(00000)

FINAL WELL REPORT WELL 25/7-3

CN00012192 25/7-3 D-01

GEOLOGY AND GEOPHYSICS

Section B Page 23 of 29

10.0 FMT ANALYSIS

10.1 Formation Pressure Tests

FMT runs were performed in logging run 1D. The results are presented in table 15. A total of 20 pressure point were planned over the interval ranging from 2097.5-2270 m MD where 19 were successfully recorded.

Table 15: FMT Analysis

Test	Depth	Initial		Formation		Final		Temp	Remarks
No.	(MD)	Hydrostatic (bar)		Pressure (bar)		Hydrostatic (bar)		Deg C	
		Strain	HP	Strain	HP	Strain	HP		
1	2097,5	250,9	250,8	200,6	200,7	250,6	250,8	73,2	
2	2102,5	251,1	252,4						tight
3	2103	251,0	251,4	200,6	201,1	251,1	251,4	73,9	
4	2103,7	251,0	251,5	200,5	201,1	251,1	251,5	74,4	
5	2104,8	251,1	251,6	200,5	201,2	251,2	251,7	74,3	
6	2110,5	251,7	252,3	200,9	201,6	251,8	252,3	74,4	
7	2111,5	251,7	252,4	201,0	201,7	251,8	252,4	74,6	
8	2112	252,4	252,5	201,7	201,8			77,9	oil sample
9	2112,5	251,9	252,5	201,4	201,8	252,3	252,5	74,8	
10	2113,5	252,3	252,7	201,4	201,9	252,4	252,6	75,0	
11	2114	252,6	252,7	201,7	201,9	252,7	252,7	75,5	
12	2116,5	252,9	253,0	201,9	202,1	253,1	253,0	75,3	
13	2118,1	253,1	253,2	202,1	202,3	253,2	253,2	75,7	
14	2127,5	254,2	254,3	203,1	203,3	254,3	254,3	76,0	
15	2132	254,7	254,8	203,6	203,7	255,0	254,8	76,2	
16	2136	255,3	255,3	204,0	204,1	255,4	255,3	76,5	
17	2148	256,6	256,7	205,2	205,3	256,8	256,7	77,0	
18	2176	260,1	260,1	208,1	208,2	260,1	260,0	77,2	
19	2246	268,3	268,3	215,0	215,0	268,5	268,2	77,8	
20	2270	271,1	271,4	217,6	217,4	271,5	271,1		

11.2 Formation Fluid Samples

A PVT oil sample was taken at the depth of 2112 m MD. The fluid was described as medium to dark brown with moderate viscosity and dull to intermediate white to pale yellow direct fluorescence. The report "PVT analysis of FMT sample" of Schlumberger GeoQuest, report no. Cono10, gives detailed information on this test.

1300/P:\data\amipro\221\man\13900039.sam

File: DEW.095.710-B3.98Rev: 1

Mud Properties, daily record

Well: 25/7-3

)

Operator: Conoco Norway Inc

Anchor Drilling Fluids a.s

FSR no.	Date 1995	Depth	M.W.	F.Vis	V(600	à-meter 300	reading: 200	s O 50 a 100	6 6	3	A.V .	P.V.	Y.P.	Gel 10s	Gei 10 m	рH	API	HTHP 110'C	CI-	Pł	Mf	Ca++	Solids corr	Anco 208	Sand	мвт	KCL	HGS	LGS
·		m	5Q	s/qt.	rpm Ensud	rpm Material 2	npm	npm	ipm All the	npm	<u>cP</u>	cP	Pa	Pa	Pa		m	mi	kg/m3	ml	mi	mg/l	vol%	vol%	<u>vol%</u>	kg/m3	kg/m3 l	<u>(g/m3 k</u>	.g/m3
1	27-07	172	1.03	<100			-	-	•	5.37 F. 10					narod bruže		6.2 1.24	CONTRACT.		a i o trad						-	-	-	-
2	28-07	228	1.03	<100	•	•	-	•	•		•		•		•			-	-						-	•	-		-
2	28-07	228	1.20	<100	•	•	-	-	•	•	•	•	•		•		•	•	-	•	•						•	-	-
	57611	-	ikan ki	Jento r	tite Sj	xid M	ud.‱	\$\$.~?```	elet (0.600	100					2286	di XIII	<u>uint</u>	<u> 1</u> 1108		<u>bri di k</u>	للمقتلان	<u> Strifte</u>	
3	29-07	792	1.03	<100	•	•	-	•	•	•	•	-	•	•	-	•	•	•	•	•	•	•	•	•	-	•	•	-	•
4	30-07	1186	1.03	<100	•	•	•	•	·	•	•	•	-	-	-	•	•	•	•	•	•	•	-	•	-	-	-	•	•
•	30-07	1100	1.20	<100	•		-	•	•	•	•	-	•	•	•	•	•	•	•	•	•	•	•	-	•	•	-	-	-
	121/	S.S.	tion.	Inco 2	2000 A	lud 🔊	i de la compañía de l	wit out					in cuir	<u>si da</u>	<u> Minis</u> i	<u>erend</u>		ásm)		enter:	Mari	- XII ()	ama	<u>)ciir</u>	dittar	<u>akon</u>	Section 1	STREE	<u></u>
5	31-07	1186	1.46	70	70	51	43	32	11	9	35.0	19	16.0	5.0	8.0	7.9	2.6	•	75000	0.1	0.2	200	13.6	3.0	1.0	18	138	445	79
6	01-08	1186	1.46	78	75	53	45	33	11	9	37.5	22	15.5	5.0	8.0	7.9	3.1	•	75000	0.1	0.2	240	13.9	3.5	1.0	18	138	439	90
7	02-08	1246	1.46	76	73	55	48	36	14	11	36.5	18	18.5	8.5	11.5	7.9	4.0	13.0	76500	0.1	0.1	220	13.1	3.0	1.8	20	143	463	54
7	02-08	1413	1.46	61	89	67	56	45	18	15	44.5	22	22.5	9.0	13.0	8.0	3.8	14.0	70000	0.1	0.1	160	13.0	3.1	1.7	18	135	486	37
8	03-08	1695	1.46	63	93	70	60	48	16	23	46.5	23	23.5	8.5	13.0	8.0	3.2	12.0	56000	0.1	0.1	480	15.6	3.2	1.3	20	120	438	135
8	03-08	1966	1.50	57	90	66	54	44	18	15	45.0	24	21.0	8.0	13.0	8.0	3.2	12.0	60000	TR	TR	560	16.9	3.0	1.5	24	110	482	140
a	04-08	1900	1.50	03	90	00	34	44	18	15	45.0	24	21.0	8.0	13.0	8.0	3.1	12.0	60000	ін	1H	560	16.9	3.0	0.5	24	110	402	140
ìna	8.1/2	Sec.	tion®i	hico 2	2000 N	lud 😳				1 4686	64 M M M	iánstr	Martai	dei Ma		Mark	kan	~1/1000		x () () ()	Katala			19. M.		ex./~{jeq		1 44.1	34 N
9	04-08	1966	1.50	48	55	41	33	25	9	7	27.5	14.0	13.5	4.0	6.0	8.1	2.8	12.8	60000	TR	0.2	120	5.9	2.9	0.3		115	136	69
10	05-08	1966	1.20	85	63	46	37	28	9	7	31.5	17	14.5	5.0	7.0	8.3	2.6	11.8	55000	TR	0.2	240	5.7	3.0	0.7	17	115	155	53
10	05-08	1966	1.20	68	65	48	39	30	10	8	32.5	17	15.5	5.0	7.0	9.1	2.6	11.8	56000	0.1	0.4	600	5.7	3.0	0.7	18	115	155	52
11	06-06	1966	1.50	120	94	68	56	42	15	12	47.0	26	21.0	9.0	24.0	12.0	5.0	-	54000	0.15	1.8	800	15.7	3.0	1.0	16	110	543	72
11	05-08	1966	1.50	67	112	82	68 65	51	18	15	56.0	30	26.0	9.0	18.0	8.0	4.5	•	52000	0.05	2.0	960	15.7	3.0	1.0	16	105	548	69 60
13	08-06	3 2069	1.50	65	52	38	32	23	7	6	26.0	14	12.0	3.0	20.0	8.5	5.0		53000	0.5	1.5	600	4.8	3.0	0.5	12	115	176	17
13	08-00	3 2092	1.20	72	69	51	43	32	12	9	34.5	18	16.5	5.0	8.0	8.4	3.0	12.4	52000	0.1	0.6	620	4.9	3.0	0.5	12	110	176	19
14	09-06	3 2104	1.20	68	65	46	40	29	8	7	32.5	19	13.5	4.0	6.0	8.3	3.0	12.2	53000	0.1	1.1	640	4.8	3.0	0.5	12	110	176	17
14	09-00	3 2114	1.20	70	67	48	42	30	10	9	33.5	19	14.5	5.0	7.5	8.4	3.0	12.2	55000	0.1	0.6	660	4.7	3.0	0.5	12	110	177	12
15	10-0	3 2310	1.20	58	60	43	35	27	9	8	30.0	17	13.0	5.0	7.0	8.3	3.0	12.2	58000	0.15	1.3	740	4.4	3.0	1.0	12	110	178	5
18	11-0	3 2317 8 2479	1.20	58	67	50	44	34	13	10	33.5	17	17.5	5.5	7.5	0.2	3.0	12.4	60000	0.1	1.0	640	5.1	3.0	0.75	12	108	102	20
16	11-0	8 2521	1.20	55	67	51	43	34	12	9	33.5	16	17.5	5.5	5.5	9.0	2.8	11.8	60000	0.1	1.1	760	5.0	3.0	0.5	18	112	149	38
17	12-0	8 2540	1.20	53	65	50	42	32	11	9	32.5	15	17.5	5.0	7.5	8.9	2.8	12.0	60000	0.1	1.0	660	5.3	3.0	0.5	20	110	138	54
17	12-0	8 2540	1.20	60	73	56	48	37	14	11	36.5	17	19.5	6.0	9.5	8.9	2.8	11.8	58000	0.1	1.1	800	5.7	3.0	0.5	20	110	127	69
18	13-0	8 2540	1.20	64	68	52	45	35	13	10	34.0	16	18.0	5.5	9.5	8.9	3.0	12.0	58000	0.1	1.1	800	5.7	3.0	0.5	20	110	127	69
19	14-0	B 2540 B 2540) 1.20	65	68 68	51	43	33	12	9	34.0	17	17.0	5.5	9.5	9.0	3.0	12.0	58000	0.1	1.1	800	5.7	3.0	0.5	20	110	127	69 81
20	15-0	8 2540) 1.20	68	69	51	43	33	11	9	34.5	18	16.5	5.5	9.5	9.0	2.8	12.0	60000	0.1	1.1	800	5.0	3.0	0.25	10	115	120	75
21	16-0	8 2540) 1.20	49	50	37	32	24	8	7	25.0	13	12.0	3.5	4.5	9.0	3.2	11.6	58000	0.1	1.2	660	5.8	2.5	0.5	14	112	121	75
21	16-0	8 2540) 1.20) 50	51	38	32	25	8	6	25.5	13	12.5	4.0	5.0	8.4	3.0	12.2	59000	0.0	1.4	640	5.9	2.4	0.5	12	110	112	84
24	17-0	8 2540 8 2540) 1.20	J 51	50	38	30	23	8	5 7	25.0	12	13.0	3.5	5.5	8.8	4.4	13.2	60000	0.1	2.0	300	5.8	2.3	0.25	5 10	106	138	65
23	18-0	8 254	1.20	59	52	39	33	25	8	6	26.0	13	13.0	4.0	5.5	8.6	3.0	12.0	56000	0.15	2.1	320	6.1	2.3	0.20	10	100	110	91
24	19-0	8 254) 1.20	53	52	39	33	25	9	7	26.0	13	13.0	4.0	5.5	8.2	4.0	12.7	60000	0.05	2.4	320	5.8	2.2	0.2	10	100	138	66
24	19-0	8 254	1.20	58	53	39	33	24	8	6	26.5	14	12.5	4.0	5.5	8.5	3.0	12.3	58000	0.2	2.0	320	6.0	2.2	0.2	10	100	137	70 70
2:	5 20-0 5 21-0	o 254 8 254) 1.20) 1.20) 51) 53	53 50	38 38	33	23	8	6 7	20.5	15	11.5	4.0	5.5 5.5	8.5 8.4	3.2	12.4 12.4	57000	0.15	2.0	320	6.1 6.2	2.2	0.2	10	97	137	73 64
2	22-0	8 254	0 1.20	53	51	38	32	24	8	6	25.5	13	12.5	4.0	5.5	8.4	3.2	12.5	56000	0.15	2.0	320	6.2	2.1	0.2	10	96	158	64
20	3 23-0	8 254	0 1.20	0 51	48	36	30	22	7	5	24.0	12	12.0	4.0	6.0	8.3	3.2	12.5	56000	0.15	2.0	320	6.2	2.1	0.2	10	96	158	64
20	23-0	10 254 18 254	0 1.20	U 53 0 53	50 50	37 39	32	23	/ 8	6 6	25.0	13	12.0	4.0	5.5 ∡ 5	8.3	3.2	12.5 12 R	56000	0.15	2.1	320	6.2	2.1	0.2	10	96 96	158	60
3	25-0	8 254	0 1.5	0 69	78	57	46	35	11	8	39.0	21	18.0	6.0	11.0	9.5	9.0	-	45000	0.05	1.5	320	15.2	2.1	0.2	13	80	561	49
3	1 26-0	8 254	0 1.2	5 46	47	35	29	22	7	6	23.5	12	11.5	3.5	5.0	9.8	5.0	•	48000	0.05	2.1	400	7.5	2.1	0.2	13	90	209	66

Mud & Product Use 36"&17 1/2" sections

Operator: Conoco Norway Inc Well 25/7-3

Initial volume		(m3)		Vol tra	ns to 17	7 1/2" section (m3):	200
Date 1995		27-07	28-07	29-07	30-07		
FSR no.		1	2	3	4		
Depth at 24:00 hr	m	172	228	792	1186	Total	Total
Section		36"	36"	17 1/2	'17 1/2"	section	section
Mud Usage:						36"	17 1/2"
Built	m3	227	209	307	264	436	571
Received	m3	0	0	0	0	0	0
Surface loss	m3	0	0	0	0	0	0
Dumped	m3	0	0	0	0	0	0
Riserless	m3	20	216	225	546	236	771
Solids equipment	m3	0	0	0	0	0	0
Formation loss	m3	0	0	0	0	0	0
Behind casing	m3	0	0	0	0	0	0
Left in hole	m3	0	0	0	0	0	0
Back-loaded	m3	0	0	0	0	0	· 0
Final volume	m3	207	200	282	0		
Product Addition	ns:						
Barite	mt	0	46	95	17	46	112
Bentonite	mt	42	32	22	13	74	35
Soda Ash	kg	100	200	150	125	300	275
Lime	kg	0	0	60	0	0	60
CMC EHV	kg	0	250	0	0	250	0

Mud and Product Usage, 12 1/4" section

Operator: Conoco Norway Inc

Well 25/7-3

Initial volume

138

Volume transferred to 8 1/2" section (m3): 222

Date 1995		31-07	01-08	02-08	03-08	04-08	
FSR no.		5	6	7	8	9	
Depth at 24:00 hr	m	1186	1186	1413	1965	1965	Total
Section		12 1/4"	12 1/4"	' 12 1/4'	'12 1/4'	'12 1/4"	section
Mud Usage:							12 1/4"
Built	m3	151	76	38	47	71	383
Received	m3	0	0	0	0	0	0
Surface loss	m3	0	0	0	0	14	14
Dumped	m3	0	0	0	0	15	15
Riserless	m3	0	0	0	0	0	0
Solids equipment	m3	0	0	48	68	12	128
Formation loss	m3	0	0	0	0	132	132
Behind casing	m3	0	0	0	0	10	10
Lost in hole	m3	0	0	0	0	0	C
Back-loaded	m3	0	0	0	0	0	C
Final volume	m3	289	365	355	334	222	

Product Additions:

Barite	mt	0	65	38	20	24	147
Soda Ash	kg	0	0	0	100	0	100
Wyoming Bentonite	kg	0	0	0	0	475	475
Anco 208	ltr	7000	1000	4500	2750	2000	17250
KCI sxs	kg	0	0	0	0	8000	8000
KCI Brine	m3	128	0	24	0	30	182
Sodium Bicarb	kg	0	0	0	0	300	300
Citric Acid	kg	0	0	0	0	0	0
Anco Defoamer	kg	0	0	0	20	0	20
Rhodopol 23 P	kg	750	600	375	100	500	2325
Antisol FL 10	kg	850	750	0	750	750	3100
K D 40	ltr	0	0	0	460	0	460
Ancocide	ltr	0	25	50	0	0	75
Anco 2000 mud	m3	138	0	0	0	0	138

Mud and Product Usage, 8 1/2" section

Operator: Conoco Norway Inc

Well 25/7-3

)

Volume Transferred to Statoli (m3) 138

1

Initial volume 222 (m3)

Date 1995		05-08	06-08	07-08	08-08	09-08	10-08	11-08	12-08	13-08	14-08	15-08	16-08	17-08	18-08	19-08	20-08	21-08	22-08	23-08	24-08	25-08	26-08	
FSR no.		10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	
Depth at 24:00 hr	m	1965	1965	1965	2096	2114	2344	2529	2540	2540	2540	2540	2540	2540	2540	2540	2540	2540	2540	2540	2540	2540	2540	Total
Section		8 1/2"	8 1/2"	8 1/2"	8 1/2"	8 1/2"	8 1/2"	8 1/2"	8 1/2"	8 1/2"	8 1/2"	8 1/2"	8 1/2"	8 1/2"	8 1/2"	8 1/2"	8 1/2"	8 1/2"	8 1/2"	8 1/2"	8 1/2"	8 1/2"	8 1/2"	section
Mud Usage:																								8 1/2"
Built	m3	122	18	58	93	18	1	27	5	0	55	15	6	17	0	0	0	0	15	0	4	0	2	456
Received	m3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	· 0
Surface loss	m3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Dumped	m3	0	9	0	40	0	0	0	10	0	19	16	83	0	0	8	6	4	0	54	0	26	132	407
Riserless	m3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	f O
Solids equipment	m3	2	11	2	19	2	19	24	13	0	0	5	0	4	2	0	0	0	5	0	0	0	0	108
Formation loss	m3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Ũ
Behind casing	m3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	.0
Left in hole	m3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	25	25
Trans to Statoil	m3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	138	138
Final volume	m3	342	340	396	430	446	428	431	413	413	449	443	366	379	377	369	363	359	369	315	319	293	0	
																								• •
Product Addition	S :	1																						, · · · ·
Barite	mt	43	66	40	0	0	3	0	0	0	0	0	23	6	0	13	0	0	15	1	15	0	9	234
Wyoming Bentonite	kg	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	125	0	0	0	125
Soda Ash	kg	0	0	0	0	0	50	0	150	0	0	0	0	0	0	0	0	0	0	25	0	0	0	225
Lime	kg	0	0	20	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	20
Anco 208	ltr	3950	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3950
KCI sxs	kg	6000	0	3000	5000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	14000
KCI Brine	m3	55	0	11	0	18	0	25	5	0	55	4	0	0	0	0	0	0	0	0	0	0	0	173
Sodium Bicarb	kg	100	925	575	100	0	0	0	0	. 0	0	0	750	1100	0	125	0	0	125	0	150	0	0	395/0
Citric Acid	kg	475	1725	2650	2200	0	0	0	0	0	0	0	75	425	0	100	0	0	200	0	125	0	0	7975
Anco Defoamer	kg	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Ancocide	ltr	0	0	0	275	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	100	0	375
K D 40	ltr	0	0	0	0	0	0	200	0	0	0	0	0	0	0	0	0	0	60	0	60	0	0	320
Rhodopol 23 P	kg	375	25	75	975	575	125	200	75	0	175	0	175	150	0	0	0	0	100	0	75	0	25	3125
Antisol FL 10	kg	1500	900	50	1750	0 (0	1500	0 (0	75	175	300	0	0	0	0	0	0	0	0	0	0	6250
CaCo3 F	kg	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	375	0	0	0	0	375
CaCo3 M	kġ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	375	0	0	0	0	375
Mica F	ka	0	0	0	0	0	0	0	0	0	0	100	0	0	0	0	0	0	0	0	0	0	0	100

L-819,

Esso Norge A.S. Postboks 60 4033 FORUS

Attn. Arnt I. Jenssen

eife

Institutt for energiteknikk

Institute for Energy Technology

Institutivelen 18 P.O. Box 40, N-2007 Kjeller Tel.: +47 63 80 60 00 Fax: +47 63 81 55 53 Org. Nr.: 959432538

Vår/Our ref. : IKI/TBJ/EBJ Dir. Line : +47 63 806066 Deres/Your ref.:

Dato/Date: 1996-06-25

(I)ronofile Weu file (Rpt) A.I. Jenssen 3. Ballestad J. Johannesen

Karbon/oksygen isotopstudie av 3 prøver

Oversender herved resultatene og kort rapport på oppdraget.

Med vennlig hilsen

for spenistac

Tor Bjørnstad Avdelingssjef Reservoar- og Leteteknologi

Kjersti John Kjersti Iden Forsker

Vedlegg:

1 tabell 3 diffraktogrammer Prosedyrebeskrivelse

OLJEDIREKTORATET

Esso Norge a.s Document Center Date received: 17.96. File: Weiefele. [Chstrackope HLA.1. Jenssen. Received by: 136

Carbon / oxygen isotope study of three carbonate cemented sandstones, Well 25/7-3

by Harald Johansen, Kjersti Iden and Ingar Johansen Institutt for Energiteknikk, Box 40, 2007 Kjeller

XRD identification

For isotopic analysis of carbonates, it is necessary to know which carbonate type to be analyzed (sample treatment). It was therefore agreed on use of XRD to establish the type of carbonate occurring in the actual samples.

Method

Samples were crushed in an agate mortar. 0.3 - 0.4 g sample were further crushed in an agate micronizing mill for 2 minutes, using destilled water, to obtain the optimal grain size for analysis. The suspension was filtered on a $0.45\mu m$ Millipore filter, and dried at room temperature. The bulk sample was then mounted unoriented on holders adapted to the XRD equipment.

Samples were run on an INEL XRG 3000 diffractometer, equipped with a multichannel CPS 120 ° (curved position sensitive) detector, which records all 20 positions from 1 to

120° simultaneously. The resolution is about $0.03^{\circ} 2\theta$. Operating conditions were

35 kV, 35 mA, counting time: 900 seconds. Samples are horisontally rotated during aquisition.

Results

Calcite is the only carbonate cement present. Contents are estimated to about 50% in the two upper samples, and to about 70% in sample 2126.75m. The mineralogy is further dominated by quartz. Only small amounts of mica, kaolinite and feldspars are noted. The diffractograms are enclosed, and diagnostic peaks are pointed out.

Carbon / oxygen isotopes

The analytical results are given in the enclosed Table.

Table. $\delta^{13}C$ and $\delta^{18}O$ analyses of the calcite cemented sandstones

÷

Sample	IFEno	$\delta^{13}C_{PDB}$	δ ¹⁸ O _{PDB}	
25/7-3 2116.0m	GEO960756	-11.1	-12.9	
25/7-3 2116.65m	GEO960757	-13.3	-14.0	
25/7-3 2126.75m	GEO960758	-27.3	-12.3	
NSB-18	Standard	-5.1	-23.2	

LAMBDA= 1.5405600 A, U= 35.00 KV, I= 35.00 MA, DATE=12/ 6/96 15: 3, T=

25/7-3 2116.65m

INEL

n .	TF	F	P	Δ	ſ	Т	Т	N	F

25/7-3 2126.75m

INEL

LAMBDA= 1.5405600 A, U= 35.00 KV, I= 35.00 MA, DATE=12/ 6/96 15:34, T= 900.SEC

Analytical procedure

 δ^{13} C and δ^{18} O isotope analysis :

20 mg grinded sample is dried in an oven for 4 hours and 400 °C, transferred to a glas container with 2ml 100% H₃PO₄ and evacuated to $<10^{-3}$ mbar. The reaction is controlled in a waterbath at 25 °C for 2 hours. The produced CO₂ gas was then cleaned through a cooling trap at -80 °C before analysed on a Fisons VG Optima, Isotope Ratio Mass Spectrometer.

Analytical precision and quality control

Based on repeated analysis of laboratory standards, the precisions of reported results are as followed :

 $\delta^{13}C \text{ analysis } \pm 0.1\% \\ \delta^{18}O \text{ analysis } \pm 0.2 \ \%$

Element alanalysis $\pm 5\%$

.

The stable isotope analysis is checked with analyses of NBS-18 standard, with the following results :

$\delta^{13}C_{PDB}$	-5.12 ± 0.08	$(-5.029 \pm 0.05 \text{ recommended by IAEA})$
$\delta^{18}O_{PDB}$	-22.93 ± 0.12	$(-23.035 \pm 0.17 \text{ recommended by IAEA})$

GEOLAB NOR

Geochemical Report for

Well NOCS 25/7-3

Authors:

Geir Hansen Kjell A. Bakken

Geolab Nor A/S Hornebergveien 5 7038 Trondheim Norway

Date :

28.11.95

Chapter 1

INTRODUCTION

1.1 General Comments

The well NOCS 25/7-3 is located south of the Heimdal field and north-west of the Balder and Hermod fields, just south east of the oil show in well 25/8-5S drilled by Esso in 1994. The well was drilled to a total depth of 2571 m into the Cretaceous (NPD Press Release). The well was classified as an oil discovery as hydrocarbons were detected in Palaeocene sandstones (740 Sm³ oil/day and 29000 Sm³ gas/day through a 25 mm choke)

This study is aimed at characterising the potential source and reservoir rocks and the hydrocarbons contained therein. In addition detailed analyses were performed over the cored hydrocarbon-bearing section to establish the oil-water contact.

The cuttings samples were washed and cleaned using water before all samples were lithologically described and picked, while the core chips and side-wall cores were analysed after cleansing of any superficial contamination. Both screening and follow-up analyses were performed in the depth range 1220 - 2530 m using 5 core chip, 14 side wall cores and 55 cuttings samples.

1.2 Analytical Program

Analysis type	<u>No of sample</u>	Figures	Tables
Lithology description	74	1	1
тос	73	1	1,2
Rock-Eval pyrolysis	73	2-5	2
Thermal extraction GC (GHM, S ₁)	7	6a-c	
Pyrolysis GC (GHM, S ₂)	7	7a-b	3
Soxhlet Extraction of organic matter	5		
MPLC separation	6	4	
Whole oil GC	1	8	
Saturated hydrocarbon GC	6	9a-b	5
Aromatic hydrocarbon GC	6	10a-b	6
GC - MS of saturated and aromatic HC	C 6	13a-z	7-i
Isotope composition C ₁₅ + fractions	6	11,12	8a-b

Chapter 2

SCREENING ANALYSES

A total of 76 samples, covering the depth interval 1220 - 2530 m, was supplied by Conoco. The cuttings samples were washed, and all samples lithologically described (Table 1), and 72 selected lithologies analysed by TOC/Rock-Eval (Table 2). Figure 1 is a lithological column with relevant stratigraphic information and TOC values. Figures 2, 3, 4 and 5 show the hydrogen index, S_1 -Yields, production index and Tmax plotted as a function of depth respectively. Based on thermal extraction-gas chromatography (see chapter 3) the samples are stained by additives from the drilling mud. This has probably affected the Rock Eval data (i.e. raised S_1 and S_2 values and lowered Tmax values). Hence the classification of kerogen type will overestimate the quality and make assessment of maturity based on Tmax difficult if not impossible.

2.1 Lithology, TOC and Rock-Eval

GEOLAB NOR

Experimental Procedures

Headspace Gas Analysis

The analysis is performed using a Perkin Elmer 8310 gas chromatograph with a 50 m Plot fused silica Al_2O_3/KCL column, loop injector and flame ionization detector. Nitrogen is used as carrier gas and the column is run from 70°C to 200°C, at a rate of 12°C/min. Final hold time is 5 min.

Two cm³ of headspace gas are removed from each sample can for chromatographic analysis of the C_1 to C_7 range of hydrocarbons.

Occluded Gas Analysis

The gas chromatograph used for this analysis is identical to that used for headspace gas analysis and is operated under the same conditions.

The canned samples are washed in thermostat-controlled water to remove drilling contaminants and sieved on a 2 mm mesh sieve to remove large, caved rock fragments. An aliquot (ca 25 mg) of sieved sample is crushed with 25 cm³ water in an airtight ball mill. After crushing, 2 cm³ of the released gas are removed from the ball mill for gas chromatographic analysis.

Total Organic Carbon (TOC) and Total Carbon Analysis

This analysis is performed using a LECO CS244 Carbon Analyser.

Hand-picked lithologies from cuttings samples are crushed with a mortar and pestle and approximately 200 mg (50 mg for coals) are accurately weighed into LECO

crucibles. The samples are then treated three times with 10 % hydrochloric acid to remove oxidized (carbonate) carbon, and washed four times with distilled water. The samples are dried on a hotplate at 60 - 70°C before analysis of total organic carbon. Total carbon is also analysed on the same instrument using approximately 200 mg of untreated crushed whole rock. Oxidized (carbonate) carbon is calculated by weight difference.

Total organic carbon can also be analysed on the Rock-Eval II Pyrolyser during the normal run of the instrument.

Rock-Eval Pyrolysis

This analysis is performed by using a Rock-Eval II Pyrolyser. Approximately 100 mg crushed whole rock is analysed. The sample is first heated at 300°C for three min in an atmosphere of helium to release the free hydrocarbons present (S1 peak) and then pyrolysed by increasing the temperature from 300°C to 600°C (temp. gradient 25°C/min) (S2 peak). Both the S1 and S2 yields are measured using a flame ionization detector (FID). In the temperature interval between 300°C and 390°C, the released gases are split and a proportion passed through a carbon dioxide trap, which is connected to a thermal conductivity detector (TCD). The value obtained from the TCD corresponds to the amount of oxygen contained in the kerogen of the sample and is reported as the S3 peak.

The Rock-Eval II Pyrolyser also analyses the TOC of each sample during the normal run of the instrument.

Thermal Extraction/Pyrolysis Gas Chromatography

The instrument used for this analysis is a Varian 3400 Gas Chromatograph interfaced to a pyrolysis oven (the pyrolyser). Up to 15 mg of whole rock sample is loaded on the

pyrolyser and heated isothermally, at 300°C, for 4 min, during which time thermal extraction of the free hydrocarbons occurs (equivalent to the S1 peak of the Rock-Eval). The released gases pass to a 25 m OV1 column with a liquid nitrogen-cooled trap.

After 4 min the pyrolysis oven is temperature programmed up to 530°C, at a rate of 37°C/min, causing bound hydrocarbons to be released from the kerogen (equivalent to the S2 peak of the Rock-Eval). The released gases pass to a 25 m OV1 column with a liquid nitrogen-cooled trap.

The temperature program of the gas chromatograph oven, in which the columns are housed is -10°C to 290°C at a rate of 6°C/min. Both the columns are linked to a FID.

Solvent Extraction of Organic Matter (EOM)

The samples are extracted using a Tecator Soxtec HT-System. Carefully weighed samples are taken in a pre-extracted thimble. Some activated copper is added to the extraction cup and dichloromethane is used as an extraction solvent. The samples are boiled for 1 hour and then rinsed for 2 hours. If the samples contain more than 10 % TOC, then the whole procedure is repeated once. The resulting solution is filtered and the solvent removed by rotary evaporation (200 mb, 30°C). The amount of EOM is gravimetrically established.

Removal of Asphaltenes

Asphaltenes are removed from the EOM by precipitation in n-pentane. N-pentane is added to the EOM and the solution is then stored in the dark and at ambient temperature for at least 8 hours. The solution is then filtered (Baker 10-spe system)

and the precipitated asphaltenes dissolved in dichloromethane are returned to the original flask. The solvent is removed by rotary evaporation (200 mb and 30°C).

latroscan

Saturates, aromatics, polars and asphaltenes were qualitatively and quantitatively assessed using latroscan TLC-FID and employing Chromarod S-III rods. Approximately 3 - 4 drops of oil was accurately weighed and dissolved in about 3 ml of solvent, to get a strength of about 10 - 15 mg/ml. 2 ul of this solution was spotted on the rod (rods are pre-activated) using an auto-spotter with continuous blowing using nitrogen. The rods are first developed using n-hexane (35 mins) as the mobile phase followed by toluene (14 mins) and DCM-MeOH (4 mins), with 2 minutes air drying between every stage. The developed rods are then introduced in the pre-heated oven (60°C) for 90 seconds. They are analysed using latroscan and data collected and processed using Multichrom data system.

Chromatographic Separation of Deasphaltened EOM

Chromatographic separation is performed using an MPLC system developed by the company. The EOM (minus asphaltenes) is injected into the MPLC and separated using hexane as an eluent. The saturated and aromatic hydrocarbon fractions are collected and the solvent removed using a rotary evaporator at 30°C. The fractions are then transferred to small pre-weighed vials and evaporated to dryness in a stream of nitrogen. The vials are re-weighed to obtain the weights of both the saturated and the aromatic fractions. The weight of the NSO fraction which is retained on the column, is obtained by weight difference.

Gas Chromatographic Analyses

Saturated hydrocarbon fractions:

The instrument used for this analysis is a PERKIN ELMER 8320 Gas Chromatograph equipped with an FID detector and an OV1 column. The carrier gas is helium and the temperature program runs from 80°C to 300°C at a rate of 4°C/min. Final hold time is 20 mins. The saturated hydrocarbon fraction is diluted by 1:30 and a 1 microlitre aliquot of this is injected into the instrument.

Aromatic hydrocarbon fractions:

The instrument used is a Varian 3400 Gas Chromatograph with a 25 m SE 54 capillary column, split injector and a column splitter leading to FID and FPD detectors, which allows simultaneous analysis of co-eluting hydrocarbons and sulphur compounds. The carrier gas is helium and the temperature program runs from 40°C to 290°C at a rate of 4°C/min. Final hold time is 10 mins. The aromatic hydrocarbon fraction is diluted by 1:30 and a 1 microlitre aliquot of this is injected into the instrument.

Whole Oil/Whole Extract

Whole oil chromatograms are determined on a Perkin Elmer Sigma 2000 gas chromatograph fitted with a split injector, 25 m SE54 capillary column and effluent splitter connected to FID and FPD detectors allowing simultaneous determination of hydrocarbons and sulphur compounds. Approximately 0.1 microlitres of whole oil are injected and the temperature program on the chromatograph runs from -10°C to 300°C at 4°C/min.

Combined Gas Chromatography - Mass Spectrometry (GC-MS)

The GC-MS analyses are performed on a VG TS250 system interfaced to a Hewlett Packard 5890 gas chromatograph. The GC is fitted with a fused silica SE54 capillary column (40 m x 0.22 mm i.d.) directly into the ion source. Helium (12 psi) is used as

carrier gas and the injections are performed in splitless mode. The GC oven is programmed from 45°C to 150°C at 35°C/min, at which point the programme rate is 2°C/min up to 310°C where the column is held isothermally for 15 min. For the aromatic hydrocarbons, the GC oven is programmed from 50°C to 310°C at 5°C/min. and held isothermally at 310°C for 15 min. The mass spectrometer is operated in electron impact (EI) mode at 70 eV electron energy, a trap current of 500 uA and a source temperature of 220°C. The instrument resolution used is 1500 (10 % value).

1. v.

The data system used is a VG PDP11/73 for acquiring data, and a Vax station 3100 for peak processing the data. The samples are analysed in multiple ion detection mode (MID) at a scan cycle time of approximately 1.1 sec.

Calculation of peak ratios is performed from peak heights in the appropriate mass fragmentograms.

Saturated Fractions

Terpanes

The most commonly used fragment ions for detection of terpanes are M/Z 163 for detection of 25,28,30 trisnormoretane or 25,28,30 trisnorhopane, M/Z 177 for detection of demethylated hopanes or moretanes, M/Z 191 for detection of tricyclic, tetracyclic-and pentacyclic terpanes and M/Z 205 for methylated hopanes or moretanes. The molecular ions M/Z 370 and 384 are also recorded for identification of C_{27} and C_{28} triterpanes respectively.

Steranes

The most commonly used fragment ions for detection of steranes are M/Z 149 to distinguish between 5α and 5β steranes, M/Z 189 and 259 for detection of rearranged

steranes, M/Z 217 for detection of rearranged and normal steranes and M/Z 218 for detection of $14\beta(H)$ $17\beta(H)$ steranes.

1

The M/Z 231 fragment ion is used to detect possible aromatic contamination of the saturated fraction. It is also used for detection of methyl steranes.

Aromatic Fractions

Alkyl-substituted Benzenes

The M/Z 106 fragment ion is often used to detect the alkyl-substituted benzenes. It is especially useful for the detection of di-substituted benzenes. M/Z 134 can also be used for the detection of C_4 -alkylbenzenes, but benzothiophene will also give a signal with this fragment ion.

Naphthalenes

Methyl naphthalenes are normally detected by the M/Z 142 fragment ion, while C_{2} naphthalenes are detected by M/Z 156 and C_{3} -naphthalenes by M/Z 170.

Benzothiophenes and Dibenzothiophenes

Benzothiophene can be detected, as mentioned above, by M/Z 134. The M/Z 198 and M/Z 212 fragment ions are used for methyl-substituted dibenzothiophenes and dimethyl-substituted dibenzothiophenes respectively.

Phenanthrenes

Phenanthrene is detected using the M/Z 178 fragment ion. Anthracene will, if present, also give a signal in the M/Z 178 fragment ion. Methyl-substituted phenanthrenes give signals in the M/Z 192 fragment ion, while the M/Z 206 fragment ion shows the dimethyl-substituted phenanthrenes and the M/Z 220 fragment ion shows the C_3 substituted phenanthrenes.

Aromatic Steranes

Monoaromatic steranes are detected using the M/Z 253 fragment ion, while the triaromatic steranes are detected using the M/Z 231 fragment ion.

Mass Fragmentograms representing Terpanes (M/Z 163, 177, 191, 205, 370, 384, 398, 412 and 426)

Peak Identification: (α and β refer to hydrogen atoms at C-17 and C-21 respectively unless indicated otherwise)

A.	18α trisnorneohopane (T _s)	$C_{27}H_{44}$	(1)
В.	17α trisnorhopane (T _m)	$C_{27}H_{46}$	(II, R=H)
Z.	Bisnorhopane	$C_{28}H_{48}$	(IV)
C.	lphaeta norhopane	$C_{29}H_{50}$	(II, R=C ₂ H ₅)
D.	$\beta \alpha$ norhopane	$C_{29}H_{50}$	$(III, R=C_2H_5)$
E.	$\alpha\beta$ hopane	$C_{30}H_{52}$	(II, R=i-C ₃ H ₇)
F.	$\beta \alpha$ hopane	$C_{30}H_{52}$	(III, R=i-C ₃ H ₇)
G.	22S $\alpha\beta$ homohopane	$C_{31}H_{54}$	(II, R=i-C₄H ₉)
Н.	22R $\alpha\beta$ homohopane	$C_{31}H_{54}$	(II, R=i-C₄H ₉)
I.	eta lpha homohopane	$C_{31}H_{54}$	(III, R=i-C₄H ₉)
J.	22S $\alpha\beta$ bishomohopane	$C_{32}H_{56}$	(II, R=i-C ₅ H ₁₁)
	22R $\alpha\beta$ bishomohopane	$C_{32}H_{56}$	(II, R=i-C ₅ H ₁₁)
K.	22S $\alpha\beta$ trishomohopane	$C_{33}H_{58}$	(II, R=i-C ₆ H ₁₃)
	22R $\alpha\beta$ trishomohopane	$C_{33}H_{58}$	(II, R=i-C ₆ H ₁₃)
L.	22S $\alpha\beta$ tetrakishomohopane	$C_{34}H_{60}$	(II, R=i-C ₇ H ₁₅)
	22R $\alpha\beta$ tetrakishomohopane	$C_{34}H_{60}$	(II, R=i-C ₇ H ₁₅)
M.	22S $\alpha\beta$ pentakishomohopane	$C_{35}H_{62}$	(II, E=i-C ₈ H ₁₇)
	22R $\alpha\beta$ pentakishomohopane	$C_{35}H_{62}$	(II, R=i-C ₈ H ₁₇)
Ρ.	Tricyclic terpane	$C_{23}H_{42}$	(V, R=i-C₄H ₉)
Q.	Tricyclic terpane	$C_{\mathtt{24}}H_{\mathtt{44}}$	(V, R=i-C ₅ H ₁₁)
R.	Tricyclic terpane (17R, 17S)	$C_{25}H_{66}$	(V, R=i-C ₆ H ₁₃)
S.	Tetracyclic terpane	$C_{24}H_{42}$	(VI)
Т.	Tricyclic terpane (17R, 17S)	$C_{26}H_{48}$	(V, R=i-C ₇ H ₁₅)
N.	Tricyclic terpane	$C_{21}H_{38}$	(V, R=C ₂ H ₅)
О.	Tricyclic terpane	$C_{22}H_{40}$	(V, R=C ₃ H ₇)
Υ.	25,28,30-trisnorhopane/moretane	$C_{27}H_{46}$	(VII)
Х.	αβ diahopane	$C_{30}H_{52}$	(VIII)

STRUCTURES REPRESENTING TERPANES

· · · · ·

Mass Fragmentograms representing Steranes

(M/Z 149, 189, 217, 218, 259, 372, 386, 400 and 414)

Peak Identifications: α and β refer to hydrogen atoms at C-5, C-14 and C-17 in regular steranes and at C-13 and C-17 in diasteranes).

a.	20S $\beta\alpha$ diacholestane	$C_{27}H_{48}$	(I, R=H)
b.	20R $\beta\alpha$ diacholestane	C ₂₇ H ₄₈	(I, R=H)
C.	20S $\alpha\beta$ diacholestane	$C_{27}H_{48}$	(II, R=H)
d.	20R $\alpha\beta$ diacholestane	$C_{27}H_{48}$	(II, R=H)
e.	20S $\beta\alpha$ 24-methyl-diacholestane	C ₂₈ H ₅₀	(I, R=CH ₃)
f.	20R $\beta\alpha$ 24-methyl-diacholestane	C ₂₈ H ₅₀	(I, R=CH ₃)
g.	20S $\alpha\beta$ 24-methyl-diacholestane	C ₂₈ H ₅₀	(II, R=CH ₃)
	+ 20S ααα cholestane	$C_{27}H_{48}$	(III, R=H)
h.	20S $\beta \alpha$ 24-ethyl-diacholestane	$C_{29}H_{52}$	(II, $R=C_2H_5$)
	+ 20R $\alpha\beta\beta$ cholestane	$C_{27}H_{48}$	(IV, R=H)
i.	20S $\alpha\beta\beta$ cholestane	$C_{27}H_{48}$	(IV, R=H)
	+ 20R $\alpha\beta$ 24-methyl-diacholestane	C ₂₈ H ₅₀	(II, R=CH ₃)
j.	20R ααα cholestane	$C_{27}H_{48}$	(III, R=H)
k.	20R $\beta\alpha$ 24-ethyl-diacholestane	$C_{29}H_{52}$	$(I, R=C_2H_5)$
١.	20R $\alpha\beta$ 24-ethyl-diacholestane	$C_{29}H_{52}$	$(II, R=C_2H_5)$
m.	20S $\alpha\alpha\alpha$ 24-methyl-cholestane	$C_{28}H_{50}$	(III, R=CH ₃)
n.	20R $\alpha\beta\beta$ 24-methyl-cholestane	C28H50	(IV, R=CH ₃)
	+ 20R $\alpha\beta$ 24-ethyl-diacholestane	$C_{29}H_{52}$	(II, $R=C_2H_5$)
0.	20S $\alpha\beta\beta$ 24-methyl-cholestane	$C_{28}H_{50}$	(IV, R=CH ₃)
p.	20R $\alpha\alpha\alpha$ 24-methyl-cholestane	$C_{28}H_{50}$	(III, R=CH ₃)
q.	20S $\alpha\alpha\alpha$ 24-ethyl-cholestane	$C_{29}H_{52}$	(III, $R=C_2H_5$)
r.	20R $\alpha\beta\beta$ 24-ethyl-cholestane	$C_{29}H_{52}$	$(IV, R=C_2H_5)$
s.	20S $\alpha\beta\beta$ 24-ethyl-cholestane	$C_{29}H_{52}$	$(IV, R=C_2H_5)$
t.	20R ααα 24-ethyl-cholestane	$C_{29}H_{52}$	(III, $R=C_2H_5$)
u.	5α sterane	$C_{21}H_{36}$	(VI, R=C ₂ H ₅)
۷.	5α sterane	$C_{22}H_{38}$	(VI, R=C ₃ H ₇)

STRUCTURES REPRESENTING STERANES

Mass Fragmentograms representing Monoaromatic Steranes (M/Z 253)

Description of C-ring monoaromatic steroid hydrocarbons

Peak	R ₁	Substituents R₂ R₃		R₄	Abbreviation of Compound		
A 1					C ₂₁ M		
B1					C ₂₂ MA		
C1	β(H)	СН ₃	S(CH ₃)	Н	βSC ₂₇ MA		
	β(H)	CH_3	R(CH₃)	Н	βRC ₂₇ MA		
D1	CH3	Н	R(CH₃)	Н	RC ₂₇ DMA		
	α(H)	CH_3	S(CH ₃)	Н	$\alpha SC_{27}MA$		
E1	β(H)	CH3	S(CH ₃)	CH₃	βSC ₂₈ MA		
	CH3	н	S(CH ₃)	CH_3	SC ₂₈ DMA		
F1	α(H)	СН ₃	R(CH ₃)	Н	αRC ₂₇ MA		
	α(H)	CH_3	S(CH ₃)	CH_3	$\alpha SC_{28}MA$		
	β(H)	СН ₃	R(CH₃)	CH ₃	βRC ₂₈ MA		
G1	CH_3	Н	R(CH ₃)	CH_3	RC ₂₈ DMA		
	β(H)	CH_3	S(CH ₃)	C_2H_5	βSC ₂₉ MA		
	CH_3	н	S(CH₃)	C_2H_5	SC ₂₉ DMA		
	α(H)	CH₃	R(CH ₃)	CH ₃	αRC ₂₈ MA		
H1	β(H)	CH_3	R(CH ₃)	C_2H_5	$\beta RC_{29}MA$		
	CH_3	Н	R(CH₃)	C_2H_5	RC ₂₉ DMA		
11	α(H)	CH ₃	R(CH ₃)	C₂H₅	αRC ₂₉ MA		

STRUCTURE REPRESENTING MONOAROMATIC STERANES

I

Mass Fragmentograms representing Triaromatic Steranes (M/Z 231)

Description of ABC-ring triaromatic steroid hydrocarbons

	Substituents		Abbreviation
Peak	R ₁	R ₂	of Compound
a1	CH ₃	Н	C ₂₀ TA
b1	CH₃	CH ₃	C ₂₁ TA
c1	S(CH ₃)	C_6H_{1-3}	SC ₂₆ TA
d1	R(CH ₃)	C_6H_{13}	RC ₂₆ TA
	S(CH ₃)	C ₇ H ₁₅	SC ₂₇ TA
e1	S(CH ₃)	C_8H_{17}	SC ₂₈ TA
f1	S(CH ₃)	C ₇ H ₁₅	RC ₂₇ TA
g1	R(CH ₃)	C ₈ H ₁₇	RC ₂₈ TA

STRUCTURES REPRESENTING TRIAROMATIC STERANES

II

Stable Carbon Isotope Ratio Mass Spectrometry

Carbon isotope analysis is performed on a dual inlet VG SIRA 10 instrument. The combustion of the samples is performed by a Carlo Erba EA 1108 element analyser directly connected to the inlet system of the mass spectrometer.

The combustion temperature is 1020°C and the carrier gas used was Helium. After the combustion H_2O and CO_2 are trapped in individual cool traps. The CO_2 gas is then heated up before admission into the mass spectrometer. The whole operation is controlled by an IBM PC50 computer system.

δ -values

The isotope ratios are given as δ -values in ∞ versus the PDB-standard:

$$\delta^{13}$$
C = (R sample - R standard/R standard) x 1000
R = 13 C/ 12 C

The PDB-standard (a marine chalk of the Pee Dee-formation, USA) was created by Craig 1957. All results of ¹³C/¹²C-analysis of organic matter today are calculated (Craig correction) against this international standard.

Reproducibility

The precision of the combustion system and the mass spectrometer is controlled by determination of an international calibrated standard, NBS22 oil and a house standard carbon. Replicate analyses are also performed on samples.

Abbreviations

List of abbreviations used for lithology description

(sorted alphabetically)

ang	=	angular
bar	=	Baryte (mud additive)
bit	=	bituminous
Ы	=	blue/blueish
blk	=	black
br	=	brittle
brn	=	brown/brownish
Ca	=	Carbonate (limestone/chalk/dolomite/siderite)
calc	=	calcareous
carb	=	carbonaceous
cem	=	cement used as additive (under "cont") or to describe cemented S/Sst
Chert	=	Chert
chk	=	Chalk/chalky
cly	=	clayey/shaly
cngl	=	conglomeratic
Coal	=	Coal
Coal-ad	=	Coal-like additive (e.g. chromlignosulfonate)
Congl	=	Conglomerat
Cont	=	Contamination(s)
crs	=	coarse grained
dd	=	dried drilling mud
dol	=	Dolomite/dolomitic
drk	=	dark (colour)
dsk	=	dusk/dusky (colour)
evap	=	Salt/Gypsum/Halite (natural "Other" or as additive "Cont"
f	=	fine grained
fe	=	ferruginous
fib	=	fibres (mud additive/contamination)
fis	=	fissile
fos	=	fossiliferous
glauc	=	glauconite/glauconitic
gn	=	green/greenish
gу	=	grey/greyish
hd	==	hard
ign	=	Igneous (material derived from igneous source)
Kaolin	=	Kaolin(ite)
kin	=	kaolinitic
1	=	loose
lam	=	laminated/laminae
It	=	light (colour)

= medium (colour or grain size)
= Marl (calcareous claystone/mudstone)
= micaceous
= Mica used as mud additive
= marly
= No material left over after washing
= nutshells (mud additive)
= olive
= Oolite/oolitic
= orange
= Other lithology/mineral, specified after this word
= pink/pinkish
= pale (colour)
= paint/rust/plastic contaminations/additives
= purple
= Pyrite/pyritic
= red/reddish
= round/rounded
= sandy
= soft
= Sand and/or sandstone
= Shale and/or claystone
= Siderite/sideritic
= siliceous/cherty
= silty
= siltstone
= stained (with natural oil or oil-like additive)
= Tar-like additive (e.g. "Black Magic")
= turbodrilled fragments
= Tuff
= tuffaceous
= various colours
= white
= waxy
= yellow/yellowish

GEOLAB

Table 1 : Lithology description for well NOCS 25/7-3

- 1-

Depth unit of measure: m

Depth	Type		Grp Frm	Age				Trb	Sample
Int Cvd	TOC%	olo	Litholog	y descr	iption				
~			~						
1220.00									0021
	1.42	100	Sh/Clst:	brn gy	to m	дŅ			0021-1L
1240.00									0022
	1.58	100	Sh/Clst:	brn gy	to m	дХ			0022-1L
1280.00									0023
	1.55	100 tr tr tr	Sh/Clst: S/Sst : Cont : Other :	brn gy w, f, w, bar pyr	to ol l	дλ			0023-1L 0023-2L 0023-3L 0023-4L
1320.00									0024
	0.72	100 tr tr tr	Sh/Clst: S/Sst : Cont : Other :	brn gy w, f, w, bar pyr	to ol l	дХ			0024-1L 0024-2L 0024-3L 0024-4L
1380.00									0025
	0.58	100	Sh/Clst:	brn gy	to ol	gy,	pyr		0025-1L
1410.00									0026
	0.57	100	Sh/Clst:	brn gy	to ol	gy,	руг		0026-1L
1:50.00									0027
	0.39	100	Sh/Clst:	brn gy	to ol	gy,	pyr		0027-1L
1470.00									0028
	0.50	100	Sh/Clst:	brn gy	to ol	gy,	pyr		0028-1L

- 2-

π , $h = 1$, τ , $h = 1$, $m = 1$, $h $							2	GEOLAB				
Depth unit of measure: m												
Depth un	Type	cubu	Grp Frm	Age							Trb	Sample
Int Cvd	 TOC%	ક	Litholog	y desc	crip	pti	on			···· ··· <u>-</u> ··· ··· ··· ··· ··· ···	• ••• ••• •••	With the dist data and the same
1500.00												0029
	0.39	100	Sh/Clst:	brn 🤉	gy t	20	ol	gy,	pyr			0029-1L
1550.00										•		0030
	0.59	100	Sh/Clst:	brn 🤆	gy t	to	ol	gy,	pyr			0030-1L
1590.00												0031
	0.89	100	Sh/Clst:	brn 🤆	gy t	to	ol	gy,	pyr	· •		0031-1L
1630.00												0032
	0.85	100	Sh/Clst:	brn (gy t	to	ol	gy,	pyr	•		0032-1L
1670.00												0033
	1.20	100	Sh/Clst:	brn (gy t	to	ol	gy,	pyr	•		0033-1L
1710.00										•		0034
	1.07	100	Sh/Clst:	brn (gy t	to	ol	дХ				0034-1L
1750.00												0035
	0.68	100	Sh/Clst:	brn (gy t	to	ol	дХ				0035-1L
1790.00										•		0036
	0.40	100	Sh/Clst:	brn (gy t	to	ol	дХ				0036-1L
1830.00												0037
	0.58	100	Sh/Clst:	brn	gy t	to	ol	дУ				0037-1L

Table 1 : Lithology description for well NOCS 25/7-3

- 3-

Depth unit of measure: m

•			· · · · ·			
Depth	Туре		Grp Frm	Age	Trb	Sample
Int Cvd	TOC%	8	Lithology	/ description		
1870.00						0038
	0.44	100	Sh/Clst:	brn gy to ol gy, pyr		0038-1L
1910.00						0039
	0.25	100	Sh/Clst:	brn gy to ol gy, pyr		0039-1L
1950.00						0040
	1.09	100	Sh/Clst:	m gy to ol gy		0040-1L
1992.00						0041
	0.73	90 10 tr	Sh/Clst: S/Sst : Ca :	m gy to ol gy m gy, f, cem lt y gy		0041-1L 0041-2L 0041-3L
1998.00	I					0042
	0.73	90 10 tr	Sh/Clst: S/Sst : Ca :	m gy to ol gy m gy, f, cem lt y gy		0042-1L 0042-2L 0042-3L
2004.00)					0043
	1.33	100 tr tr	Sh/Clst: S/Sst : Ca :	m gy to ol gy m gy, f, cem lt y gy		0043-1L 0043-2L 0043-3L
2010.00)					0044
	1.44	100 tr tr	Sh/Clst: S/Sst : Ca :	m gy m gy, f, cem lt gy		0044-1L 0044-2L 0044-3L
2016.00)					0045
	1.78	100 tr tr	Sh/Clst: S/Sst : Ca :	m gy m gy, f, cem lt gy		0045-1L 0045-2L 0045-3L

Table 1 : Lithology description for well NOCS 25/7-3

- 4- * ***

Depth uni	it of m	easui	e: m		· · ·
Depth	Туре		Grp Frm Age	Trb	Sample
Int Cvd	TOC%	¥	Lithology description		
2022.00					0046
	1.47	100 tr tr	Sh/Clst: m gy S/Sst : m gy, f, cem Ca : lt gy		0046-1L 0046-2L 0046-3L
2026.00	SWC				0006
	1.45	100	Sh/Clst: m gy, slt		0006-1L
2028.00					0047
	1.44	100 tr tr	Sh/Clst: m gy S/Sst : m gy, f, cem Ca : lt gy		0047-1L 0047-2L 0047-3L
2034.00					0048
	1.06	100 tr tr	Sh/Clst: m gy S/Sst : m gy, f, cem Ca : lt gy		0048-1L 0048-2L 0048-3L
2037.00	SWC				0007
	1.22	100	Sh/Clst: m gy, slt		0007-1L
2040.00					0049
	1.02	100 tr tr	Sh/Clst: m gy S/Sst : m gy, f, cem Ca : lt gy		0049-1L 0049-2L 0049-3L
2046.00					0050
	1.10	100 tr tr	Sh/Clst: m gy S/Sst : m gy, f, cem Ca : lt gy		0050-1L 0050-2L 0050-3L