AMOCO	1/3-8 Kamskjell Final Well Report	Page: 13 of 115	 	
		Date:	Rev:	1
	Introduction	8/1/97	0	

1.5. Project Wellbore Diagram (as drilled)

1/3-8 WIRELINE FMT SUMMARY

Logging run : 4D		Date : 12th May 1997						Kelly Bushing (m amsl) : 41				
Hole size : 6 1/4"			Permanent Datum (m amsl) : 0									
Oper	hole inte	erval : 4902.	5 - 5199.5 m	MD BRT					Geolo	gists : John Hopkins / Alan Williams		
"jormation pressures referenced to sea level												
No.	Depth	TVD BRT	Pre.Hyd	Post.Hyd	Formation	TVD SS	Post Hyd	Formation	Perm.	Remarks (elapsed test time)	Temp.	
	m	m	psi	psi	psi	m	ppge	ppge*	md		deg C	
1	5005.7	5004.3	14830.3	14835.3		4963.3	17.38		0.6	Tight (30 mins)	166.0	
2	5006.3	5004.9	14834.9	14836.5	14844.3	4963.9	17.38	17.53	1.2	Low perm., at first suspect seal fail?	168.0	
3	5006.7	5005.3	14835.1	14846.1	14837.8	4964.3	17.39	17.52	1.1	Low perm., """""""	168.1	
4	5009.5	5008.1	14843,6	14849.9		4967.1	17.38		0.9	Tight (6 min)	168.2	
5	5023.5	5022.1	14882.5	14885.4	14885.2	4981.1	17.37	17.52	1.0	Low perm., " " " " "	168.6	
6	5025.2	5023.8	14889.0	14890.8	14941.8	4982.8	17.38	17.58	1.0	Low perm, stable above hydrostatic	169.0	
7	5028.2	5026.8	14897.3	14902.0		4985.8	17.38		0.9	Tight (5 min)	169.4	
8	5042.5	5041.1	14936.0	14943.1		5000.1	17.37		0.8	Tight (7 min)	169.7	
9	5054.0	5052.6	14969.3	14969.6	15043.9	5011.6	17.37	17.60	0.8	Low perm	170.2	
10	5112.0	5110.6	15136.7	15143.0		5069.6	17.37		0.9	Tight (6 min)	171.5	
11	5123.5	5122.1	15170.2	15178.6		5081.1	17.37		0.7	Tight (7 min)	172.6	
12	5127.0	5125.6	15182.0	15186.7		5084.6	17.37		0.8	Tight (3 min)	172.9	
13	5137.3	5135.9	15212.1	15218.9		5094.9	17.37		0.9	Tight (4 min)	173.1	
14	5147.7	5146.3	15242.7	15249.6		5105.3	17.37		0.6	Tight (4 min)	173.4	
15	5159.5	5158.1	15276.9	15284.9		5117.1	17.37	-	0.9	Tight (7 min)	173.9	
16	5172.9	5171.5	15317.8	15323.6		5130.5	17.37		0.7	Tight (6 min)	174.3	
17	5023.5	5022.1	14882.0	14889.0		4981.1	17.38		0.8	Tight, re-tie in GR	172.0	
18	5023.5	5022.1	14871.7	14875.4	14921.9	4981.1	17.36	17.56	1.0	Low perm	170.9	
19	5006.3	5004.9	14822.0	14821.0	14843.0	4963.9	17.36	17.53	0.8	Low perm, opened sample chambers	170.0	
										Recovered from 10 litre chamber, 200cc muddy water, pH 6.5, Cl-		
							-			190000 ppm. PVT 4 litre chamber		
										sealed for snipment to		
										Laboratory		
4		1	1	5	1		1 .	1	1	LANGUT HAVE JA		

January - 1998

1/3-8 Final well report

During the drilling of well 1/3-8 a kick was taken at 4529m. When the well was brought under control by circulating out the influx, samples of what appeared to be condensate contaminated mud were collected at the rig and sent to Geolab Nor for analysis. A summary of the analyses performed and results were as follows:

One mud sample was taken and analysed by EOM GC to verify the difference to the separated fluid from the 'kick sample' (Figures 6.3.1 and 6.3.2). The separated sample was analysed by whole oil GC, separated by MPLC, quantitative saturated GC, aromatic GC, GC-IRMS of the saturated fraction and GC-MS of the saturated fraction (quantitative) and aromatic fraction. API was also determined. The objective was to establish if the liquid was a condensate (or oil) and if possible to determine maturity and source.