432

ROBERTSON RESEARCH PETROLEUM SERVICES LIMITED

REPORT NO. 4194P

ORIGINAL

REPORT ON A GEOCHEMICAL EVALUATION OF THE 15/5 - 1 WELL, NORWEGIAN NORTH SEA.

by

B. S. COOPER M. J. GIBBONS P. C. BARNARD A. G. COLLINS

J. McEWAN

PROJECT NO. RRPS/789/D/2641

Prepared by:

Robertson Research Petroleum Services Limited, Ty'n-y-Coed, Llanrhos, Llandudno, Gwynedd LL30 1SA, Wales, U.K. Prepared for:

Norsk Hydro a.s., Postboks 2594, Solli, Oslo 2, Norway.

June, 1978

CONTENTS.

Page No.

SUMMARY

III

I		INTRODUCTION	1
II		RESULTS AND INTERPRETATION	2
	Ą.	MATURITY EVALUATION	2
	A 2. A 3.	Light Hydrocarbon Analysis Spore Colour Vitrinite Reflectivity Comparison of Maturation Indices	2 2 3 4
	В.	SOURCE ROCK EVALUATION	5
	B2. B3. B4.	Organic Carbon Content Solvent Extraction Gas Chromatography Pyrolysis Visual Examination of Kerogen	5 5 6 8
	с.	INVESTIGATION OF LOWER CRETACEOUS RESIDUAL OIL	9

CONCLUSIONS

10

TABLES

- 1. Airspace Gaseous Hydrocarbon Analysis Data
- 2. Gasoline Hydrocarbon Analysis Data
- 3. Maturity Evaluation Data
- 4. Source Rock Evaluation Data
- 5. Rock-Eval Pyrolysis Data

CONTENTS (Cont'd)

FIGURES

1.

2.

Airspace (C_1-C_4) Hydrocarbons Gasoline Range (C_4-C_7) Hydrocarbons Spore Colouration Indices Against Depth 3.

Vitrinite Reflectivity Against Depth 4.

Pyrolysis Data Summary Chart 5.

Type of Organic Matter from Pyrolysis Data 6.

Geochemical Summary Chart 7.

Gas Chromatograms of Saturate Hydrocarbons 8.

9. Gas Chromatograms of Pentane Total Extracts

ENCLOSURE

DOREE

Additional Copies of Figures 1 to 9

SUMMARY

In the interval 1500 to 3750 metres of the Norsk Hydro 15/5-1 well, Norwegian North Sea, oil-prone organic matter approaches maturity at approximately 2300 metres. In contrast, gas-prone organic material is mature at approximately 3500 metres.

The Cretaceous and Tertiary sediments above 3490 metres are either too immature or too organically lean to source significant amounts of hydrocarbons. The Middle and Upper Jurassic shales and coals between 3490 and 3750 metres are presently capable of sourcing oil and/or gas, and at optimum maturity, off-structure, will have generated considerable quantities of hydrocarbons.

DOBERTS

INTRODUCTION

Ι

This report, based on the results of analyses of 48 canned samples of ditch cuttings and 7 sidewall cores, assesses the maturation level and hydrocarbon source potential of the interval 1500 to 3752.5 metres of the Norsk Hydro 15/5-1 well, Norwegian North Sea.

Following analysis of the airspace gases, the cuttings were washed, dried and described. With few exceptions, the cuttings were of good quality. All samples were analysed for organic carbon content and 14 were selected for gasoline analysis. On the basis of the organic carbon data, 16 samples were submitted for pyrolysis and 18 samples subjected to full extractive source rock analysis. Additionally, the saturate fractions from 10 of the 18 extracts, and pentane extracts of 6 (10-metre) composite samples from the interval 3350 to 3560 metres, were analysed by gas chromatography. For the determination of spore colours, palynological preparations were made from 21 samples. Portions of 20 of these preparations, and 6 additional samples, were used for vitrinite reflectivity measurements.

The age of this section ranges from Middle Jurassic to Tertiary.

-1-

RESULTS AND INTERPRETATION

A. MATURITY EVALUATION

A.1 Light Hydrocarbon Analysis

a. Airspace Gas Analysis

Aliquots of airspace gas from the sealed sample cans were analysed to determine the amounts and percentage compositions of the C_1 to C_4 hydrocarbons. The results are presented in Table 1 and Figure 1.

Methane, of probable biogenic origin, is the sole component of the airspace gases to a depth of 2150 metres. On the basis of wet gas (C_2 to C_4) content, the section below 2150 metres is mature. The abrupt appearance of the wet gases at this depth may indicate the presence of an unconformity.

b. Gasoline Analysis

The presence of at least 8 to 10 of the individual C_4 to C_7 hydrocarbons in approximately equal quantities is considered to be an indication of maturity. The data presented in Table 2 and Figure 2 suggest that the section is transitionally mature between 1500 and 2050 metres and mature below the latter depth. However, variations in lithology and sampling technique somewhat obscure the overall picture.

A.2. Spore Colour

The level of maturity of the oil-prone organic matter present in kerogen concentrates was assessed by visual examination of the indigenous sporomorphs. With increasing thermal maturity, spore colours change from pale yellow, through orange and brown to black. Spore colouration indices used in this report are based on the Robertson Research scale of 1 to 10,

-2-

with values of 3.0 to 3.5 representative of the narrow transition zone between maturity and immaturity.

A total of 21 samples was selected for spore colour determinations. The results are given in Table 3 and Figure 3. Generally the quality of the assemblages was poor, but the results are in acceptable agreement with other maturity data in suggesting that the section is transitionally mature between 1500 and 2375 metres and mature below this interval.

A.3 Vitrinite Reflectivity

Vitrinite, a type of humic, gas-prone organic matter is considered to be transitionally mature over the reflectivity range 0.4 to 0.5 per cent, but would not be expected to yield prolific gas until values in excess of 0.8 to 1.0 percent had been attained. Although vitrinite is not an important oil source it is the only reliable maturation indicator in the organically metamorphosed zone.

During this study 26 samples were examined for vitrinite. The reflectivity data are given in Table 3 and Figure 4.

The data indicate that gas-prone organic matter is mature at approximately 3500 metres. Generally the numbers and quality of the vitrinite particles present were low, and the kerogen concentrates tended to be dominated by inertinite, a humic maceral with only minor gas-generating potential. Reworked and/or caved populations of vitrinite were observed in several samples. Although of variable composition and reflectance, the vitrinitic components of the Middle Jurassic coals yielded consistently higher values (<u>ca</u>. 0.65 to 0.70 per cent) than vitrinitic material from associated shales (0.55 to 0.57 percent).

-3-

A.4 Comparison of Maturation Indices

The airspace gas and gasoline data are comparable and suggest that maturity is attained between 2050 and 2150 metres. Similarly, spore colours suggest that oil-prone organic matter is mature below 2375 metres. In contrast, vitrinite reflectivity results indicate that gas-prone organic matter is immature to a depth of approximately 3500 metres. Both spore colour and vitrinite reflectivity data show a rapid increase in thermal maturity within the Middle and Upper Jurassic sequence. This phenomenon could be due to either abnormally high geothermal gradients during the lower Cretaceous-Upper Jurassic or the rapid increase in geothermal gradients characteristic of overpressured sections.

B. SOURCE ROCK EVALUATION

B.1 Organic Carbon Content

All samples were analysed for organic carbon content. The results for the bulk samples and some hand-picked lithologies are given in Table 4. Using these values the section may be divided into four: between 1500 and 1700 metres, above average contents (i.e. more than 2 per cent organic carbon); 1700 to 2400 metres, fair (i.e. between 0.3 and 1.0 per cent); 2400 to 3450 metres, lean to fair; 3450 to 3750 metres, above average.

B.2 Solvent Extraction

On the basis of the organic carbon data, 18 samples were selected for full source rock analysis. The results are given in Table 4 and summarised in Figure 7. A brief inspection of Figure 7 shows that the section falls into two unequal and contrasting parts; the Cretaceous and Tertiary above 3500 metres and the Middle and Upper Jurassic between 3500 and 3750 metres. Above 3500 metres the section is either insufficiently mature or too organically lean to have sourced significant quantities of hydrocarbons, although the true picture is slightly obscured by the presence of migrant hydrocarbons. Even at optimum maturity off-structure these rocks are unlikely to source appreciable amounts of hydrocarbons.

The Middle and Upper Jurassic coals and shales between 3500 and 3750 metres constitute a good oil and/or gas source. The data indicate that their lateral equivalents at greater depths off-structure will have sourced significantly greater quantities of hydrocarbons. The gas chromatograms of Figure 8 and the data of Tables 1 and 2 suggest that, at their present level of maturity they are producing a heavy oil with condensate and wet gas.

-5-

B.3 Gas Chromatography

Following source rock analysis, the saturated-hydrocarbon fractions of 10 samples were analysed by gas chromatography. Samples from 1650, 2300 and 3300 metres produced distributions which strongly suggested the presence of migrant hydrocarbons rather than indigenous hydrocarbons. Figure 8 shows 3 chromatograms characteristic of the most promising source rock interval i.e. the Middle and Upper Jurassic coals and shales between 3500 and 3750 metres.

The <u>n</u>-alkanes of the Upper Jurassic samples extend beyond C_{33} and possess either a unimodal distribution with a maximum at C_{15} , C_{16} or C_{17} , or a slightly bimodal distribution with an additional maximum at C_{23} or C_{25} . Carbon preference indices (CPI values) approach unity. Consideration of the initial maturity of this sequence and the lack of a marked odd-carbon number preference in the C_{27} to C_{33} <u>n</u>-alkanes suggest a predominantly lower plant (sapropelic) origin for the hydrocarbons. However, the high pristane/phytane ratio (4.7) of the sample from 3700 metres is typical of coaly sediments containing abundant terrestrial higher plant debris. Consequently the low CPI value may indicate that the hydrocarbons were generated at greater depths off-structure and migrated up-dip. On the other hand the presence of steranes and triterpanes confirms that the shales have not been heated excessively.

Pristane/phytane pristane/ $\underline{n-C}_{17}$ and phytane/ $\underline{n-C}_{18}$ ratios vary from 0.95 to 4.7, 0.78 to 1.8 and 0.4 to 0.93 respectively. The range of values is due to variations in the proportion of coaly material in each sample.

B.4 Pyrolysis

The pyrolysis technique involves the heating of samples from 250° to 550° C over a period of approximately 15 minutes. During this time, three pulses of gases are released and recorded as weights of gas. The first of these pulses relates to hydrocarbons present in the sediment which could

-6-

normally be extracted by organic solvents; these are either the adsorbed hydrocarbons indicating present source potential, or reservoired hydrocarbons. The second gas pulse is of hydrocarbons released by the thermal breakdown of kerogen (optimum source potential), and simultaneously the temperature of maximum rate of evolution is measured. The third pulse is of carbon dioxide.

The parameters used in interpretation are the hydrogen index (ratio of released hydrocarbons to organic carbon content), the oxygen index (ratio of released carbon dioxide to organic carbon content), the temperature of maximum rate of pyrolysis, and the production index (ratio of the ammount of hydrocarbons released in the first stage of heating to the total amount of released hydrocarbons). Kerogens rich in sapropelic matter exhibit a high hydrogen index and a low oxygen index while those in which humic debris predominates will display a low hydrogen index and a high oxygen index. Hydrogen and oxygen indices for a particular type of kerogen are also susceptible to a reduction in their values during the course of thermal maturation. The fields for typical kerogen assemblages are shown in Figure 6.

The hydrogen index is a measure of the hydrocarbon generating potential of the kerogen. Immature, organically rich source rocks and oil shales give values above 550, mature oil source rocks give values between 200 and 550.

The temperature of maximum rate of pyrolysis depends on the nature of the organic matter, but the transition from immature to mature organic matter is marked by temperatures between 415° and 435°C. The maturity transition from oil and wet gas generation to dry gas generation is marked by temperatures between 455° and 460°C. In practice, greater variation than these ideal temperature ranges may be seen, but they are nevertheless useful as general guides to the level of maturity attained by the sediment.

The production index increases with maturity from values near zero for

-7-

immature organic matter to maximum values of 0.30 during the late stages of oil generation. Anomalously high values indicate the presence of free oil. The hydrocarbon yield is an indication of the potential yield of hydrocarbons from the source rock at optimum maturity and is a measure of the quality of the source rock. A value of 0 to 2000 ppm of hydrocarbon in the rock characterises a poor source rock, 2000 to 6000 ppm fair, 6000 to 20,000 ppm good and above 20,000 ppm very good.

The pyrolysis data presented in Table 5 and Figures 5 and 6 confirm that the best hydrocarbon source rocks occur between 3450 and 3750 metres. The high potential yields for this interval indicate that its lateral equivalents at greater depths off-structure will have acted as significant hydrocarbon sources. The anomalously high production indices of several of the shallower samples suggest the presence of migrant hydrocarbons.

B.5 Visual Examination of Kerogen

Visual examination of the palynological preparations showed that between 1500 and 3500 metres samples yield kerogens dominated by inertinite and, to a lesser degree, vitrinite, both humic materials with variable gas-generating potential. Oil-prone sapropelic organic matter is more abundant in the interval 3500 to 3650 metres. Samples between 3650 metres and T.D. contain approximately equal amounts of inertinite and vitrinite with subordinate sapropel.

ROBERTSON

-8-

C. INVESTIGATION OF LOWER CRETACEOUS RESIDUAL OIL

Significant quantities of an apparently dead residual oil were observed in cuttings samples (from the Lower Cretaceous. This material was investigated through cold pentane extraction followed by gas chromatography of the total extracts. Figure 9 shows 3 chromatograms which are characteristic of the interval as a whole. The distributions are bimodal with maxima in the gasoline range and at \underline{n} -C₁₆. This distinctive distribution appears at 3350 metres and extends to 3500 metres i.e. ranges from the top of the Upper Jurassic into the Lower Cretaceous.

The isoprenoid hydrocarbons are generally present in minor amounts only, resulting in unusually low pristane/ \underline{n} -C₁₇ and phytane/ \underline{n} -C₁₈ ratios, eg. both less than 0.1 in one instance. The pristane/phytane ratios themselves are not abnormal.

Assuming that the distributions are natural, there are at least two possible explanations for these observations. Either the distributions represent a mixture of a heavy dead residual oil and a heavy gas condensate, or else the heavy oil and condensate are the product of **a** source rock in the earliest stage of maturity.

-9-

CONCLUSIONS

III

1. Oil-prone organic matter in the Norsk Hydro 15/5-1 well is mature below approximately 2300 metres.

 Gas-prone organic matter is mature below approximately 3500 metres.
 The Cretaceous and Tertiary sediments above 3490 metres are too immature and too organically lean to source significant quantities of hydrocarbons.

4. The Middle and Upper Jurassic shales and coals between 3490 and 3750 metres are good present oil and/or gas sources and will have even greater potential at depth off-structure.

AIRSPACE GASEOUS HYDROCARBON ANALYSIS DATA

¢

	1					T	NORTH SI	
DEPTH	RELA		OUS HYDR NDANCES (I	DCARBON COMPO PER CENT)	NENT	TOTAL ABUND -	TOTAL C ₂ · C ₄	RATIC i-Butano
(Metres)	C ₁	с ₂	с ₃	i - C ₄	n - C ₄	ANCE (ppm)	(Per Cent)	
1500	_	-		-	-	-	_	-
1550	100	*	*	*	*	18200	*	*
1600	100	*	*	*	*	17800	*	*
1650	100	*	*	*	*	15620	*	*
1700	100	*	*	*	*	13080	*	*
1750		-	-	-	-	-	-	-
1800	100	*	*	*	*	7920	*	*
1850	-	-	-	. -	-	-	-	-
1900	100	*	*	*	*	1224	*	*
1950	-	-	-	-	-	-	-	-
2000	100	*	*	*	*	1512	*	*
2050	100	*	*	*	*	780	*	*
2100	100	*	*	*	*	1080	*	*
2150	76	11	13	*	*	4540	24	*
2200	75	10	15	tr	tr	6009	25	*
2250	100	*	*	*	*	5160	*	*
2300	68	13	19	*	*	8627	32	*
2350	64	15	*	21	*	497	36	*
2375	*	tr	*	tr	*	*	*	*
2400	56	19	18	3.5	3.5	4892	44	1.0
2450	91	5	4	* .	*	1568	9	*
2500	77	10	10	1.5	1.5	2826	23	1.0
2550	15	19	45	21	*	808	85	*
2600	-	-	-		-	-	-	-
2650	81	9	8	1.5	1.5	657	19	1.0
2700	99	0.5	0.5	*	tr	264	1	*
2750	99	0.5	0.5	*	tr	98	1	*

NOTE: TOTAL GASEOUS HYDROCARBON ABUNDANCE VALUES ARE EXPRESSED AS VOLUME OF HYDROCARBON GASES RELATIVE TO VOLUME OF AIRSPACE.

AIRSPACE GASEOUS HYDROCARBON ANALYSIS DATA

COMPANY: NORSK HYDRO

.

WELL: 15/5-1

LOCATION: NORWEGIAN NORTH SEA

DEPTH	RELA		OUS HYDR(NDANCES (I	DCARBON COMPO PER CENT)	NENT	TOTAL ABUND -	TOTAL	RATIO i - Butane /
(Metres)	C ₁	C ₂	с _з	i - C ₄	n - C ₄	ANCE (ppm)	(Per Cent)	n - Butane
2800	99	1	tr	*	tr	361	1	*
2850	6	5	52	7	30	1962	94	0.23
2900	36	2	33	· 7	22	193	64	0.32
2950	29	tr	19	tr	52	41	71	*
3000	100	*	*	*	*	137	*	*
3050	90	3	7	*	*	170	10	*
3100	53	4.	43	*	*	181	47	*
3150	74	7	19	* *	*	129	16	*
3200	25	tr	30	8	37	165	75	0.22
3250	51	5	27	*	17	75	49	*
3300	66	32	2	*	tr	1821	34	*
3350	100	tr	*	*	*	144	*	*
3400	93	7	*	*	*	732	7	*
3450	94	6	*	*	*	898	6	*
3500	25	18	43	3	21	42770	75	0.14
3525	49	20	22	1.5	7.5	30460 _.	51	0.20
3550	22	16	38	5	19	46340	88	0.26
3600	42	24	24	2	8	86100	58	0.25
3650	69	21	9	*	1	26320	31	*
3700	78	16	4	0.5	0.5	205500	21	1.0
3750	61	. 19	13	2	5	179000	39	0.4
						~		
				•				

NOTE: TOTAL GASEOUS HYDROCARBON ABUNDANCE VALUES ARE EXPRESSED AS VOLUME OF HYDROCARBON GASES RELATIVE TO VOLUME OF AIRSPACE.

GASOLINE HYDROCARBON ANALYSIS DATA

DEPTH: METRES	1500	2050	2400	2600	2900	3350	345
GASOLINE HYDROCARBON COMPONENTS	REL	ATIVE GAS		ROCARBON (PER CENT)			
i - BUTANE	*	Tr	*	Tr	*	*	*
<u>n</u> - BUTANE	*	Tr	*	Tr	*	*	*
<u>i</u> - PENTANE	*	5	*	*	*	*	*
<u>n</u> - PENTANE	*	9	Tr	Tr	*	*	*
2,2 · DIMETHYL BUTANE	*	*	*	Tr	*	*	*
CYCLOPENTANE	*	*	*	Tr	*	*	*
2,3 - DIMETHYL BUTANE	*	*	*	*	*	*	*
2 - METHYL PENTANE	*	3	*	Tr	*	*	*
3 - METHYL PENTANE	*	*	*	Tr	*	*	*
<u>n</u> - HEXANE	7	7	*	Tr	*	*	*
METHYL CYCLOPENTANE	11	*	*	*	*	*	*
2,2 - DIMETHYL PENTANE	*	*	*	*	*	*	*
2,4 - DIMETHYL PENTANE	*	*	*	*	*	*	*
BENZENE	*	3	*	Tr	*	10	87
CYCLOHEXANE	*	7	*	Tr	*	*	*
3,3 - DIMETHYL PENTANE	*	*	*	*	*	*	*
2 - METHYL HEXANE	15	4	*	*	*	*	*
1,1 - DIMETHYL CYCLOPENTANE	*	*	*	*	*	*	*
3 - METHYL HEXANE	33	13	*	Tr	*	*	*
1, CIS - 3 - DIMETHYL CYCLOPENTANE	*	*	*	*	*	*	*
1, TRANS - 3 - DIMETHYL CYCLOPENTANE	*	*	*	*	*	*	*
1, TRANS - 2 - DIMETHYL CYCLOPENTANE	*	3	*	*	*	*	*
3 - ETHYL PENTANE	14	4	*	*	*	20	7
<u>n</u> - HEPTANE	*	8	Tr	Tr	*	35	*
1, CIS - 2 - DIMETHYL CYCLOPENTANE	*	3	*	*	*	*	*
METHYL CYCLOHEXANE	20	7	*	*	*	15	Ğ
ETHYL CYCLOPENTANE	*	*	Tr	Tr	*	*	*
TOLUENE	*	6	Tr	Tr	*	20	*
TOTAL ABUNDANCE (PPB)	50	1200	10	20	< 5	20	42
ORGANIC CARBON (PER CENT)	2.52	0.72	0.61	0.49	0.24	0.33	0.5

NOTE: TOTAL GASOLINE ABUNDANCE VALUES ARE EXPRESSED AS WEIGHT OF GAS RELATIVE TO WEIGHT OF WET ROCK.

TABLE 2 (Cont'd.)

GASOLINE HYDROCARBON ANALYSIS DATA

COMPANY: NORSK HYDRO	WEL	L: 15/5·	-1 '	. 1	LOCATION:	NORWEGIA NORTH SH	
DEPTH:	3500	3525	3550	.3600	3650	3700	3750
GASOLINE HYDROCARBON COMPONENTS	REL	ATIVE GAS		ROCARBON (PER CENT)		NT ABUND	ANCES
<u>i</u> -BUTANE	4	7	9	Tr	Tr	Tr	Tr
<u>n</u> - BUTANE	6	13	14	Tr	Tr	Tr	Tr
<u>i</u> -PENTANE	7	7	11	19	20	19	15
<u>n</u> - PENTANE	17	16	21	16	28	20	23
2,2 - DIMETHYL BUTANE	*	*	*	*	*	*	*
CYCLOPENTANE	2	2	2	2	2	2	2
2,3 - DIMETHYL BUTANE	*	*	*	*	*	*	*
2 - METHYL PENTANE	4	4	5	6	7	7	6
3 - METHYL PENTANE	3	3	3	4	2	2	3
<u>n</u> - HEXANE	9	7	8	9 [.]	6	6	. 8
METHYL CYCLOPENTANE	6	6	5	8	3	4	7
2,2 - DIMETHYL PENTANE	*	2	1	3	3	3	2
2,4 - DIMETHYL PENTANE	*	1	1	5	4	5	4
BENZENE	3	2	1	3	12	11	5
CYCLOHEXANE	4	3	3	4	3	2	4
3,3 - DIMETHYL PENTANE		2	1	2	1	1	2
2 - METHYL HEXANE	4	3	3	*	*	*	*
1,1 - DIMETHYL CYCLOPENTANE	*	*	*	*	*	*	*
3 - METHYL HEXANE	4	4	3	3	1	2	3
1, CIS - 3 - DIMETHYL CYCLOPENTANE	*	*	*	*	*	*	*
1, TRANS - 3 - DIMETHYL CYCLOPENTANE	*	*	*	*	*	*	*
1, TRANS - 2 - DIMETHYL CYCLOPENTANE	*	*	*	*	*	*	*
3 - ETHYL PENTANE	3	1	1	2	<1	<1	<2
<u>n</u> - HEPTANE	7	6	Tr	4	2	3	4
1, CIS - 2 - DIMETHYL CYCLOPENTANE	*	*	*	*	*	*	*
METHYL CYCLOHEXANE	8	6	3	2	3 .	4	2
ETHYL CYCLOPENTANE	2	2	4	1	<1	<1	<1
TOLUENE	7	3	1	4	5	7	2
TOTAL ABUNDANCE (PPB)	235	1582	3062	26758	35891	1912	20636
ORGANIC CARBON (PER CENT)	4.05	8.72	9.05	8.51	16.77	10.97	8.04
GASOLINE ABUNDANCE AT 1 PER CENT ORGANIC CARBON	58	187	338	3148	2140	174	2567

NOTE: TOTAL GASOLINE ABUNDANCE VALUES ARE EXPRESSED AS WEIGHT OF GAS RELATIVE TO WEIGHT OF WET ROCK.

TABLE 3

MATURITY EVALUATION DATA

COMPANY: NORSK HYDRO

WELL:15/5-1 LOCATION:

NORWEGIAN NORTH SEA.

SAMPLE DEPTH METRES OR NOTATION	SAMPLE TYPE	GENERALISED LITHOLOGY	SPORE COLOUR INDEX (I-10)	VITRINITE REFLECTIVITY IN OIL, R ov %	FLUORESCENT MATERIAL IN REFLECTED BLUE LIGHT
1500	Ctgs	Med-dk gy/lt ol-gy sl calc sh	3-3.5	0.36 (21)	Dull yellow frags
1650	11	01-gy slty sh	3	0.35 (1)	Orng-brn/yel-brn spores
1800	FT	01-gy/dk gn-gy sh	3.5	$\begin{array}{c} 0.32 (2) \\ \underline{0.39} (10) \\ \overline{0.56} (1) \end{array}$	*
1950	11	01-gy/gn-gy sh	3.5	$\frac{0.39}{0.51}$ (3)	Dull golden-brn spores
2100	11	Ditto + med gy sh	3.5	0.36 (21)	Yel-orng spores
2250	11	Med gy/gn-gy sh	3-3.5	$\begin{array}{c} 0.36 \\ 0.50 \\ 0.65 \\ (2) \end{array}$	Ditto
2375	11	Ditto	4	0.36 (13)	Ditto
2500	11	Med gy sh + crs snd	?3	?0.45 (24)	Yel-orng spores + algal frags
2600	11	Med-dk gy/dk gn-gy sh	4	$\frac{0.40(4)}{0.66}$ (6)	Yellow algal frags
2650	11	Ditto	?3	?0.36 (1)	Dull orng-yel frags
2900	11	Wht/pnk-gy chk + mnr sh	4	?0.56(2)	*
3150	11	Lt gy/med gy marl + mnr sh	?4	?0.34 (4) ?0.56 (6)	Yel/yel-brn algal frags
3350	11	What lt gy chk + mnr sh	4	*	*
3450	11	Varicoloured sh	_	*	Yellow frags
3489	SWC	-	4	0.40(13)	Golden-yel spores
3493	1 1	-	*	*	Yellow frags
3525	Ctgs	Dk gy/ol-blk sh	4.5	0.46 (8)	Yel/yel-orng algal frags
3550	11	Dk gy sh	4.5	0.48 (3)	Yel/yel-orng spores
3600	11	01-blk slty sh	_	*	Ditto
3610	SWC		4.5	0.32 (5) 0.43 (9) 0.55 (5)	Ditto
3650	Ctgs	Dk gyslty sh/ coal		0.69 (13)	Ditto
				· · · · · · · · · · · · · · · · · · ·	

TABLE 3 (cont'd)

MATURITY EVALUATION DATA

COMPANY: NORSK HYDRO WELL : 15/5-1 LOCATION: NORWEGIAN NORTH SEA.

¢,

SAMPLE DEPTH OR NOTATION	SAMPLE TYPE	GENERALISED LITHOLOGY	SPORE COLOUR INDEX (1-10)	VITRINITE REFLECTIVITY IN OIL, R av %	FLUORESCENT MATERIAL IN REFLECTED BLUE LIGHT
3655	SWC	_	5	-	_
3700	Ctgs	Brn-gy slty sh/coal + sst	_	0.66 (10)	Yel/yel-orng spores
3705	SWC	_	4.5	0.57 (5)	Yellow spores
3745	. H	-	*	*	*
3750	Ctgs	Brn-gy slty sh/coal + sst	-	0.65 (18)	Dull yel/yel-orng spores
3752.5	SWC	-	-	0.57 (9)	Yellow spores
		:			
			•		
		· · ·			
					•

I

I

COMPANY: NORSK HYDRO WELL: 15/5-1 , LOCATION: NORWEGIAN NORTH SEA

			r			_		
SAMPLE DEPTH (METRES	SAMPLE	ANALYSED	ORGANIC	TOTAL	EXTRACT % OF	HYDRO- -CARBONS	HYDRO- CARBONS	TOTAL ALKANES
OR	TYPE	LITHOLOGY	CARBON %	EXTRACT P.P.M.	ORGANIC	P.P.M. OF	% OF	%HYDRO-
NOTATION		· · · · · · · · · · · · · · · · · · ·	OF ROCK	F.F.M.	CARBON	ROCK	EXTRACT	CARBONS
1500	Ctgs	Med-dk gy glauc, slty sl calc sh+40% lt ol- gy slty sl calc sh	2.52	976	3.8	170	17	70
1550	11	01-gy s1 calc slty sh +40% med-dk gy slty glauc sh	2.47					
1600	Ħ	Ol-gy/med-dk gy sl calc slty sh	2.02					
1650	11	Ol-gy slty sh+drilling mud	2.33	2300	9.8	280	12	71
1700	11	Gn-gy sh+40% ol-gy sh+mnr drilling mud+ slt	1.20					
1750	Ħ	01-gy/dk gn-gy sh+mnr drilling mud+slt	0.94					
1800	11	Ditto+ditto+ditto	0.84	1267	15.1	140	11	86
1850	11	Lt ol-gy/ol-gy sh+10% glauc sst	0.83					
1900	11	01-gy/dk gn-gy sh+ mnr yel-gy/brn-gy/dk gy sh	0.71					
1950		01-gy sh+10% gn-gy sh +mnr 1t ol-gy sst/dk gy snd	0.46	619	13.2	215	35	57
2000	11	Dk gn-gy sh+mnr ol-gy/ dk gy sh+mnr 1t ol-gy sst	0.76					
2050	11	Dk gn-gy sh+10% ol-gy sh+10% gy-red sh+mnr 1t ol-gy/brn-gy/gn-gy sh	0.72					
2100	11	01-gy sh+30% med gy sh+10% gy-red/gn-gy/ lt ol-gy sh	0.75	613	8.2	255	42	70
2150	11	Med-dk gy sh+20% gy- red/gn-gy/lt ol-gy/ brn-gy sh+mnr pyrite	0.81					
2200	11	Ditto+ditto+ditto	0.63					
2250	11	Med gy sh+30% gn-gy sh+10% 1t ol-gy/gy- red/brn-gy sh+mnr drilling mud+mnr pyrite+mnr wht chk	0.56					

.

l

.

COMPANY: NORSK HYDRO WELL: 15/5-1 LOCATION: NORWEGIAN NORTH SEA

ſ	SAMPLE DEPTH METRES OR NOTATION	SAMPLE TYPE	ANALYSED LI THOLOGY	ORGANIC CARBON % OF ROCK	TOTAL EXTRACT	EXTRACT % OF ORGANIC CARBON	HYDRO- -CARBONS P.P.M. OF ROCK	HYDRO- CARBONS % OF	TOTAL ALKANES %HYDRO- CARBONS
	2300	Ctgs	Vari-coloured shales	0.60	873	14.5	315	EXTRACT 36	69
	2350	11	Med gy sh+30% v lt gy sltst+mnr lt ol- gy/gy-red sh	0.53					
	2375	. u	Med gy fe stained sh+ 20% gn-gy sh+mnr lt ol-gy/gy-red/lt brn sh	0.43					
	2400	11	Med gy sh+mnr lt ol- gy/gy-red/gn-gy sh+ 20% clean crs snd	0.61					
	2450	11	Clean crs snd+10% med gy/gn-gy/red- brn sh	0.20	- -				
	2500	11	Med gy sh+15% clean crs snd+mnr gn-gy sh	0.61	1064	17.4	180	17	81
	2550	11	Med-crs snd/sst+20% med gy/gn-gy/brn-gy sh	0.29					
	2600	11	Med-dk gy/dk gn-gy sh +mnr crs snd+mnr brn-gy sltst+mnr lt ol-gy sh	0.49					
	2650	11	Ditto+ditto+ditto+ ditto	0.21					-
	2700	11	Med gy sh+10% dk gy sh+mnr gy-red/gn-gy sh	0.31	495	15.9	270	55	53
	2750	11	V lt/lt gy chk+15% med gy sh+occ pyr	0.24					
	2800	11	Ditto+ditto	0.24		:			
	2850	n	Wht-v lt gy/pnk-gy/ pale red chk+20% marl+10% med-dk gy sh	0.22					
	2900	11	Ditto+ditto+ditto	0.24					
	2950	11	Ditto+ditto+ditto	0.17					
	3000	11	Ditto+ditto+ditto	0.22					
	3050	11	Lt gy/med gy marl+ 10% pale red marl+ 5% med-dk gy sh	0.31				*	
	3100	11	Ditto+ditto+ditto	0.39	1068	27.4	415	39	33

I

.

COMPANY: NORSK HYDRO WELL: 15/5-1, LOCATION: NORWEGIAN NORTH SEA

ſ	SAMPLE DEPTH (METRES OR	SAMPLE TYPE	ANALYSED LITHOLOGY	ORGANIC CARBON %	TOTAL EXTRACT	EXTRACT % OF ORGANIC	HYDRO- -CARBONS P.P.M. OF	HYDRO- CARBONS % OF	TOTAL ALKANES %HYDRO-
	NOTATION	ITE		OF ROCK	P.P.M.	CARBON	ROCK	EXTRACT	CARBONS
	3150	Ctgs	Lt gy/med gy marl+ 10% pale red marl+5% med-dk gy sh	0.18	-				
	3200	11	V lt gy chk+30% med- gy/gy-red calc sh	0.33					
	3250	¥1	Ditto+20% ditto	0.17					
	3300	11	Wht- v lt gy chk+15% med gy calc sh+mnr gy-red mar1	0.32	334	10	245	74	39
	3350	11	Ditto+ditto+ditto	0.33					
	3400	11	Ditto+ditto+ditto+ drilling mud	0.49	-				
	3450	11	Lt gy/med gy/dk gy/ gy red/gn-gy varie- gated sh	0.58	2760	47.5	220	8	23
	3500	tt	Dk gy sh+10% gy-red/ med gy sh	4.05	6415	15.8	2510	39	29
	3525	11	Dk gy/ol-blk sh	8.72	19105	21.9	6730	35	44
I	3550	11	Ditto	9.05	24230	26.8	5670	23	44
	3600	H .	Ol-blk slty sh, occ glauc and pyr+10% yel gy/gy-red sst	8.51	17705	20.8	7440	42	14
	3650	11	Brn-gy/dk gy slty sh/ coal+mnr yel-gy sst	16.77	70304	41.9	11250	16	5
	3700	11	Brn-gy slty sh/coal+ 25% v lt gy/lt-ol-gy sst	10.97	14857	12	25 26	17	11
	3750	11	Brn-gy/dk gy slty sh/coal+30% v lt gy/ gy-red/wht sst	8.04	13739	12.4	3435	25	14
		- - -							

.

COMPANY: NORSK HYDRO WELL: 15/5-1 , LOCATION: NORWEGIAN NORTH SEA

								Şindənin dəsinin 2 Per Miller - P
SAMPLE DEPTH METRES	SAMPLE	ANALYSED	ORGANIC CARBON %	TOTAL EXTRACT	EXTRACT % OF	HYDRO- -CARBONS	HYDRO- CARBONS	TOTAL ALKANES
OR NOTATION	TYPE	LITHOLOGY	OF ROCK	P.P.M.	ORGANIC CARBON	P.P.M. OF ROCK	% OF EXTRACT	% HYDRO- CARBONS
		HAND PICKED LITHOLOGIE S						
1500	Ctgs	Lt ol-gy sh	1.81					
1500	11	Med-dk sh	3.73					
1550	11	01-gy sh	2.70					
1550	^т п	Med-dk sh	4.23					
1800	τι	Lt ol-gy sh	1.52					
1800	11	Gn-gy sh	1.03					
2050	11	Gn-gy sh	1.54					
2050	11	Lt brn-gy/lt ol-gy sh	0.72					
2050	11	Dk brn-gy/ol-gy sh	2.01					
2050	11	Gy-red sh	0.18					
2100	TP	Med gy sh	2.19				ar Ar	
2150		Med-dk gy sh	1.81					
2200	11	Ditto	1.95					
2250	11	Gn-gy sh	1.35					
2250	TT	Red-gy sh	0.11	-				
2250	11	Wht chk	0.26					
2375	11	Lt ol-gy sh	1.22					
2375	11	Lt brn/ol-gy sh	2.97			4. 		
2375	11	Gn-gy sh	1.73					
2850	11	Pnk-gy chk	0.13					
2850	11	Med-dk gy sh	0.58					
3150	11	Gy red sh	0.09		:			
3150	11 -	Med-dk gy sh	0.21					
3150	n	Pale red marl	0.09					
3450	11	Med-gy sh	0.19					
3450	п	Gy-red sh	0.24					
3450	11	Dk gy sh	5.67					
3500	11	Dk gy sh	3.88	,				
3525	ч	01-blk sh	8.88					
3550	11	01-blk sh	9.99					
3650	TT	Brn-gy slty sh	3.08					
3750	- 11	Dk gy sh	7.91					
3750		Wht sst	0.12					

ROCK - EVAL. PYROLYSIS DATA

.

COMPANY: NORSK HYDRO

WELL: 15/5-1

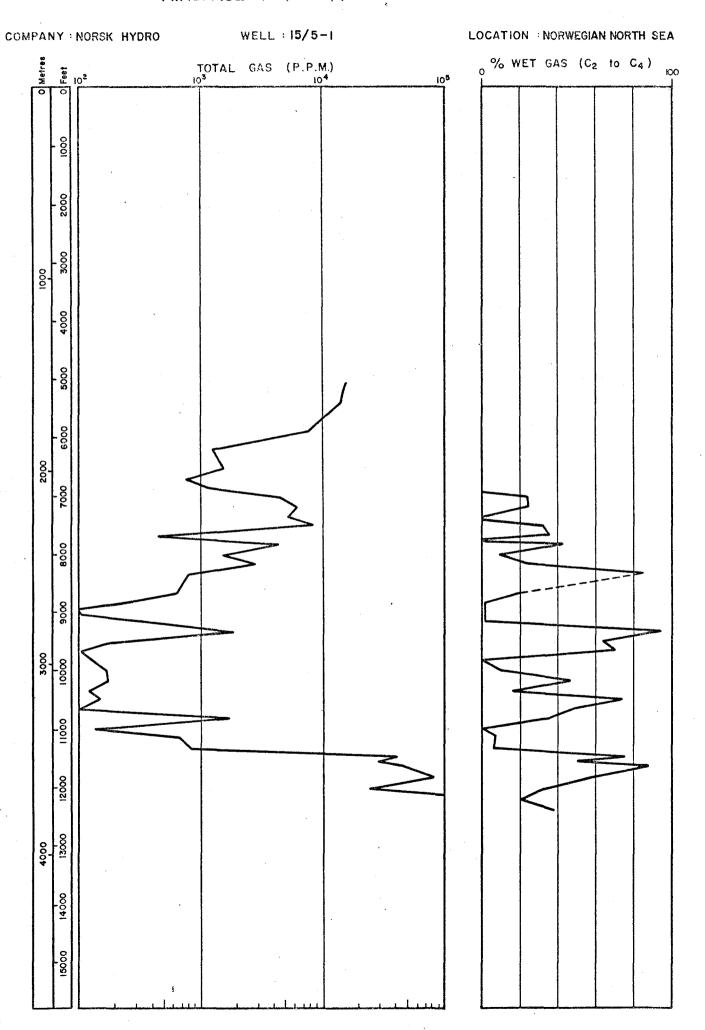
LOCATION: NORWEGIAN NORTH SEA

SAMPLE DEPTH (METRES) OR NOTATION	GENERALISED LITHOLOGY	ORGANIC CARBON (%)	TEMPERATURE (°C)	HYDROGEN INDEX	OXYGEN INDEX	PRODUCTION INDEX	POTENTIAL YIELD (PPM)
1500	Med-dk gy glauc slty sl calc sh+ 40% lt ol-gy slty sl calc sh	2.52	428	50	40	0.04	1300
1650	01-gy slty sh+ drilling mud	2.33	429	42	51	*	1000
1800	01-gy/dk gn-gy sh+mnr drilling mud+slt	0.84	425	23	37	0.20	200
1950	01-gy sh+10% gn- gy sh+mnr lt ol- gy sst/dk gy snd	0.46	425	16	135	0.50	100
2100	Ditto+30% med gy sh+10% gy-red/ gn-gy/1t ol-gy sh	0.72	427	38	59 -	0.12	300
2300	Vari-coloured shales	0.60	413	40	56	0.13	300
2500	Med gy sh+15% clean crs snd+ mnr gn-gy sh	0.61	409	21	50	0.16	100
2700	Ditto+10% dk gy sh+mnr gy-red/ gn-gy sh	0.31	*	*	411	*	*
2850	Wht-v lt gy/pnk- gy/pale red chk+ 20% marl+10% med- dk gy sh	0.22	*	*	313	*	*
3100	Lt gy/med gy marl +10% pale red marl+5% med-dk gy sh		*	• 95	294	0.56	100
3300	Wht - v lt gy chk+15% med gy calc sh+mnr gy- red marl	0.32	*	*	314	*	*
3450	Lt gy/med gy/dk gy/gy-red/gn-gy variegated sh	0.58	437	129	66	*	800
35 25	Dk gy/ol-blk sh	8.72	4 36	415	3	0.19	36 200
3600	Ol-blk slty sh, occ glauc and pyr+10% yel-gy/ gy red sst	8.51	432	228	10	0.12	19400
3650	Brn-gy/dk gyslty sh/coal+mnr yel- gy sst	16.77	437	136	6	0.08	22700

TEMPERATURE (°C) = TEMPERATURE AT MAXIMUM RATE OF PYROLYSIS PRODUCTION INDEX = AN ESTIMATE OF PRESENT HYDROCARBON GENERATING POTENTIAL COMPARED TO THAT AT OPTIMUM MATURITY POTENTIAL YIELD = AN ESTIMATE OF HYDROCARBON PRODUCTION AT OPTIMUM MATURITY

ę

ROCK - EVAL. PYROLYSIS DATA


COMPANY: NORSK HYDRO

WELL: 15/5-1


LOCATION: NORWEGIAN NORTH SEA

SAMPLE DEPTH (METRES) OR NOTATION	GENERALISED LITHOLOGY	ORGANIC CARBON (%)	TEMPERATURE ([°] C)	HYDROGEN INDEX	OXYGEN INDEX	PRODUCTION INDEX	POTENTIAI YIELD (PPM)
3700	Brn-gy slty sh/ coal+25% v lt gy/ lt ol-gy sst	10.97	4 35	244	4	0.05	26800
3750	Brn-gy/dk gy slty sh/coal+30% v lt gy/gy-red/ wht sst	8.04	433	313	4	0.08	25200
					•		
			- 14				
, ,							

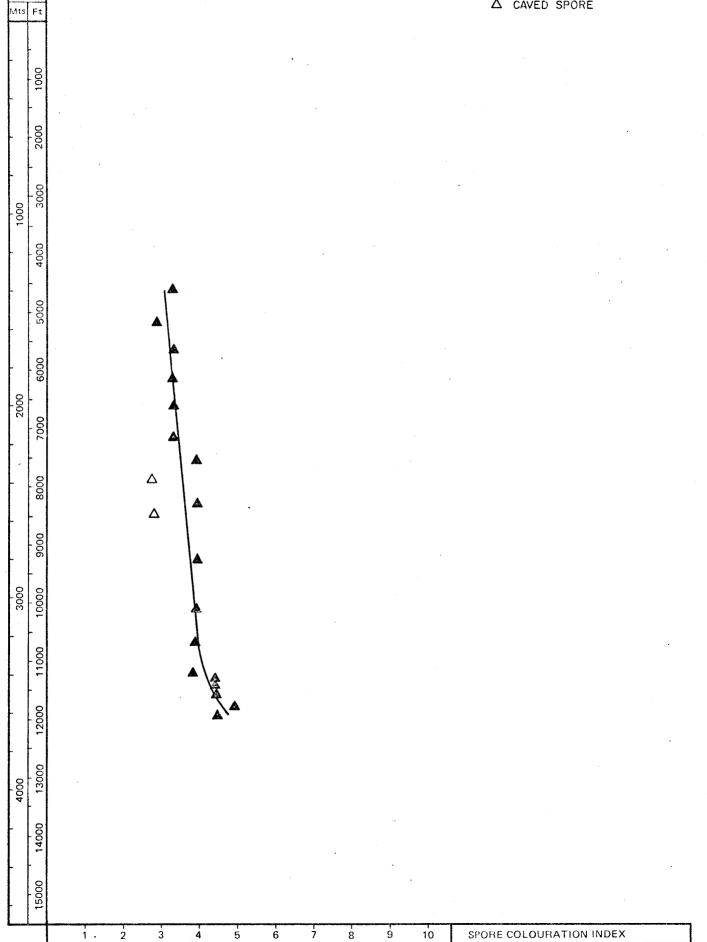
TEMPERATURE (°C) = TEMPERATURE AT MAXIMUM RATE OF PYROLYSIS PRODUCTION INDEX = AN ESTIMATE OF PRESENT HYDROCARBON GENERATING POTENTIAL COMPARED TO THAT AT OPTIMUM MATURITY POTENTIAL YIELD = AN ESTIMATE OF HYDROCARBON PRODUCTION AT OPTIMUM MATURITY

AIRSPACE ($C_1 - C_4$) HYDROCARBONS

FIGURE 3

SPORE COLOURATION INDICES AGAINST DEPTH

COMPANY: NORSK HYDRO


DEPTH

WELL: 15/5-1

LOCATION: NORWEGIAN NORTH SEA

SPORE COLOURATION INDEX

 Δ caved spore

4

THERMAL ALTERATION INDEX (T.A.I.)

3.5

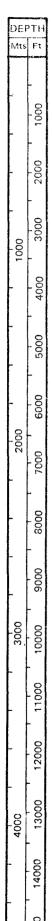
2.5 2.75 3

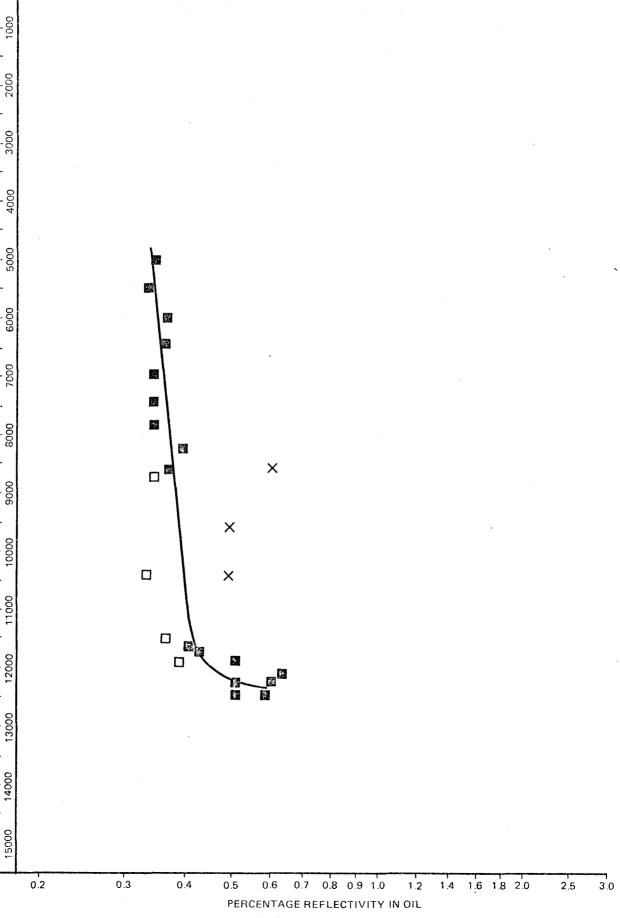
1 1.5 2

2.25

FIGURE 4 VITRINITE REFLECTIVITY AGAINST DEPTH

COMPANY:NORSK HYDRO


WELL:15/5-1

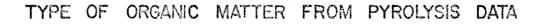

LOCATION:NORWEGIAN NORTH SEA

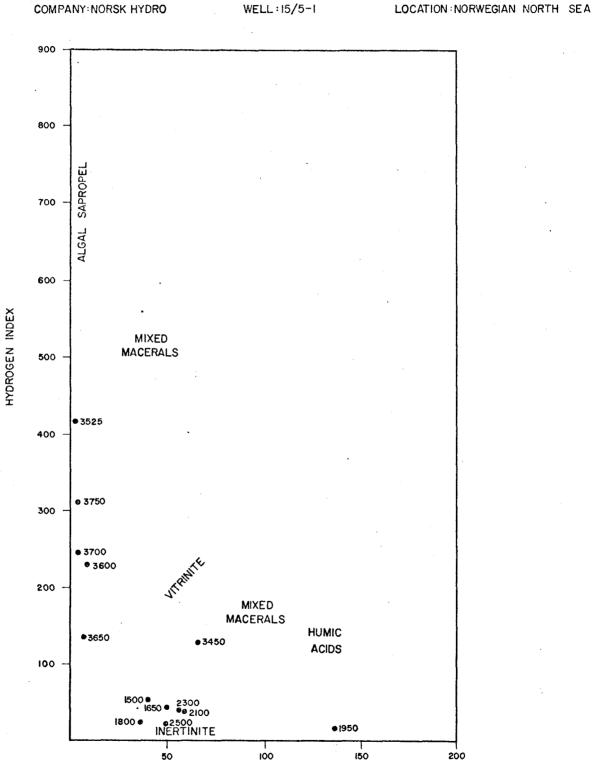
TRUE REFLECTIVITIES

× REWORKED MATERIAL

CAVINGS

FIGURE 5


PYROLYSIS DATA SUMMARY CHART


.

,

COMPANY:NORSK HYDRO WELL: 15/5-1 , LOCATION:NORWEGIAN NORTH SEA

O METRES Deditu	0 FEET OF	T [°] 410 43	°C 30 . 450	HYDROGEN INDEX mgHC/g organic carbon 200 400 600	OXYGEN INDEX my CO ₂ /g organic carbon 50 100 150	PRODUCTION INDEX 0.2 0.4 0.6	POTENTIAL YIELD (ppm HC) 10 ³ 10 ⁴ 10 ⁵
	1000	-					
	2000	•					
1000	3000						
	4000						
	5000					-	
	6000						-
2000	7000						
	8000			P			
	9000				· · · · · · · · · · · · · · · · · · ·		
3000	10000				-		
	11000		_	-			
	12000		-		• • •		
4000	13000						
	14000						
	15000						

OXYGEN INDEX

FIGURE 6

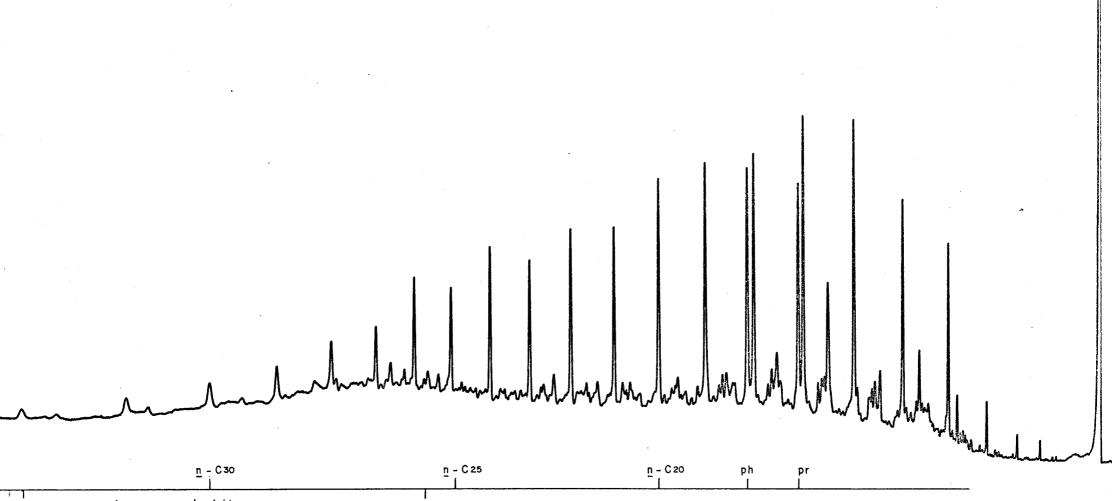

,		Drawing No. Is	94P/264I/4I83 COMPANY:NOR	SK HYDR			GEO		MICAI ELL: 15/5-1	. SUM	MARY	C C	HART		IORWEGIAN NORTH	SFA		FIGURE 7
	> Hd												SAMPLE					
DEPTH	₹ m	LITHOLOGY	ORGAN		RBON	۱ ۲	HYDROC	ARBONS		EXTRACT	% OF	Ţ	LIKELY HYDROCARBON	SOURCE ROCK	DEPTH (Metres	MATURAT	ONLEVEL	SU MM ARY OF
es DE	RATI		% C	OF ROC	к	:	PPM OF	F ROCK		ORGANIC	CARBON		PRODUCT	RICHNESS	AND SAMPLE	OF ORGAN		PRESENT POTENTIAL
o Metr	LS			0.75 1 0	2.5 50 100	50 100) 250	500 100	0 2500 1	25 5	10 20 3	0 50	Gas Gas Coll Coll Coll Coll	Poor Fair Good Very Stain	ТҮРЕ	OIL-PRONE	GAS-PRONE	
15000 14000 12000 11000 10000 9000 8000 7000		Olive - grey/ green - grey/ grey shales Coarse sands/ sandstones and grey shales Grey shales Grey shales Grey shales Dark grey/ pink - grey chalks and marts Dark grey/ olive - black shales Coals, shales and sondstones													 - 1500 - 1650 - 1800 - 1950 - 2100 - 2300 - 2500 - 2500 - 2500 - 3100 - 3300 - 3450 - 3525 - 3600 - 3525 - 3600 - 3750 	MATURE MATURE MATURE	MATURE	Negligible present oil & gas sourcing capability. Traces of migrant hydrocarbons present. Good oil source Oil & gas source
		1:20,000	Lean Fair	Aver	. Above average	Lean	Average	Above av	erage Ga	s-prone \longleftrightarrow	Oil-prone Con	tamin.		Good gas source ≭	S W C Ditch ctgs			

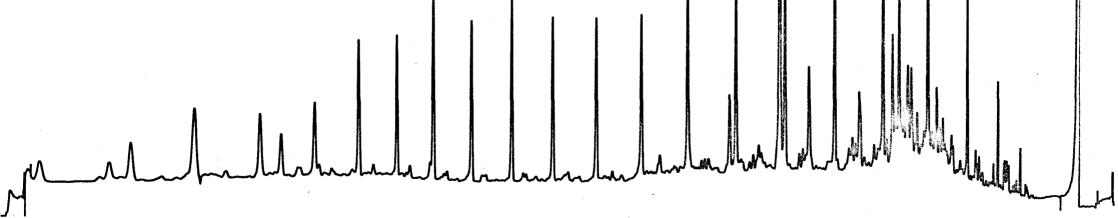
FIGURE 8

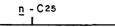
GAS CHROMATOGRAMS OF SATURATE HYDROCARBONS

- a. 3500 m
- ъ. 3700 m
- c. 3750 m

Figure 8a 3500m

steranes and triterpanes





	<u>n</u> - C3	o .	
	1		
steranes	and	triterpanes	

ph

pr

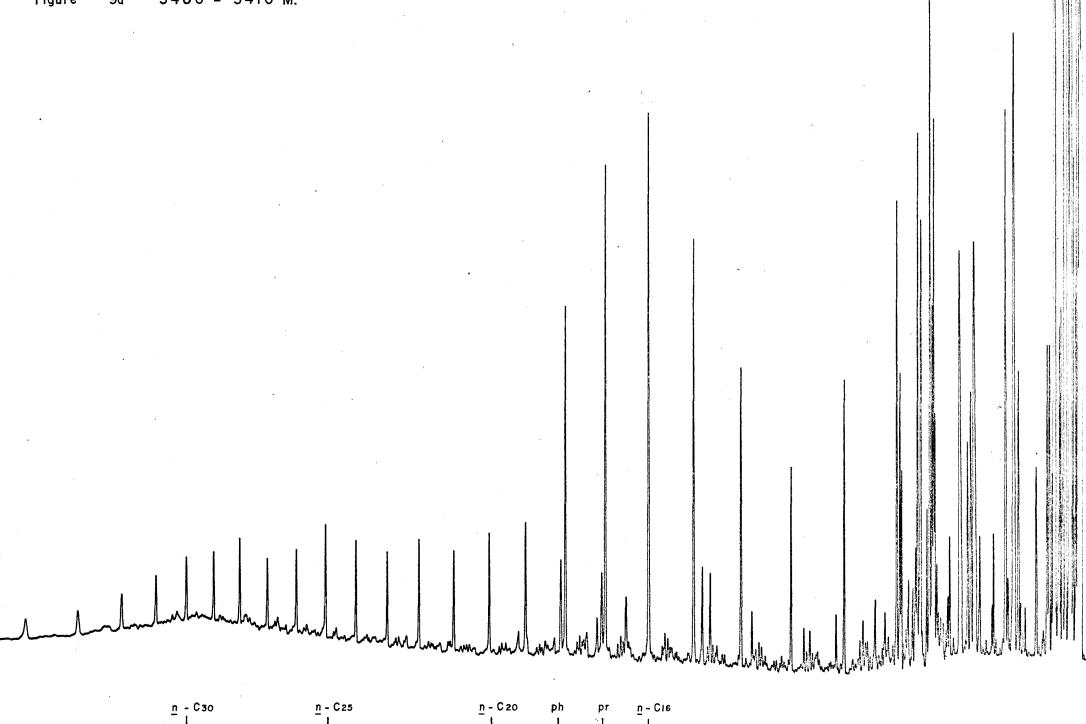
n - C30

steranes and triterpanes

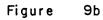
when we have

ph

pr

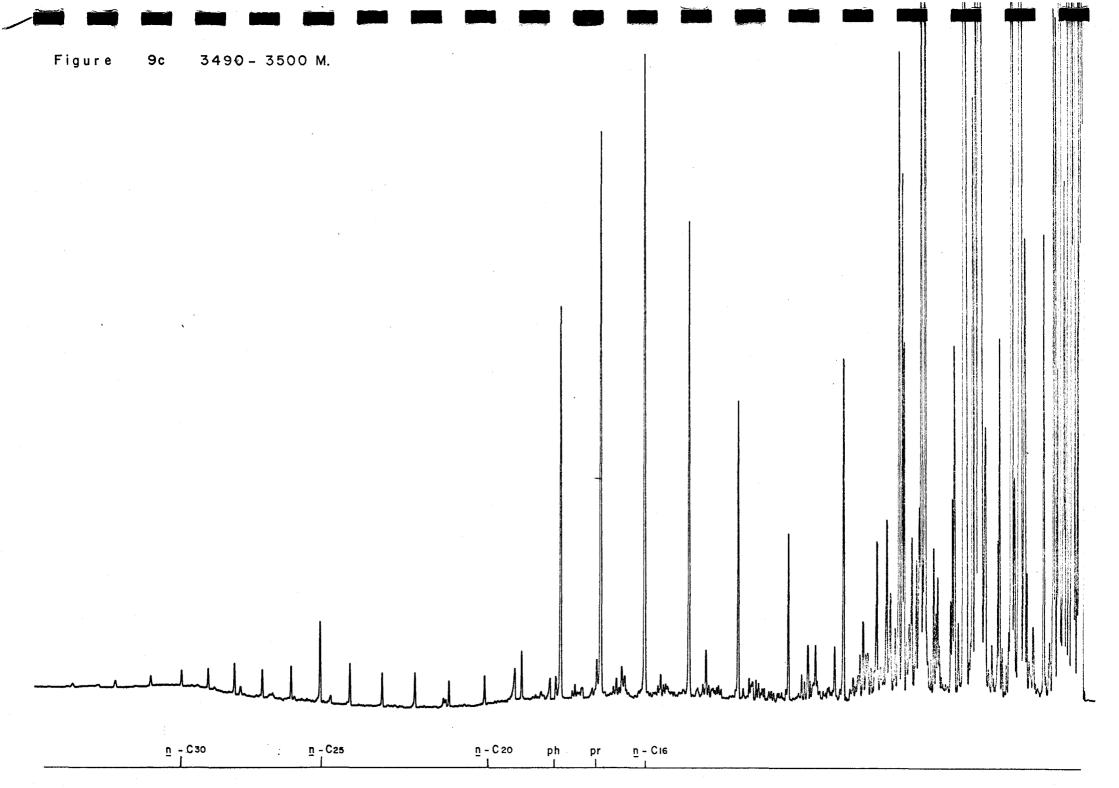

n - C 20

n - C25


FIGURE 9

GAS CHROMATOGRAMS OF PENTANE TOTAL EXTRACTS

- a. 3400-3410 m
- b. 3460-3470 m
- c. 3490-3500 m .



. .

3460 - 3470 M.

<u>n</u> - C 30 <u>n</u> - C25 n - C 20 ph ū-Cie pr

