2458.2 2490.5	4815.0 4877.4	3639.9	4815.2 4977.9	V. good perm.
20/4 C 21/4 C	2490.5 2031.5	4877.4	3686.9	4877.8	V. good perm.
	2031.5	3991.3		3991.8	Attempted sample seal failure.
22/4 C	2031.5	3991.7 		3991.8	Seal failure.
		f	RUN 4 D		
1/4 D	2396	4697.2	3554.7	4697.6	Segr. sample - aborted.

DST RESULTS

31/4 - 7

DST 1

Perforated interval : 2389.9 - 2397.9 m (RKB)

Choke size : 40/64"

Oil flow rate : 4300 BOPD

Oil gravity : 0.83 g/cm³

Gas flow rate : 0.88 - 10⁶ scf/d
Gas gravity : 0.775 (air = 1)
GOR : 205 scf/bbl

CO₂ : 0.25% H₂S : 0

BSW : 0.25% Wellhead pressure : 725 psia

DST 2

Perforated interval : 2028.5 - 2039.5 m (RKB)

Choke size : 32/64"

Gas flow rate : 0.95 \cdot 10^6 \scf/d

Gas gravity : 0.77 (air = 1)

Condensate flow rate : Not measureable

Condensate gravity : 0.75 g/cm^3 CO₂ : Trace - 0.5%

H₂S : 0 BSW : —

Wellhead pressure : 175 psia.

6.4 Mud report

36" Hole Section:

This section was drilled from 161 m to 248 m using seawater and high viscosity pills pumped on each connection. Before running the 30" casing, 56 m³ of high viscosity mud was sirculated into the well. The casing was run and cemented without problems.

26" Holesection:

This section was drilled using the same technique as for the 36" hole section.

At TD of the 17 1/2" pilot hole, 15.9 m³ of high viscosity mud was circulated through the hole before a wipertrip was made. Before logging, the 17 1/2" hole was displaced with totally $111m^3$ of the same high viscosity mud.

The 17 1/2" hole was then underreamed to 26" using seawater and high viscosity pills pumped whenever necessary. At TD, 15,9 m³ of high viscosity mud was circulated through the well before the hole was displaced with 159 m³ of the same mud.

Before running casing a 26" bit was run in hole. Tight spots were seen at 525 m and 581 m.

Before pulling out of the hole 95.4 m³ of high viscosity mud was circulated into the hole. The casing was run and cemented without problems.

17 1/2" Hole Section

This section was drilled using a KCL-polymer drilling fluid which was displaced into the hole before the cement was drilled out. A leakoff test was performed to 1.80 SG. During drilling to 1367m the mudweight was gradually increased to 1.20 SG. A survey was dropped and the bit pulled. Tight hole with max. overpull of 700 KN was seen from 1367m to 1000m.

When running back in hole the sections from 1120 m to 1135m, 1228m to 1243m and 1367m to 1490m were reamed and washed.

During drilling to 1496m the mudweight was increased to 1.29 SG.

When reaching 1528 m a 8 m³ high viscosity pill was circulated around before a 10 stands wiper trip was made.

Tight hole was seen from 1446m to 1371m.

During drilling to 1671m the mudweight was increased to 1.34 SG.

Another wipertrips was made to 1471m. Tight hole were seen from 1598m to 1570m, 1551m to 1522m with max. overpull of 266 KN.

New hole was drilled down to 1816m. At this depth 8 m³ of high viscosity mud was circulated around before a multishot survey was dropped and the bit pulled out to the 20" shoe. Tight hole was seen from 1800 m to 1656 m with max. overpull of 625 KN.

When running back in hole, the hole was reamed from 1675 m to 1720 m and from 1800 m to 1816 m.

At this depth 8 m³ of high viscosity mud was pumped around. During this circulation the mudweight was increased to 1.40 SG. Cavings were seen.

The hole was logged without problems.

Before running casing a wipertrip was made.

The casing was run and cemented without problem.

Interval discussion, conclusion and recommendation:

The problems seen when drilling the 17 1/2" holesection is beleaved to be caused by plastic flow of the claystone into the well. The tight hole seen was cured by reaming and increased the mudweight. At TD the mudweight was increased to 1.40 SG. This seemed to be enough to allow the hole to be logged and the casing run without problem.

12 1/4" Hole section

The 12 1/4" section was drilled using a special designed drilling fluid to prevent formation damage and ensure good log quality.

It contained:

NaCl Salt (60 000 mg/L), Polyanionic Cellulose, Starch. XC- Polymer.

During the first days of drilling, only minor problems were seen. These problems were mainly reaming and washing and fill on the bottom.

After increasing the YP up to 10 to 15 Pa the problems disappeared. Except for these, few or none other problems were seen during drilling, logging or running casing.

• (((!	Daily mud properties	Date.850201	!
! (000) ! !! Well	31/4-7		: 1
	ntractor: Int. Dr. Fluid		į
! Hydro !	-	3	!
222003342226555			=

	***	=====		#EEE:		***	****		******			****	*******	*****	****	****	-*===	*****	****		*****	===	***************	2. 三三二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二
													alinity					V.G	. met	er af	115	F I	MUD CUM	1
1			!dens.							!	1	DF	Pb Mf		!			600!30						i
1			!(r.d)						!(cc)	1/00\	/1		ED 142.					rpm!rp						í
•									11001	1 (CC)	: uk3/ +								m: t Fu	er Fan	r T Faur 1	Hu:		
!		-	-	-					!			!					-					!		<u> </u>
			11.08					١.		•	t !	!!			1		1 100			!			Gel spud mud	1
! 840)7 2 7.	!248	11.08	! !	! :	! !	. 1		!	1	!	!!	!!	!	!!	!	1 100	1			1 1	1	Gel spud mud	į.
! 840	0728	1864	!1.08	! 28	! 19.	12!	30!	9.0	!	INC	1 :	!!	. 1	1	10	!	1 100	1	!	1	!!	!	Gel spud mud	ī
! 840	729	1000	!1.08	! 40.	. 24	14!	34!	9.0	!	!14C :	1 1	!!	1 1	-	10	!	100		1	1 1	!!	1	Gel spud mud !	!
			11.08							11 1 C	11100	10.21	10.4	Į .	10	15	! 95	1	1	1	1 1		Gel spud mud	i
			!						-		<u></u>											i		•
			11.08								1200	-			•	•	96		1	1	1 1	i	Gel soud mud	í
			11.08							-	11100				10		1 95			i	ii		Gel spud mud	, 1
												! !					1 100				i i		KCL-IDBOND	
			!1.15			!!					-		-	-	•					-		-		1
									110	:	64000						94!					_	KCL-IDBOID	
			!1.24								160000						92		1	1 .	1 1		KCI-IDBOID	:
									!		!			!								•		i
			!1.31								167000	1 .08!			10			-			!, !	!	KCL-IDBOUD	i
! 840	0806	11816	!1.31	! 18	1 14	2 !	2!	9.0	19.0	!	164500	! 0!	1.18	!	10	!12	! 88	1	-	-	!!	!	KCI-IDBOUD	1
1840	0807	11816	!1.40	! 20	! 11	1 1	2!	8.5	19.2	ı	164000	1 01	1.18	!	10	!14	1 86	1 1	!	!	1 1	1	KCL-IDBOID	!
			!1.40								60000						1 86		1	!	1 1	<u> </u>	KCL-IDBOUD	!
			!1.30								161000				10	!14	1 86	i			1 1	į	KCL-IDBOND	1
									!	•							!			<u> </u>				i
			11.30							1		.1!		-	10		100	-	1	1	1 1	-	llac1/POLYMER	i
										i				-			1 97		i	-	ii		INACI/POLYMER	•
			!1.30								167000			-				-	-	•				:
			!1.30								162000						1 96		1	-	!!		INaC1/POLYMER	1
			11.30								166000				10		1 95		Į	•	1 1		INAC1/POLYMER	!
			!1.30								165000						1 94		!	1	1 1	1	INaC1/POLYMER	I
									!	1	!	!		-	-	•	! !							!
1840	0815	12150	!1.30	! 26	! 12	! 2!	3!	9.0	14.0	!	165000	1.10!	1.25	!	10	111	1 89	!!	1	Į.	1 1		INaC1/POLYMER	!
! 840	0816	12150	11.30	! 25	! 13	1 4	7.	8.8	14.0	i	165000	1.05!	1.20	!	10	!10	1 90	1 1	1	1	1 1	1	!HaCl/POLYMER	!
1 840	0817	12241	!1.31	! 25	! 13	1 4	8	8.5	14.0		165000				10	110	! 90	1 1	1	1	1 1	j	!NaC1/POLYMER	1
			!1.32								168000						1 90		i	ì	1 1		NaC1/POLYMER	į
			11.325							•	168000						1 90		i	-	ii		INACI/POLYMER	i
			!!							•	1						i		•	•	• •		I	:
														-	-	•	i 90	-	1	1	! !		INAC1/POLYMER	•
										-	166000							-	1	-				
			11.33								166000						1 89	-	-	-	!!		!NaC1/POLYMER	
			11.33								170000						! 87		1	-	1 1		INaC1/POLYMER	ŧ
			!1.33								172000						1 87		Į.	•	1 1		!!laC1/POLYMER	!
			11.34								170000						1 87		1	1	1 1		Pac1/Polymer	!
			· !								!			-	•	•	!	-				!	!	1
1840	0825	!2451	11.27	! 26	! 13	1 6	10	8.0	15.4	1	166000	1.301	1.10	i	10	!11	1 89		i	1	1 1		Hacl/Polymer	1
			11.15							1	153000	1.10	1.25	1	10	17	1 93	1 1	1	1	1 1	1.]	!NaC1/POLYMZR	1
			!1.15								152000						1 93	1 1	1	Ì	1 1		INaC1/POLYMER	1
			11.15							-	154000						1 93	-	i	•	ii		INaC1/POLYMER	1
			!1.15								152000						i 93		i		i i	i	!NaC1/POLYMER	1
									!	•	1						i		•	•	· ·		I	ī
			11.15								158000			-	10	•	•	-	1	1	1 1		!NaC1/POLYMER	:
										-							1 91		i		1 i			•
			!1.15								152000				12				1				INaC1/POLYMER	
			!1.15			_			-		152000				!2		! 91	: !	-	1			!NaC1/POLYMER	1
			!1.16								152000				!1		! 91		1	-	1 !		HaC1/POLYMER	1
			!1.16								150000				11		! 91	•	1	1	1 1		!HaC1/POLYMER	I
			-!	-		-	-	-	-	!	!	!			•	•	!	•					!	1
1 84	0904	12385	11.16	! 13	! 11	! 5	! 11	! 9.5	0.8!	!	150000	1.30	1 .50	!			! 91		1		1 1		llac1/POLYMER	!
! 84	0905	12385	!1.16	1 13	! 12	! 5	! 10	9.7	16.8	1	150000	1.30	1.50	1	!1	18	! 91	1 1	1	!	1 1		!:laC1/POLYMER	1
184	0906	12385	!1.16	! 13	! 12	1 5	! 10	9.5	16.8		150000			!	!1	18	! 91	1 1	1	i	1 1		!NaCl/POLYMER	!
						_				-				-					-	•	•			-

1	Daily mud properties	:8	Date,850201 !
!! Well	: 31/4-7 ctor: Int. Dr. Fluid		; ; 3!
! !depth!den ! !(m)!(r.	ud !PV !YP !GELIGEL!Ph !100psi!HP/HT!Cl- ns.! ! 0 ! 10! i ! .d)!cpsimPa!mPa!mPa! !(cc) !(cc) !mg/1	! Alkalinity!Ca++ !Oil!Sol!H2O ! V.G. meter at 115AF !! ! Pf Pb Mf! !!!!600!300!200!100! 6 ! 3 !? !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	
!840907!2385 !1.1 !840908!2024 !1.1	16 i 15i 15i 6i 11i 9.5i6 i 150000		NaC1/POLYMER I SALT+POLYMER
!840909!2024 !1.1	15 ! 10! 10! 7! 10! 10!9.2 ! !46000 15 ! 15! 15! 11! 14! 10!9.8 ! !46000	001-201 ! ! !1 !10 ! 89! ! ! ! ! ! !	SALT+POLYMER ! SALT+POLYMER ! SALT+POLYMER !

•

•

-

TABLE B-5

MUD MATERIAL CONSUMPTION

<u>Material</u>	Quantity	<u>Unit/Weight</u>
Barite	415	M/t
Bentonite	97	M/t
Caustic Soda	27	25 kg/sx
Soda Ash	46	50 kg/sx
NaCl	1033	50 kg/sx
KCl	1858	50 kg/sx
Lime	· 7	40 kg/sx
SM (x)	13	25 kg/sx
Idbond	60	25 kg/sx
FLR-100	242	25 kg/sx
Idvis	138	25 kg/sx
Idflo	151	25 kg/sx
Idcide L	38	25 kg/sx
CMC	40	25 kg/sx
Drispac R	4	25 kg/sx
Defoamer	2	Drums