ROBERTSON RESEARCH INTERNATIONAL LIMITED

REPORT NO. 4162P

REPORT ON A GEOCHEMICAL EVALUATION OF THE 1/9 - 4 WELL, NORWEGIAN NORTH SEA.

by

B. S. COOPER S. H. COLEMAN A. G. COLLINS P. C. BARNARD J. McEWAN

PROJECT NO. RRI/778/IID/2606

Prepared by:

Robertson Research International Limited, Ty'n-y-Coed, Llanthos, Llandudno, Gwynedd, LL30 ISA, North Wales, U.K. BA-90-1048-1 29 MAI 1990 REGISTRERT OLJEDIREKTORATET February, 1978 Prepared for:

Statoil, P.O. Box 300, Lagardsveien 79, 4001 Stavanger, Norway.

ROBERTSON

CONTENTS

Page No.

13

ROBERTSON

•		SUMMARY		
		INTRODUCTION		
I		RESULTS AND INTERPRETATION		
	Α.	MATURATION EVALUATION		
	1.	Light Hydrocarbons		
	2.	Spore Colouration		
	3.	Vitrinite Reflectivity		
	4.	Comparison of Maturation Indices	е •	
	B.	SOURCE ROCK EVALUATION		
	1.	Pleistocene - Recent and Pliocene		
·	2.	Upper Miocene		
	3.	Middle Miocene		
	4.	Lower Miocene and Oligocene		
	5.	Eocene and Eocene - Palaeocene		
	6.	Palaeocene and Danian		
	7.	Maastrichtian, Campanian - Santonian, ?Lower Cretaceous	Coniacian and	
	8.	?Permo-Trias	۰.	

CONCLUSIONS

III

TABLES

1.	Headspace	Gas	Analysis	Data	
----	-----------	-----	----------	------	--

- 2. Gaseous and Gasoline Hydrocarbon Data
- 3. Maturation Evaluation Data
- 4. Organic Carbon Data
- 5. Source Rock Evaluation Data
- 6. Summary of the Petroleum Geochemistry Data

FIGURES.

- 1.
- 2.

3.

Headspace Gas (C to C₄) Hydrocarbons Gaseous (C to C₄) Hydrocarbons Gasoline Range (C₅ to C₇) Hydrocarbons Spore Colouration Indices Against Depth 4.

- 5. Vitrinite Reflectivity Against Depth
- 6. Type of Hydrocarbon Product from Source Rocks
 - 7. Mature Source Rock Richness
- 8. Geochemical Data Summary Chart

CONTENTS (Cont'd.)

APPENDICES

I. Abbreviations Used in Analytical Data Sheets II. List of Samples

ENCLOSURES

Vitrinite Reflectivity Data Summary Charts Extra Copy of Figure 8

SUMMARY

Argillaceous lithologies with a potential for generating significant quantities of oil have not been identified in this well, neither are optimum levels of maturity attained by either oil- or gas-prone organic matter. Prolific gas generation could be anticipated from the Lower Miocene and Oligocene at optimum levels of thermal maturity. Generation of gas, possibly with minor oil, could be expected at optimum thermal maturity from parts of the Danian, Palaeocene and Eocene; much contamination is present through these horizons, however, and any oil source rocks present may not have been located.

- i ~

INTRODUCTION

I

A geochemical study of the 1/9-4 Norwegiam North Sea well has been undertaken on behalf of Statoil. The study has involved both maturation and source rock potential evaluations of the interval 153 to 3,710 metres. Maturity has been ascertained using the following methods: light hydrocarbon analysis, including airspace gas analysis, spore colouration and vitrinite reflectivity. Evaluation of the source rock potential of the section has incorporated the use of organic carbon determinations and extraction with fractionation of the C_{15+} hydrocarbons.

A total of 128 fresh, unwashed ditch cuttings in sealed metal cans were available at 30 metre intervals through the analysed sections; these included 3 samples from sidetrack ST (2,963 to 3,050 metres), 5 samples from sidetrack ST 2 (3,020 to 3,200 metres), and 23 samples from sidetrack ST 3 (3,059 to 3,710 metres). Samples for the maturation analyses were selected as follows: 128 headspace gas analyses were carried out on the canned samples at intervals of 30 metres; spore colouration and vitrinite reflectivity analyses were carried out on 41 samples at intervals of approximately 90 metres. For the source rock analyses 128 organic carbon determinations were made on all the canned ditch cuttings samples containing argillaceous lithologies; extraction and fractionation were carried out at approximately 90 metre intervals depending on the results of the organic carbon determinations and the suitability and quantity of available material (total of 36 samples). In addition, 4 organic carbon determinations were carried out on hand-picked lithologies, in the more mixed lithology samples, as a supplement to the source rock analyses. Samples have been analysed from the sidetrack section, particularly where these penetrate different lithologies, or to provide extra controlling data for the maturation studies. Sidetrack 3 is taken to be the

- 1 -

DOBERISO

continuation of the main hole below 3,080 metres.

Detailed stratigraphic information is available for this well under the Robertson Research Project Number RRI/778/IIA/1258; briefly, the well section penetrates a thick Tertiary sequence, reaches Cretaceous and bottoms in either Lower Cretaceous or Permo-Triassic.

- 2 -

ROBERTSON

RESULTS AND INTERPRETATION

The results of the geochemical evaluation of the 1/9-4 well are presented in Tables 1 to 6, and are represented graphically in Figures 1 to 8 and the Enclosures.

A. MATURATION EVALUATION

The levels of thermal maturity attained through the well section have been established using a number of techniques. Below, each method is discussed in turn, followed by a general appraisal and comparison of the data with our overall conclusions.

A.1 LIGHT HYDROCARBONS (Tables 1 and 2, and Figures 1, 2 and 3)

Hydrocarbons presented in the can air-space gases were analysed, followed by analysis of the gaseous and gasoline range hydrocarbons in the ditch cuttings.

a. Headspace Gas Analysis

Prior to unsealing the canned samples, an aliquot of headspace gas was removed and analysed for gaseous C_1 to C_4 hydrocarbons. The results of these analyses are presented in Table 1 and Figure 1.

The abundance of gaseous hydrocarbons, though by no means uniform, shows a general increase from approximately 5,000 ppm (0.5%) near the surface to 50,000 ppm (5%) at the top of the Cretaceous (approximately 3,000 metres). Below approximately 3,300 metres, the abundance falls rapidly to less than 5,000 ppm (0.5%) through the organically lean chalk sections. An anomaly occurs over the interval 2,150 to 2,750 metres where abundances increase suddenly to the order of 500,000 ppm (50%). Several reasons may be put forward to explain this anomaly; either it relates to the increase in organic matter through the Oligocene, to the presence of non-indigenous hydrocarbon material, or to the differences in preservation/storage conditions for this individual

- 3 -

sample batch.

The most significant parameter to be obtained from the airspace gas analyses is the proportion of wet gases (C_2 to C_4) in the gaseous hydrocarbon fraction (C_1 to C_4); only methane is found in immature sediments, with the wet gases being generated as maturity is reached. Low wet gas contents are encountered down to a depth of approximately 1,100 metres. Between 1,100 and 1,400 metres the proportion of wet gases increases to between 10% and 30%, suggesting that the transition zone from immature to mature sediments has been reached. Below 1,400 metres the proportion of wet gases increases relatively steadily, reaching a maximum of 90-100% between 3,000 and 3,500 metres; a slight increase is noted within the organically rich Oligocene shales. Below approximately 3,500 metres the proportion of wet gases decreases substantially, which in this case, is attributed to a distinct lack of organic matter with hydrocarbon generating capability in the chalk interval.

b. Gaseous Hydrocarbons $(C_1 \text{ to } C_1)$

As with the airspace gas analyses it is possible to use the proportion of wet gases, in the gaseous hydrocarbons liberated from the ditch cuttings, to estimate the maturity of a section. The wet gas contents through the section are less than 5% down to a depth of 890 metres (immature sediments); from 980 metres they exceed 40%, indicating the onset of maturity. A decrease is noted from below 3,440 metres, though this is considered to represent the presence of organically lean chalk.

Absolute abundance is low, less than 100 ppb, down to a depth of 1,160 metres, rises to between 300 and 3,000 ppb over the interval 1,250 to 1,880 metres, increases to a maximum of around 20,000 ppb around 2,500 metres, and then falls rapidly again to less than 100 ppb towards the base of the section. The point of maximum abundance corresponds with the base of the organically rich Oligocene shales and may, in part, relate to the presence of non-indigenous hydrocarbons.

- 4 -

c. <u>Gasoline Range (C₅ to C₇) Hydrocarbons</u>

Maturity is normally indicated by the C_5 to C_7 hydrocarbons when the constituent gasolines (Table 2) are found to be present in approximately equal proportions. Immature sediments on the other hand show certain components of marked abundance but with an overall low total hydrocarbon abundance (less than 100 ppb).

Figure 3 shows an immature section down to a depth of 890 metres, where no significant gasoline range hydrocarbons are present. Between 980 and 2,060 metres, gasolines appear, but their abundance rarely exceeds 100 ppb; this part of the section is considered to be transitional in its abundance and relative proportions of constituent gasolines. Below 2,180 metres abundances rise to a maximum in excess of 100,000 ppb, the richer sections being in the Palaeocene (sands and shales) and at the top of the Danian chalk section; these high values are attributed to migrated non-indigenous hydrocarbons. A.2 SPORE COLOURATION (Table 3 and Figure 4)

The level of maturity in oil-prone organic matter in the analysed sediments has been assessed by a visual examination of the indigenous sporomorphs. The colouration of spores, with increasing thermal maturity, changes from pale yellow, through orange and brown, to black. Spore colouration indices used in this report are based on the Robertson Research scale of 1 to 10, with values of 3 to 3.5 representing the narrow zone of transition between immature and mature sediments.

Data were obtained from all but 6 of the 41 analysed samples. Spore assemblages are fair down to a depth of approximately 2,000 metres and then, with a few localised exceptions, generally poor. Few spores were encountered through the chalk sections. Some reworked Jurassic with spore colours up to 5, was observed in the upper 2,000 metres of the well section.

An examination of Figure 4 shows that spore colour indices are interpreted to rise from 1.0-1.5 at 153 metres to 4.5 at total depth. This indicates

- 5 -

that oil-prone organic matter passes from immaturity to early maturity over the transition zone between approximately 1,000 and 2,000 metres. The base of the analysed section is in the early stages of thermal maturity and capable of generating gas and heavy oil where suitably rich oil-prone sediments are present. The breaks in the spore colour gradient line at 200 and 950 metres are not supported by biostratigraphic evidence; the true spore colour gradient may in fact be interpreted as a larger rate of increase in spore colours over the first 1,000 metres of the well.

The kerogen generally consists of fine-grained humic material, principally inertinite and vitrinite; sapropel does occur, but rarely in significant proportions.

A.3 VITRINITE REFLECTIVITY (Table 3, Figure 5 and the Enclosures)

The examination of vitrinite particles in shales is now a frequently used extension of coal rank studies. Vitrinite is not an important oil source and its maturation, unlike oil-prone organic matter, is strongly dependant on length of time of heating: however, it is the only reliable maturation indicator in the organically metamorphosed zone. Humic, gas-prone organic matter is considered to be transitionally mature over the reflectivity range 0.4% to 0.5%, but would not be expected to yield prolific gas until levels in excess of 0.8% to 1.0% have been reached. In an early Tertiary sequence, oil-prone organic matter would be expected to being generating hydrocarbons at vitrinite reflectivities of 0.4% and above.

Vitrinite reflectivity measurements have been carried out on 41 ditch cuttings samples; the majority of the measurements were made on kerogen concentrates since many of the cuttings were either too soft to polish effectively or deficient in organic matter. The sample blocks were prepared by mounting the dry cuttings in an epoxy resin, followed by polishing with carborundum and alumina. Kerogen concentrates were prepared by standard palynological techniques, followed by mounting in resin on glass slides, and polishing as for the

- 6 -

DOBERT

cuttings. The results presented in Table 3 are those mean values interpreted as being indigenous; the figures in brackets indicate those mean values based on less than 10 measurements. A detailed compilation of all the vitrinite reflectivity data is given in the enclosures.

Overall, sample coverage of the analysed well section was good, though data obtained were a little sparse above 1,800 metres and below 3,100 metres. Quality of the data was good through the Oligocene section.

Reflectivity levels for indigenous vitrinite increase steadily from around 0.2% at 500 metres, to around 0.55% at 3,600 metres. This implies that for gas-prone humic organic matter, the transition from immature to mature sediments occurs over the approximate interval 2,100 to 3,100 metres; minor gaseous hydrocarbons could be generated below these depths. Reflectivity levels sufficient for the generation of prolific quantities of gaseous hydrocarbons (in excess of 0.8%) are not attained by the base of the analysed section.

An examination of the organic matter under blue light shows fluorescence colours compatible with those observed during the spore colouration analyses. A.4 COMPARISON OF MATURATION INDICES (Table 3 and Figure 8)

A number of parameters have been used to assess the maturation state of the analysed well section including light hydrocarbon analysis, spore colouration and vitrinite reflectivity.

Spore colouration data indicate that the zone of transitional maturity for oil-prone organic matter occurs over the approximate interval 1,000 to 2,000 metres. Light hydrocarbon analyses concern with this, indicating a transitional zone of maturity between approximately 990 and 1,480 metres. Both spore colouration and light hydrocarbon analyses suggest an early, tending towards middle stage of thermal maturity has been reached at the base of the analysed section. Heavy oil could be expected to be generated below a depth of approximately 2,000 metres, assuming the presence of suitably rich oil-prone

sediments.

Vitrinite reflectivity levels show that the zone of transitional maturity for gas-prone organic matter is deeper, being between approximately 2,100 and 3,100 metres; the level of maturity at the base of the analysed section is insufficient for the generation of prolific quantities of gaseous hydrocarbons.

- 8 -

ROBERTSON

B. SOURCE ROCK EVALUATION (Tables 4 and 5, and Figures 6, 7 and 8)

The results of the source rock evaluation are discussed in groups related to the age of the well section, following closely the data available from our biostratigraphic studies. An extra copy of Figure 8 is included as an enclosure to this report for ease of reference.

B.1 PLEISTOCENE - RECENT AND PLIOCENE, Samples 153 to 680 Metres

This interval comprises sandstone, siltstone, shell, lignite and grey calcareous claystone; the claystone becomes dominant in the Pliocene. Organic carbon determinations carried out on the claystones give below average values in the general range 0.5% to 0.7%, with extremes of 0.06% to 3.42% in the sandstone or lignitic sections of the Pleistocene - Recent.

Four samples were chosen for extraction and fractionation of this interval, all of which contain very little extractable organic matter or hydrocarbons. No significant hydrocarbon generating potential is expected at any level of thermal maturity.

B.2 UPPER MIOCENE, Samples 680 to 1,040 Metres

This interval comprises grey-brown and grey-green claystones with minor siltstone and shell. Organic carbon determinations give below average values; these improve to just below average in the deepest three samples.

The three samples submitted for extraction and fractionation contain quite high proportions of extractable organic matter but are deficient in hydrocarbons. The interval would not be expected to yield significant hydrocarbons at any level of thermal maturity.

B.3 MIDDLE MIOCENE, Samples 1,040 to 1,850 Metres

This interval comprises three broad lithological groups with increasing depth:

a. grey-brown and grey-green claystones of just below average organic carbon content but deficient in extractable organic matter or hydrocarbons. Probably not a significant hydrocarbon source at any level of maturity.

- 9 -

b. dark grey-brown shales and mudstones of average organic carbon content and olive-grey shales and mudstones just below average organic carbon content. No present hydrocarbon generating potential, though the richer shales may generate some gaseous hydrocarbons at optimum maturity.

c. medium and dark olive-grey shales towards the base of this interval are of average organic carbon content and have a fair potential for sourcing very limited quantities of gaseous hydrocarbons at the present maturation level. This may improve to a limited potential for oil generation at optimum maturity.

B.4 LOWER MIOCENE AND OLIGOCENE, Samples 1,850 to 2,540 Metres

This interval comprises dark olive-grey, dark grey and medium grey shales and some mudstones. Organic carbon contents are average to above average in the Lower Miocene increasing to above average (reaching 5%) in the Oligocene.

Extraction and fractionation on 8 samples from this interval show an increase in amounts of extractable organic matter, in hydrocarbon abundance and in the proportion of hydrocarbons in the extracts, towards the base of this interval. At a first examination these data suggest the interval to be a good to very good potential source for oil, particularly since at these depths the well section is just into the early stages of thermal maturity. However, the data do also indicate a distinct zone of non-indigenous hydrocarbon stain at the base of this interval (and the top of the underlying interval). Spore colouration and vitrinite reflectivity analyses do not indicate the presence of any significant quantities of sapropel (other than as stain). It is concluded that the true potential of this interval is at present good for gas and possibly minor heavy oil, this being likely to improve to very good for gas at optimum levels of thermal maturity.

B.5 EOCENE AND EOCENE - PALAEOCENE, Samples 2,540 to 2,810 Metres

This interval comprises shales, variously coloured grey, grey-green, olive-grey and brown-grey. Organic carbon contents for these samples are around

OBERI

- 10 -

1%, just reaching average values for shales.

Two samples were extracted and fractionated from this interval and these contain abnormally high proportions of extractable organic matter and hydrocarbons; both are considered to be stained by non-indigenous hydrocarbons. B.6 PALAEOCENE AND DANIAN Samples 2,810 to 3,230 Metres

This interval comprises grey, grey-green, olive-grey and grey-brown shales with interbedded glauconitic sandstone, coaly material (?drilling additive) and minor red-brown and dark grey shales. Organic carbon contents vary from just below average to just average for shales (0.84% to 1.12%) in the Palaeocene section; in the Danian section, although organic carbon contents are generally just below average (around 0.8%), some individual samples contain up to 1.98%. Chalk appears in samples from 3,110 metres in ST-3 but does not constitute a major element in ST-2, even as deep as 3,200 metres.

Extraction and fractionation have been carried out on a number of samples from both the main hole and Sidetrack ST-2. All but one sample contain high proportions of extractable organic matter, particularly in relation to the moderately low level of thermal maturity attained; hydrocarbon abundances are, on the other hand, much lower than in the overlying stained sections. It is not possible to identify any apparently major oil-generating horizons; inspection of the main kerogen types during the spore colouration and vitrinite reflectivity analyses has not identified any significant sapropel content.

B.7 MAASTRICHTIAN, CAMPANIAN-SANTONIAN, CONIACIAN AND ?LOWER CRETACEOUS, Samples 3,230 to 3,680 Metres (ST-3)

This interval comprises pinkish grey chalk, occasionally grey-green and marly, and with some interbedded (or caved) grey to dark grey shales. Organic carbon contents for the chalk are low at around 0.2%, though in those samples where there is a significant proportion (normally less than 10%) of dark grey shale, contents may rise to as high as 0.87%. The marly chalk at around

OBERTS

3,500 metres also has a low organic carbon content of 0.25% (hand-picked), whilst grey shale in the same sample has a near average organic carbon content of 0.96%. Dark grey shale from the sample at 3,620-50 metres also has an organic carbon content of 0.96%.

Extraction and fractionation were carried out on three samples, one of chalk, one of the grey-green marly chalk and one with a minor dark grey shale content. All three samples contained negligible extractable organic matter and hydrocarbons, and are not considered to represent a significant hydrocarbon generating section.

B.8 ?PERMO-TRIAS, Sample 3,680 to 3,710 Metres

Black shales appear at the very base of the analysed section, though these were noted to be rather badly contaminated by drilling additives. Contamination is indicated in particular by the variation in organic carbon contents between the whole sample (4.22%) and relatively clean hand-picked shale (1.56%).

Extraction and fractionation of this sample show a very low content of extractable organic matter and hydrocarbons the lithotype is not expected to be a significant source for hydrocarbons. Examination of the kerogen during the spore colouration analysis suggests a predominantly inertinitic organic matter.

CONCLUSIONS

From the present study of the Statoil 1/9-4 Norwegian North Sea well, the following main conclusions can be drawn:

i) Oil-prone, sapropelic organic matter in the well would be expected to be in the early stages of thermal maturity, capable of generating heavy oil, below a depth of approximately 2,000 metres. A brief examination of the kerogen has, however, failed to identify any significant occurrence of sapropelic source rocks.

ii) Gas-prone, humic organic matter, the most common type of organic matter in this well section, is sufficiently mature to generate minor gaseous hydrocarbons below a depth of approximately 3,100 metres; the zone of prolific gas generation is not reached at the base of the well section.

iii) The source rock potential of each interval is summarised in Table 6. Although there are source rocks of average to above average richness at an early level of maturity below 2,000 metres, few of these can be identified as oilsources; gaseous hydrocarbons are the most likely product from these sediments. Much staining occurs at the base of the Eocene - Oligocene shales and tends to mask the true source rock characteristics of the insitu lithologies.

TABLE 1A

HEADSPACE GAS ANALYSIS DATA

COMPANY	: STATOIL	WELL:	1/9-4	LOC	ATION: NO	RWEGIAN N. SE
SANTOT E		07	07	01	07	01
DEDTU	$\frac{101ALC1-C4}{CAS}$	70 ·	70 C	70 C c	70 ice C	70 m C .
<u>DEPIR</u>	$\frac{GAS}{\sqrt{2}}$	c_1	\mathbf{c}_2	C3	$130C_4$	<u>n</u> -04
(MIS INIS)	$(70 \vee 7 \vee)$					
159 - 17	0 0 74	100	0	0	0	٥
170 - 20	0 0.14	100	0	0	0	0
110 - 20	0 9.51	100	0	0	0	0
260 - 20	0 1.69	100	· 0	0	0	0
200 - 29	0 0 4 3	100	0	0	0	0
320 - 35	0 5 86	100	0	0	0	0
350 - 32	0 J.00 A 3.91	100	0	0	0	0
390 - 41	0 3.99	100	0	0	0	0
110 - 11	0 9.51	100	0	0	0	0
410 47	0 0 74	100	,0	· 0	0	0
440 - 47	0 1 99	100	0	0	0	0
470 - 50	0 0/1	100	0	0	U O	0
500 - 55	0 0.41	100	0 *	. U	0 *	U *
530 - 50	0 0 91	100			т О	т О
500 - 59	0 1 97	100		LL.	U 	0
590 - 62	0 0.61	94 00	4 11	4	0	0
620 - 65	0 0.61	· 82	11		0	0
630 - 68	0 1.41	92	Z	6	0	0
080 - 71	0 0.53	94	tr	5	0	0
710 - 74		98	0	Z.	U *	0
740 - 77	0 0.41	*	т Ф	*	*	* . •
770 - 80	0 0.72	т 100	T O	т 0	т О	Ť
800 - 83	0 0.07	100	14	U	0	0
830 - 86	0 0.36	83	14	Z	tr	0
860 - 89	0 1.47	90	3	4	tr	Z
890 - 92	0 1.58	84	3	4	4	4
920 - 95	0 1.65	97	Z	tr	U	U
950 - 98	0 1.16	96	Z	1	0	U
980 - 101	0 *	*	*	*	*	ب با
1010 - 104	0 *	*	*	*	*	*
1040 - 107	0 *	*	*	*	*	*
1070 - 110	0 *	*	*	*	*	*

TABLE 1B

HEADSPACE GAS ANALYSIS DATA

<u>COMPANY</u> : STATOIL		<u>WELL:</u> 1/9-4		LOCATION: NORWEGIAN N. SI				
SAMPLE	TOTAL C1-C4	%	%	%	%	%		
DEPTH	GAS	C ₁	C_2	C ₃	iso C ₄	$\underline{n}-C_{A}$		
(ME TRES)	<u>(%v/v)</u>	. –	-		T	. . 1		
1100 - 1130	*	*	*	*	*	*		
1130 - 1160	*	*	*	*	*	*		
1160 - 1190	*	*	*	*	*	*		
1190 - 1220	0.40	90	5	0	0	5		
1220 - 1250	*	*	*	*	*	*		
1250 - 1280	4.36	66	6	11	4	12		
1280 - 1310	1.02	68	3	14	5 *	10		
1310 - 1340	*	*	*	*	*	*		
1340 - 1370	*	*	*	*	*	*		
1370 - 1400	1.14	67	10	14	2	7		
1400 - 1430	*	*	*	*	*	*		
1430 - 1460	0.28	50	13	9	*	27		
1460 - 1490	0.80	56	14	25	5	*		
1490 - 1520	0.75	57	10	17	2	13		
1520 - 1550	2.46	64	10	14	3	8		
1550 - 1580	0.98	41	10	29	4	16		
1580 - 1610	0.57	45	11	26	[,] 1	17		
1610 - 1640	1.46	49	10	16	4	19		
1640 - 1670	1.63	55	10	17	7	11		
1670 - 1700	0.56	69	8	11	5	6		
1700 - 1730	4.12	38	13	23	6	19		
1730 - 1760	1.22	63	13	13	2	8		
1760 - 1790	1.85	56	14	16	3	11		
1790 - 1820	2.35	59	13	14	3	10		
1820 - 1850	*	*	*	*	*	*		
1850 - 1880	*	*	*	*	*	*		
1880 - 1910	1.17	57	12	17	2	11		
1910 - 1940	1.06	58	12	15	6	9		
1940 - 1970	2.75	56	14	16	4	10		
1970 - 2000	1.60	48	15	18	6	12		
2000 - 2030	1.35	56	14	15	3	12		
2030 - 2060	0.78	33	14	26	11	15		
2060 - 2090	1.06	38	16	28	4	13		
2090 - 2120	0.27	26	19	25	4	26		
2120 - 2150	*	*	*	*	*	*		
2150 - 2180	40.10	23	21	29	8	19		
2180 - 2210	51.00	31	21	24	7	17		
2210 - 2240	46.80	22	22	29	8	19		
2240 - 2270	48.40	33	21	25	6	15		

TABLE 1C

HEADSPACE GAS ANALYSIS DATA

COMPANY:	STATOIL	WELL:	1/9-4	<u> </u>	DCATION:	NORWEGIAN N. SE
SAMPLE	TOTAL C1-C	%	%	%	%	%
DEPTH	GAS	C,	C ₂	C,	iso C	$\underline{\mathbf{n}} - \mathbf{C}_{\mathbf{A}}$
(METRES)	$(\frac{\% v/v}{)}$.	4	3	· · · · · · · · ·	*
2270 - 2300	45.80	36	23	23	5	13
2300 - 2330	63.00	34	22	22	7	15
2330 - 2360	31.00	33	23	27	5	12
2360 - 2390	35.30	23	23	30	7	17
2390 - 2420	13.10	29	21	30	5	15
2420 - 2450	56.40	34	23	23.	6	14
2450 - 2480	*	*	*	*	*	*
2480 - 2510	0.46	30	17	36	4 .	13
2510 - 2540	18.20	35	17	26	6	16
2540 - 2570	38.60	34	17	24	7	18
2570 - 2600	36.60	37	16	25	6	16
2600 - 2630	16.30	32	15	27	7	19
2630 - 2660	11.30	46	16	22	4	12
2660 - 2690	28.50	52	15	18	4	11
2690 - 2720	1.12	36	22	19	6	17
2720 - 2750	46.70	23	23	28	8	18
2750 - 2780	3.00	27	20	29	7	17
2780 - 2810	4.40	24	21	32	8	15
2810 - 2840	*	*	*	*	*	*
2840 - 2870	6.10	22	17	30	11	20
2870 - 2900	0.60	13	15	35	12	25
2900 - 2930	6.50	18	18	32	12	20
2930 - 2960	4.90	23	21	32	9	16
2960 - 2990	4.70	23	18	31	10	18
2990 - 3020	1.60	16	23	33	10	18
3020 - 3050	3.80	24	20	32	8	16
3050 - 3080	1.60	22	19	33	9	17
ST SIDETRA	CK				•	
2963 - 2990	0.10	7	3	8	*	82
2990 - 3020	0.20	24	18	29	8	21
3020 - 3050	0.30	73	12	12	1	2
ST-2 SIDET	RACK	~				
3020 - 3050	0.40	35	23	28	5	9
3050 - 3080	2.10	22	26	32	7	13
3110 - 3140	2.70	45	18	21	6	10
3140 - 3170	1.50	45	17	22	6	10
3170 - 3200	0.10	12^{-3}	10	29	27	22
5-15 5400						8mi 1997

ROBERTSON RESEARCH

TABLE 1D

HEADSPACE GAS ANALYSIS DATA

COMPANY: S	TATOIL	WEI	<u>L</u> : 1/9-4	$\underline{\mathbf{L}}$	OCATION: NO	RWEGIAN N.	SE
SAMPLE DEPTH (METRES)	$\frac{\text{TOTAL C}_1 - C}{\text{GAS}}_{(\frac{\%}{\sqrt{v}})}$	$c_1^{\%}$	% C ₂	% C ₃	% iso C ₄	% <u>n</u> -C ₄	
ST-3 SIDETR	ACK		-		·		
3059 - 3080	0.20	37	19	26	6	12	
3080 - 3110	1.70	12	18	37	11	22	
3110 - 3140	4.30	21	15	32	14	18	
3140 - 3170	5.90	13	15	31	18	23	
3170 - 3200	2.90	3	8	36 [.]	21	32	
3200 - 3230	4.30	28	13	27.	14	18	
3230 - 3260	6.40	13	12	25	22	28	
3260 - 3290	4.10	7	8	32	18	35	
3290 - 3320	0.50	13	14	31	18	24	
3320 - 3350	2.10	37	12	25	9	17	
3350 - 3380	0.10	*	71	7	12	10	
3380 - 3410	0.02	91	4	5	*	*	
3410 - 3440	0.10	25	8	28	9	30	
3440 - 3470	0.80	2	2	31	22	43	
3470 - 3500	0.50	37	15	24	15	9	
3500 - 3530	0.40	77	7	8	3	5	
3530 - 3560	0.02	39	37	24	*	*	
3560 - 3590 (A)	0.02	94	*	6	*	*	
3560 - 3590 (B)	0.02	68	32	*	*	· *	
3590 - 3620	0.10	36	17	29	16	2	۰.
3620 - 3650	0.20	81	7	8	1	3	
3650 - 3680	0.20	75	13	4	5	3	
3680 - 3710	0.10	35	4	61	*	*	

ROBERTSON RESEARCH

2 A TABLE

WELL: 1/9-4

STATOIL

COMPANY: Z

GASEOUS AND GASOLINE HYDROCARBON DATA LOCATION: NORWEGIAN N.SEA

5

	<u>, , , , , , , , , , , , , , , , , , , </u>	.∵ % C	1 to C_4	(G#	SEOUS HY	DROCAREC	NS)	•
DEPTH (METRES)	153	260	350	440	530	620	710	800
c ₁	71	97	100	100	100	100	100	100
c ₂	25	3	tr	tr	tr	tr	tr	tr
c ₃	*	tr	tr	tr	tr	tr	tr	tr
iso-C4	*	tr	tr	tr	tr	tr	tr	tr
n-C4	4	tr	tr	tr .	tr	tr	ťr	tr
TOTAL ABUNDANCE P.P.B	35	. 90 .	tr	5	tr	, tr	tr	tr
	<u></u>	•			анан на так так так так так так так так так та			
		%	C ₅ to C ₇	(GAS	SOLINE RA	NGE HYDR	OCARBONS)
ISOPENTANE							-	
N-PENTANE				•				
CYCLOPENTANE		•	· ·					
2-ME.PENTANE							*	•
3-ME.PENTANE		-					•	
N-HEXANE								
ME-CYCLOPENTANE			-				1	
CYCLOHEXANE								
2-ME. HEXANE			·					
3-ME.HEXANE	•				• .			,
3-ETHYLPENTANE		······································			•			
N-HEPTANE						•		
BENZENE								
DIME.PENTANE							-	.
ME.CYCLOHEXANE				n den in en den den den den		94-149-149-149-149-149-149-149-149-149-1		·····
TOTAL ABUNDANCE P.P.B	tr	tr	tr	tr	tr ·	tr	tr	tr
							ş <u></u>	

TABLE 2B

GASEOUS AND GASOLINE HYDROCARBON DATA LOCATION: NORWEGIAN N. SEA

.

WELL: 1/9-4

STATOIL

COMPANY:

		. % C1 to C4 (GASEOUS HYDROCAN					BONS)		
DEPTH (METRES)	890	980	1070	1160	1250	1340	1430	1520	
c ₁	100	59	44	tr	4	4	2	3 :	
C ₂	tr	- 4	4	tr	1	3	2	2	
C ₃	tr	10	14	tr	14	18	18	16	
iso-C ₄	tr	12	9	tr	24	20	33	31	
n-C4	tr	15	29	tr .	57	55	45	48	
TOTAL ABUNDANCE P.P.B	tr	75.	70	tr	365	330	1535	885	
<u>, en a constante en constante de constitución à particular de constitución de constitución de constitución de</u>	5	•	L			- ·		•	
		%	C ₅ to C ₇	(GAS	SOLINE RA	NGE HYDR	OCARBONS	5)	
ISOPENTANE	*	*	*	*	*	tr	tr	* .	
N-PENTANE	tr	6	3	4	2	tr	tr	5	
CYCLOPENTANE	tr	10 ·	6	7	4	tr	tr	4	
2-ME.PENTANE	tr	9.	7	7	6.	tr	tr	6	
3-ME.PENTANE	tr	9.	8	10	6	tr	tr-	8	
N-HEXANE	tr	12	7	12	10	tr	tr	9	
ME-CYCLOPENTANE	tr	8	10	10	16	tr	tr	9	
CYCLOHEXANE	tr	9	11	13	10	tr	tr	12	
2-ME. HEXANE	tr	7	10	10	9	tr	tr	9	
3-ME.HEXANE	.tr	7	10	12	10_	tr	tr	9	
3-ETHYLPENTANE	.∙tr	.7	12	15	11 .	tr	tr'	13	
N-HEPTANE	tr	6	5	*	7	tr	tr	7	
BENZENE	tr	*	*	*	*	*	*	*	
DIME.PENTANE	tr	*	*	*	*	*	, *	*	
ME.CYCLOHEXANE	tr	10	11	· *	9	tr	tr	9	
TOTAL ABUNDANCE P.P.B	tr	65	125	80	65.	tr	tr	60	

TABLE 2C

GASEOUS AND GASOLINE HYDROCARBON DATA

WELL: 1/9-4

 $% % C_1 to C_4$

LOCATION: NORWEGIAN N. SEA

.

-

(GASEOUS HYDROCARBONS)

¥• .	
	COMPANY: STATOIL
in the second	DEPTH (METRES)
	c ₁
-	C ₂
t	C ₃
	iso-C ₄
	n-C4
la de la companya de	TOTAL ABUNDANCE P.P.B
ан с	•
	ISOPENTANE
	N-PENTANE
	CYCLOPENTANE
	2-ME.PENTANE
	3-ME.PENTANE
	N-HEXANE
	ME-CYCLOPENTANE
	CYCLOHEXANE
1	2-ME. HEXANE
	2 ME UEVANE

		فسموه ومنبعه ومتعاد فاستجرت وتر						
DEPTH (METRES)	1610	1700	1790	1880	1970	2060	2180	2270
c ₁	1	2	7.	4	2	2	*	1
C ₂	2	4	8	6	7	7	*	5
C ₃	20	30	18	32	36	37	*	34
iso-C ₄	20	18	17	14	16	15	*	18
n-C4	57.	46	50	44.	39	39	*	42
TOTAL ABUNDANCE P.P.B	1435	. 2975.	1195	340	6685	, 5215	*	6175
		•			.			
• •		<u>%</u>	C ₅ to C ₇	(GAS	SOLINE RA	NGE HYDR	OCARBONS	5)
ISOPENTANE	*	*	*	*	*	*	*	*
N-PENTANE .	5	12	4	*	3	2	3	8
CYCLOPENTANE	8	2 .	. 9	*	13	6	•8	7
2-ME.PENTANE	7	8.	18	*	14 .	1,1	2.6	21
3-ME.PENTANE	8	7	12	*	. 8	8	7	10
N-HEXANE	7	16	17	*	15	16	29	25
ME-CYCLOPENTANE	8	6	11	*	10	9	7	8
CYCLOHEXANE	12	9	9	*	11	13	5	. 6
2-ME. HEXANE	9	8	5	*	4	6	3	3
3-ME.HEXANE	.11	8	5	*	4	5	3.	2
3-ETHYLPENTANE	. 14	_5	<u>2</u>	*	5.	7	1	1
N-HEPTANE	8	9	3	*	5	• 6	4	4
BENZENE	*	*	*	*	*	*	1	2
DIME.PENTANE	*	*	*	*	*	*	, *	*
ME.CYCLOHEXANE	3.	10	5	*	8	11	3	3
TOTAL ABUNDANCE P.P.B	50	100	85	*	45	70	1400	2285

TABLE 2D

GASEOUS AND GASOLINE HYDROCARBON DATA

COMPANY: STATOIL

s.

WELL: 1/9-4

.

LOCATION: NORWEGIAN N.SEA

..

% C1 to C4 (GASEOUS HYDROCARBONS)										
DEPTH (METRE9	2360	2450	2540	2630	2720	2810	2900	2990		
C ₁	1	1	1	3	1	tr	1	1 :		
C ₂	5	4	1	1	1	1	1.	4		
C ₃	33	32	19	16	25	19	23	24		
iso-C4	15	17	21	22	20	16	17	13		
n-C4	47	46	58	58	53	64	58	58		
TOTAL ABUNDANCE P.P.B	11920	22450.	21675	4215	3635	, 180	180	65		
		•	J	, ,						

		7.	C ₅ to C ₇	(GA	(GASOLINE RANGE HYDROCARBONS)			
ISOPENTANE	*	*	*	*	*	6	7	7
N-PENTANE	4	3	2	3	4	10	13	12
CYCLOPENTANE	8	7 ·	5	6	8	-1	1	tr
2-ME.PENTANE	22	19	22	21	28	6	.6	6
3-ME.PENTANE	10	10	10	11	13	4	-3	3
N-HEXANE	28	28	31	28	6	16	15	14
ME-CYCLOPENTANE	8	9	• 7	Ŗ	11	6	4	5
CYCLOHEXANE	6	6	4	5	7	7	6	. 9
2-ME. HEXANE	3	3	4	3	4	6	5	10
3-ME.HEXANE	. 2	2	3	3	4	4	5	5
3-ETHYLPENTANE	. 1	1	1	1	1	4	4	2
N-HEPTANE	4	4	5	5	. 6	13	14	9
BENZENE	2	3	1	2	2	: 1	2	1
DIME.PENTANE	*	*	*	*	*	tr	- 1	tr
ME.CYCLOHEXANE	2	5	5	5	6	16	14	17
TOTAL ABUNDANCE P.P.B	2220	8530	3565	1120	585	22420	305 25	15800

TABLE 2E

GASEOUS AND GASOLINE HYDROCARBON DATA

NORWEGIAN N.SEA

.

LOCATION:

÷

1/9-4

WELL:

STATOIL

COMPANY:

÷

•		. % C	1 to C ₄	(GA	SEOUS HY	DROCARBO	DNS)	•
DEPTH (METRES)	3050	ST:	2990	ST-2:	3050	3110	3140	3170
C ₁	2		2		16	1	41	*]
C ₂	tr		tr		6	4	10	*
C ₃	13	•	17		17	24	14	8
iso-C ₄	12		14		11	8	12	31
n-C4	73		62		50	63	23	61
TOTAL ABUNDANCE P.P.B	70		30		135	, 55	185	40
	•	*						
		%	C ₅ to C ₇	(GAS	OLINE RA	NGE HYDF	OCARBONS	5)
ISOPENTANE	*	:	9		8	6	6	6
N-PENTANE	*		15		10	10	10	7
CYCLOPENTANE	*		. 1		1	1	tr	tr
2-ME.PENTANE	*		6		5	.5	.6	5
3-ME.PENTANE	*	-	7		5	2	-3	6
N-HEXANE	*		· 20		15	14	15	15
ME-CYCLOPENTANE	*	-	. 3		5	4	2	3
CYCLOHEXANE	*		6		12	11	4	. 3
2-ME. HEXANE	*		1		4	6	10	10
3-ME.HEXANE	. *		7		2	3	7.	18
3-ETHYLPENTANE	*		1		*	1	1	tr
N-HEPTANE	*		9		16	.18	20	15
BENZENE	*		tr		tr	tr	tr	*
DIME.PENTANE	×		tr		*	*	- 2	*
ME.CYCLOHEXANE	*		14		17	19	14	15
TOTAL ABUNDANCE P.P.B	tr		2620		8385.	7645	34350	5185

TABLE 2F

GASEOUS AND GASOLINE HYDROCARBON DATA

COMPANY: STATOIL

WELL: 1/9-4 LOCATION: NORWEGIAN N.SEA

		. % C	1 to C ₄	(GA	SEOUS HY	DROCARBO	NS)	• •
DEPTH (METRES)	ST-3	3059	3140	3320	3350	3440	3530	3620
C ₁		1	1	5	*	64	100	100
C ₂		2	tr	*	*	*	*	*
C ₃		19	17	3	*	*	*	*
iso-C4		13	28	*	*	*	*	*
n-C4	1. 19	65	54	92 .	*	36	*	*
TOTAL ABUNDANCE P.P.B		. 65 .	1170	15	tr	, 5	5	5

		%.	C ₅ to C ₇	(GAS	SOLINE RA	NGE HYDR	OCARBONS	5)
ISO-PENTANE		12	11	8	tr	6	tr	tr
N-PENTANE		13	13	4	tr	13	tr	tr
CYCLOPENTANE		1	. 1	11	tr	1	tr	tr
2-ME.PENTANE		5.	7	tr	tr	.7	tr	tr
3-ME.PENTANE		6	4	tr	. tr	4	tr	tr
N-HEXANE		15	16	12	tr	18	tr	tr
ME-CYCLOPENTANE		4	3	tŗ	tr	tr	tr	tr
CYCLOHEXANE		12	4	tr	tr	3	tr	. tr
2-ME. HEXANE		5	8	tr	tr	. 9	tr	tr
3-ME.HEXANE	•	2	6	tr	tŗ	8	tr	tr
3-ETHYLPENTANE		1	1	*	tr.	1	tr	tr
N-HEPTANE		10	15	19	tr	·18	tr	tr
BENZENE		tr	1	*	tr	*	tr	tr
DIME.PENTANE		*	*	*	tr	tr	- tr	tr
ME.CYCLOHEXANE		14	10	46	tr	13	tr	tr
TOTAL ABUNDANCE P.P.B		8925	142330	1790	tr.	14100	tr	tr

TABLE 3A

MATURATION EVALUATION DATA

ų,

COMPANY: STATOIL

WELL: 1/9-4

LOCATION NORWEGIAN N.SEA

		- I and the fact of the second s				
SAMPLE DEPTH (METRES	SAMPLE	GENERALISED	MAXIMUM	VITRINITE	SPORE	LIGHT
OR NOTATION	TYPE	LITHOLOGY	- ERATURE OF	REFLECTIVITY %	COLOURATION	HYDROCARBONS
1. 153	Ctgs	SHELL, SND, MDST		. *	1.0 - 1.5	
6. 320	II	CLYST, SLTST, LIG		*	2.0 - 2.5	
11. 470	U.	CLYST	-	*	2.5	IMMATURE
15. 590	11	11	_	(0.21)	2.5	
18. 680	11	11	-	*	2.5	
25. 890	11	11	_	(0.28)	2.5	
28. 980	TT.	11	-	*	3.0	{
32. 1100	11	Ť.	-	. *	3.0	TRANSITIO-
35. 1190	11	11	_	*	3.5	NAL /
37. 1250	11	MDST/SH	-	(0.33)	3.5	MATURITY
41. 1370	Ff	11		*	3.5	
44. 1460	11	11	-	(0.43)	3.5	
48. 1580	11	11	· –	*	3.5 - 4.0	
52. 1700	11	SH/MDST	-	*	3.5	
55. 1790	н	11	-	(0.29)	3.5	
58. 1880	11	11	-	(0.35)	3.5	
60. 1940	11	TI	. –	* * *	. *	\bigvee
64. 2060	11	n	-	*	4.0	
66. 2120	11	11	-	0.41	*	· ·
69. 2210	11	TT	-	0.44	3.5 - 4.0	
72. 2300	11	SH	-	0.43	3.5	
75. 2390	- 11	SH/MDST/SLTST		0.44	4.0	
78. 2480	ťΪ	SH/SLTST	· _	0.42	4.0	
81. 2570	Ħ	11	• 🛶 .	*	4.0	
85. 2690	ń.	SH	-	*	4.0	
88. 2780	11	SH	_	0.46	4.5	
91. 2870	11	SH/SND	-	(0.50)	4.0	
94. 2960	11	SH/SND	-	0.44	4.5	
96. 3020	11	SH	-	(0.48)	4.5	
100.3020 ST	п	SST	_ ·	*	5.0	
101.3020 ST-2	11	SH/SST	· -	0.42	4.0	EARLY
106.3059 ST-3	11	SH	-	(0.41)	4.5	MATURITY

. •

TABLE 3 B

.

MATURATION EVALUATION DATA

COMPANY: STATOIL WELL: 1/9-4 LOCATION: NORWEGIAN N. SEA

SAMPLE DEPTH			MAXIMUM	VITRINITE	SPORE	alatariiswaanaata xemiyyyyiyyyyyyyyy
(METRES	SAMPLE	GENERALISED	PALAEOTEMP-	REFLECTIVITY	COLOURATION	LIGHT
NOTATION	IYPE	LITHOLOGY	- ERATURE °F	%	(1-10)	HYDROCARBONS
103. 3110 ST-2	Ctgs	SH	-	(0.51)	4-0 - 4.5	EARLY MATURITY
108. 3110 ST-3	11	CHK, some LIG	-	*	*	(WITH
105. 3170 ST-2	TI II	SH/SND/CHK		*	4.5	APPARENT
112. 3230 ST-3	11	CHK & some SH	_	*	*	STAINING
115. 3320 ST-3	TT.	n		(0.49)	*	
117. 3380 ST-3	11 .	11	· -	*	*	
120. 3470 ST-3	11	11	-	(0.50)	4.5	
124. 3560 ST-3	11	11	_	*	4.5	
127. 3650 ST-3	u	11	,	*	*	
		× •	r.			-
	а.					
1000 - 10000 - 10000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 -				· · ·		-
			· .			
						-
			-			
				- 		
		·				
	- · · ·			• •		

ORGANIC CARBON DATA

COMPANY:

STATOIL

WELL: 1/9-4

LOCATION: NORWEGIAN N. SEA

SAMPLE DEPTH (METRES)	ORGANIC CARBON % OF ROCK	SAMPLE DEPTH (METRES)	ORGANIC CARBON % OF ROCK	SAMPLE DEPTH (METRES)	ORGANIC CARBON % OF ROCK
1, 153-170	0.06	41. 1370- 400	1.13	81. 2570- 600	1.03
2. 170-200	0.47	42. 1400- 430	1.46	82. 2600- 630	0.93 +
3. 200-230	3.42	43. 1430- 460	1.31 +	83. 2630- 660	0.93
4. 260-290	1.92	44. 1460- 490	1.21	84. 2660- 690	1.04
5. 290-320	0.47 +	45. 1490- 520	1.19	85. 2690- 720	0.97 +
6. 320-350	0.57	46. 1520- 550	1.14	86. 2720- 750	0.96
7. 350-380	0.61	47. 1550- 580	1.01 +	87. 2750- 780	1.03
8. 380-410	0.63	48. 1580- 610	0.80	88. 2780- 810	0.97
9. 410-440	0.50	49. 1610- 640	0.86	89. 2810- 840	1.12 +
10. 440-470	0.60 +	50. 1640- 670	1.08 +	90. 2840- 870	0.84
11. 470-500	0.37	51. 1670- 700	1.19	91. 2870- 900	0.88
12. 500-530	0.53	52. 1700- 730	0.94	92. 2900- 930	0.88
13. 530-560	0.51	53 . 1730- 760	1.27 +	93. 2930- 960	1.03 +
14. 560-590	0.64 +	54. 1760- 790	1.90	94. 29 60- 990	1.04
15. 590-620	0.52	55. 1790- 820	1.91	95. 29 90-3020	1.03
16. 620-650	0.73	56. 1820- 850	1.83 +	96. 3020- 050	1.22 +
17. 650-680	0.57 +	57. 1850- 880	3.00	97. 3050- 080	1.98 +
18. 680-710	0.50	58. 1880- 910	2.77		<u>.</u>
19. 710-740	0.49	59. 1910- 940	1.87 +		
20. 740-770	0.45 +	60. 1940- 970	2.42		
21. 770-800	0.56	61. 1970-2000	2.54		
22. 800-830	0.54	62. 2000- 030	1.74 +		
23. 830-860	0.51	63. 2030- 060	2.00		
24. 860-890	0.52 +	64. 2060- 090	2.43	•	
25. 890-920	0.49	65 2090- 120	2.83 +	- 1	
26. 920-950	0.53	66. 2120- 150	2.91		
27. 950-980	0.89 +	67. 2150- 180	4.20 +		
28. 980-010	0.78	68. 2180- 210	*	<i></i>	
29. 1010-040	0.77	69. 2210- 240	*		
30. 1040-070	0.72	70. 2240- 270	3.95 +		· · · ·
31. 1070-100	0.62 +	71. 2270- 300	4.03		
32. 1100-130	0.87	72. 2300- 330	4.08		
33. 1130-160	0.70 +	73, 2330- 360	4.89 +		
34. 1160-190	1.00	74. 2360- 390	4.70	<i>2</i> ,	
35. 1190-220	0.95	75. 2390- 420	4.49		
50.1220-250	1.04 +	70. 2420- 450	J•13 * 2 0⊑		
3/. 1200~280 20 1200 210	0.95	70 2420- 480	2.02		
30.1200-310	1.41	70, 2480- 510	2.20 / 20 1		
10 12/0 270	1.3/ + 1.50	19. 2010- 040 20. 25/0- 570	4.JO T 1 QQ		
40. 1040-070	1.00	00. 2040- 070	1.00		

+ Samples analysed for source rock potential

TABLE 4B

ORGANIC CARBON DATA

SIDETRACK SECTIONS

COMPANY: STATOIL

WELL: 1/9-4

LOCATION: NORWEGIAN N. SEA

SAMPLE DEPTH (METRES)	ORGANIC CARBON % OF ROCK
SIDETRACK ST	<u>.</u>
98. 2963 - 990 99. 2990 -3020 100. 3020 - 050 SIDETRACK ST-2	0.93 1.03 1.04
$101. \ 3020 - 050 \\ 102. \ 3050 - 080 \\ 103. \ 3110 - 140 \\ 104. \ 3140 - 170 \\ 105. \ 3170 - 200$	0.68 0.90 + 0.72 0.89 + 0.89
SIDETRACK ST-3	
106. 3059 - 080 (uncertain) 107. 3080 - 110 108. 3110 - 140 109. 3140 - 170 110. 3170 - 200 111. 3200 - 230 112. 3230 - 260 113. 3260 - 290 114. 3290 - 320 115. 3320 - 350 116. 3350 - 380 117. 3380 - 410 118. 3410 - 440 119. 3440 - 470 120. 3470 - 500 121. 3500 - 530 122. 3530 - 560 A. (123. 3560 - 590 B. (124. 3560 - 590	$\begin{array}{c} 0.81 \\ 1.01 \\ 1.84 \\ 1.00 \\ 0.53 \\ 0.60 \\ 0.47 \\ 0.32 \\ 0.18 \\ 0.87 \\ 0.27 \\ + \\ 0.42 \\ 0.19 \\ 0.41 \\ 1.89 \\ 1.19 \\ + \\ 0.67 \\ 0.56 \\ 0.51 \end{array}$
125. 3590 - 620 $126. 3620 - 650$ $127. 3650 - 680$ $128. 3680 - 710$	0.63 0.62 + 0.69 4.22 +

+ Samples analysed for source rock potential

TABLE 5A

SOURCE ROCK EVALUATION DATA

i

COMPANY : STATOIL

÷

WELL: 1/9-4 LOCATION : NORWEGIAN N.SEA

SAMPLE DEPTH (METRES OR NOTATION	SAMPLE TYPE	ANALYSED LITHOLOGY	ORGANIC CARBON % OF ROCK	TOTAL EXTRACT P.P.M.	EXTRACT % OF ORGANIC CARBON	HYDRO- -CARBONS P.P.M. OF ROCK	HYDRO- CARBONS % OF EXTRACT	TOTAL ALKANES %HYDRO- CARBONS
5. 290	Ctgs	CLYST/SLTST,gy,calc	0.47	155	3.3	<20	3	90+
10. 440	11	CLYST, gy-brn, calc	0.60	405	6.8	35	9	95
14. 560	11	Π	0.64	725	11.3	<20	2	90+
17. 650	11	11	0.57	635	11.1	30	4	90+
20. 740	n	п	0.45	1260	28.0	40	3	90+
24. 860	11	CLYST, gy-brn/gy-gn, calc	0.52	1320	25.4	60	5	90+
27. 950	ft	a) H	0.89	1100	12.4	40	4	66
31. 1070	17	11	0.62	755	12.2	25	4	48
33. 1130	n.	TI	0.70	920	13.1	<20	1	95
36. 1220	11	MDST/SH, dk gy-brn	1.04	1340	12.9	65	5	90+
39. 1310	11	11	1.37	910	6.6	35	4	90+
43. 1430	11	MDST/SH, gy/ol-gy, calc	1.31	835	6.4	20	2	79
47.1550	11	11	1.01	1410	14.0	95	7	90+
50. 1640	11 A	11	1.08	1085	10.0	45	4	77
53. 1730	ņ	SH/MDST, med & dk ol- gy	1.27	1875	14.8	190	10	74
56. 1820	11	н	1.83	1630	8.9	140	9	57
59. 1910	11:	11	1.87	1885	10.1	70	4	90+
62. 2000	11	11	1.74	2010	11.6	190	9	78
65. 2090	ti i	11.	2.83	5305	18.7	835	16	87
67. 2150	11	11	2.42	3695	15.2	1570	43	36
70. 2240	11	11	2.79	4210	15.0	2035	48	87
73. 2330	11	n ·	3.25	3975	12.2	1360	34	75
76. 2420	11	SLTY SH, dk gy with mnr MDST, gy-gn	2.82	5800	20.6	2985	51	80
79. 2510	11	Ħ	1.76	5100	29.0	4175	82	84.
82. 2600	ŤŤ	SH, med/ol-gy with mnr SLTST	1.21	3530	29.2	2365	67	80
85. 2690	11	11	. 1.81	4290	23.7	2990	70	79
89. 2810	i 1 -	II	1.12	2825	25.2	820	29	57
93. 2930	11	11 N	1.03	2095	20.3	375	18	60
96. 3020	, M	SH, gn-gy/med-dk gy with mnr SST	1.22	2820	23.1	785	28	79
97. 3050	11	SH, dk gy, with brn & gy	1.98	2115	10.7	330	16	84

90+ : greater than 90

SOURCE ROCK EVALUATION DATA

COMPANY : STATOIL

WELL: 1/9-4 LOCATION: NORWEGIAN N.SEA منهده ال

SAMPLE DEPTH METRES OR NOTATION	SAMPLE TYPE	ANALYSED LITHOLOGY	ORGANIC CARBON % OF ROCK	TOTAL EXTRACT P.P.M.	EXTRACT % OF ORGANIC CARBON	HYDRO- -CARBONS P.P.M. OF ROCK	HYDRO- CARBONS % OF EXTRACT	TOTAL ALKANE: %HYDRC CARBON:
<u>ST-2</u>								
102. 3050	Ctgs	SH, med dk gy & mnr SSI	0.90	1995	22.2	220	11	81
104. 3140	11	", some CHK	0.89	2665	30.0	380	14	73
<u>ST-3</u>								
116. 3350	Ctgs	CHK,pnk gy with mnr SH dk gy	0.27	140	5.2	<20	. 2	90+
121. 3500	11	CHK,gy-gn,marly & SH, dk gy	1.19	880	7.4	55	6	63
126. 3620	n	", with mnr SH, blk	0.62	470	7.6	<20	3	90+
128. 3680	11	SH,blk to dk gy	4.22	1545	3.7	50	3	62
		HAND-PICKED ORGANIC						
		CARBONS						
121A.(ST-3)	Ctgs	SH, dk gy	0.96					
121B.(")	41	MARLY CHK, gy-gn	0.25					
126A.(")	11	SH, blk	0.96					
100A.(ST)	11	SH, gy (from SST)	0.66					
					•			
			14 1					
			-					
•								ŕ
1994 <u>-</u>								
2 2								
		•						

90+ : greater than 90

LOWER MIOCENE & OLIGOCENE	4. 1,850-2,540	Dark olive-grey, dark grey, medium grey shales and some mudstones.	Early maturity	Immature to transitionally mature	Average to above average organic carbon contents with abundant hydrocarbons. Some gas generation but otherwise stained by non-indigenous hydrocarbons.	A good potential source for gas at optimum maturity possibly with some minor oil potential.
EOCENE & EOCENE – PALAEOCENE	5. 2,540-2,810	Grey, grey-green, olive-grey, brown- grey shales.	Early maturity	Transitionally mature	Just average organic carbon contents and with abnormally high hydrocarbon contents. Stained.	Possibly minor gas potential at optimum maturity.
PALAEOCENE & DAN IAN	6. 2,810-3,230	Grey, grey-green, olive-grey and grey- brown shales, with interbedded sandstone. Minor chalk at base.	Early maturity	Transitionally mature	Just below average to average organic carbon contents. High proportion of extractable organic matter but relatively few hydrocarbons. Contaminated.	Probably only minor gas generating potential.
MAASTRICHTIAN, CAMPANIAN - SANTONIAN CONIACIAN & ?LOWER CRETACEOUS	7. 3,230-3,680	Chalk, pink-grey to grey-green marly; interbedded grey shale.	Early maturity	Early maturity	Chalk and shales of below average organic carbon content and no hydrocarbon generating potential.	No hydrocarbon generation likely.
?PERMO-TRIAS	8. 3,680-3,710	Black shale.	Early maturity	Early maturity	Average to above average organic carbon content, but negligible hydrocarbon content.	No hydrocarbon generating potential

•,

•

•

FIGURE I

HEADSPACE GASEOUS ($C_1 - C_4$) HYDROCARBONS

.

GASEOUS $(C_1 - C_4)$ HYDROCARBONS

FIGURE 3

GASOLINE RANGE (C5-C7) HYDROCARBONS

A, IMMATURE ; B, TRANSITIONAL; C, OIL - LIKE

FIGURE 4.

VITRINITE REFLECTIVITY AGAINST DEPTH

PERCENTAGE REFLECTIVITY IN OIL

MATURE SOURCE ROCK RICHNESS

COMPANY : STATOL

WELL : 1/9-4

LOCATION : NORWEGIAN NORTH SEA

	<u></u>		*****		······	GEACHEMI				LIADT		•				<i>A</i> t	<u>, , , , , , , , , , , , , , , , , , , </u>	· · · · · · · · · · · · · · · · · · ·
/Æ "	Prawing No. 162.P/2	606/4071		COM	PANY: STATOL	GEVUNEMI	WELL:1/9-4	a somm	AKI VI	LOCATION: NORWE	GIAN NORTH	SEA				Noay	FIG	IURE 8
SAMPLE	×				SOURCE ROC	K ANALYSES			SAMPLE	KEROGEN COMPOSITION			MATURAT	ION ANA	YSES		area Nat	· · · · · · · · · · · · · · · · · · ·
		ORGANIC C	ARBON	HYDR	CARBONS	EXTRACT % OF		ATIOOF > 00 HC to OC F 2	DEPTH (TOPS)	BASED ON:			VITRINITE SPO		LIGH	THYDROCARBO	ta Sau DNS	SUMMARY
TYPE	I RATI	% OF RC	ЮК	PPM	OF ROCK	ORGANIC CARBON			AND NUMBERS	SUAL SUAL TAMIN NAL, Cratic	PYROLYSIS	ELEMENTAL ANALYSIS	(HUMIC AT ORGANIC	ION PALEOTEM	HEADSPACE	GASEOUS HYDRO-	GASOLINE RANGE	POTENTIAL.
N S S	ι 	0.1 0.3 0.5 0.751.0	2.5 5.0 10.0	50 100 25	50 500 1000 2500	1 2.5 5 10 20 30				≥×4 m∢ Ŧ ę			MATTER) OF	GANIC MATTER)	GASES	CARBONS	HYDRO- CARBONS	
	CLYST, av calo							Low organic									-	
0 290	SLTST, SND,						- Δ-	content exept where coaly. No significant	- 5 290			-						
440	CLYST, gy-brn	┨┥┥┥┥					Δ-	hydrocarbon generating	- 10 440									No hydrocarbon
0 560 -0 650	calc with							level of maturity.	- 14 560 - 17 650									generating
740	SHELL	┣━━━╋╋							- 20 740									potential
0 860 0 850	0 - ·								- 24 860 - 27 950									
- I070	• 8. gy-gn, calc								- 31 1070					· · · · · · · · · · · · · · · · · · ·		77777	· - · · · · · · · · · · ·	
000 1220		+ - + +					-	Average organic	- 36 1220									
1310	gy-brn ₩		>					present hydrocarbon	- 39 1310 - 43 1430									No hydrocarbon
00 00 1550	MDST/SH,cate							potential.May generate some shydrocarbons at	- 47 1550					· · · · · · · · · · · · · · · · · · ·				generating
1640 1730								optimum maturity.	- 50 1640 - 53 1730					4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4				poromier
0 0 0 1820	SH/MDST,med		25					Organically rich with fair to good potential for gas	- 56 1820					· · · · · · · · · · · · · · · · · · ·				Minor gas and
2000 N			$\overline{\mathbb{A}}$					and heavy oil at present. May be nocd oil	- 62 2000					7777			·····?	?heavy oil at
0 2090 0 2150			+1≥					source at optimum maturity.	- 65 2090 - 67 2150						? STAIN			presen!
2240 2330			<u></u> ∓‡-{						- 70 2240 - 73 2330							$\langle / / / \rangle$		
00 00 00 00 00 2510	SH,dk gy & mnrSLT & SND		<u>+</u> <u>-</u>						- 76 2420							? STAIN	STAIN	
2600	⊐≭							Average organic	- 82 2600						? STAIN	? STAIN		
6 2810	-00 /ol-gy/brn-gy w	h						stained; minor gas potential at	- 89 280									Very
2930	Some SH, red-br							maturity,	- 93 2930								STAIN	minor
300 1000 1000 1000 1000	R dk gy	ST2							96 3020 97 3050 102 3050 ST2							KIII X	STAIN	gos
	CHK, ppk-av							No hydro carbon	- 104 3140 ST2									
001 ST-335	Det 1 1 1 1 with mnr i/b						-	generating potential at any level of maturity	- 116 3350 ST3									No hydrocarbon
-350	SH,gy	ST	3						- 121 3500 ST 3		ne - Transverse							generating potentia)
00 	SH, blk & SND	······································	····						- 126 3620 ST 3 - 128 3680 ST 3									
00 01	KEY Orig														n - Andrew Martin Contractor			
4000	hole ST											-			and a second second			
00																		
- 140	ST-3																	
5000																		
Casin	point						dor 1 Gas		Conv. Core 🚪			E TRANS	I Z	MATURF				
SCALE 1: 2	0,000	Lean Fair Av	er. Above average	Lean Average	Above average	Gas prone ← → Oil - prone Contam	stail Oil & Uil Oil & Uil Stail	ource *	SWC Ditch ctgs			MAT immatul transitio	URITY Early re mature Heavy oil	Middle & Lig	Late nt oil: API	nsate META	MORPHISM Iry gás	
.	nen an an fan de regelen an gener gewyk an gener gener fan de regelen an gener fan de regelen an gener fan de r			<u></u>	<u></u>			1		<u>I</u>		er en internet he				*****	î	
		*					<i></i>							•				

VITRINITE

REFLECTIVITY

DATA SUMMARY

CHART I WELLFILE

No 24

	COMPANY:STATOIL	WELL: 1/9-4	LOCATION : N	IORWEGIAN	NORTH SEA
DEPTH METRES	LITHOLOGY & MINERALOGY	TYPE OF ORGANIC MATTER	HISTOGRAM SHOWING REFLECTIVITY VALUES/No. OF MEASUREMENTS (%)	/) No. of PART- ICLES	FLUORESCENCE IN BLUE LIGHT
53-170	Kerogen Concentrate	Organic matter sparse. No reliable vitrinite		- 1	None
					Rare yel resin and spores.
20-350	Sandstone and pyrite	Very poor organic matter	0 0·2 0·4 0·6 0·8 0 1·2 1·4 1·6	-]	Pale yel-gn/yel-orng ? spores.
20-350	Kerogen Concentrate	Some cell-like structured humic material low reflecting.		- 4	Abundant yel spores and dinos
70-500	Mixed shales	Some semifusinite and poor quality vitrinite		- (Occ gold frags.
0-500	Kerogen Concentrate	Some humic material, including inertinite and poor quality vitrinite.		- 1	Yel and yel-gold frags and gold frags in mineral matrix.
0-620	Mixed shales	No vitrinite seen		- (Carbonate flu. Yel-gn algae
)-620	Kerogen Concentrate	Low rank brown organic matter and mineral resin. inertinite and structured woody material	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{ccc} 1 & 1 \\ 10 & k \\ 2 \\ 7 & \end{array} $	Yel-gold spores and pollen. also background (? sapropel).
0-710	Mixed shales	No vitrinite; some inertinite		(Carbonate flu
0-710	Kerogen Concentrate	No good vitrinite: some low rank collinite. Inertinite present. Reworked vitrinite at 0.59	0.50	7 2	A few rare yel spores and frags.
0-920	Shales	Some inertinite		-]]	Dull carbonate flu
0-920	Kerogen Concenrtate	Inertinite. Some poor quality vitrinite. Brownish pyrite aggregates		3 (Gold/yel-gold spore frags.
0-1010	Shales	Brown, low reflecting humic material.		-	Dull carbonate flu. Occ yel-gn
0-1010	Kerogen Concentrate	Some spores. Brown mineral matter, resin, inertinite and orange-brown exinite.		-	spores and atgae Bare yel/yel-gold spores and frags
.00-130	Kerogen Concentrate	No vitrinite. Inertinite shards and brown mineral matter		-	Dull pale brn carbonate flu. Yel-gold spores
					Rare yel/yel-gold spores and frags.
90-220	Shales	Algal stringers? Moderate organic content.			Yel spores and frags.
90-220	Kerogen Concentrate	mainly inertinite and low reflecting vitrinite Brown mineral matter. Occasional inertinite shards.			Occ yel/yel-gold spore fragments.
50-280	Silty shale	Some brownish vitrinite and ? algal stringer		-	Rare yel-orng ? spore frags.
50-280	Kerogen Concentrate	Occasional inertinite and vitrinite		5	Occ yel/yel-gold spore frags
70-400	Some shales	No obvious organic content		-	Bright carbonate flu. Yel-gold/yel
70-400	Kerogen Concentrate	Brown mineral matter and inertinite; no vitrinite or resin.		-	V rare dull yel-gold
60-490	Silty shales	Rare organic matter. some reworked		-	Gold spores and spore frags.
60-490	Kerogen Concentrate	vitrinite. Brown mineral matter with occasional inertinite. Some good cell-structured fusinite. Besinite. Telinite.		3	Yel/yel-gold spores, dinos, pollen
580-610	Soft calcareous silty shale	No identifiable or measurable organic		-	Rare yel-gold. Some carbonate flu
80-610	Kerogen Concentrate	Occasional inertinite and resinite but no vitrinite.		-	Yel-gold spores and frags
700-730	Shales	Rare organic matter. some spores and algae		-	Rare yel spores
700-730	Kerogen Concentrate	Occasional humic organic matter. some vitrinite and resinite.		-	Yel spores and spore frags
790-820	Shales	Abundant brown organic matter (?vitrinite)		-	Rare yel spores
′90-820	Kerogen Concentrate	Brown organic matter.other small fragment Some resin and semifusinite. Some large fragments of vitrinite.	S 0.29 0 0.2 0.4 0.6 0.8 1.0 2 .4 6	17	Occ yel frags. Some gold spores and algae
880-910	Shales	Some large corroded vitrinite particles	0.37	11 4	Yel-gold spores and frags. Abundant bright yel-brn carbonate flu
880-910	Kerogen Concentrate	Brown unidentifiable organic matter		21	Gold spores and algae
	Nerogen concentrate	Resin. Amorphous humic fragments. Some good vitrinite fragments, though rather small.	Total (0.35	.1 32)	
40-970	Shales	Some barren shales and some humic			Yel-brn carbonate flu. Rare
40-970	Kerogen Concentrate	material. Brown unidentifiable organic matter with		_	gold/yel-gold spores. Rare gold spores and algae.
		very rare numics			Para rold guarag
060-090	Snates Kerogen Concentrate	Brown unidentifiable organic matter with very rare humics			Small gold frags
120-150	Slightly silty shale	No measurable organic matter			Rare yel-gold spores
120-150	Kerogen Concentrate	Some inertinite and humic aggregates; also		23	Yel/yel-brn spores

VITRINITE

DATA REFLECTIVITY

SUMMARY

e en la section de la section de

CHART I

DEPTH METRES	LITHOLOGY & MINERALOGY	TYPE OF ORGANIC MATTER	HISTOGRAM SHOWING REFLECTIVITY VALUES/No. OF MEASUREMENTS	R (av) (%)	No. of PART- ICLES	FLUORESCENCE IN BLUE LIGHT
2210-240	Shale	No measurable organic matter		-		Pare yel spores. Dull brn yel-brn carbonate flu.
2210-240	Kerogen Concentrate	Relatively abundant humics, some good		9.36 0.49	8 12	Some yel spores and yel-brn resinite.
2300-220	Mixed shales	vitrinite but as small particles. Organic particles unmeasurable		(0.44 -	20)	Rare flu; occ orng-gold frags.
2300-330	Kerogeo Concentrale	Relatively abundant humics, some good		<u>9.43</u>	23	Mod abundant yel-orng spores.
2300-120	Various shales	vitrinite but as small particles. Very little organic matter				Bright yel cardonate fl». Bare dull
2390-420	Kerogen Concentrate	Relatively abundant humics, some good vitrinite but as small particles.		0.44	26	orng-gold spores. Mod abundant yel yel-orng orng-brn
2180-510	Shales	resin and semifusinite.		_		spores. Bright yel-gold carbonate flu. Dare
2400-310	L'anoren Concentrate	Some good humic resterial Measurable		0.42		yel-gold spores. A few vel-brn brn spores
	Kerogen Concentrate	fragments not common				
2570-800	Shale	Barren		-		Bright yel-gn carbonate flu. V rare gold and orng frags.
2570~600	Zerogen Concentrate	Only occasional inertinite		_		A few gold yel-orng spores.
-2690-720	Shale	No vitrinite		-		No organic flu.
2 690-7 20	Kerogen Concentrate	Some collinite (? additive). Occasional inertinite		-	-	there yet, yet-gold spores and some form resinite.
2780-810	Shales	No measurable - vitrinite				Carbonate flu of variable intensity, Some spores and algae with yel and
2780-810	Kerogen Concentrate	Tabular humic particles in mineral matter Vitrinite and some fusinite.		<u>0.46</u>	15	gold flu. Elu rare, occ yel-brn spores
2870-900	Shales	No definite organic matter seen				Bare organic flu. some bright yel algae.
2870-900	Kerogen Co n centrate	Mineral with some tabular humic matter. Few particles.		<u>0.50</u>	4	Tel spores, yel-brn frags; low abundance.
2960-990	Shales and siltstone	Mineral matter and very occasional		-		Cariable flu. some dull gold orng-orn spores.
2960-990	Kerogen Concentrate	Fine grained organic matter with various		0.28 0.44	6 21	Bare flu. occ gold yel-orng frags.
3020-050	Shales and limestone, chalk	Very little organic matter. ?oil stain in				Bare gold, gold orng frags.
3020-050	Kerogen Concentrate	Tine grained organic matter with various humic particles		0.33	- 1 5 -	Tel. orng and brn algae.
3020-050	Shales and silty shales	Organic matter abundant but high reflecting.		<u>0.48</u> 		are
ST 3020-050	Kerogen Concentrate	High reflecting inertinite and reworked		0.18 0.26	3 1	Tel-orng spores, yel-brn I sapropel.
3020-050	Shales, silty shales and sandstones	vitrinite. sapropel-like material may be sain		0.37 6.34	1 3	Bra stain does not flu (probably vit);
ST-2 3020-050	Kerogen Concentrate	(may be of vitrinitic composition). Some tabular humic material in pyrite		(. - <u>(</u>)	22	algae,, fel spores and breakspores trags and fel spores and breakspopel
3059~080	Various shales	masses. Some high reflecting humics Very rare organic matter, particles sroll		-	-	Dull yel-brn carbonate flu. Dull gold
ST-3	Korocon Concentrate	and indeterminate out mainly words.		0.41	 	Rare flu. Occ. brn spore
5059-060	Chule conditions and shalls	high reflecting organic matter.				rare organic flu. orng-gold.
3110~140 ST-2	Share, sandstone and chafk	some staining.		0.39		Pare: oec vel-brn frags.
3110-140	Kerogen Concentrate	Mixture of fine-grained mineral, humic material. Some larger angular fragments		$\frac{0.51}{0.60}$	27 4 4 5 5 5	Pare, ver yer stattage.
3110-140 ST-3	Calcareous shales (?chalk)	Sarren			1 rs	orng frags.
3110-140	Kerogen Concentrate	Some large vitrinite sheets with embedded inertinite fragments		0.34 0.57 0.70		A few yel-gold, yel-brn spores
3170-200 ST-2	Shale, chalk	Essentially barren. No vitrinite seen		-		2.0 organie flu.
3170-200	Kerogen Concentrate	Mineral matter and humic material; mainly inertinite. resin and some vitrinite.				Brn resin and particles
*3320-350	Shale, chalk	Barren. Some ? bitumen stain			-	Dull yel-brn carbonate flu.
ST-3 3320-350	Kerogen Concentrate	Abundant low reflecting organic matter.		$\frac{0.48}{0.71}$	n maria A constante A constant	Yel-orng spores, yel algae, orng resin.
*3470-500	Shale, chalk	Some observed vitrinite may be additive	0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6	····		Dull yel carbonate flu
ST-3 3470-500	Kerogen Concentrate	Mineral organic aggregates plus additive.		6.34 <u>0.</u> 30		Some yel-orng spores and brn resin.
3560-590	Shale, chalk	Some poor quality vitrinite. Barren		<u>0.66</u> -	8	A few dull orng-brn particles
ST-3(B)	Serocen Concentrate	Mineral organic aggregates plus additive		-		Tel and orng spores, brn restu
3650 680	Shale, chalk	Some poor quality vitrinite.		-		Occ gold-orng frags.
ST-3	Verogen Concentrate	Mineral organic aggregates plus additive		0.43		- Occ gel-orng spores and brn resin
3650-680	aronogou concentrate			0.78	2	1

APPENDIX I

ABBREVIATIONS USED IN ANALYTICAL DATA SHEETS

		•				
Alg	-	Algae	Mt1	·	Mottled	
Aren	 .	Arenaceous	Musc	-	Muscovite	
Arg	, ,	Argillaceous	NS		No sample	
Bit		Bitumen/bituminous	0cc	-	Occasional	
B1		Blue	01		Olive	
B1k	- -	Black	001		Oolite/oolitic	
Brn		Brown	Orng	-	Orange	
Calc	-	Calcareous	Pnk		Pink	
Carb		Carbonaceous	Pop		Population	
Chk	••••••••••••••••••••••••••••••••••••••	Chalk	Pp .		Purple	
Cht		Chert	Pyr		Pyrite/pyritic	
Cgl		Conglomerate	Qtz	· _	Quartz	
Cly	-	Clay	Ref	-	Reflectivity	
CMT	-	Cement	Sap	-	Sapropel	
Crs	-	Coarse	Sft	· —	Soft	
Ctgs		Ditch cuttings	Sh	-	Shale	
Dk	÷.	Dark	Sh1y		Shaly	
Do1		Dolomite	Sil		Siliceous	
F	-	Fine	S1t		Silt	
Fer		Ferruginous	Sltst	-	Siltstone	
Flu	-	Fluorescence	Sltv		Silty	
Fm		Formation	Snd		Sand	
Foram		Foraminifera	Sndv	-	Sandy	
Fr	÷ .	Friable	Sst	-	Sandstone	
Frags	-	Fragments	SWC	-	Sidewall core	
Glc	~~	Glauconite	Tr	÷.	Trace	
Gn		Green	V	-	Verv	
Gv		Grev	Vet	-	Variegated	
GVD		Gypsum	Vit	-	Vitrinite	
Hd	_	Hard	Wht	-	White	
Inert	_	Inertinite	Ye1		Yellow	
Lam		Laminae/laminated	<u> </u>		Sample not analysed	
LCM		Lost circulation mate	rial *	÷	No results obtained	
Lie		Lionite/lionitic Gy-on		-	Grevish green	
Let		Limestone	Gn/ov	-	Green to/and grev	
I.t		Light	Gn-ov		Greenish grev	
Mdst	÷	Mudstone	6, 6,		0100000 8109	
Med		Medium				
Mic	-	Micaceous			-	
Mn 1		Mineral	ø.			
Mnr		Minor				

APPENDIX II

LIST OF SAMPLES

This appendix presents a list of samples received below a depth of 2,780 metres, that is, the section of the well where sidetrack material was available. Many of the samples received were not correctly annotated and some difficulty was experienced in assigning samples to their correct sidetrack hole. The Table presents a list of samples as received and is amended to show the arrangement used in the report (Table 4A/B).

		TABLE	
NOUNOTATION	ST NOTATION	ST-2 NOTATION	ST-3 NOTATION
88. 2780 - 810			
89. 2810 - 840			
90. 2840 - 870	•		м
91. 2870 - 900		4	
92. 2900 - 930			
93. 2930 - 960			
94. 2960 - 990		н. С	
2963 - 990 -			
95. 2990 -3020	99. 2990 - 3020		
96. 3020 - 050	100. 3020 - 050	101. 3020 - 050	
97. 3050 - 080		102. 3050 - 080	106. 3059 - 080
3080 - 110		an yn ei mysterys redy is hen i'r ylan ir yr Amyr Cassaraeth	- 107
1997 - 1997 -		103. 3110 - 140	108. 3110 - 140
		104. 3140 - 170	109. 3140 - 170
3170 - 200	t An anna an		110. 3170 - 200
			111. 3200 - 230
,			112. 3230 - 260
			113. 3260 - 290
	. x		114. 3290 - 320
			115. 3320 - 350
116. 3350 - 380 -			>
		÷	

	0000		000	
117.	3380		410	
118.	3410	-	440	
119.	3440		470	
120.	3470	-	500	
121.	3500		530	
122.	3530	-	560	
123.	3560	-	590A	
124.	3560	÷	590B	
125.	3590	-	620	
126.	3620	-	650	
127.	3650	-	680	
128.	3680	-	710	

