U-384

ROBERTSON RESEARCH INTERNATIONAL LIMITED

REPORT NO. 5293P/D

RESULTS OF ROCK-EVAL ANALYSIS OF SIDEWALL CORE SAMPLES

FROM THE INTERVAL 4109m TO 4339m

IN THE 2/5-7 NORWEGIAN NORTH SEA WELL

for A/S Norske Shell, 8A 84-2153-1 Forus Kontor, 2 3 MAY 1984 Postboks 10, N 40 33 Forus REGISTRERT Norway. OLJEDIREKTORATE

C

Project No. RRPS/845/D/25106

Norske Shell Order No. S3826

APRIL, 1984

Ι

SUMMARY

Eight samples of sidewall core material from the interval 4109m to 4339m in the Norske Shell 2/5-7 Norwegian North Sea Well have been analysed for total organic carbon content followed by Rock-Eval pyrolysis. The samples were reanalysed after solvent extraction. Tabulated data and figured pyrograms are presented.

INTRODUCTION

This report contains the results of pyrolysis analysis carried out on eight small fragments of sidewall core material received from the Norske Shell 2/5-7 Norwegian North Sea Well.

The project was initiated by telephone conversation of 31st January, 1984, between personnel of A/S Norske Shell and Robertson Research International Limited. Instructions for analysis were received by telex reference FOR 270201 of 27th February, 1984, and confirmed on A/S Norske Shell Service Order number S3826, received 1st March, 1984. Samples were sent airfreight and were received into RRI geochemistry laboratories on 1st March, 1984. The personnel involved during the course of the project were Mr. B.M. Thomas of A/S Norske Shell and Mr. P. C. Barnard and Mr. A.G. Collins of RRI.

Initial results were sent by facsimile message of 21st March, 1984, followed by a complete set of results by facsimile message of 12th April, 1984.

ROBERTSON

II

RESULTS

1. METHODS

The samples received for analysis were all small fragments of sidewall core material, mainly comprising dark shales and siltstones. All samples were carefully cleaned to remove mudcake and any other visible contamination and were then dried in an air oven at 40°C, given a brief lithological description and crushed to pass through a 60 mesh sieve.

The resulting powders were analysed for total organic carbon content in a Leco carbon analyser and by pyrolysis in the IFP-Fina Rock-Eval apparatus. There remained sufficient material from seven out of the eight samples for solvent extraction using dichloromethane/methanol after which, total organic carbon and pyrolysis analyses were repeated.

2. RESULTS

The results are presented in Table 1 and show that most of the oil contamination was removed by solvent extraction. The weights of extracted material are also listed. Copies of Rock-Eval pyrograms are figured in Appendix I.

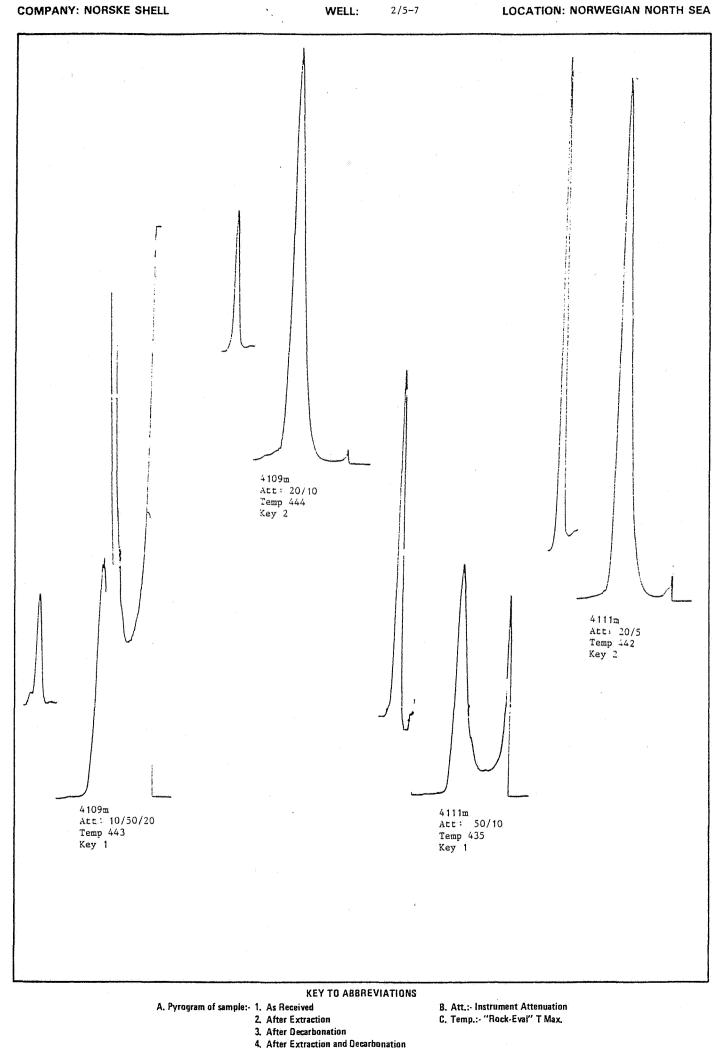
III

COMPANY: NORSKE SHELL

WELL: 2/5-7

LOCATION: NORTH SEA

	[CHEMICAL ANALYSIS DATA														
	SAMPLE										SOLVENT EXTRACTION					
	DEPTH (METRES)	SAMPLE TYPE	ANALYSED LITHOLOGY	ORGANIC CARBON % OF ROCK	TEMP - ERATURE °C	HYDROGEN INDEX	OXYGEN INDEX	PRODUCTION INDEX	POTENTIAL VIELD (ppm)	TOTAL EXTRACT (ppm)	HYDRO- CARBONS (9 pm)	EXTRACT % OF ORGANIC CARBON	Ma/g OF Organic Carbon Carbon	RBONS 10 %	ALKANES % OF HYDRO- CARBONS	
	4109	Swc	SH, gy-blk	4.11	443	322	19	•32	13270	11455		27.9				
		, ni	After extraction	3.30	444	174	13	•01	5770							
	4111	u	SH, ol-blk	4.11	435	277	37	.31	11410	10045		24.4				
		u	After extraction	4.06	442	1.7.5	21	•02	7120							
	4112.5	"	SH, a/a	7.30	432	345	23	•30	25210	17600		24.1				
		н	After extraction	6.95	442	273	19	.02	19020		•					
	4113.5	п	SH, a/a	7.24	442	303	32	.30	219.60	-		·				
			After extraction	-	IN	SUFFI	CIEN	SAMPI	E							
y. 4 -	4155	n	SLTST, dk gy, calc	3.83	442	224	44	.31	8580	9030	:	23.6				
		н,	After extraction	3.42	446	148	22	.03	5090							
	4211	- 11	SLTST, dk gy	6.11	441	269	28	•36	16460	16000		26.2				
			After extraction	5.13	443	154	14	.02	7930							
	4295.5		SLTST, gy-blk, calc	6.70	442	183	23	.44	12260	14665		21.9				
		11	After extraction	5.89	444	130	8	.01	7680							
	4339		MDST, med-dk gy, calc	1.92	449	66	78	•42	1280	2250		11.7				
			After extraction	2.00	438	63	47	.12	1270							
ч. Г					,											
								-								
											:					
					-											
		;							1							
								ĺ							ŀ	
												х.				
								ļ.								

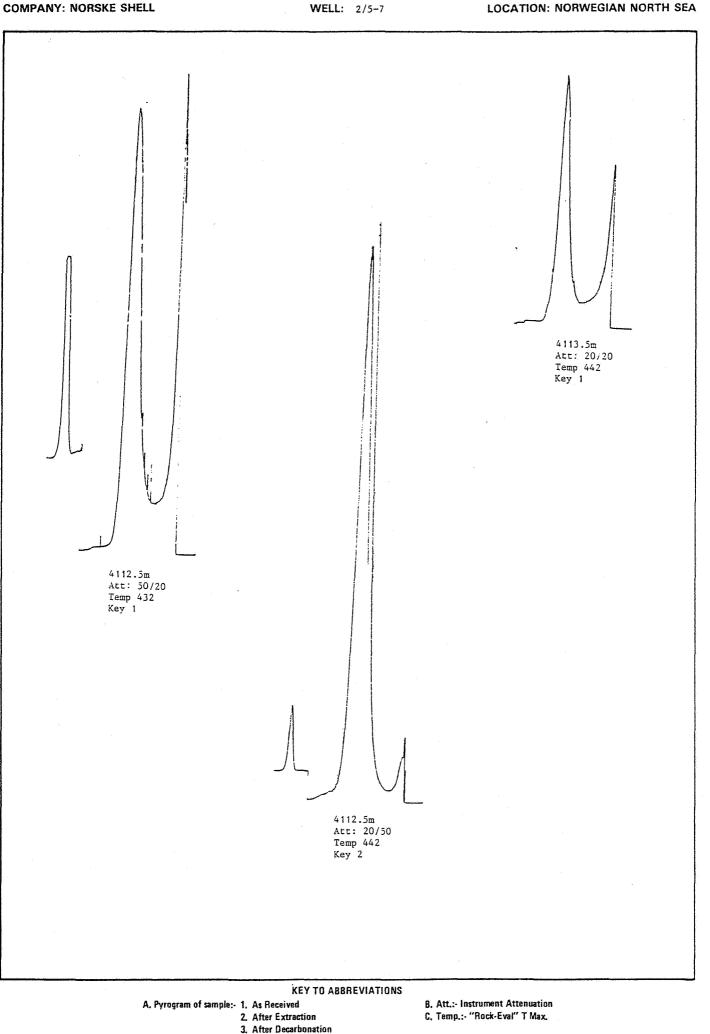

.

"ROCK-EVAL" PYROGRAMS

COMPANY: NORSKE SHELL

2/5-7 WELL:

LOCATION: NORWEGIAN NORTH SEA

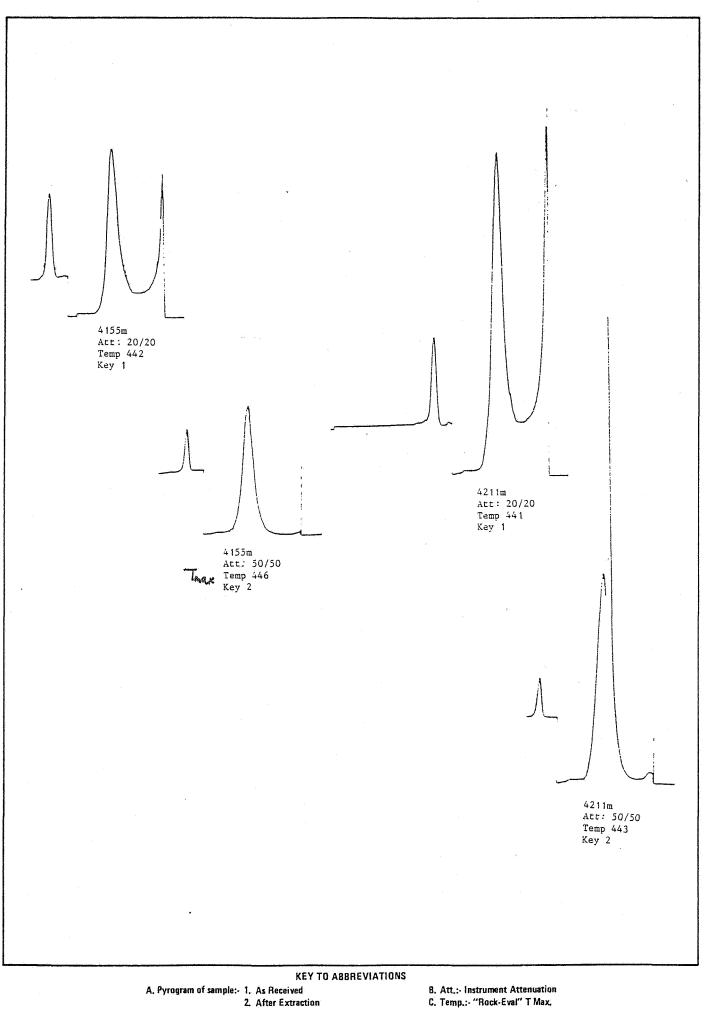

"ROCK-EVAL" PYROGRAMS

COMPANY: NORSKE SHELL

Ъ.,

i.

Ŀ


4. After Extraction and Decarbonation

COMPANY: NORSKE SHELL

WELL: 2/5-7

"ROCK-EVAL" PYROGRAMS

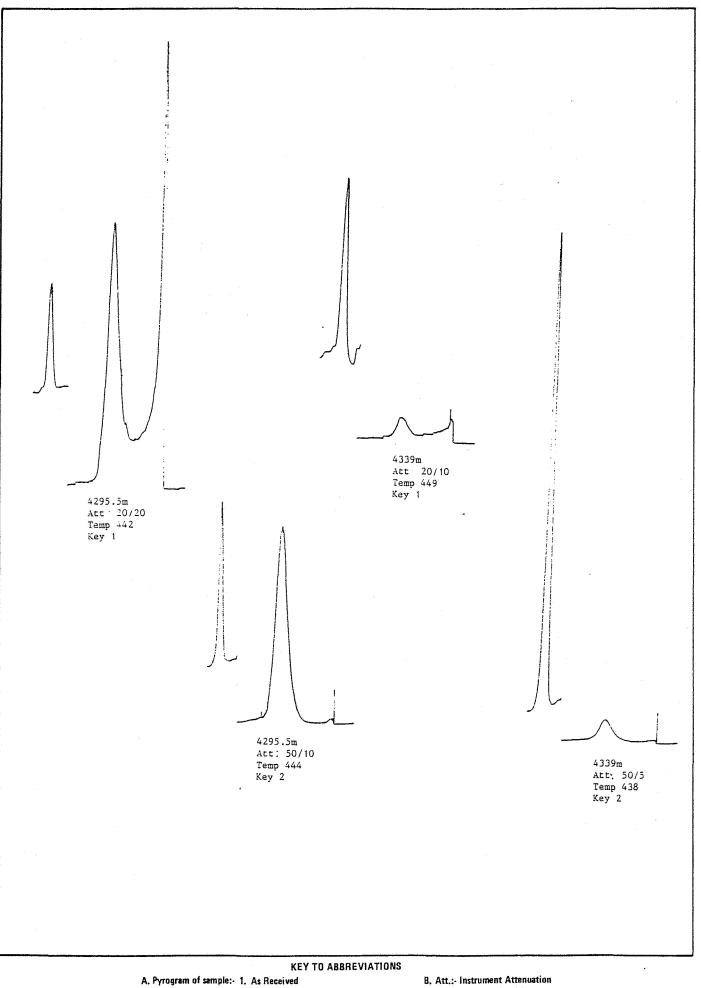
LOCATION: NORWEGIAN NORTH SEA

3. After Decarbonation

4. After Extraction and Decarbonation

"ROCK-EVAL" PYROGRAMS

COMPANY: NORSKE SHELL


Ĩ

Ĺ

Change of the

WELL: 2/5-7

LOCATION: NORWEGIAN NORTH SEA

C. Temp.:- "Rock-Eval" T Max.

2. After Extraction

```
3. After Decarbonation
```

4. After Extraction and Decarbonation