MDT SAMPLING SUMMARY 25/8-6 T2

Sample	Depth	Sample	Pretest	OFA prior to	Chamber		
Chronology	(m)	Chamber vol	pump-out vol (L)	sampling	filling Time	Result	Comments
	1 2092 2	A v Agal A V AFOco	16.38	Oil	1 br 0 min	cuccoreful	2 DVT containers did not and
1.) Planned Oil	2082.2	1 x 1gal, 4 X 450cc	10.30		1 hr, 9 min	successful	2 PVT containers did not oper
Continue Pressure Pro	ofile						
2.) Planned water	2145.0	1 x 1gal	28.08	water	44 min	successful	Sampling flow restricted by
							partially plugged probe, abort
							additional sampling here
3.) Water	2147.0		0.58	water		unsuccessful	Probe plugging immediately
							upon pumping with pump-out
							sub on 2 attempts - abort test
Complete pressure pro	ofile						t
4.) Water	2201.0		0	water		unsuccessful	Probe plugging while pumping
							out during pretest - abort test
5.) Water	2143.5	1 x 1gal	7.02	water	1 hr, 32 min	successful	Probe plugged but chamber
							filled
6.) Planned transition	2123.7		2.9	water		unsuccessful	Probe plugging during pump out
							resulting in complete pack-off
7.) Transition	2123.0	1 x 1gal	7.6	60% wtr	2 hr, 12 min	successful	Probe plugged but filling
				10-20% oil			chamber
8.) Transition	2122.0		14.6	oil		unsuccessful	Probe plugged immediately upo
							opening smpl chamber
9.) Transition	2122.0		2.9	oil		unsuccessful	Reset tool, sample chamber
				054			plugged immed upon opening
10.) Transition	2122.2			OFA unusable		unsuccessful	Probe/flowline/OFA plugged on
AA \ Transidian	0400.4	A A		054	4 5 20		pretest set, not displayed on log
11.) Transition	2122.1	1 x 1gal	14.04	OFA unusable	1 hr, 26 min	successful	Probe plugged immediately
							upon opening smpl chamber,
	1		L		l		but filling chamber

Note: Probe unplugged in open hole multiple times with use of pump-out sub

.

2586t2m2.doc gjw 26-Jun-95

Mud and Product Usage, 12 1/4" hole section

Well: 25/8-6

Operator: Esso Norge

.

Anchor Drilling Fluids

Initial volume	0	(m3)														Volur	ne tran	sferre	d to ne	ext well	(m3):[0)
Date 1995		24-05	25-05	26-05	27-05	28-05	29-05	30-05	31-05	01-06	02-06	03-06	04-06	05-06	06-06	07-06	08-06	09-06	10-06	11-06		Total
FSR no.		6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24		
Depth at 24:00 hr	m	1060	1063	1700	2054	2063	2077	2085	2100	2109	2138	2211	2335	2473	2565	2565	2565	2565	2565	2565		
Mud Usage:																						
Built	m3	228	87	82	94	8	2	27	6	1	26	17	1	28	4	0	13	10	17	0	4	655
Received	m3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Surface loss	m3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Dumped #1 (SC)	m3	0	9	0	0	0	0	0	0	0	0	0	0	0	10	4	8	0	0	0	0	31
Dumped #2	m3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	102	133	235
Solids equipment	m3	0	4	59	43	6	3	4	18	0	15	20	17	19	33	8	15	21	0	0	0	285
Formation loss	m3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Behind casing	m3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Left in hole	m3	0	0	0	0	0	0	0	0	0	0	0	0	Ó	0	0	0	0	36	68	0	104
Back-loaded	m3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	O	0	0	0	0	Ø
Final volume	m3	228	302	325	376	378	377	400	388	389	400	397	381	390	351	339	329	318	299	129	0	
Product Addition	S:																					Tota
Barite	mt	56	37	4	39	24	1	0	24	3	5	0	Ō	3	0	0	54	42	24	0	0	316
Soda Ash	kg	150	50	50	25	200	0	150	175	0	0	50	75	200	150	0	0	0	0	0	100	1375
Lampac Exlo	kg	2625	1000	1250	1375	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	6250
Rhodopol 23 P	kg	850	425	725	375	0	0	0	0	0	0	100	150	0	150	0	0	400	200	0	0	3375
KCI-brine	m3	286	73	75	70	0	0	25	0	0	23	15	0	25	0	0	0	0	11	0	0	603
KCI-powder	kg	3000	3000	3000	5000		2000	1000	-	0	0	3000	0	2000	5000	0	0	0	0	0	0	29000
Anco 208 (Brine)	lit.	8550	2000			0	0	780	0	0	580	530	0	600	0	0	0	0	330	0	70	17890
Anco 208	lit.	2000	500	1000	8500	1200	400	0	0	0	1200	0	1000	0	0	0	0	0	0	0	0	15800
Sodium Nitrate	kg	0	0	0	175	25	0	0	0	0	0	0	0	0	0	0	0	75	0	0	0	275
Citric Acid	kg	0	0	50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	250	500	0	800
Anco cide	kg	0	0	0	0	0	0	325	75	0	0	0	0	0	0	0	0	75	0	0	0	475
Antisol FL 10	kg	0	0	0	0	0	0	0	0	0	0	0	0	0	2000	0	0	0	250	0	0	2250
Sodium Bicarb.	kg	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	250	300	0	550

(Mud and Product Usage, 12 1/4" Sidetrack

Operator: Esso Norge

0 (m3) Initial volume

Date 1995		12-06	13-06	14-06	15-06	16-06	17-06	18-06	19-06	20-06	21-06	22-06	23-06	24-06 [.]
FSR no.		25	26	27	28	29	30	31	32	33	34	35	36	37
Depth at 24:00 hr	m	1247	1714	2258	2337	2504	2507	2539	2577	2577	2577	2577	2577	2577

/

Mud Usage: Built m3 m3 Received m3 Surface loss Dumped #1 (SC) m3 To sloptk. m3 Solids equipment m3 Formation loss m3 Behind casing m3 Dumped m3 **Back-loaded** m3 **Final volume** m3

Product Additio	ns:														Tota
Barite	mt	9	30	31	15	12	7	4	0	0	0	0	30	0	138
Safemul PE	ltr	800	1600	800	400	1400	400	0	200	0	0	0	0	0	5600
Safemul SE	ltr	400	800	400	400	1400	400	0	200	0	0	0	0	0	4000
Safemul MOD	ltr	200	1200	800	200	200	200	0	600	0	0	0	0	0	3400
Safemul OW	ltr	400	0	0	0	0	0	200	0	0	0	200	0	0	800
Safemul VIS	ltr	625	1250	2175	600	2025	200	625	0	0	0	0	0	0	7500
Lime	kg	250	1200	400	400	1600	0	400	1440	0	0	160	0	0	5850
Cals. Chloride	kg	2100	1050	1050	0	0	0	0	0	0	0	0	0	0	4200
Baseoil	m3	21	29	36	5	16	16	0	0	0	6	0	0	0	129
Renax 100	ltr	0	0	0	0	0	0	0	25	100	0	0	0	0	125

Anchor Drilling Fluids

Well: 25/8-6

Volume transferred to Base (m3): 342

Total

Geochemistry of Core Chips Gas: Well 25/8-6, Norway

Research Application Project Documentation

Work Reported by	J. D. Yeakel (965-4637) Petroleum Geochemistry Section Integrated Basin Analysis Division
Report Sent to	Trees Manuel AC
Date Report issued	September 1995
Period Covered	September 1995
EPR Research Application Job No	51204
Kay words geochemistry as	analysis hydrogen sulfide as

Key words: geochemistry, gas analysis, hydrogen sulfide, gas chromatography.

A Risk-Screening Form is included with this document.

EXXON PRODUCTION RESEARCH COMPANY

For Company Use Only This documentation was prepared on a research-application basis for Esso Norge AS (ENAS). The information herein is confidential and is not to be disclosed to or discussed by others without authorization by ENAS and Exxon Production Research Company. All rights are reserved under the copyright laws

BA-95-1939-1 O 1 NOV. 1935 RECISTRENT OLJEDIREKTORATET

TECHNICAL PRODUCT	(TP) RISK SCREENING FORM
TP: H ₂ S in Headspace Gas	USER(S): ESSO NORGE
RISK ASS	SESSMENT DECISION
assumptions about the TP and its u mitigators/preventers in place, train	. Indicate below decision rationale and any se, such as limits on operating conditions, ning/experience of operating personnel, critical safety se of hazardous materials, and emergency response
EPR Risk Study is necessary. Previous	Risk Study results are adequate and are attached.
EPR Risk Study is necessary. Previous are attached.	Risk Study results have been modified to be adequate and
A new EPR Risk Study should be carrie approximately days. The followin	ed out using about individuals and should take ag units should be represented or consulted:
aliquot of gas was removed from the container. statement about the presence or absence of H ₂ S The sample container was not appropriate for established, reliable techniques; nor was the con of the sample of sediment and its associated gas. not have been collected or may have been lost. The nature of the gases of the sampled rock interval.	r removing an aliquot of the headspace gas using ntainer appropriate for the collection, storage, and shipment . Due to the use of such a container gases such as H ₂ S may Thus, the sample analysed may not represent the true Il conduct appropriate OIMS risk studies prior to utilizing
Responsible R&E Staff	ene yeaher <u>9/25/95</u> date
Intermediate R.A. Trained Staff	T. D. Rupt 09/25/95 date
Section Supervisor	July 9-26-95 date
This page is to accompany the TP when delivere	d.
SCREE	ENING PAGE 3

D:\DATA\WINWORD\OIMS\SCREENFM.DOC

-

Jesse Yeakel

The bottled sediment sample from the 2112-2119 m interval in well 25/8-6 contained sediment and headspace gas with a noticeable unpleasant odor that we determined was <u>not</u> due to H_2S or low molecular weight hydrocarbons. However, the absence of H_2S in the sample, as we received it, does not conclusively eliminate the possibility that the odor detected during coring of this interval was due to H_2S or some S-bearing organic compound. The sample we received may not have captured or retained the compound(s) responsible for the odor detected at the drill site.

Bottles, even with plastic-lined lids, should not be used as containers for sediment that you would like gas analyses on. The bottle submitted may not have retained all gases emitted by the sediment, or may have leaked and diluted the gas from the sediment with air, thus reducing the concentration of sedimentevolved gases. Sampling guidelines for cuttings and sediment samples recommend the use of paint cans for the sample. The can containing a sample should be stored and shipped upside down to minimize gas leakage. Detailed guidelines for these kinds of samples are presented in an EPR report "Acquisition and Handling of Geochemical Samples" by T. S. Loutit and A. E. Bence (EPR report no. EPR3MA.89).

Sample Handling and Analyses:

We were able to sample the head-space gas in the bottle without compromising the integrity of the container. A test for H_2S and gas chromatography were performed on the head-space gas. After gas analysis, the sediment in the bottle was washed and examined. The results of the analyses and observations are listed in the following section. A copy of the report by the laboratory performing the analyses is also provided (see attached sheets).

Results of Head-Space Gas Analysis

- An unpleasant odor was present. However, the odor was not that of H₂S or mercaptans, both of which have distinctive, noticeable odors in extremely small concentrations (parts per billion).
- The test for H₂S was negative. The method used employs an analyzer tube packed with lead salt that is discolored by H₂S. This test detects H₂S in the range of 10 to 120 parts per million (v/v) by discoloration of the packing. Concentrations greater than 120 PPM are detected by this method but concentration cannot be estimated by the method.
- Gas chromatography of the sample for C1-C4 and C5-C7 hydrocarbons indicated minor concentrations of these compounds.

Hydrocarbon	Concentration (PPM v/v)
Methane	209
Ethane	59
Propane	111
iso-Butane	73
n-Butane	98
C5-C7	1732

Results of Sediment Examination

- Sediment had an unpleasant odor, though not that of H₂S or mercaptans.
- There was nothing about the sediment's appearance that was unusual.
- After washing with water, the sediment had no odor.

Interpretation

- The sample, as received, had an odor but not one that was due to H₂S or mercaptans. These compounds have distinctive edges at extremely low concentrations (parts per billion) and would have been recognizable by smell, if present. Also, the test was negative for higher concentrations of H₂S.
- If H₂S is present, it is at such low concentrations that it cannot be detected by smell and is not present at high enough concentrations to be detected by standard tests.
- The sample odor was not due to low molecular weight hydrocarbons. These hydrocarbons are in very low concentrations in the headspace gas.
- The sediment in this sample may not be the source of the odor emitted by this sample. After washing, the sediment was odor-free. Odor detected in the sample prior to washing may be due to a drilling mud additive or some other, unknown source.
- The sample bottle may not have captured the compound(s) responsible for the odor detected at the drill site. The odor at the drill site could have come from a variety of sources including the sediment in the cuttings, a formation gas, or some contaminant in the drilling mud.
- Bottles are not appropriate containers for storage and transportation of sediments and their associated gases. This bottle may not have retained the gas causing the odor, even if it was evolving from the sediment.

GEOCHEMICAL ANALYSES SOURCE ROCK EVALUATION

MODELLING-PETROLEUM SYSTEMS

CRUDE OIL CHARACTERIZATION GEOCHEMICAL PROSPECTING

CRUDE OIL-SOURCE ROCK CORRELATION

1143-C BRITTMOORE ROAD + HOUSTON, TEXAS 77043-5094 Phone: 713-467-7011 + Fax: 713-467-7639

September 6, 1995

EXXON PRODUCTION RESEARCH COMPANY P.O.Box 2189 Houston, Texas 77252-2189

Attention: Mr. Jesse Yeakel

Dear Sir:

We are pleased to report the analytical results determined on the bottled sample of "sand" submitted to GeoChem on Friday, September 1, 1995.

It was believed that this sample had a very pungent odor which may be Hydrogen Sulfide. The object was to determine the nature of the odor and to analyze the C1-C7 light gas hydrocarbon content using flame ionization detection.

The sample was logged in at GeoChem under the Job No. E1175, sample number - 001 (E1175-001). EPRCo sample number was 200952 and the label on the bottle was 2112-2119rkb.

The following analyses were carried out.

1. Detection of Hydrogen Sulfide.

Two small holes were carefully drilled through the cap of the sample bottle but not penetrating the sealing plastic cap liner. Two septa were used to seal the holes and the cap liner was then pierced with a sampling needle.

A 50ml sample of the gas space in the bottle was withdrawn from the bottle through a Bendix Gastec H2S Analyzer tube piercing one of the sampling septa whilst 50ml of degassed water was admitted to the bottle via the second septa.

The analyzer tube detects H2S in the range 10ppm. v/v to 120ppm. v/v by discoloration of the chemical packing (lead salt). No discoloration was observed and it is probable that should any H2S be present it is in concentrations less than 1ppm.v/v.

The sampled gas was then discharged from the Bendix Gas Sampling syringe and personally "sniffed". There is a definite unpleasant odor (possibly a mud additive) but definitely no H2S odor. The human nose detection for H2S is at the parts per billion level and the H2S odor is readily recognized. I would also state that the odor does not have a mercaptan smell which is equally recognizable.

330 Vol. Bottle 210 Vol AIRSFACE 120 Vol SAMPLE

13.4818

14,6029

_ _ _ _ _ _ _

· · · · · · · · ·

L E U L M E M

ANALYSIS PARAMETER FILE 1 8000 SLOPE WIDTH DRIFT 5 MIN.AREA 200000 STOP.TM 75 SPEED 5 Ð T. DBL ATTEN A 4 FORMAT\$ 8 0840 METHOD\$ IS.WT 1 SPL.WT 100 HETHOD\$(1)="8841" SLOPE(1)=70 MIN. AREA(1)=10000 STOP.TM(1)=12 LIST WIDTH(1) ANALYSIS PARAMETER FILE 1 SLOPE 70 WIDTH 5 MIN.AREA 10000 STOP.TM 12 SPEED 5 DRIFT 8 T.DBL 8 ATTEN 4 FORMAT\$ 8 METHOD\$ 8841 IS.WT 1 SPL.WT 109 PRINT LEVEL 4884.4 PRINT WIDTH(1)LEVEL 5 3418.4 PRINT LEVEL 2885 ZERO 00:05:19 _____ 0-867 4.237 855 6тов:393 CHROMATOPAC Sample no Report no FILE CR681 METHOD 0041 0 6675 MK IDNO CONC NAME PKNO TIME AREA 13.8938 190135 84418 0.047 1 5.8135 0.572 2 136409 0.928 9.3939 ۷ 3 4 5 9.3888 2.5895 1.152 ٧ 1.613 .37602 Ý 67 250948 ¥ 17.2817 14.4342 209600 Ý 3.067

6-95

i

LIST WIDTH(1)

. 8 9 4.257

4.855

194609

212049

۷

۷

SEP-

HED

Boxes.

14:06

Shimadeu 221-25412

Ð

ີ ພິ 5

¥

9

٥Ť

x (+ [4]

2. <u>C1-C7 Light Gas Hydrocarbon Analysis.</u>

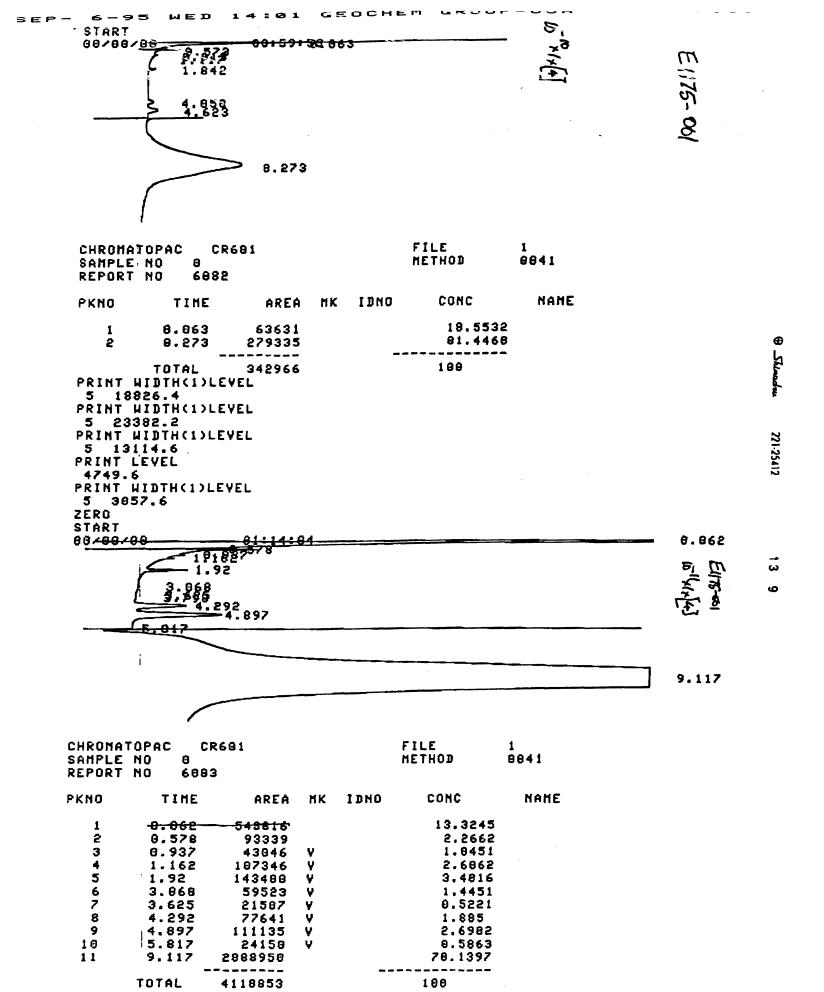
A standard sample of the headspace gas (1ml) was sampled and analyzed by gas chromatography. The concentration of the individual C1-C4 hydrocarbons are reported below along with a measure of the C5-C7 gasoline-range hydrocarbon determined by backflush (see attached chromatogram).

Hydrocarbon	Concentration	ppm v/v*
Methane	209	
Ethane	59	* volume of gas per million
Propane	111	volumes of sand.
iso-Butane	73	
n-Butane	98	
C5-C7	1732	
C1-C4	550	
C2-C4	341	
%Wetness	62%	

3. We have also washed the sample and report nothing unusual in the appearance of the solids. The odor is washed away and the remaining sand solids are odor free.

I would advise examining the well records to determine what mud additives, if any, were used in the coring operation. It does not appear that the odor is associated with the interval being cored.

Please advise if we can be of any further service. As per your instruction the sample has been discarded.


We appreciate you using GeoChem for this work.

Sincerely yours

Teoffray Geoffrey S. Bayliss

President GeoChem Laboratories Inc.

GSB/nl

j