ROBERTSON RESEARCH INTERNATIONAL LIMITED

REPORT NO. 4121P

REPORT ON A GEOCHEMICAL EVALUATION OF THE 8/4 - 1 WELL NORWEGIAN NORTH SEA

8A 77-0029-1 -1 NOV 1977 EGISTRERT OLJEDIREKTORATET

B. S. COOPER S. THOMPSON S. H. COLEMAN A. G. COLLINS W. B. SIMPSON J. McEWAN

by

PROJECT NO. RRI/778/IID/2546

Prepared by:

Robertson Research International Limited, Ty'n-y-Coed, Llanrhos, Llandudno, Gwynedd, LL30 1SA, North Wales.

Prepared for:

Unionoil Norge A/S, P.O. Box 377, 4301 Sandnes, Norway.

September, 1977

CONTENTS

Page No.

i

1

2

2

2

3

3

4

4

4

4

5

5

5

6

6

7

SUMMARY

INTRODUCTION

T	T
	- 1

III

Ι

RESULTS AND INTERPRETATION

A. MATURATION EVALUATION

1. Spore Colouration

- 2. Vitrinite Reflectivity
- 3. Light Hydrocarbons

B. SOURCE ROCK EVALUATION

Interval 450 to 900 metres
 Interval 900 to 1620 metres
 Interval 1620 to 2130 metres
 Interval 2130 to 2280 metres
 Interval 2280 to 2340 metres
 Interval 2340 to 2430 metres
 Interval 2430 to 2580 metres
 Interval 2580 to 2640 (T.D.) metres

CONCLUSIONS

TABLES

1. Maturation Evaluation Data

- 2. Headspace Gas Analysis
- 3. Organic Carbon Content Data
- 4. Source Rock Evaluation Data

CONTENTS

FIGURES

1.	Spore Colouration Indices Against Depth
2.	Vitrinite Reflectivity Against Depth
3.	Airspace Gaseous $(C_1 - C_k)$ Hydrocarbons
4.	Mature Source Rock Richness
5.	Type of Hydrocarbon Product from Source Rocks
6.	Geochemical Data Summary Chart

ENCLOSURES

Vitrinite Reflectivity Data Summary Charts I and II

APPENDIX

1.

Abbreviations Used in Analytical Data Sheets

SUMMARY

Maturation and source rock studies have been undertaken on ditch cuttings from the interval 450 to 2,640 metres in the Unionoil (Norway) 8/4-1 well, Norwegian North Sea.

Maturation evaluation has indicated that the zone of transitional maturity occurs between 1,410 and 2,280 metres in the Cretaceous section. Lower Cretaceous and Jurassic shales in the interval 2,280 to 2,430 metres are in the zone of early thermal maturity, and at present Jurassic shales between 2,340 and 2,430 metres are fair to good source rocks for heavy oil and gas. With increased depth of burial off-structure optimum maturity levels should be reached and the Jurassic shales would become good or very good oil sources.

- i -

INTRODUCTION

A geochemical study has been undertaken on the section between 300 and 2,640 metres on the Norwegian North Sea 8/4-1 well, on behalf of Unionoil, Norway. Maturation levels have been established using light hydrocarbon analysis spore colouration determinations and vitrinite reflectivity. Source rock potential has been evaluated by organic carbon determinations, followed by solvent extraction and chromatographic fractionation of the most promising samples.

Fresh unwashed ditch cuttings in sealed cans were available at 30 metre intervals between 300 and 2,130 metres, at 15 metre intervals between 2,130 and 2,460 metres, and at 30 metre intervals between 2,460 and 2,640 metres. All 89 samples were analysed for head space gases in the sample cans. Gaseous and gasoline range hydrocarbons were analysed for 20 samples. Organic carbon determinations were carried out on picked shales from all 89 samples and 28 source rock analyses were conducted on homogeneous samples at points of interest. Samples for vitrinite reflectivity analyses were selected at intervals of between 60 and 90 metres, a total of 39 samples being studied. Spore colouration data were established on 21 samples out of 32 taken through the well section.

The analysed section penetrates sediments of Tertiary, Cretaceous, Jurassic, Triassic and Upper Permian age as described in our biostratigraphic report currently being prepared.

1 -

Ι

RESULTS AND INTERPRETATION

A. MATURATION EVALUATION

1. Spore Colouration

The level of maturity in oil-prone organic matter in the analysed sediments has been assessed by a visual examination of the indigenous sporomorphs. The colouration of spores, with increasing thermal maturity, changes from pale yellow, through orange and brown, to black; spore colour indices used in this report are based on a scale of 1 to 10, with values of 3.0 to 3.5 representing the narrow zone of transition between immature and mature sediments.

Organic matter consists of two main elements, kerogens of a humic nature and those of a sapropelic nature. Humic organic matter comprises both the gas-prone 'vitrinite' and partly gas-prone 'inertinite' derived mostly from woody material. Sapropelic organic matter comprises the 'exinites' (spores, pollen and land-plant cuticle) and the 'liptinites' (algae, resins, amorphous sapropel), both of which are oil-prone; amorphous sapropel is by far the most important source of oil.

The spore colouration indices of the section are generally low, rising from 2 at the top of the analysed section, to 4 at 2430 metres. These values fall within the expected range of values for the North Sea. Down to a depth of 2,100 metres the spore colouration indices increase gradually to 3, and then slightly more rapidly to T.D. This change in gradient occurs in the lower Cretaceous at approximately the base of the chalk and may indicate the onset of over pressuring, and thus increase in geothermal gradient, although the overall values are low.

The kerogen components of the shales are predominantly inertinitic down to 2,280 metres, but amorphous sapropel predominates in the shale interval between 2,380 and 2,430 metres. As only low levels of thermal maturity have

2 .

been reached towards the base of the well, the only present likely source rock is the sapropelic shale around 2,380 to 2,430 metres.

2. Vitrinite Reflectivity (Table 1, Figures 2 and 6)

The examination of vitrinite particles in shales is now a frequently used extension of coal rank studies. Vitrinite is not an important oil source and its maturation, unlike oil-prone organic matter, is strongly dependent on length of time of heating; however, it is the only reliable maturation indicator in the organically metamorphosed zone. Humic, gas-prone organic matter is considered to be transitionally mature over the reflectivity range 0.4% to 0.5%, but would not be expected to yield prolific gas until levels in excess of 0.8% to 1.0% have been reached. In an early Tertiary sequence, oil-prone organic matter would be expected to generate hydrocarbons at vitrinite reflectivities of 0.4% and above.

The vitrinite reflectivity values of the section are generally low, rising from 0.27% at 990 metres to 0.36% at the base of the well. These values fall within the expected range of values found in the North Sea. Over the first 2,000 metres of the well, the rise in vitrinite reflectivity is very gradual, but the rate of change increases slightly from 2,000 metres to T.D.

3. Light Hydrocarbons (Table 2, Figure 3)

The amount of head space gases in anomalously high (0.1%) in the upper part of the well section down to 1,470 metres. This may be due to either insufficient bacteriocide in the sealed cans or gas migration from an adjacent fault plane. The lack of wet gases in the head space gas over this interval makes the former more likely. However, the decrease in gas quantity around 1,620 metres correlates to the lithological change from mudstone to chalk. The proportion of wet gases in the head space gas increases from 1% at 1,140 metres to 20% at 2,310 metres with two maxima at 1,560 metres and 2,040 metres. The latter high point (30%) correlates to a band of dark brown shale within olive grey shales. Between 2,340 and 2,430 metres, a sharp increase and broad maximum is seen in gas content and proportion of wet gases, corresponding to the sapropelic shales in this

- 3 -

interval. The gas content decreases as sandstones and red beds are encountered while the proportion of wet gases continues to follow an upward trend with increasing depth.

Gaseous and gasoline range hydrocarbons in the cuttings samples are only present in trace amounts throughout all of the samples analysed. This probably relates to the generally low levels of thermal maturity throughout the section.

B. SOURCE ROCK EVALUATION

The results of source rock evaluation analysis are presented in Tables 3 and 4, and Figures 4, 5 and 6; they can be discussed as eight groups based on organic carbon, source rock and maturation data.

1. Interval 450 to 900 metres

This interval comprises mainly light olive grey mudstone with minor quantities of overlying superficial deposits. The organic carbon content of the rock varies between 0.5% and 2.37%, but is generally less than 1% and thus below average for argillaceous lithologies. Quantities of extractable hydrocarbon are also low, being less than 20 ppm in all but one of the samples examined. Although the organic carbon contents of some of these mudstones are fairly high, there is no source potential because of low levels of thermal maturity.

2. Interval 900 to 1,620 metres

This interval comprises a mixed lithology of light olive-grey mudstone with medium dark grey shales and mudstones. It is possible that some of the light olive-grey mudstone is caved. The organic contents vary between 0.45% and 3.77%, with a mean value of 1.6% which compares well with values for a worldwide average shale. The concentration of hydrocarbons in the rock is generally 20 ppm, but rises to 55 ppm between 1,320 and 1,380 metres, which correlates to a layer of brownish grey shale. At present this interval is immature and has no hydrocarbon generating potential; at optimum levels of thermal maturity these mudstones may represent good hydrocarbon source rocks.

3. Interval 1,620 to 2,130 metres

This interval comprises chalk with intercalations of light grey shale.

- 4 -

The organic carbon content of the chalk is between 0.15% and 0.25%, and of the light grey shale 0.4% to 0.8%. The shale contains low amounts (130 ppm at 2,130 metres) of organic extract, and very low concentrations of hydrocarbons. There is considered to be no significant hydrocarbon generating potential in the shales even at higher levels of thermal maturity.

4. Interval 2,130 to 2,280 metres

This interval comprises light olive grey shale with minor quantities of greyish red shale and caved chalk. The organic carbon content averages 0.45%. Although the extract contents of the shale reaches 690 ppm in places (2,220 metres) the hydrocarbon concentrations are low, being 20 ppm in all of the samples examined. The section is considered to have no significant hydrocarbon generating potential.

5. Interval 2,280 to 2,340 metres

This interval comprises dark greenish grey shale with varying amounts of greyish red shale. The organic carbon content of the dark greenish shale is 0.4%, and of red shale (picked from 2,325 metre sample) 0.15%. The organic extract concentration in the dark greenish grey shale is 725 ppm, and the concentration of hydrocarbons 45 ppm. Thus, although the organic carbon content is low, the proportion of extractable organic matter is fairly high, at 17%. At present these sediments are marginally mature and have little source potential; this would not be expected to increase significantly with increased thermal maturity.

6. Interval 2,340 to 2,430 metres Interval

This interval comprises mainly dark grey shale, with organic carbon contents varying between 4% and 11%. The extractability of the shale is between 4,330 ppm and 4,585 ppm and the hydrocarbon concentrations between 768 ppm and 860 ppm. Presently the interval is a fair to good source rock for heavy oil, but it is only in the early stages of maturity and oil generation. It is probable that with greater depth of burial off-structure this would become a good or very good source rock.

5 🗝

7. Interval 2,430 to 2,580 metres

This interval comprises coarse sandstones with occasional coaly fragments. Also present in the cuttings are fragments of light olive-grey, grey and greyred shale, but is possible that some of these shales are caved. The organic carbon content of the mixed lithology is less than 0.5%, but separated shale samples contained up to 5.4% organic carbon (2,490 metres). The organic material in the sandstones is mainly humic, but overall is present only in minor quantities, therefore it is unlikely to be a good gas source, especially at its present low level of thermal maturity.

8. Interval 2,580 to 2,640 metres (T.D.)

The lithology of this interval comprises Permo-Triassic reddish grey shales and anhydrite; organic carbon contents in the shales are low and do not suggest any significant source rock potential.

6

CONCLUSIONS

Maturation analysis has indicated that the zone of transitional maturity is reached at around 1,410 metres depth and a stage of early thermal maturity is reached from 2,280 metres to T.D. Overall the level of thermal maturity in this well is low such that oil prone organic matter is capable of generating oil of low API gravity.

Source rock, organic carbon and maturation data have been used to divide the well into eight groups, which correspond to lithological divisions. Mostly gas prone, but very immature sediments occur down to 1,400 metres. Early maturity is reached below 2,280 metres, but the only likely source rocks for oil are the sapropelic shales between 2,340 and 2,430 metres. These shales have a fair oil potential, which could improve to good oil potential off-structure at greater depths. Below these shales, there is some gas prone kerogen in sandstone, but this is not present in any significant amounts. The Permo-Triassic beds at the base of the well are barren.

MATURATION EVALUATION DATA

COMPANY: UNIONOIL NORWAY WELL: 8/4-1 LOCATION: NORWEGIAN NORTH SEA

SAMPLE DEPTH	SAMPI F	GENERALISED	MAXIMUM	VITRINITE	SPORE	
(METRES) OR	TYPE	LITHOLOGY	PALAEOTEMP-	REFLECTIVITY	COLOURATION	HYDROCARBONS
NOTATION			-ERATURE "F	%	(1-10)	
6. 450	Ctgs	SST	-	-	2	
9. 540	1 1 3	MDST	_	-	2-2.5	
11. 600	-11	Ц. Д		-	2.5	
13. 660	Ħ	H.	— , ,	-	3.5 (?)	
15. 720	11	H A	-	-	2.5	
22. 930	11	SH	—	-	-	
24. 990	n	Ħ	—	0.27 (5)	2.5	
27. 1080	11	MDST	—	-	3	
30. 1170	11	.H		0.27(10)	-	Immature
32. 1230	п	11	· _	0.27(8)	2.5	
34. 1290	11	11		0.27(18)	. '	
36. 1350°	·	11	-	0.29(10)	-	n tha tha an
39. 1440	17	11	_	0.29(13)	2.5	·····
42. 1530	TT	11	_	0.27(5)	. 	
45. 1620	11	31	—	0.26(12)	3	
48. 1710	11	СНК	-	0.30(6)	3	
52. 1830	11	n	-	0.30(7)	3	
57.1980	11	n	-	0.29(5)	3	Transitional
61. 2100	11	Π	-	0.31(6)	3-3.5	Maturity
65. 2175	Ħ	SH			3.5	
67. 2220	u	17	_	0.32(3)	3.5	
71. 2280	tT	11		0.28(3)	3.5	
73. 2310	Ħ	TT		· _	3.5-4	
.74. 2325	11	17	—	0.32(21)		
76. 2355	-11	11	· ·	0.31(7)	3.5	
77. 2370	11	11		· •	-	Early
79. 2400	. 11 -	TT	-	0.35(5)	4	maturity
81. 2430	Ч н	11	-	0.37(37)	4	
83. 2460	11	SST		0.34(2)	-	
88. 2610	11	SH, Anhydrite	—	0.36(2)	-	
Figuros	n bracket	 -s (reflectivity or	lump) indica	te no of ma	asurements	.
rigures 1					abur cilenco	
			•		· ·	•

TABLE 2

HEADSPACE GAS ANALYSIS DATA

COMPANY: UNIONC	IL NORWAY	WELL: 8/	4-1	LOCATION:	NORTH SEA	
SAMPLED DEPTH	TOTAL C,-C, GAS	PERCENT	PERCENT	PERCENT	PERCENT	PERCENT
(METRES)	(% v/v)	C ₁	c ₂	c ₃	iso C ₄	\underline{n}^{-C}_{4}
300	0.1964	99.57	tr	0.05	0.02	0.36
330	0.4747	99.77	0.19	0.11	0.01	0.02
360	1.6388	99.99	tr	tr	tr	tr
• 390	2.6477	99.59	0.40	0.05	tr	0.05
420	0.9217	99.99	tr	0.01	tr	tr
450	0.3344	99,58	0.45	0.02	tr	tr
480	0.6059	99.72	0.25	0.02	tr	0.01
510	0.7517	99.44	0.52	0.03	tr	0.01
540	0.6210	99.77	0.19	0.03	tr	tr
570	0.3797	99.80	0.13	0.05	0.01	0.01
600	1.5395	99.77	0.19	0.03	tr	0.01
630	0.5482	99.00	0.89	0.08	0.01	0.02
660	0.9574	99.47	0.46	0.05	0.01	0.01
690	0,7045	99.56	0.34	0.07	0.01	0.01
720	0.5386	99.82	0.07	0.07	0.01	0.02
750	1.2042	99.92	0.02	0.02	0.02	0.03
780	1.6445	99.63	0.18	0.13	0.04	0.02
810	2.0054	99.57	0.19	0.17	0.05	0.02
840	2.2632	99.54	0.20	0.18	0.05	0.03
870	2.8837	99.43	0.25	0.22	0.06	0.03
900	1.4405	99.52	0.22	0.18	0.05	0.03
930	0.6801	99.37	0.25	0.25	0.09	0.04
960	0.5571	99.26	0.27	0.31	0.11	0.05
990	0.4120	99.42	0.17	0.27	0.09	0.05
1020		CAN NOT SE.	ALED GAS L	OST IN TR	ANSIT	
1050	0.2995	99.16	0.30	0.33	0.14	0.07
1080	0.2529	99.20	0.24	0.32	0.16	0.08
1110	0.2735	99.23	0.29	0.29	0.12	0.07
1140	0.5277	98.96	0.36	0.45	0.15	0.08
1170	0.3677	98.86	0.38	0.49	0.19	0.08
1200	0.3474	98.73	0.35	0.83	0.06	0.03
1230	0.8982	99.19	0.29	0.35	0.11	0.06
1260	0.8875	99.22	0.27	0.35	0.09	0.07
1290	0.7297	98.93	0.47	0.38	0.16	0.05
1320	0.5760	98.66	0.43	0.73	0.08	0.10
1350	1.4735	98.68	0.53	0.60	0.12	0.07
1380	1.0195	98.43	0.71	0.67	0.13	0.07
1410	0.6160	98.08	0.88	0.78	0.16	0.10
1440		NO GAS S	AMPLED - AL	L MUD EXP	ELLED	
1470	0.1872	98.45	0.80	0.48	0.16	0.11
1500	0.0843	97.15	1.42	0.83	0.36	0.24
1530	0.1070	98.13	0.93	0.56	0.19	0.19
· 1560	0.0109	82.57	8.26	5.50	1.83	1.83
1590	0.1103	97.46	1.36	0.73	0.27	0.18

TABLE 2 (Cont'd.)

HEADSPACE GAS ANALYSIS DATA

COMPANY: UNION	OIL NORWAY	<u>WELL</u> : 8/4	-1		LOCATION: NORTH SEA				
SAMPLED DEPTH	TOTAL C1-C, GAS	PERCENT	PERCENT	PERCENT	PERCENT	PERCENT			
(METRES)	$(\% \sqrt{7})$	c ₁	C ₂	с _з	iso C ₄	$\underline{n}-C_4$			
1620	0.0839	97.62	1.43	0.59	0.24	0.12			
- 1650	0.0267	95.88	1.87	1.50	0.37	0.37			
1680	0.0345	97.10	1.45	0.87	0.29	0.29			
1710	0.0429	96.50	1.40	1.17	0.47	0.47			
1740	0.0147	97.15	1.36	0.68	0.41	0.41			
1770	0.0070	95.85	1.43	1.43	0.57	0.72			
1800	0.0105	96.77	0.95	0.95	0.57	0.76			
1830	0.0038	92.11	2.63	2.63	1.32	1.32			
1860	0.0055	94.89	1.82	1.82	0.73	0.73			
1890	0.0057	95.58	1.77	1.06	0.53	1.06			
1920	0.0041	96.62	1.21	0.72	0.48	0.97			
1950	0.0030	93.65	2.01	1.67	1.00	1.67			
1980	0.0038	93.99	2.61	1.57	0.78	1.04			
2010	0.0013	93.02	3.88	3.10	tr	tr			
2040	0.0018	68.57	17.14	2.28	0.57	11.43			
2070	0.0025	89.43	4.07	2.85	1.22	2.44			
2100	0.0011	85.72	4.76	4.76	1.90	2.86			
2130	0.0071	90.40	2.82	4.24	1.13	1.41 9.6			
2145	0.0056	92.53	3.56	0.89	1.25	1.78			
2160	0.0040	88.38	2.53	5.05	1.52	2.53			
2175	0,0040	88.38	2.53	5.05	1.52	2.53 11.6			
2190	0.0038	91.86	2.62	2.62	1.06	1.84			
2220	0.0036	66.67	8.33	13.89	5.56	5.56			
2235	0.0078	89.74	2.56	5.13	1.28	1.28			
2250	0.0043	79.07	4.65	9.30	2.33	4.65 21.			
2265	0.0077	64.94	5.19	15.58	5.19	9.09			
2280	0.0064	70.31	4.69	12.50	4.69	7.81 30			
2295	0.0044	/5.00	4.55	11.36	2.27	6.82			
2310	0.0033	79.27	3.05	9.15	2.44	6.10			
2325	0.0017	72.29	6.02	12.05	3.61	6.02 2/1/			
2340	0.0078	89.74	2.56	3.85	1.28	2.00			
2355	0.0569	20.91	10.72	38.66	10.72	18.90 / /			
2370	0.1614	14.50	10.03	38.72	11.34	23.40			
2385	0.2016	17.20	10.96	39.58	9.23	16 04			
2400	0.1546	26.52	12.74	30.08	0.02	17.04			
2410	0.0983	24.02	12.07	31,74	12.10	19 96 64			
2430	0.4343	30.31	12.87	22.98	0.90	10.00 07			
2445	0.32/1	42.20	15.26	20./2	2.33	14.50			
2400	0.1062	32.30	14.09	31.04	0.07	14.30 %			
2490	0.0575	24.70	12 05	22.40 25 77	0.UU 7 01	18 30			
2020	0.0397	24.10 13.77	12.02	33.11	0 /0L	21 70 2/ S			
2330	0.0401	15.4/	14.90	40.40	7.40 0.01	21.10 20.0			
2580	0.0352	13.91	14.20	40.34	0.01 17 50	20.74			
2010	0.0151	0.0L 15 50	6.00	40.40	12.00	97 50			
2040	0.0058	12.27	0.90	21.93	12.07	61.33			

ORGANIC CARBON DATA

COMPANY:

UNIONOIL NORWAY

WELL: 8/4-1

LOCATION: NORTH SEA

SAMPLE DEPTH (METRES)	ORGANIC CARBON % OF ROCK	SAMPLE DEPTH (METRES)	ORGANIC CARBON % OF ROCK
6. 450	0.36	48. 1710	0.53
7. 480	0.48	49, 1740	0.19
8. 510	0.64	50. 1770	0.39
9. 540	0.64	51. 1800	0.44
10. 570	0.72	52. 1830	1.18
11. 600	0.71	53. 1860	0.72
12. 630	0.85	54. 1890	0.72
13. 660	0.92	55. 1920	0,82
14. 690	1.82	56. 1950	0.72
15. 720	0.99	57. 1980	0.13
16. 750	0.50	58, 2010	0.25
17. 780	1.04	59 2040	0.15
18. 810	1.88	60 2070	2 10
19. 840	0	61 2100	0 19
20, 870	2 37	62 2130	0.1
21. 900	0.71	63 2145	0.54
22. 930	1 25	64 2160	0.46
23. 960	2.25	65 2175	0.40
24. 990	1 03	66 2190	0.53
25 1020	1 1 2	67 2220	0.33
26 1050	2 50	68 2235	0.50
27 1080	2.55	·60 2255	0.54
28 1110	1.62	70 2265	0.51
29 11/0	2 10	71 2280	0.33
30 1170	2.10	72 2200	0.43
31, 1200	1 22	72 2310	0.40
32 1230	1.22	74 2225	0.55
33 1260	1.00	74. 2323	0,15
34 1200	2.12	76 2355	0.40
35 1320	2.14	77 2270	0.44
36 1250	3.77	70 0005	3.88
37 1290	2.40	70, 2303	3.51
38 1/10	2.85	79. 2400	3.30
39 1//0	1.82	00. 2415 91 0/20	7.50
40 1/70	1.61	ol. 2430	11.70
40+ 14/0 41 1500	0.74		1.44
41 1500 42 1500	0.95	03. 2460	0.46
42. 1530	0.62	84. 2490	5.42
4J• 1560	0.45	85. 2520	0.38
44. 1590	0.73	86. 2550	5.74
45. 1620	0.62	87. 2580	3.97
40· 1650	0.65	88. 2610	0.42
4/• 1680	0.69	89. 2640	1.18

SOURCE ROCK EVALUATION DATA

COMPANY: UNIONOIL NORWAY WELL: 8/4-1 LOCATION: NORTH SEA

sample depth (METRES or notation	SAMPLE TYPE	ANALYSED LI THOLOGY	ORGANIC CARBON % OF ROCK	TOTAL EXTRACT P.P.M.	EXTRACT % OF ORGANIC CARBON	HYDRO- -CARBONS P.P.M. OF ROCK	HYDRO- CARBONS % OF EXTRACT	TOTAL ALKANES %HYDRO- CARBONS
6. 450- 480	Ctgs	Sandy SLTST	0.36	185	5.1	<20	*	*
8. 510- 540	11	Lt ol-gy SH and MDST	0.64	290	4.5	<20	*	*
10. 570- 600	tr .	tr .	0.72	535	7.4	<20	*	*
12. 630- 660	.11	n ¹	0.85	435	5.1	<20	*	*
14. 690- 720	11	11	1.82	500	2.7	35	7	46
16. 750- 780	11	11	0.50	300	6.0	<20	*	*
18.810- 840	11	II	1.88	560	3.0	<20	*	* *
20.870- 900	11	H	2.37	820	3.4	<20	* *	*
23.960- 990	31	Med-dk gy MDST/SH & lt ol-gy MDST	2.25	360	1.6	25	7	>95
26.1050- 1080	ts -		2.59	220	0.8	<20	*	*
29.1140- 1170	11	11	2.10	480	2.3	30	6	> 95
31.1200- 1230	11	11	1.22	700	5.7	35	5	57:
33.1260- 1290	11		2.12	720	3.4	<20	2	68
35.1320- 1350	,11	Br-gy SH and lt ol MDST	3.77	1005	2.7	55	5	61
37.1380- 1410	.11	Med dk gy MDST/SH and lt ol gy MDST	2.85	1045	3.7	55	5	71
40.1470- 1500	11	Lt ol gy SH and MDST	0.74	275	3.7	<20	*	*
41.1500- 1530	11	u ·	0.95	220	2.3	<20	*	*
43.1560- 1590	п	'n	0.45	105	2.3	<20	*	* _
45.1620- 1650	11	U	0.62	155	2.5	<20	*	*
59.2040- 2070	11	СНК	0.15	75	5.0	<20	*	*
62.2130- 2145	1)	CHK and sandy SLTST	0.24	130	5.4	<20	*	*

TABLE 4 (Cont'd.)

SOURCE ROCK EVALUATION DATA

COMPANY: UNIONOIL NORWAY WELL: 8/4-1

.

and

LOCATION : NORTH SEA

SAMPLE DEPTH METRES OR NOTATION	SAMPLE TYPE	ANALYSED LITHOLOGY	ORGANIC CARBON % OF ROCK	TOTAL EXTRACT P.P.M.	EXTRACT % OF ORGANIC CARBON	HYDRO- -CARBONS P.P.M. OF ROCK	HYDRO- CARBONS % OF EXTRACT	TOTAL ALKANES %HYDRO- CARBONS
64. 2160- 2175	Ctgs	Gy-gn and gy-red SH	0.46	90	2.1	<20	*	*
67. 2220- 2235	37	п	0.38	690	18.1	<20	*	*
70. 2265- 2280	Ħ	IJ	0.33	260	7.9	<20	*	*
72. 2295- 2310	а. — ТТ	Dk gy-gn and gy-red	0.40	720	18.0	35	5.	31
76. 2355- 2370	11	11	0.44	730	16.6	35	5	58
78. 2385- 2400	11	Dk gy SH	3.51	4330	12.3	768	17	46
79. 2400- 2415	11	IT	3.36	4585	13.6	860	19	55
				*				
				a. T				
				<i>.</i>				
			- -					
				4				
				•				2
	-							

ю

4

9

3 5

SPORE COLOURATION INDEX

THERMAL ALTERATION INDEX

(T.A.I.)

SPORE COLOURATION INDICES AGAINST DEPTH

LOCATION : NORWEGIAN NORTH SEA

FIGURE 2

VITRINITE REFLECTIVITY AGAINST DEPTH

PERCENTAGE REFLECTIVITY IN OIL

AIRSPACE GASEOUS (C1 - C4) HYDROCARBONS

FIGURE 4

SOURCE ROCK RICHNESS MATURE

LOCATION : NORWEGIAN WELL : 8/4-1 COMPANY : UNIONOIL NORWAY

77

	TION: 1		514	N NORTH	SEA						FIC	GURE 6
	(EROGE	N	Γ			MATU	RATION	ANAL	YSES	<u> </u>		
BASED ON:					VITRINITE	SPORE		LIGH	T HYDROCAR	BONS	SUMMARY	
-ATION	ELEM. ANAL. (H/C ratio	PÝROL.		PYROLYSIS	S ELEMENTAL ANALYSIS	HUMIC ORGANIC MATTER)	COLOUR - ATION (SAPR ORGANIC	PALEOTEMP. OPELIC MATTER)	HEADSPACE GASES	GASEOUS HYDRO- CARBONS	GASOLINE RANGE HYDRO- CARBONS	POTENTIA
		, , , , , , , , , , , , , , , , , , ,										
	· · ·					ч. н. та						No present hydrocarbon generating poten
								с				
											· · ·	
۲۲ , 						I.M.M.A.T.U.R.E				NCONCLUSIVE	NCONCLUSIVE	*
								a a sa		_		
				анан сайтаан алагын алагын Алагын алагын								
												¥ Gas & mino heavy oil likely
÷				,				e texes a second				
					· · · · ·							
										·		
نى <u>تىپ</u>] [RE TRANS MAT	BITIONAL URITY Far			atel	(мет	ORGANIC AMORPHISM	
					lmmatu transitio	re mature Hea	avy oil v AP1	Ligh high	t oil API	nsate	Dry gas	l. <u></u>

GEOCHEMICAL DATA SUMMARY **CHART** •,

WELL: 8/4-1

RGE

LOCATION: NORWEGIAN

<	ANA	ALYS	ES	5	<u></u>			5												SAMPLE		K CO	EROGEI MPOSITI	N ON	
	E)	TRA	СТ	%	С)F					BON	S	۲	R. H	ATI C to		F	TIVE NS		DEPTH (TOPS)		В	ASED OI	V:	
	OR	GANI	2	СА	RB	ON			% C		ELY		MBC	OIL	RIÇ	HN	ESS	PEC CTIO		AND		N N N N N N N N N	≊M. AL. ratio	IOL.	
1	2	.5	5	10	2	0 3	10 ·	50	2	20 4	0.7	70	sγ	Poor			stain	seos Seo		NUMBERS		VISU EXAI -ATI	ELE AN H/C	무거역	
Н								\mathbf{H}	-						Ì	Ť	. 07	-)		
																								-	
																						-			
		an a				-	30				inan, i		n,		- W. 1	- · · · · ·	a a se consector	and the second		nation of the second second second second		n agasta a sa	de en en		
μ		:	$\frac{1}{2}$															No present		- 450 6				ŝ	
H	e i i su digente en su			-					.						. ATAT			potential; minor hydro-		570 10					
P		-	Ī						╞					F				carbons possible at		- 690 14					
H		-	-															optimum maturity.		- 750 16 - 810 18					
Η		i an	1								a sha a						r 14 maari	No present		- 870 20		entrestario de la composición de la com			
									Γ.					[]				potential; may become		- 1050 26					
Η									۰ ا					-				good hydrocarbon		- 1140 29					
Ħ			-			e	e		F				1997 - 1998 1997 - 1998	-			6 Jan 14	optimum	94 I - I - I	- 1260 31 - 1260 33		····· ··· ···	e	an an Arian Arian	
H		<u>† </u>							F					F			•	maturity,		- 1320 - 35 - 1380 - 37					
H					M						W1 . 12 1.			-				ne operation appendiately to the state of the state		- 1470 40 - 1500 41					
Н														E						- 1560 43 - 1620 45		000.004		• •	
				-														No source rock potential							
							An				. Se acces							in chalk or shales.	e en se						
H	· · · · · · · · · · · · · · · · · · ·													-						- 2040 59		INERT			
F		1. 10 Mar 1. 10 Mar 1. 10 Mar	<u></u>		9 91 June		- 		1	angi angi			ge Polotion (No source		- 2130 62 - 2160 64					
Ħ				-										Ē						2220 67 2265 70 2295 72					
Ħ									E					-				*		2355 76 2385 78 2400 79		SAP			
		jan en		1.1.1.11.1	0.3170 5	hr t -	1				e e a transférie				0.000	55. V V	54 - 5 - 64	No hudron	8 7 Q X	an a					
																		carbon gener- ating potential							
							: 3		.	,								at any level of maturity							
							-																	5 4	
				-														★ Fair source for gas & heavy						į	
	n an bear an	e i torat an		an tha s			inny z i			• • • •		1.					•	oil of present; good to very acod at optimum		an ang an an an					
			•															maturity				· • •		Ì	
	en ellerine en ellerine ellerine ellerine		ei r			en en		11	1		e			1				•* • • • •		ay in a star ta ga ang pang	s				
																er ge de		www.worthoorgan.com/gradeate							
				:			1																		
	s mainprovenesses	i inter getatur a	ar an tr								e e e e esta e	5 	lighter an an					na an a		en en ser en	x	na ka ka na sa ka sa			
		1																						ì	
																								1	
			-						an a		a 19699 950					··· ·		·····			e n 1911	na santa seren			
																								a summer second	
٢										Gas		E				 				Conv. Core 🕨]
C	ias - pron	$ m e$ \longleftrightarrow	• Oil	i - pi	rone	Con	itami	n.	Gas	8	ö	Stair		s	ood	⊥ga ce ≯	> K			swc —					
						l				ō	Ĺ		L							Ditch ctgs —	L	L		l	

APPENDIX I

ABBREVIATIONS USED IN ANALYTICAL DATA SHEETS

Alg	-	Algae	Mt1		Mottled
Aren	-	Arenaceous	Musc		Muscovite
Arg	-	Argillaceous	NS	·. 	No sample
Bit		Bitumen/bituminous	Occ	-	Occasional
B1		Blue	01	-	Olive
B1k	-	Black	001	-	Oolite/oolitic
Brn	<u> </u>	Brown	Orng		Orange
Calc	<u></u>	Calcareous	Pnk	-	Pink
Carb	-	Carbonaceous	Рор	-	Population
Chk	-	Chalk	Pp		Purple .
Cht	-	Chert	Pyr		Pyrite/pyritic
Cg1		Conglomerate	Qtz		Quartz
Cly		Clay	Ref	·	Reflectivity
CMT	-	Cement	Sap		Saprope1
Crs	. —	Coarse	Sft		Soft
Ctgs		Ditch cuttings	Sh	-	Shale
Dk	·	Dark	Sh1y	· • • •	Shaly
Dol	<u> </u>	Dolomite	Sil	-	Siliceous
F		Fine	Slt		Silt
Fer		Ferruginous	Sltst	-	Siltstone
F1u		Fluorescence	Slty		Silty
Fm		Formation	Snd	-	Sand
Foram	-	Foraminifera	Sndy		Sandy
Fr	-	Friable	Sst		Sandstone
Frags	-	Fragments	SWC	-	Sidewall core
Glc	<u></u>	Glauconite	Tr	-	Trace
Gn	-	Green	V	. .	Very
Gy	-	Grey	Vgt	~~~	Variegated
Gyp	-	Gypsum	Vit	~~	Vitrinite
Hd		Hard	Wht	. +	White
Inert	-	Inertinite	Yel	-	Yellow
Lam	-	Laminae/laminated	-	·	Sample not analysed
LCM	<u> </u>	Lost circulation mate	rial *		No results obtained
Lig	<u> </u>	Lignite/lignitic	Gy-gn		Greyish green
Lst	-	Limestone	Gn/gy	· >	Green to/and grey
Lt		Light	Gn-gy	-	Greenish grey
Mdst	_	Mudstone			
Med	-	Medium			and the product of the second second
Mic		Micaceous			
Mn 1		Mineral			
Mnr	-	Minor			

