

ification	

- 8 ffr 1985 **Regi**stree

OLJEDIÁEKTORÁTEľ

Requested by

E. Undersrud, LET BERGEN

Subtitle

Co-workers

Title

K. Øygard, A.E. Gilje, E. Berge, E.M. Carlsen

SOURCE ROCK EVALUATION OF STATOIL 34/10-18 WELL STATOIL EXPLORATION & PRODUCTION LABORATORY by Hilary Irwin JAN. -85. LAB 85.103 Prepared Approved H Jum Hilary Irwin Derek South William Derek South

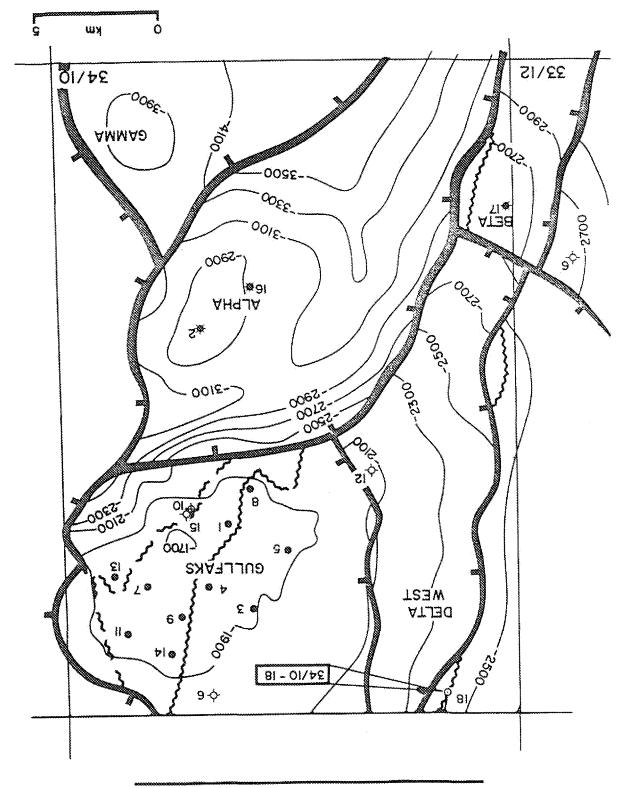
SOURCE ROCK EVALUATION OF STATOIL 34/10-18 WELL

i.

CONTENT	13
---------	----

8889 1

Page
1. SUMMARY 3
2. INTRODUCTION 4
3. RESULTS AND INTERPRETATION
Maturity
Source Rock Potential 9
Migrated Hydrocarbons 13
4. CONCLUSIONS 14
TABLES IN TEXT
Table I : Analytical Programme
Table II : Interpretation of Maturity Parameters 5
Table III : Interpretation of Source Potential Parameters 6
Table IV : Summary of Kerogen Typing Parameters
TABLES FOLLOWING TEXT
Table 1 : Lithology and T.O.C Measurements,
a) Canned Cuttings
b) Sidewall Cores 19
c) Core Samples 20


.

CONTENTS cont.

Table	5		Amount of EOM and Chromatographic Fractions
	Ŷ	•	(in mg/g TOC)
Table	6	r	Composition of Extracted Naterial 26
Table	7	1	Tabulation of data from gas chromatograms 27
Table	8	;	Vitrinite Reflectance and Maturation Index 28
Table	9	1	Microscopic Analysis - Reflected Light (Normal and UV) (IKU) 29
Table 1	10	:	Visual Kerogen Analysis (IKU) 52
FIG	JRE	S	
Figure	1	ŧ	Comparison of 34/10-18 Vitrinite Reflectance with other wells in 34/10
Figure	2	÷	Maturíty plot well 34/10-18
Figure	3	÷‡÷	Extracted hydrocarbon and gas data
FIgure	4	£	Rock Eval Pyrolysis data
Figure	5	.‡	Chromatogram of C15+ saturates Draupne Fm and Brent sandstone
Figure	6	,1	Chromatogram of C15+ saturates Drake Fm
Figure	7	.:	Chromatogram of C15+ saturates Cook and Amundsen Fm's
Figure	8		Chromatogram of C15+ saturates Statfjord Fm
APP	ENI		ANALYTICAL PROCEDURES

Cl-C7 Light Hydrocarbon Analysis 1
Total Organic Carbon
Rock Eval Pyrolysis 2
Extractable Organic Matter (EOM) 2
Class Separation, Gas Chromatography 3

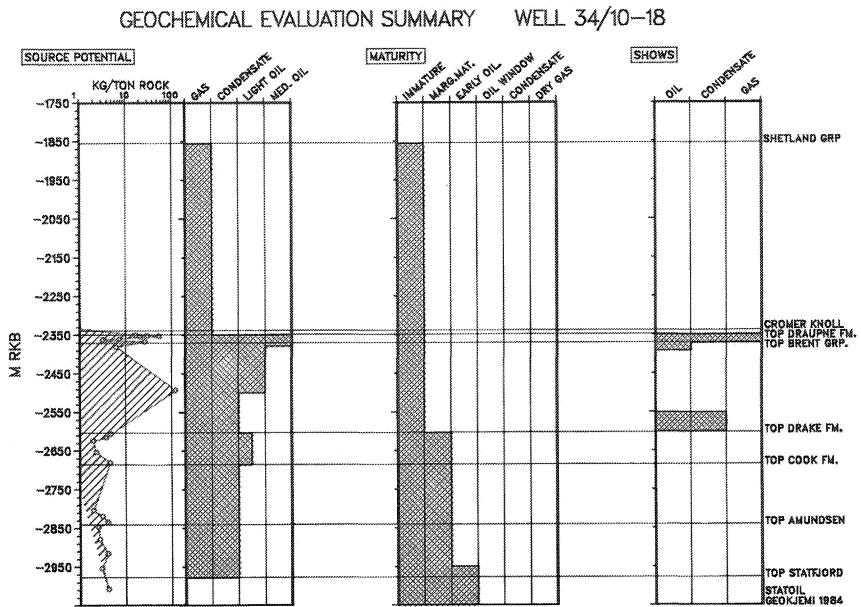
Page

LOCATION MAP 34/10-18

SUMMARY

The sequence is immature above 2600m and marginally mature below this level, becoming early oil mature by TD. Peak generation (0.75 % Ro) in the area is estimated to be reached by 3700m.

The DRAUPNE formation is the best source rock unit containing around 5 wt% total organic carbon and having a petroleum potential of up to 28kg hydrocarbons per ton of rock. It has predominant potential for OIL but GAS/CONDENSATE will be expected at high maturity levels.


Subsidiary source rocks include the BRENT COALS which in this well, unfortunately, are not present in significant amounts. The DRAKE, COOK and AMUNDSEN formations have between 1 and 2 wt%

total organic carbon and an average petroleum potential of 3.1 kg hydrocarbons per ton of rock. Expected hydrocarbons are dominantly GAS and minor LIGHT OIL.

MIGRATED HYDROCARBONS were detected at the boundary of the DRAKE SHALES and BRENT SANDSTONES.

3

Please refer to the summary diagram on the next page.

.....

INTRODUCTION

This report presents a geochemical evaluation of well 34/10-18, (see location map) which terminated in the Statfjord Formation at 3025m and is recorded dry. The aims of the project were to identify and evaluate potential source rock intervals and to document shows of hydrocarbons. The interval between 2108m and 3008m was investigated according to the following analytical programme:

TABLE I ANALYTICAL PROGRAMME

ANALYSIS	NUMB	ER OF S	SAMPLES	
	Cuttings	SWC	Core	Total
Headspace and occluded gas	20			
Total organic carbon	8	7	4	19
Rock eval pyrolysis	8	7	4	19
Vitrinite reflectance		9	10	19
Kerogen description and TA	I	9	10	19
Extraction, MPLC and GC	2	3	3	8

Most analyses were carried out at Statoils laboratory. The vitrinite reflectance and kerogen descriptions were done at IKU. Further checks on vitrinite reflectance were made by T. Throndsen at I.F.E.

Maturity was assessed using vitrinite reflectance, TAT, Tmax, headspace and occluded gas amounts and extraction data. Table II defines the interpretation of maturity used in this report.

TABLE II INTERPRETATION OF MATURITY PARAMETERS

MATURITY	PAR	AMETERS		
	Ro	TAI	Tmax	
Marginally mature	0.45	2-	430	
Early oil generation	0.50	2	435	(= Signif.mature)
Peak oil generation	0,75	2		
Condensate window	1.00	3-	450	
Dry gas	2.00	3		

Source rock potential is based on TOC, rock eval pyrolysis, visual kerogen analysis, and gas chromatograms of saturate components. Table III defines the interpretation of source rock potential used in this report.

TABLE III INTERPRETATION OF SOURCE POTENTIAL PARAMETERS

QUALITY	TOC	51+52	HC(ppm)
Poor source rock	0.5%	1	100
Fair source rock	0.5-1%	1-5	100-250
Medium good source rock	1.0-2%	5-10	
Good source rock	2.0-4%	10-25	250 500
Very good source rock	4 -12%	25-50	> 500
Oil shale or Coal	> 12%	> 50	

Migrated hydrocarbons were identified using headspace and occluded gas results, extraction data, and rock eval pyrolysis data.

Details of the results are presented in Tables 1 to 10 which follow the interpretation. Figures 1 to 8 follow the tables, and details of experimental procedures appear in the appendix at the back of the report.

RESULTS AND INTERPRETATION

MATURITY

The indicator of maturity most usually used is vitrinite reflectance. The values obtained from IKU are generally too high compared to TAI and the regional trend (Figure 1). Much of this vitrinite data is therefore unreliable (Figures 1 and 2).

TAI measurements suggest early oil maturity is reached by 2300m at Draupne Formation level. This is consistent with the regional trend and the better Ro values. TAI never reaches levels high enough to indicate peak generation maturity at depths penetrated by the well. The high values in the Brent sequence are due to reworking.

The amount of hydrocarbons in extracted material indicates that the Draupne has not begun to generate significant hydrocarbons. Yields are not higher at the base of the well possibly because kerogen type is poorer (Tables 4 and 5).

The Tmax values (Table 3) in the Draupne and Heather formations and the Brent group (above 2600m Rkb), being less than 430°C, suggest this part of the sequence is immature to marginally mature,. The Drake and Cook formations have a Tmax greater than 430°C and Tmax reaches 435°C at the deepest sample suggesting that early oil maturity is reached at 3000m in the Amundsen Formation. This value may be affected by kerogen type. The vitrinite reflectance measurements were checked by T.Throndsen at I.F.E. The same prepared sample blocks were measured after repolishing. The results from I.F.E. are

very diffrent from I.K.U's.(Figures 1 and 2), they are much lower and in accordance with the regional trend and the Tmax data. These vitrinite reflectance measurements support the onset of marginal maturity at about 2600 m, and early oil maturity at about 3000m.

To conclude, the sediments are marginally mature below 2600m, and early oil mature at TD. Peak maturity 0,75 % Ro is estimated, from the regional trend, to be reached below 3700m.

SOURCE ROCK POTENTIAL

The headspace and occluded gas and C15+ concentrations suggest the presence of significant source rocks in the Draupne Fm., Dunlin Cp.and Statfjord Fm. (Figure 3).

The Shetland group consists of interbedded grey-brown shales and claystones which contain Type IV kerogen. The hydrogen index is 50 which indicates very little hydrocarbon potential. The organic matter is composed of predominantly reworked wood, wood and spores, with some algal and amorphous material. There is very poor potential for gas.

The Draupne formation consists of dark grey-brown shales and claystones which contain Type II/III kerogen with a rich potential to generate hydrocarbons. The kerogen is a mixture of algalamorphous material with some wood, reworked wood and pollen imparting potential for oil and minor gas. At high levels of maturity the Draupne has rich potential for gas/condensate. This is the best source rock with organic content between 4 and 7 wt % and petroleum potential up to 28 kg hydrocarbons per ton rock.

The Heather formation consists of interbedded dark grey shales which contain Type III/IV kerogen with poor potential for hydrocarbons. The kerogen is made up of dominantly wood and reworked wood, some pollen and spores and minor amorphous material and cysts. It has potential for light oil and gas.

The Brent group consists of interbedded carbonaceous shales with poor hydrocarbon potential and hydrogen rich coals with rich potential. The coals can contain as much as 34 wt % total organic carbon and can generate up to 118 kg. hydrocarbons per ton rock. However, coals

form only a small proportion of the sequence. The kerogen consists of wood, cuticle, pollen and spores with minor algae and thus will generate light oil and gas.

The Drake formation consists of variegated grey shale and claystone which contain Type III kerogen with fair hydrocarbon potential. The organic content is between 1 and 2 wt % and the petroleum potential between 1,9 and 4,6 kg hydrocarbons per ton rock. The kerogen contains wood, reworked wood, pollen and spores with minor algae. The formation therefore has the potential to generate gas and minor light oil.

The Cook formation consists of interbedded grey-brown shales with coal stringers and off-white sandstones. The shales contain Type III kerogen with fair potential for hydrocarbons. The organic content is about 1,8 wt % and petroleum potential between 1,9 and 3,9 kg hydrocarbons per ton rock. The kerogen is composed of wood, cuticle, pollen and spores, with minor algae and amorphous material. Thus there is potential to generate gas with minor amounts of oil.

The Amundsen formation consists of interbedded grey-brown claystones and minor white sandstone. The claystones contain Type III kerogen with fair potential to generate hydrocarbons. Total organic carbon varies between 0,9 and 2,1 wt % and petroleum potential between 2.4 and 2,9 kg hydrocarbons per ton rock. The kerogen contains dominantly algae and amorphous material with wood, reworked wood and cuticle giving potential to generate gas with minor oil.

The Statfjord formation includes dark grey-brown shales containing Type III kerogen. Only one sample has been analysed and it has total organic carbon of 1.5 wt % and petroleum potential of 4.0 kg hydrocarbons per ton rock. This implies fair potential for gas and possibly minor oil.

The Rock Eval pyrolysis data is presented in Figure 4 and in Table 3. Kerogen descriptions are presented in Tables 8 and 9 and Table IV shows a summary of kerogen typing parameters and oil/gas potential.

TABLE IV SUMMARY OF KEROGEN TYPING PARAMETERS

FORMATION	DEPTH (mKB)	KEROGEN TYPE	KEROGEN DESCRIPTION	POTENTIAL
Shetland Gp	1878-2340	IV/III	WR,W,P,Am,Al	poor gas
Draupne Fm	2351-2355	II/III	Al,Am,W,P	good, oil/gas
Heather Fm	2355-2372,5	III	W,WR,P,S,Am,Al	fair oil/gas
Brent Gp	2372,5-2604	III/II	W,Cut,P,S,Al	rich light oil from coals/gas
Drake Fm	2604-2687,5	111/11	W/WR,S,P,Al	fair-good gas with minor light oil
Cook Fm	2687,5~2842,5	III/II	W,Cut,P,S,Al,Am	fair gas with minor oil
Amundsen Fm	2842,5-2978	III/II	Al,Am,W,Cut	fair oil and gas
Statfjord Fr	n 2978-3025	11/111	N.D.	fair gas minor oil

KEY: W=wood, WR=reworked wood, P=pollen, S=spores, Cut=cuticle, Al=algae, Am=amorphous.

Gas chromatograms of the saturate fraction of extracts clearly show the contrast in kerogen types between the Draupne and other formations. The Draupne (2353m) has a typical light oil n-alkane distribution with characteristically high pristane/nC17 and phytane/nC18. The n-alkane distribution is uni-modal with low proportions of higher weight compounds. The Drake on the other hand contains high amounts of heavier weight n-alkanes which have a strong odd over even preference typical of terrestrial organic matter. The Cook and Amundsen formations contain a mixture of the two types with chromatograms of intermediate character. The Statfjord again has a dominant terrestrial component. The gas chromatograms are presented in Figures 5 to 8. Extraction data is presented in Tables 4 to 7.

MIGRATED HYDROCARBONS

The Shetland Group (only one sample analysed) has a high production index but S1 is too low to suggest migrated hydrocarbons in the sequence. The high gas content in this sample could be gas coming from the Draupne formation which is 20m below. The Draupne formation has a good to rich organic carbon content, which accounts for the high amounts of hydrocarbons in this formation.

There is Rock-eval data from two coal samples in the Brent group which do not indicate the presence of migrated hydrocarbons. Extracted sandstone core from the Brent where oil stains were recorded yielded very low amounts of C15+ hydrocarbons. The chromatogram indicates traces of stripped oil and contamination of the core sample visible due to the low extract content Figure 5. The stripped oil could indicate the previous presence of oil which has been stripped by migrating gas.

The Drake formation consists mostly of shale, but grades into sandstone at the top. There is a high concentration of gas and the production index is also high. This indicates migrated hydrocarbons.

The analysis of the samples from Cook, Amundsen and Statfjord formations does not give any indication of migrated hydrocarbons.

CONCLUSIONS

The Draupne formation is a good source rock for oil and gas. It is marginally to early oil mature in this well and contains shows of gas generated in situ.

The Brent group contains occasional coals which have rich potential for light oil and gas. They are marginally mature.

The Drake formation has fair to good potential to generate gas and possibly minor amounts of light oil.

The Cook, Amundsen and Statfjord formations have fair potential for gas with minor oil. The Cook and Amundsen formations are marginally mature. The Statfjord formation is early oil mature.

No significant hydrocarbons have been generated in this well but peak hydrocarbon generation will take place at depths below 3700m off structure. Residual hydrocarbons suggest that oil and gas have migrated through the reservoir section.

- LITHOLOGY AND TOTAL ORGANIC CARBON MEASUREMENTS -

- TABLE IA - CANNED CUTTINGS - WELL 34/10-18 -

. .

SAMPLE	DEPTH		TOC	LITHOLOGY
539	2300-15 m >	2ສາດເ		50% CLYST: gry,slty,non calc, micromica 45% NRL: lt gry-wh 5% DOL: brn, hd tr: SST, SLST, PYR
	>	125µ		a/a Contaminated by fiber,black "flakes"(mudadditatives?) metal
S40	2315-30 m >	2mm	,7 9	95% SLST: gry, sl.calk 5% DOL tr: PYR nod
	×	125µ		a/a Contaminated by asfalt, fiber, metal, "flakes of paint"
S41	2610-25 m >	2mm	1,66	95% CLYST/SHL: med-lt gry, non calc, occ slty tr: SST crs grns, PYR nod, DOL
	>	125µ		50% SD: cs grns 45% CLYST/SHL a/a tr: PYR nod, DOL, LCM (+ asfalt, fiber)
S42	2625-40 m >	2mm		95% CLYST/SHALE: gry-med gry, slty, micromica tr: SST,SLST,COAL
	>	125µ		a/a tr: a/a + LST, mica
S43	2640-55 m >	2mm	1,71	100% CLYST : dk-med gry slty, sl calc tr:LST, DOL, PYR nod, SST, COAL
	>	125µ		95% CLYST: a/a tr:a/a

WELL 34	/10-18			
SAMPLE	DEPTH		TOC	LITHOLOGY
S44	2655-70 m >	2mm		100% SHL/CLYST :gry-med gry, sl calc, slty tr:a/a
	- >	125µ		95% SHL/CLYST: a/a tr:a/a
S45	2670-85 m >	2mm		a/a tr: LST/CALC
	>	125µ		95% SHL/CLYST: a/a tr: SST, LST
S46	2775-90 m >	2mm		<pre>60% CLYST: med gry, sl cslc, gry~ grn, ls slty 40% SST : calc tr: calc cly, SLST, PYR nod, COAL (asfalt)</pre>
	>	125µ		70% SD, SST 30% CLYST: a/a tr: a/a, mica, asfalt, fiber
S47	2790-05 m >	2mm	1,84	90% CLYST: gry-lt gry, sl slty, micromica 10% SST : calc tr: LST, DOL, PYR nod,(+asfalt)
	>	125µ		50% CLYST: a/a 45% SD, SST tr: a/a
548	2805-20 m >	2mm	1,96	100% CLYST :lt/med gry-gry brn, sl slty, micromica tr: LST, DOL, SST
	>	125µ		95% CLYST: a/a tr: a/a (+ asfalt, fiber)
S49	2820-35 m >	2mm	1,64	100% CLYST: a/a tr: a/a
	>	125µ		95% CLYST: a/a tr: a/a (Contamination look at 2815 M in completion report)

}-18

SAMPLE	DEPTH		TOC	LITHOLOGY
S50	2835≁50 m >	2mm		100% CLYST: gry/gry-brn, sl calc, micromica tr: SD,LST
	>	125µ		a/a
S51	2850-65 m >	2mm		100% CLYST: gry, sl calc, micromica tr: SLST, LST
	>	125µ		95% CLYST: a/a 5% LST: glauconitic tr:PYR, SD, COAL
S52	2865-80 m >	2mm	1,39	100% CLYST/SHL : med- lt gry, gry brn, sl slty, micromica tr: LST, SST slty, COAL
	>	125µ		95% CLYST: a/a tr: a/a + PYR nod (Contaminated by asfalt + fiber)
S53	2880-95 m >	2mm		100% CLYST: gry, grybrn, sl calc, micromica tr: SLST, SST
	>	125µ		95% CLYST: a/a tr: a/a + PYR nod, LST
\$54	2895-10 m >	2mm		100% CLYST: a/a tr: SLST, LST
	>	125µ		95% CLYST: a/a 5% LST
\$55	2910-25 m >	2mm		100% CLYST:a/a tr: LST
	>	125µ		95% CLYST: a/a 5% LST, SD, PYR
556	2925-40 m >	2mm		100% CLYST: a/a tr : LST (+ asfalt)
	>	125µ		90% CLYST: a/a 5% LST tr: SD, PYR (+ asfalt)

1000

SAMPLE			TOC	LITHOLOGY
S57	2940-55 m >	2mm	2,12	100% CLYST: med gry-gry brn, slty, micromica tr: LST, DOL, SLST, SST, COAL
	>	125µ		95% CLYST: a/a tr: LST, DOL, PYR nod, SST,COAL
S58	2955-70 m >	2mm		100% CLYST: a/a tr: LST, SST
	>	125µ		80% CLYST: a/a 15% SST 5% LST tr: SD, PYR

¥

- LITHOLOGY AND TOTAL ORGANIC CARBON MEASUREMENTS -

- TABLE IB - SIDEWALL CORES -

SAMPLE	DEPTH		TOC	LITHOLOGY
564	2494	m	34.08	COAL, blk, brittle, shiny, pyr
S65	2607	m	2.17	CLYST/SH.,v.dk.gry/brn, slty, carb, pyr, micromic , hd, non calc, coaliferous,dull.
S65	2616	m	1.99	CLYST: v. dk gry-blk, sli slty, micromic carb hd, non calc.
S67	2682	m	1.10	CLYST: dk gry, only finely slty, v.micromic frm-mod hd, non calc.
S68	2847	m	1.10	Clyst: med gry/brn. slty, mic, micromic sub non-fis calc.
S69	2916	m	0.92	SHL: med gry/brn,slty, mic, micromic frm, sub físs, sli calc.
570	3008	m	1.52	SHL: dk gry brn, slty, v. micromic, fm-hd, non-sli calc.

19

ŝ,

- LITHOLOGY AND TOTAL ORGANIC CARBON MEASUREMENTS -

- TABLE IC - CORE SAMPLES -

	SAMPLE	DEPTH		TOC	LITHOLOGY
	571	2351.5	₩.	4.21	SHL: lt grn- gry, hd, mod calc, shiny, cleavage, micromic, glauc.
	572	2353	m	6.90	SHL: blk, shiny ,mod hd, brit- tle,striations, non calc, slty, mic and micro mic.
	S73	2363	m	2.72	SHL: dk gry-blk, to gry, hd-frm sub fiss, slty, pyr, coali- ferous.
ŧ	574	2382	m	10.29	COAL
	S79	2390.1	m		SST: oil stained

.

TABLE 2 CONCENTRATION (μ L GAS/KC ROCK) OF C1-C7 HYDROCARBONS.

DEPTH	C1	C2	C3	IC4	NC4	C5+	IC4/NC4	WETNESS
SHETLAND) GP. 187	78~2340 π	L					
			-	·				
							.43 .42	
DRAKE FN	1. 2604.(0~2687.5	m					
		10207	- 	1131	1966	606	. 83	47.69
2625	2563	10327 1411 524	1914	368	1366	560	.54	63.08
2655	1542	524 271	1914 1064 758	264	509	582	- 52	60.49
2670 2685	892 1017	377	665	230 248	449 386	638 764	.51 .64	65.69 62.24
COOK FM.	. 2687.5-	-2842.5 m	1					
2790	10947	3162	2433	537	666	1345	.80	38.29
2805	8928	2921	2593	574	689	1233	.83	43.15
		5286 2153			1075 454		.81 1.11	40.82 46.32
						2000	تقديك والقر	
AMUNDSEP	v Fri. 284	42.5-2978	> m 					
		223	471	206	296	144	.70	70.81
							.94	
20 A 2 A 2 A 2	4400	1184	1288		465	931		
2910	506	126	164	76	91	269		
2925 2940	176 3243	28 896	52 917	29 315	40 336	141 683	.94	
2955	5424	1148	1144	395	441	920	.90	36.58
2970	3401	1216	925	205	303	523	.68	43.79

ŝ,

,

TABLE 3 DATA FROM ROCK EVAL PYROLYSE

DEPTH	S1		53	TOC	HI 	01	PP	PI	TMAX
		78-2340 m							
2330	.06	,39	.48	.79	49	60	.4	.13	428
DRAUPNE I	FM. 235	1~2355 m							
2351 2353 2354	2.71 2.76 3.66	13.41 25.95 48.18	.39 .97 2.12	4.21 6.90 11.21	318 376 429	9 14 18	16.1 28.7 51.8	.17 .10 .07	416 417 415
HEATHER I									
2361 2363	2.82 1.26 .55 .86 3.04	17.36 5.95 2.62 2.52 22.34	1.85 1.74 .82 .92 2.21	4.43 2.72	134 96	39 30	7.2 3.2	.17 .17	431 422
		5-2604 m							
238 2 2494	.74 9.80	5.29 108.40	2.29 6.47	10.29 34.08	51 318	22 18	6.0 118.2	.12 .08	423 429
		0-2687.5							
2616 2625 2655	.30 .08 .08	3.62 3.34 1.82 2.13 3.77	1.02 .21 .51	1.99 1.66	167 109 124	51 12 29	4.7 3.6 1.9 2.2 4.4	.08 .04 .04	429 432 432 432 431
		-2842.5 m							
2805 2820 2835	.06 .11 .17	1.77 2.94 3.67	.41 .57 .58	1.84 1.96 1.64	96 150 223	22 29 35	1.8 3.0 3.8	.03 .04 .04	432 431 430

100

٠

DEPTH	51 	S2	S3	TOC	HI 	01	PP 	PI	TMAX
	FM. 284	2.5-2978	m 						
2847 2880 2916 2955	.14 .10 .39 .11	2.34 2.46 3.48 2.75	.98 .53 .61 .53	1.09 1.39 .92 2.12	214 176 378 129	89 38 66 25	2.5 2.6 3.9 2.9	.06 .04 .10 .04	433 432 433 432
STATFJORD	FM. 29	78.0-TD							
3008	.52	3.46	.29	1.52	227	19	4.0	.13	435

÷

•

~ ∿_____\$.

TABLE 4 - AMOUNT OF EOM AND CHROMATOCRAPHIC FRACTIONS -- (IN PPM OF ROCK)

,

			HYDROCARBON	-		
DEPTH	EOM	. SAT	ARO	HC .	NON.HC	TOC
DRAUPNE FM.	2351-2355	m				
2353	4817	870	1335	2205	2612	6.90
BRENT GP. 2	372.5-2604	n: ~~~				
2390	67	6	3	9	58	
DRAKE FM. 2	604.0-2687.	5 m;			١	
	526 1590		78 215	219 488	307 1102	
COOK FM. 26	87.5-2842.5	m :				
2835	1823	423	404	827	996	1.64
	. 2842.5-29					
2880	798	265	248	513	285	1.39
STATFJORD F	M. 2978.0-T	D -				·
3008	991	183	119	302	689	1.52

- TABLE 5 - AMOUNT OF EOM AND CHROMATOGRAPIC FRACTIONS-

			HYDROCARBON	S	
DEPTH	EOM		·	нс	NON HC
DRAUPNE FM	. 2351-2355				
2353	69.81	12.61	19.35	31.96	37.84
BRENT GP.	2372.5-2604	m 			
2390	n.d	n.d	n.d	n.d	n.d
DRAKE FM.	2604.0-2687	.5 m			ï
2616	26.43	7.09	3.92	11.01	15.43
	687.5-2842.				
2682 2835	144.55 111.16	24.82 25.79	19.55 24.63	44.36 50.43	100.19 60.73
	M. 2842,5-2				
2880	57.41	19.06	17.84	36.91	20.50
STATFJORD	FM. 2978.0-	TD			
3008	65.20	12.04	7.83	19.87	45.33

.

2000

800 M

TABLE 6 GOMPOSITION OF EXTRACTED MATERIAL.

DEPTH	% SAT	% ARO	% HC	% NON HC		HC/NHC
DRAUPNE F	M. 2351-2					
2353	18.1	27.7	45.8	54.2	.7	.8
BRENT GP.	2372.5-2					
2390	9.0	4.5	13.4	86.6	2.0	.2
DRAKE FM.						
		14.8 13.5		58.4 69.3		
COOR FM.	2687.5-28					
2835	23.2	22.2	45.4	54.6	1.1	.8
AMUNDSEN	FM. 2842.					
2880	33.2	31.1	64.3	35.7	1.1	1.8
STATFJORD	FM. 2978					
3008	18.5	12.0	30.5	69.5	1.5	.4

26

•

TABLE 7	TABULATIO	N OF DATA F	ROM GASCHROM	MATOGRAMS
DYBDE	CPI	PRIS/PHY	PRIS/C-17	PHY/C-18
	2351-2355 m			
2353	1.3	1.4	1.3	1.36
BRENT GP. 2.	372.5~2604 m			
2390	.9	5.5	2.9	.08
	604.0-2687.5 m			
2616 2682	1.8	3.6 3.9	1.1 1.4	.43 .49
COOK FM. 26	87.5-2842.5 m			
2835	1.5	1.8	1.7	1.36
	. 2842.5-2978 r	n 		
2880	1.6	2.0	1.3	.86
STATFJORD F	M. 2978.0-TD			
3008	1.4	5.7	2.7	.45

.

27

ı

.

NO.	DEPTH (M)	VITRINITE R (IKU)	(T.T)	THERMAL MATURATION
S160 S161 S162	2108 2234 2334	.54 .60 .55	* .38 .45	1+ 1+/2- 1+,1+/2-,2
	1. 2351-2355 m			
S163 S72 S166 S167	2351 2353 2354 2355	.58 .61 .52 .58	.42 .20	1+,1+/2-,2- 1+,1+/2- 1+ 1+,1+/2-,2
HEATHER 23	355-2372 m			
S168 S73 S169 S170	2361 2363 2366 2368	.71 .63 .71 .65	.40 .43 .43 .41	1+,1+/2-,2 1+/2- 2 1+,2,2+
BRENT GP.	2372.5-2604 m	-		
S74 S171 S163 S64	2382 2388 2451 2494	.64 .60 .69 .49	.39 .35 .36 .47	2,2+ 1+/2- 2-,2-/2,2 1+/2-,2,2/2+
	2604.0-2587.5			
565	2607	.66	.42	2
	2687.5-2842.5			
S164	2787	.77	.38	1+,1+/2-
	FM. 2842.5-297			
569 5165	2916 2977	-61 .62	.49 .52	1+/2- 1+/2-
* 0.66 fo	r inertinite,	no vitrinite	present T.T	WELL 34/10-18

TABLE 8 VITRINITE REFLECTANCE AND MATURATION INDEX.

MICROSCOPIC ANALYSIS -REFLECTED LIGHT (NORMAL + U.V)

Table no.: Well no.: 9 34/10-18

IKU No. Dept	Depth	Depth Dominant		Popu-	Dominant	Liptinites		Ĩ	Bitumen	
160 140.	m/fi	lithology	(%)	lation size	maceral type	UV Fluorescence	Content	Additive	Bitu	Cave
В-4561 swc	2108.0	Kerogen Isolate	0.54	22	Vitrinite + Bitumen					
8~4562 swc	234.5	Kerogen Isolate	0.60	10	Vitrinite (reworked?)					
B-4563 swc	2334.0	Kerogen Isolate	0,55	15	Vitrinite + Liptinite					
B-4564 core	2351.5	Kerogen Isolate	0.58	6	Liptinite + Amorphous material					
8-4565 core	2353.0	Kerogen Isolate	0.61	19.	Liptinite + Amorphous material					
8-4566 core	2354.0	Kerogen Isolate	0.52	5	Liptinite					
B-4567 core	2355.2	Kerogen Isolate	0.58	23	Amorphous material		λ,			
8-4568 core	2361.0	Kerogen Isolate	0.71	15	Vitrinite (reworked?)					
B-4569 core	2363.0	Kerogen Isolate	0.63	24	Vitrinite (reworked?)					
8-4570 core	2366.0	Kerogen Isolate	0.71	. 21	Vitrinite (reworked?)					
B-4571 core	2368.0	Kerogen Isolate	0.65	19	Vitrinite (reworked?) + Amorphous material					
8-4572 core	2382.8	Kerogen Isolate	0.64	·6. ·	Vitrinite					
B-4573 core	2388.5	Kerogen Isolate	0.60	32	Liptinite					
8-4574 swc	2451.0	Kerogen Isolate	0.69	31	Liptinite + Amorphous materiał					
8-4575 swc	2494.5	Kerogen Isolate	0.49	11	Liptinite + Vitrinite					

137/H/jb1/1

MICROSCOPIC ANALYSIS -REFLECTED LIGHT (NORMAL + U.V)

Table no.: Well no.:

9 34/10-18

IKU No.	Depth	Dominant	Ro value	Popu-	Dominant	Liptinites		litive	Bitumen	81
11.0 180.	m/ft	lithology	. (%)	lation size	maceral type	UV Fluorescence	Content	Add	8110	Cave
8-4576 5wc	2607.0	Kerogen Isolate	0.66	12	Vîtrinite (reworked?) + Amorphous material					
8-4577 swc	2787.0	Kerogen Isolate	0.77	33	Vitrinite (reworked?) + Liptinite					
B-4578 swc	2916.0	Kerogen Isolate	0.61	21	Amorphous material + Vitrinite					
8-4579. swc	2977.0	Kerogen Isolate	0.62	11	Amorphous material + Vitrinite					
· · ·				· · · · · · · · · · · · · · · · · · ·						
					-					
		×								
						-				

.

$1 \le 1$	4521 4105.C	5 34	/10-18			
14-1						
1						
12-1						
ł	U					
10-1	U					
1	U					
8-1	U*			;		
ł	П					
6-1	U					
t	Цu					
4-1	UU u					
ł	ULUDu					
2-1	ՍԱՍԱ	ч				
I.	ԱՍՍՍՍԱ	u	u			
0+-				~~~ ~ + ~ ~ ~	 	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50

PP LOW HIGH LIT #VAL MEAN STDV Y 0.44 0.64 ALL 22 0.54 0.05 OVERALL 30 0.60 0.15

ORDERED VALUES FOLLOW:

÷.

0.440 0.470 0.480 0.490 0.500 0.500 0.510 0.510 0.530 0.540 0.540 0.540 0.540 0.540 0.540 0.540 0.540 0.570 0.570 0.620 0.620 0.630 0.650 0.660 0.670 0.670 0.670

	2104.Contexterse
-1 1.4-⊷1	
12-1	
1 10-1	
1	
8-1 1	9 •
6-1	u u
4-1	U uu u U uu u u
2- i	
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	D.50 D.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50
FF LOW HIGH	LIT #VAL MEAN STOV

Y 0.45 0.70 ALL 10 0.60 0.08 OVERALL 39 0.94 0.26

ORDERED VALUES FOLLOW:

.

*

0.480 0.500 0.520 0.560 0.630 0.630 0.660 0.660 0.690 0.690 0.760 0.810 0.810 0.850 0.900 0.910 0.910 0.920 0.940 0.950 0.960 0.980 0.990 1.010 1.050 1.060 1.060 1.070 1.070 1.100 1.150 1.210 1.220 1.290 1.300 1.320 1.330 1.390 1.430

ಶೀಟ್ ೧⊣ರಿಂ	it Tiskador Iar id-se	
1   4 - 1		
t 12-1		
1		
10~1		
8-1		
1 6-1		
i	и	
4-i	<u>U</u>	
	10000000000000000000000000000000000000	
i -	UUUUUU waxaxaaa	uř

FF LOW HIGH LIT #VAL MEAN STOV Y 3.41 0.68 ALL 15 0.55 0.07 OVERALL 39 0.81 0.26

#### ORDERED VALUES FOLLOW:

· .

0.410 0.430 0.469 0.469 0.470 0.510 0.350 0.560 0.570 0.590 0.600 0.640 0.650 0.660 0.670 0.760 0.760 0.780 0.790 0.6800 0.640 0.660 0.660 0.670 0.670 0.700 0.780 1.000 1.010 1.020 1.030 1.040 1.090 1.100 1.120 1.120 1.120 1.150

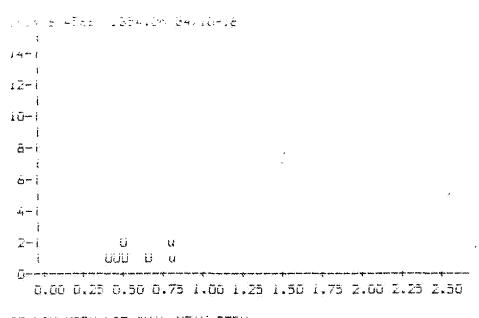
- 1	
1	
~ j	
i.	
i-i	
1	
i-i	•
ł	·
- i	
	ย่อน
- i	ยิมมิน ม
}	ปป ปประเทศน สม น

FP LOW HIGH LIT #VAL MEAN STDV T 0.48 0.66 ALL 6 0.58 0.07 OVERALL 20 0.80 0.20

ORDERED VALUES FOLLOW:

5,450 5.360 5.650 5.620 5.640 5.650 5.710 5.750 5.760 5.780 5.810 5.820 5.840 . 5.860 5.910 5.940 1.540 1.570 1.580 1.190

ಂಗ ಕೆ ಕೇಶ್	Bene ter Bretter
( 49 → 5	
i	
.Z-i	
i	
0-1	
5-1	
р-1 і	
\$-1	θ u
i	ίμου μ
4-1	
i	uluu uu
2-1	UUU uuuuu u
i.	DUDUUUuuuu aua au


0.00 0.25 0.50 0.75 1.00 1.25 1.30 1.75 2.00 2.25 2.50

PP LOW HIGH LIT #VAL MEAN STDV Y 0.49 0.72 ALL 19 0.81 0.08 OVERALL 40 0.80 0.23

ORDERED VALUES FOLLOW:

É

0.470 0.510 0.550 0.550 0.550 0.560 0.580 0.580 0.600 0.610 0.610 0.630 0.640 0.660 0.660 0.670 0.670 0.670 0.680 0.710 0.750 0.750 0.820 0.630 0.640 0.850 0.860 0.870 0.870 0.870 0.870 0.700 0.710 0.760 0.770 1.080 1.120 1.130 1.180 1.380 1.420



٠

PF LOW HIGH LIT #VAL MEAN STDV Y 0.43 0.67 ALL 5 0.52 0.10 OVERALL 7 0.61 0.16

ORDERED VALUES FOLLOW:

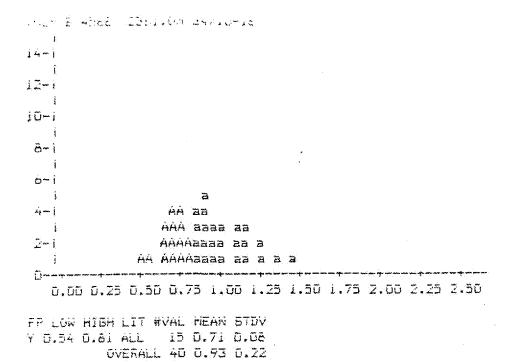
÷.

ľ

0.430 0.470 0.510 0.530 0.680 0.800 0.830

14-1 12-1 10-1 6-1 AAA a 4-1 AAAA a 4-1 AAAA a 2-1 AAAAA a aa 2-1 AAAAA a aa 2-1 AAAAA a aa 2-1 AAAAA a aa	NOT & HOUSE	SRI SI RHI BHI I CHIEF
10-1 6-1 6-1 1 AAA a 4-1 AAA a a 1 A AAA a a 2-1 A AAAA a aa	r r – i	
i 5~i A AAA a A~i A AAA a a i A AAAA a a a Z~i A AAAA a a	i 2⊷i	
i 6~1 AAA a 4~1 AAA a i AAA a a i A AAA a a 2~1 A AAAA a a	i ;:	
i 6~1 A 1 AAA a A~1 AAA a a 1 A AAA a a 2~1 A AAAA a aa	i	•
i AAA a A-i AAA a a i A AAA a a 2~i A AAAA a a	i É	۵. ج
6-1 Á Á Á B. B. 1 Á Á Á A B. B. 2-1 Á Á Á Á B. B.B.	5~ į	
2-1 Á ÁAÁÁ a aa		AAA a a
à se sessaàààààààààààààààààààààààààààààà	4 2~~}	
ant of the state o		ÀÀÀÀÀÀABBBB BB B

PP LOW HIGH LIT #VAL MEAN STDV Y 0.40 0.71 ALL Z3 0.58 0.09 OVERALL 39 0.72 0.20


ORDERED VALUES FOLLOW:

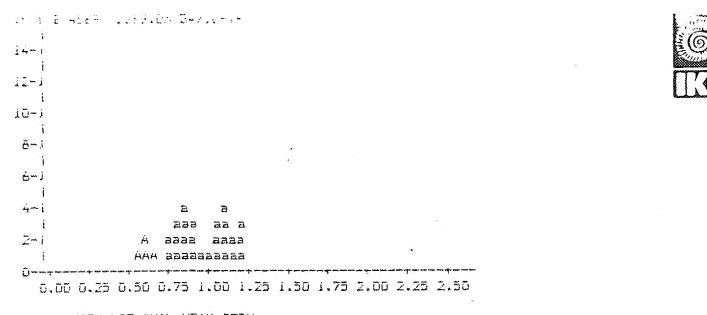
1

1

÷.

0.40A 0.42A 0.42A 0.45A 0.52A 0.53A 0.56A 0.56A 0.57A 0.57A 0.59A 0.59A 0.59A 0.60A 0.60A 0.63A 0.63A 0.65A 0.65A 0.66A 0.67A 0.66A 0.69A 0.70A 0.75a 0.77a 0.76a 0.76a 0.78a 0.82a 0.85a 0.67a 0.93a 0.93a 0.93a 0.94a 0.96a 1.05a 1.13a 1.34a




.

ORDERED VALUES FOLLOW:

ł

ji T

0.54A 0.55A 0.67A 0.68A 0.68A 0.70A 0.72A 0.73A 0.74A 0.75A 0.77A 0.77A 0.79A 0.60A 0.60A 0.67a 0.66a 0.66a 0.66a 0.93a 0.93a 0.93a 0.94a 0.94a 0.95a 0.95a 0.96a 1.01a 1.01a 1.02a 1.10a 1.12a 1.12a 1.16a 1.16a 1.16a 1.26a 1.29a 1.39a 1.45a



FP LOW HIGH LIT #VAL MEAN STDV Y 0.57 0.67 ALL 4 0.63 0.03 OVERALL 30 0.95 0.19

ORDERED VALUES FOLLOW:

0.394 0.614 0.644 0.664 0.75a 0.77a 0.61a 0.63a 0.63a 0.67a 0.68a 0.66a 0.66a 0.91a 0.92a 0.94a 0.96a 1.01a 1.03a 1.03a 1.07a 1.10a 1.10a 1.13a 1.14a 1.19a 1.19a 1.21a 1.21a 1.23a

D.1.7 E 4272	Ibreach, brasumse
14-1	
1 12-1	
i	
10-1 i	
8-1 ;	
6-1	
ĭ	Á EB
	Á BB
ì	AAAA BE E A
2-i	à Ááááab bez
\$	AAA AAAAAAB BBB B
0++- 8.68 5.2	3 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50

PF LOW HIGH LIT #VAL MEAN STDV Y 0.40 0.90 ALL 21 0.71 0.14 OVERALL 40 0.87 0.21

ORDERED VALUES FOLLOW:

1 1

4

3) 21

s i ⊛ar

Ś

.

0.40A 0.47A 0.50A 0.50A 0.60A 0.66A 0.67A 0.67A 0.71A 0.72A 0.72A 0.75A 0.76A 0.77A 0.81A 0.81A 0.81A 0.84A 0.84A 0.87A 0.87A 0.91a 0.91a 0.92a 0.92a 0.92a 0.76a 0.96a 0.76a 0.78a 0.97a 1.05a 1.07a 1.08a 1.14a 1.14a 1.17a 1.19a 1.17a 1.26a

1914 B 454	and the second sec
1 1 ++ it	
1 12-1	
i 10-1	`
i 8-1	*
6-1	A
÷	A A A
4-1 1	AAA aa a
Z-1 ·	ééééészezzez
0 0,00 0.25	0,50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50

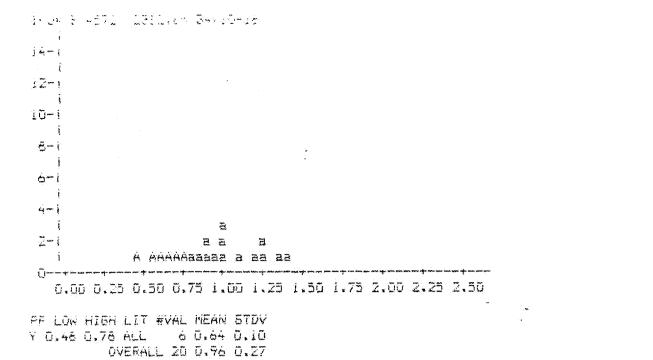
PP LOW HIGH LIT #VAL MEAN STDV Y 0.46 0.79 ALL 19 0.65 0.09 OVERALL 40 0.82 0.19

ORDERED VALUES FOLLOW:

×

1

Ĵ,


.

ŝ.

0.46A 0.51A 0.51A 0.56A 0.57A 0.60A 0.64A 0.64A 0.66A 0.66A 0.67A 0.68A 0.68A 0.67A 0.73A 0.73A 0.74A 0.78A 0.78A 0.86a 0.81a 0.82a 0.84a 0.88a 0.88a 0.88a 0.70a 0.71a 0.77a 0.77a 0.78a 0.77a 1.02a 1.02a 1.06a 1.08a 1.10a 1.11a 1.17a 1.17a

.

.



0.45A 0.59A 0.63A 0.69A 0.71A 0.77A 0.84a 0.87a 0.91a 0.91a 0.99a 1.00a 1.04a

ORDERED VALUES FOLLOW:

1

1

1.04a 1.13a 1.20a 1.26a 1.28a 1.38a 1.41a



and the state of the second state of the secon 1 34-1 i 12-1 i iũ-i i 8-i ì À H Á Á Á 6-1 AAA i 4-1 À ÀÀÀ AA AAAA i AA AAAA a a 2-1 нняяянава 4 F 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50

PP LOW HIGH LIT #VAL MEAN STDV Y 0.40 0.77 ALL 32 0.60 0.11 OVERALL 39 0.66 0.18

### ORDERED VALUES FOLLOW:

1

1

Ĩ

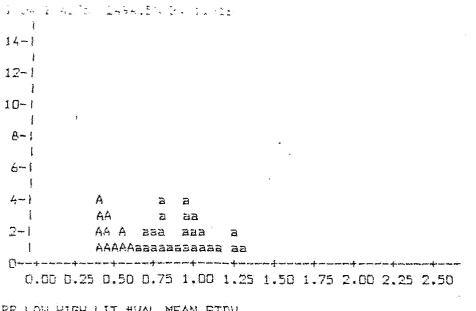
ź

D.40A 0.42A 0.43A 0.45A 0.47A 0.47A 0.49A 0.49A 0.49A 0.50A 0.55A 0.55A 0.57A 0.60A 0.61A 0.62A 0.62A 0.63A 0.63A 0.63A 0.65A 0.67A 0.68A 0.68A 0.70A 0.70A 0.71A 0.71A 0.72A 0.72A 0.73A 0.76A 0.81a 0.83a 0.86a 0.90a 0.96a 0.98a 1.32a

INCO E HERRY	s i zmlji služs i dova či prejem
r	
14-1	
Ĩ	
12-1	
ł	
10-1	
l	
8-1	,
Į	
6-1	AA
1	AA
4-1	AAA
1	A AAAAA
2-1	AAAAAAAAA
.]	AAAAAAAAaaaaa a
0++-	n na na na san san san san san san san s
6.00 D.2	25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50
	> ) TT 40781 MCAN OTTO
PP LUW HIGH	H LIT #VAL MEAN STOV

Y D.45 D.87 ALL 31 D.67 D.12 OVERALL 38 D.76 D.18

ORDERED VALUES FOLLOW:


Č.

ļ

-

and the second of

0.45A 0.45A 0.50A 0.51A 0.57A 0.59A 0.59A 0.61A 0.64A 0.66A 0.66A 0.66A 0.66A 0.67A 0.68A 0.69A 0.70A 0.71A 0.72A 0.73A 0.74A 0.74A 0.75A 0.76A 0.77A 0.78A 0.82A 0.83A 0.83A 0.85A 0.88A 0.88A 0.94a 0.95a 0.97a 1.03a 1.05a 1.11a 1.29a



PP LOW HIGH LIT #VAL MEAN STDV Y 0.43 0.64 ALL 11 0.49 0.06 OVERALL 36 0.82 0.27

### ORDERED VALUES FOLLOW:

ŝ.

1 1-1-1

0.43A 0.44A 0.44A 0.44A 0.47A 0.48A 0.49A 0.50A 0.55A 0.56A 0.63A 0.69a 0.72a 0.73a 0.75a 0.76a 0.81a 0.81a 0.83a 0.84a 0.86a 0.94a 0.96a 0.96a 0.98a 0.98a 1.01a 1.04a 1.05a 1.05a 1.12a 1.12a 1.26a 1.28a 1.30a

110= 1 4572 2537.05 34/30-18 ł 14~1 ļ 12-1 1 10-1 - 1 8-1 ļ 6~1 1 4~1 A aa A aa i 2-1 A AAAsa aa . а AAAAAAaaaaaaa aa 1 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50

PP LOW HIGH LIT #VAL MEAN STDV Y 0.53 0.76 ALL 12 0.66 0.07 OVERALL 30 0.86 0.22

ORDERED VALUES FOLLOW:

÷.

ŝ

: ; ;

----

0.53A 0.58A 0.59A 0.64A 0.63A 0.66A 0.67A 0.69A 0.72A 0.74A 0.75A 0.75A 0.80a 0.81a 0.82a 0.84a 0.86a 0.86a 0.87a 0.87a 0.92a 0.97a 0.97a 1.01a 1.04a 1.07a 1.14a 1.30a 1.34a 1.38a

14-1 12-1 10-1	
ł	
1	
101	
10-1	
1	A
8-1	Α
ł	AA
6-1	AA
1	AA
4-1	AAA
1	AAAAA
2-1 P	AAAAAA a aa
	A AAAAAAa aa
0	

PP LOW HIGH LIT #VAL MEAN STDV Y 0.46 0.97 ALL 33 0.77 0.11 OVERALL 39 0.82 0.16

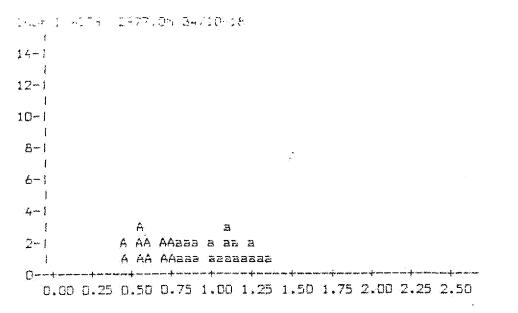
ORDERED VALUES FOLLOW:

1000

ŝ,

11111111111

14


0.46A 0.53A 0.55A 0.59A 0.66A 0.67A 0.69A 0.71A 0.72A 0.73A 0.75A 0.75A 0.76A 0.76A 0.77A 0.78A 0.79A 0.80A 0.80A 0.80A 0.81A 0.81A 0.81A 0.82A 0.82A 0.82A 0.84A 0.85A 0.87A 0.88A 0.89A 0.92A 0.93A 0.96A 1.00a 1.02a 1.10a 1.13a 1.15a 1.16a

ines i site i thiseit i ingidente 1 14-1 ) 12-1 ) 10-1 1 8-1 ł 6-1 A A ł 4~1 AAAaa АА А аа 1 2-1 AA AAAA aaaa a ł AAA AAAAaaaaaaa aa æ 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 FP LOW HIGH LIT #VAL MEAN STDV

Y 0.40 0.80 ALL 21 0.61 0.12 OVERALL 40 0.81 0.26

ORDERED VALUES FOLLOW:

0.40A 0.47A 0.47A 0.50A 0.50A 0.50A 0.50A 0.50A 0.54A 0.54A 0.60A 0.61A 0.63A 0.63A 0.66A 0.66A 0.71A 0.73A 0.76A 0.77A 0.79A 0.79A 0.82a 0.87a 0.89a 0.90a 0.91a 0.93a 0.94a 0.95a 0.98a 1.01a 1.03a 1.03a 1.04a 1.05a 1.12a 1.13a 1.24a 1.25a 1.50a



PP LOW HIGH LIT #VAL MEAN STDV Y 0.47 0.76 ALL 11 0.62 0.10 OVERALL 30 0.91 0.27

ORDERED VALUES FOLLOW:

2

, i

0.47A 0.48A 0.56A 0.56A 0.57A 0.60A 0.64A 0.70A 0.73A 0.75A 0.75A 0.81a 0.83a 0.85a 0.87a 0.91a 0.94a 1.04a 1.04a 1.05a 1.10a 1.13a 1.14a 1.15a 1.19a 1.24a 1.25a 1.26a 1.33a 1.38a



# Visual Kerogen Analysis

 $p^{(i)}$  (a)

### **TABLE NO.:** 10 WELL NO.: 34/10-18

Sample	Depth (m)	Composition of residue	Particle size	Preservation palynomorphs	Thermal maturation index	Remarks
B-4561	2108.0 swc	WRI,W,P/Am,Algal	F-M		immature	Abundant acid resistant minerals. Very few palynomorphs. Some grey amor- phous.
B-4562	2234.0 swc	WRI,W,P/Am,Algal	F-M	fair to good	1+/2-	As above. In screened residue enrichment of small rounded aggregates. Some grey amorphous.
B-4563	2334.0	W,WR!,P/Am,Algal	F-M	fair to good	1+,1+/2-,2	As above. Grey amorphous and etched dark woody material.
B-4564	2351.5 core	W,P,WR!/Am,Cý,Algal	F-M	fair	1+,1+/2-,2-	Strongly degraded woody material, small aggregates. Abundant pyrite.
B-4565	2353.5 core	W,WR!,P/Am,Algal	F-M	fair	1+,1+/2-	Mostly strong degradation. Acid resistant minerals stick to and obscure organic particles.
B-4566	2354.0 core	Algal,Am/W,P	F-M	fair	· 1+	Strongly degraded material. Algal/fungal remains include small rounded bodies that dominate together with degra-

10000

ded wood. lasmanites.

ABBREVATIONS

Am Amorphous He Herbaceous Cut Cuticles Cy Cysts, algae P Pollen grains S Spores

W	Woody material	F	Fine
C	Coal	M,	Medium
RI	Rewarked	L.	Large



# <u> Visual Kerogen Analysis</u>

1990

TABLE NO.:10 WELL NO.: 34/10-18

Sample	Depth (m)	Composition of residue	Particle, size	Preservation palynomorphs	Thermal maturation index	Remarks
B-4567	2355.2 core	Algal,Am,W,P,S	F-M	fair	1+,1+/2-,2	Similarity with 2354m.
B-4568	2361.0 core	W,WR,P/Am,A1ga1	F-M	fair	1+,1+/2-,2	Increase of woody material especially of dark structured particles.
8-4569	2363.0	W,WR!,P/Am,A1ga1	F-M	fair	1+/2-	Black angular acid resistant minerals (hematite) obscure organic material. Composition tentatively as above, but less strong degradation and a more greyish colour qua- lity.
B-4570	2366.0 core	WR!,W/Am,Cy	F-N	fair	2	Reworked structured, dark woody material and degraded wood together with algal/fun- gal remains. Some grey colour quality.
B-4571	2368	W,WRI,P,S/Am,Cy	F-M	fair-good	1+,2,2+	Loose aggregates of material rich in acid resistant mine- rals. Structured woody frag- ments. Staining of palyno- morphs.

~

## ABBREVATIONS

Am	Amorphous	Cy	Cysts, algae	W	Woody material	F	Fine
He	Herbaceous	P	Pollen grains	C	Coal	M	Medium
Cut	Cuticles	S	Spores	R!	Reworked	L	Large

*

 $\frac{5}{3}$ 



# <u>Visual Kerogen Analysis</u>

TABLE NO.: 10 WELL NO.: 34/10-10

٠.

Sample	Depth (m)	Composition of residue	Particle size	Preservation palynomorphs	Thermal maturation index	Remarks
B-4572	2382.8	W,WR!/Algal,Am	F-M	fair	2,2+	Strongly degraded "grey" material as dense aggre- gates. Algal/fungi obscure palynomorphs present.
B-4573	2388.5 core	W,P,S/Algal	F-M	fair-good	1+/2-	In parts strongly degraded woody remains. Rare light-coloured palynomorphs (pollen and spores). Botryo- coccus.
B-4574	2451.0 swc	W,WR1,Cut,P,S/Algal	F-M-L	fair to good	2-,2-/2,2	Woody and degraded woody material (vitrinite) dominate. Algal/fungal re- mains as loose aggregates. Well preserved cuticles.
B-4575	2499.5 swc	W,Cut,S,P/Algal	F-14-L	fair to good	1+/2-,2,2/2+	As above but more woody material. Smooth trilete spores.
8-4576	2607.0 swc	W,WR1,S,P/A1ga1	F-M	fair to good	2	Strongly degraded. Mostly algal/fungal remains as aggregates of some "greyish" colour.

### ABBREVATIONS

Am	Amorphous	Cy	Cysts, algae	W	Woody material		F	Fine
He	Herbaceous	Р	Pollen grains	C	Coal		M	Medium
Cut	Cuticles	S	Spores	RI	Reworked	-t-	L	Large



# <u>Visual Kerogen Analysis</u>

oteres.

## TABLE NO. 10 WELL NO.: 34/10-18

÷

Ϊ,

Sample	Depth (m)	Composition of residue	Particle size	Preservation palynomorphs	Thermal maturation index	Remarks
B-4577	2787.0 swc	W,Cut,P,S/Algal,Am	F-11-L	fair good	1+,1+/2-	Strong degradation of woody material. Abundant algal/fungal remains.
B-4578	2916.0	Algal,Am/W,Cut	F	fair	1+/2-	Strong degradation.
B-4579	2977.0 swc	Am,Algal/W,WRI,Cut	F-M	fair	> 1+/2-	Grey amorphous aggregates embedding small dark woody fragments. Occasional cutic- les and thin but fairly well preserved sheets of organic material.
			×.			

.e

## ABBREVATIONS

Amorphous	Cy	Cysts, algae	W	Woody material	F	Fine
Herbaceous	P	Pollen grains	C	Coal	M	Medium
Cuticles	S	Spores	Ri	Reworked	L	Large

Am He Cut

135/W/ah/6

### Analyses in Transmitted Light

Material from well 34/10-18 was analysed on the basis of 19 samples selected by Statoil for kerogen isolation.

Stratigraphic tops were given as following:

Upper Cretaceous 1885m: Samples 2108m, 2234m and 2334m. Colour index (TAI): 1+ indicates immature material.

Lower Cretaceous 2336m: No samples cover this interval.

Upper Jurassic 2350m: Eight samples represent Upper Jurassic. Colour index (TAI): 1+ was evaluated for the entire interval although colours vary dependent of the lithology/environment of deposition. Woody material and algae/fungi dominate.

Middle Jurassic 2372m: Samples 2382.8m, 2388.5m, 2451m and 2494.5m. Colour index (TAI): 1+/2- was evaluated for the interval. Colours vary from sample to sample and may be dependent on the lithology/environment of deposition. Cuticles and palynomorphs are generally better preserved than recorded for the Upper Jurassic.

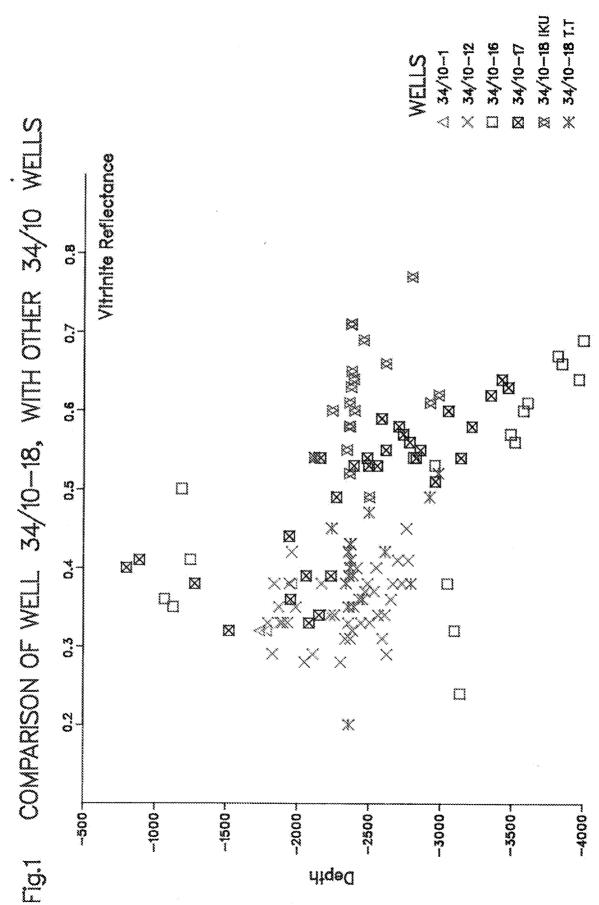
Lower Jurassic 2604m: Samples 2607m, 2787m, 2916m, 2977m. Colour index (TAI): 1+/2-. As in the Upper Jurassic, degradation is stronger than in the Middle Jurassic.

Remarks: The results obtained indicate that microscopic algae and/or fungi are common to abundant in most samples. "Algal" as a term is here used for discrete globular to elongate bodies and for irregular lightcoloured supposed algal fragments less than 10µm.

### Description of samples

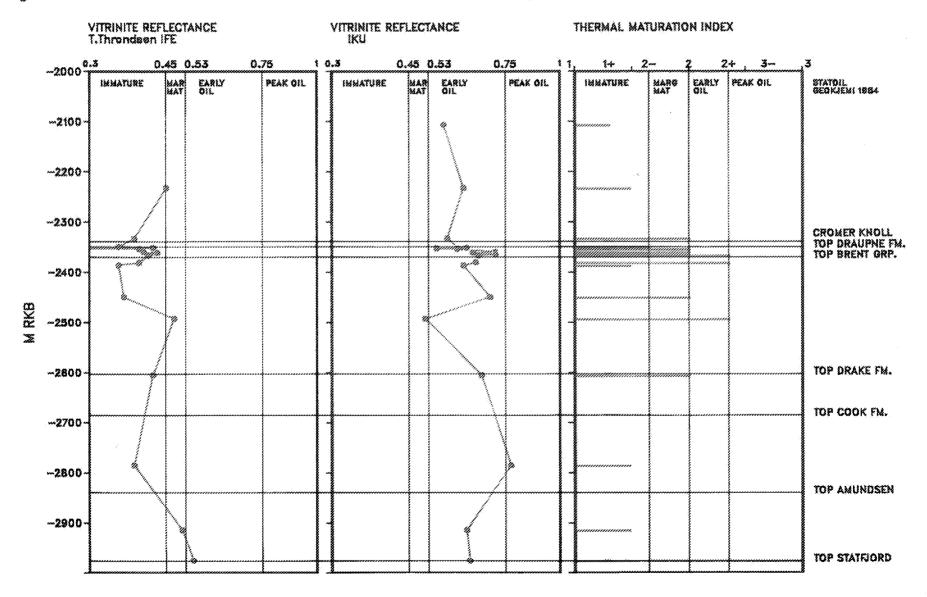
2108m swc, 2234.0m swc, 2334.0m swc: The residues consist of fine material. "Grey amorphous" material occurs as small aggregates which embed woody particles. Dark (reworked and oxidised) woody particles are common especially in the uppermost sample. Palynomorphs are rare. <u>2351.1m c, 2353.5m c:</u> Strongly degraded woody material dominates the residues. Palynomorphs are rare or obscured. Particles smaller than 10µm include algal/fungi/bacteria.

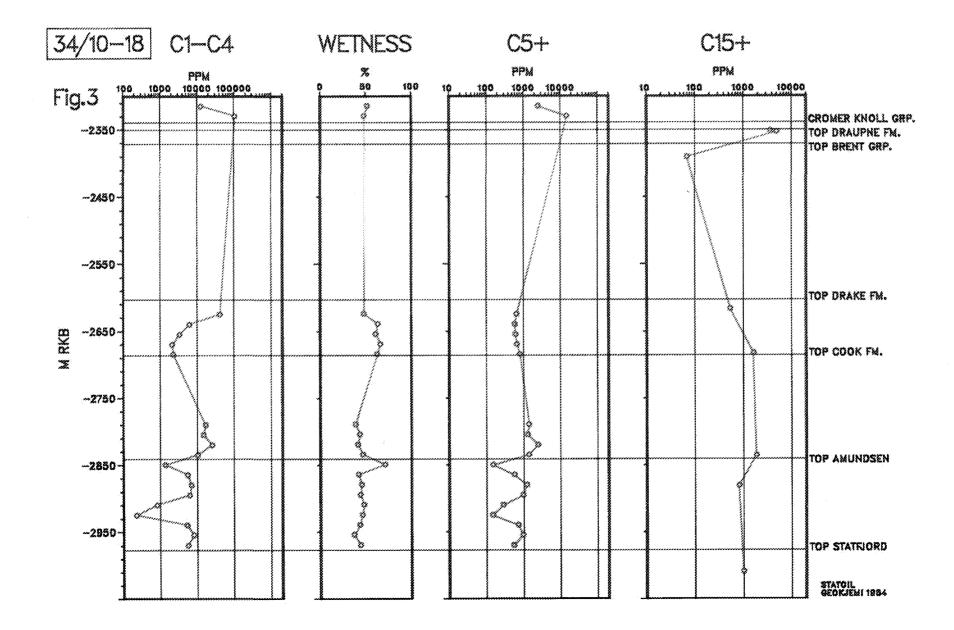
<u>2354.0m c, 2355.2m c:</u> Strongly degraded material as above, but algae/fungi/bacteria account for a major part of the organic residue. Pollen and spores are rare.


2361.0m c, 2362.0m c: Degraded woody material dominates. The variable input of structured, woody material and the acid resistant black angular minerals (hematite?) suggest more oxidative conditions. Palynomorphs seem to show staining and are more common than in the overlying layers.

2382.8m c: Strongly degraded "grey" material occurs as dense aggregates embedding abundant algae/fungi. Palynomorphs seem rare in this residue.

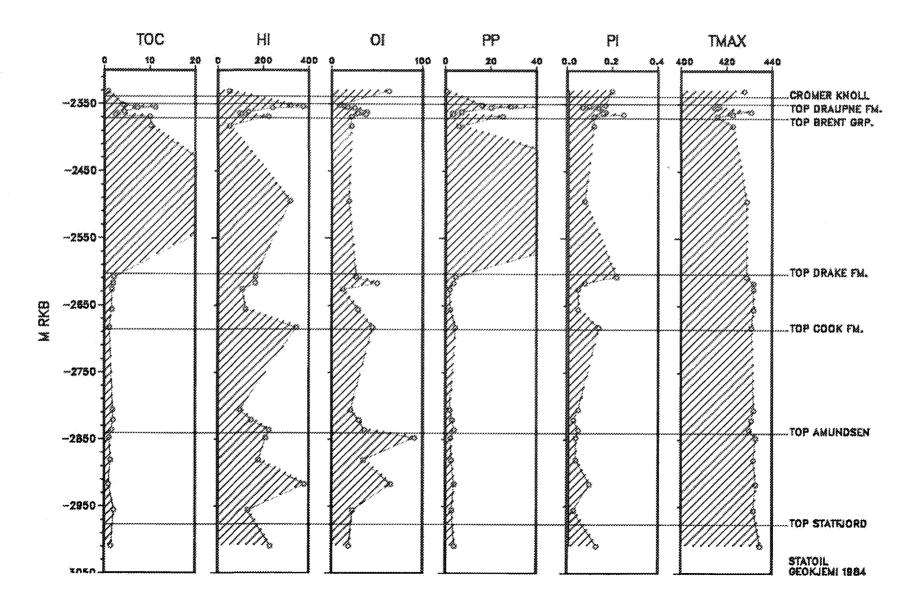
2388.5m c, 2451.0m swc, 2494.5m swc: Woody material dominates and includes degraded as well as oxidised forms. Well preserved spores and cuticles are present together with the some algal/fungal remains as observed throughout this well.

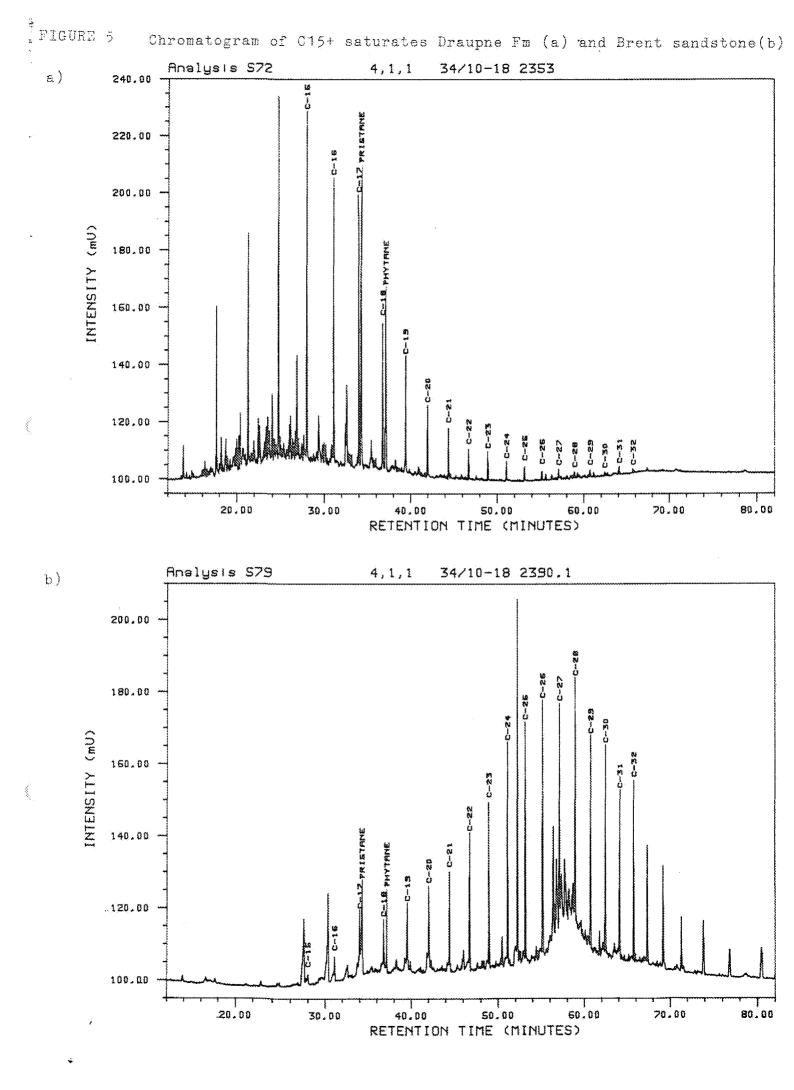

<u>2607.0m swc, 2787.0m swc, 2916.0m swc, 2977.0m swc:</u> The residues consist of strongly degraded material where woody remains account for 40% or less. The samples have a grey amorphous character and remaining structured particles are fairly thin.


Colour index: 1+/2- may represent a low estimate based on pollen affected by heat induced or chemically induced changes of wall material.



s Nuvče

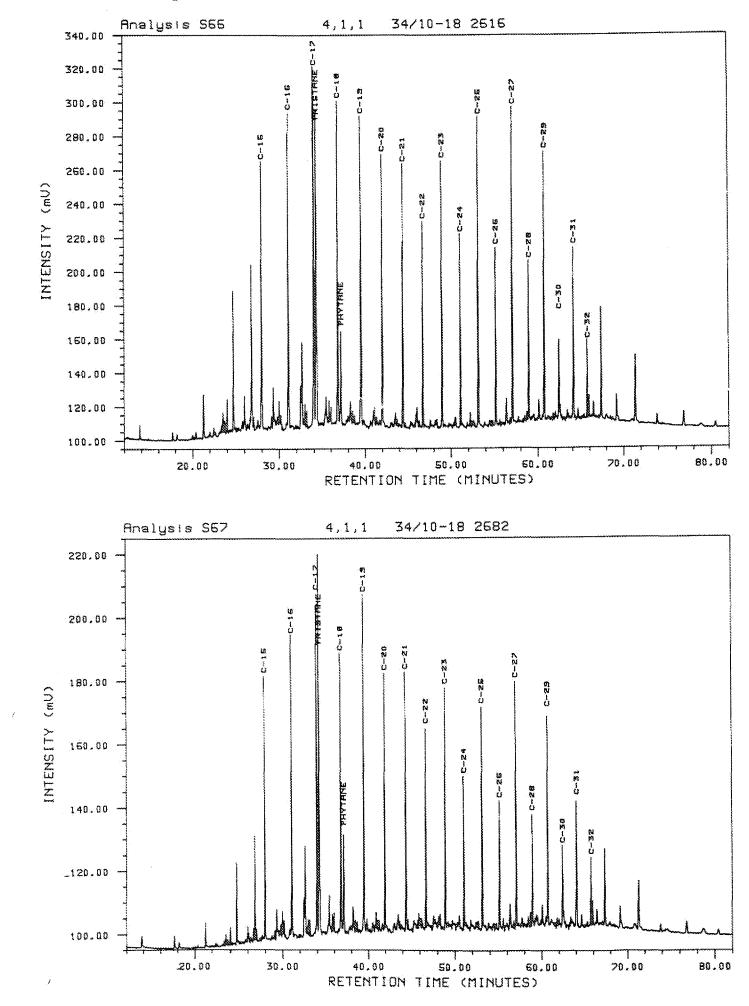

MATURITY DATA PLOT well 34/10-18

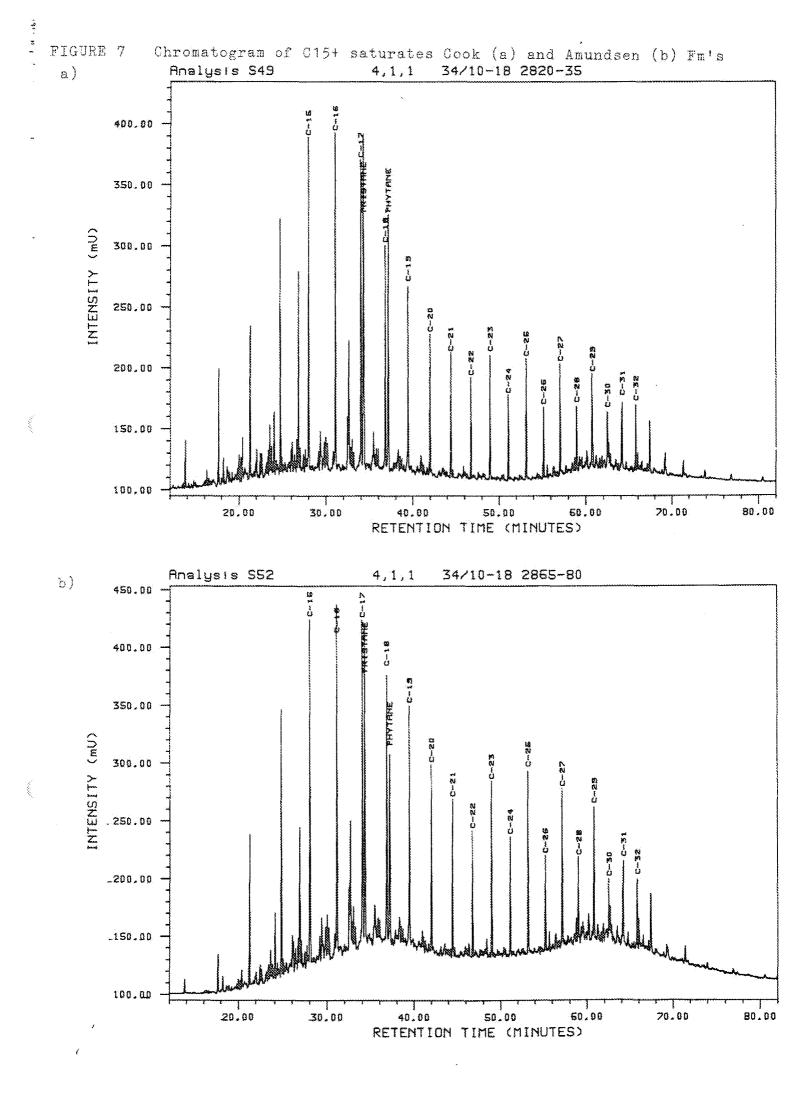


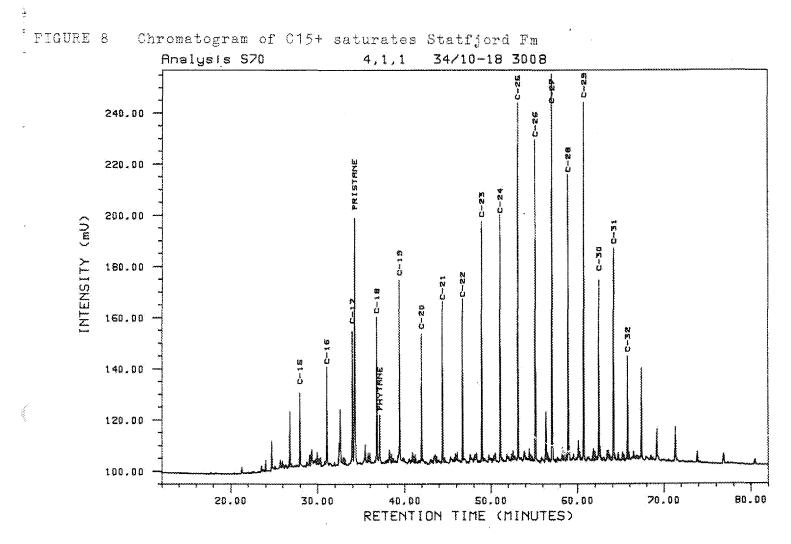





WELL 34/10-18 DATA FROM ROCK EVAL PYROLYSIS





1.1.1.1.1.1.1

ŝ

1000 C







į

## APPENDIX

### ANALYTICAL PROCEDURES

C1 - C7 LIGHT HYDROCARBON ANALYSIS

### a) Headspace gas analysis

1.5 ml of the gas in each of the cans was analysed for light hydrocarbons,  $C_1$  up to  $n-C_4$  in separate peaks and  $C_5^+$  as one peak.

The gas was analysed on a Perkin Elmer Sigma 3B, equipped with two column and backflush of the first column after  $n-C_{4}$  had passed through.

Chromatographic conditions: Column : The first column is 1.5 m and the second is 9.1 m long. Both with 30 % DC-200 on Chromosorb P,A/W, 60-80. Carrier gas : Helium, 33 ml/min. Detector : Flame ionisation, temp. 170°C. Injector : 1.5 ml loop injection. Temp. program: 120°C isothermal.

The cans were opened and the volume of gas determined . The cuttings were washed with temperate water on 4, 2 and 0.125 mm sieves to remove drilling mud and thereafter dried at  $35^{\circ}$ C and weighed. Using an external standard the hydrocarbons in the cans are reported in concentration as µl gas/kg rock.

### b) Occluded gas

Before drying about 20 g of the 2-4 mm fraction of each samples was crushed for 10 min. in water using a airtight ball mill. 2 ml of the headspace was analysed under some conditions as the headspace gas analysis.

### TOTAL ORGANIC CARBON (TOC)

The samples were crushed in a centrifugal mill for 30 seconds, weighed in Leco crucibles and treated with HCl to remove the carbonate. Afterwards they were washed with distilled water several times and dried. The samples were then analysed in a stream of oxygen by a LECO EC12 carbon analyser. The total organic carbon results are presented in weight percent.

#### ROCK-EVAL PYROLYSIS

Approximately 100 mg crushed samples were weighed and analysed in platinum crucibles by a Rock-Eval pyrolyser. Conditions (cycle 1)

- purged with preheating to  $450^{\circ}$ C and cooled down to  $300^{\circ}$ C within 3-5 minutes.
- 300[°]C initial isotherm for 3 minutes.
- 25[°]C/min. temperature gradient.
- 390°C CO₂ trap shut off.

- 550°C isotherm for 2 minute.

### EXTRACTABLE ORGANIC MATTER (EOM)

About 100 g fine crushed rock, 500 ml dichloromethane and a few mg copper were added to a stainless steel flask. The solution was extracted using a high speed mixer, 9000 RPM, for 10 min. The sample was then centrifuged, filtered, through a 0.5  $\mu$ m filter, rotavaporated and dried under N₂-stream. The sample was then weighed.

### CLASS SEPARATION

### Asphaltene

Precipitation of asphaltenes was done by adding 40 times as much pentane as material, vibrated in an ultrabath for three min. and left to stand at room-temperature for at least 8 hours. The solution was then filtered through a preweighed 0.5 µm filter and washed several times. After air-drying, the filter was weighed and the differences in weight taken to be the amount of asphaltene.

#### Saturates aromatics and NSO-compounds

To separate the extract into saturates, aromatics and NSOcompounds the samples were diluted with hexane to 1 ml and the whole amount was injected into a medium pressure liquid chromatograph (Radke, M. et al., Anal. Chem., 52, 406-411, 1980). The fractions were rotavaporated and dried under vacuum before weighing.

### Gas chromatography

The saturated fractions were analysed on a Perkin Elmer Sigma 2000 gas chromatograph under following conditions:

Column :	Vitreous silica bonded phase BP 1 from SGE.
Temp. program:	$50^{\circ}$ C isothermal in 4 min., $4^{\circ}$ C/min. to $300^{\circ}$ C
	and isothermal in 20 min.
Injector :	Splittless injection, temp. 320 ⁰ C.
Detector :	Flame ionisation, temp. 320 ⁰ C.