1.2 Casing Summary

Size	Weight	Grade	Connection	Casing shoe	Comments
inch	lbs/ft			mBDF	
30"	310	X-52	SL-60	421	6 joints including wellhead joint
20"	133	X-56	E60MT	1210	Worked down 1201-1210 m, weight up 177 MT, weight down 138 MT. Wellhead housing confirmed engaged with 25 MT overpull.
9 5/8"	53.5	P-110	AMS	2919	Weight up 225 MT, weight down 200 MT. Seal assembly tested to 414 bar 22/09/97.

1.3 Mud

Section	Details
36" top hole:	Sea water with Bentonite Hi-Vis pills as required 1.20sg KCI mud left in hole for casing run
26" surface hole:	Sea water with Bentonite Hi-Vis/KCI pills as required 1.30sg KCI mud left in hole prior to running 20" casing
12.1/4" intermediate hole:	BARASILC (sodium silicate) mud at 1.25sg
8.1/2" production hole:	Initally BARASILC (sodium silicate) mud at 1.25sg, BARASILC depleted over 8.1/2" section to GEM (Glycol Enhanced Mud)
Abandonment:	1.25sg mud left in hole

SEPOD-1045.E

Page 9 of 51

4.8 Mud and circulating equipment

No.	Date	Lesson Learned	Measures / Comments
70	10/12	Mud treatment: If the centrifuges are not thoroughly flushed, residual Barasilc mud remains will be formed, which may cause damage to the machinery.	Correct flushing procedures to be followed.
69	9/12	Mud treatment: Impreg bits, particularly in time, produce progressively smaller and smaller cuttings to the point where they will go through the finest shaker screens. This leads to an increase in low gravity solids, and a corresponding increase in PV/YP.	Centrifuges to be on board and available for use. Mud company to be aware and take measures accordingly.
67	8/12	Mud treatment: Mud additive (Baranex) caused problems for Palynological analysis of cuttings. The mud additive coated the samples, and could not easily be removed.	The problem seems to be caused by the high rate of addition of this additive at one time
57	1/12	Mud treatment: Daily controlled dilution of new mud into existing Silicate mud allowed easy silicate depletion from the system, resulting in a basic KCI mud.	Ensure full lessons learned report obtained from Baroid to capture all valid points of managing a silicate mud system.
55	30/11	Mud treatment: Flushing the centrifuges result in water being returned to the mud pit system.	To be resolved prior to using a mud system that is sensitive to water additions.
53	27/11	Mud treatment: 210 mesh screens were installed to ensure that a high solids removal efficiency was maintained.	Order sufficient screen so that all shakers can be dressed with 210's.
		Mud treatment: Although the KCI content was maintained within the recommended range of 80 to 100 kg/m3, the cuttings became very soft and sticky below 1600 meters.	The KCI content was increased to 110 kg/m3 to solve the problem.
52	27/11	Pumps: Swab failures more frequent than what would be considered normal with Barasilc mud. Pumps:	Silicate content was increased from 50,000 mg/L to 60,000 mg/L. When the silicate level came down to the programmed level, which was 30,000-50,000 mg/L, the pump problems seemed to disappear.
18	03/09	10 x pump piston heads, 4 x liners and 2 x wash pipe assemblies have been changed out since the silicate mud was introduced to the system for the 12.1/4" pilot hole section.	The first swabs were of a rubber type, but these were changed out with swabs used for oil based muds. These swabs seemed to last longer. On future wells the silicate level should be brought down to the programmed specification immediately if pump problems are experienced to avoid rig down time. No problems were observed with the 7" liners when drilling the Top hole section with seawater. No particular problems were observed with pumps or seals on Spekkhugger and Steinbit wells when using the siliacate mud system. 6 piston heads and samples of the brine and the formulated mud have been returned for independent analysis.
44	22/11	Pits: 120bbl seawater pumped into mud pit 2.	Better communication and awareness required.
42	21/11	Mud treatment: Mud losses over shakers.	Change to coarser shaker screens when circulating cold mud or getting bottoms up after trips. Plan ahead & expect for such an event.
36	22/11	Pumps:	Try to establish mud pump efficiency prior to

SEPOD-1045.E

Page 24 of 51

External Service Report

- 901

April 1997

SIEP 98.6048 EVALUATION OF SOURCE ROCK PROPERTIES OF SAMPLES FROM WELL 6510/02-01, NORWAY

by

C.J. Kommeren (RTS, EPT-HM)

Sponsor: Norske Shell, Risavika

Period of work: February 1998 - April 1998 Investigation: 2354411

BA 98-1047-1 2.3 .7.11 1998 PEOSTREET ر در میرد از این این این میشود و معنور در این این میشود. این از میشود میشود از این از این میشود این میشود این میشود این میشود این میشود این این میشود این این میشود این م میشود این میشود این میشود این این میشود ای

The Copyright of this document is vested in Shell International Exploration and Production B.V., The Hague, The Netherlands. All rights reserved.

Neither the whole or any part of this document may be reproduced, stored in any retrieval system or transmitted in any form or by any means (electronic, mechanical reprographic, recording or otherwise) without the prior consent of the copyright owner.

SHELL INTERNATIONAL EXPLORATION AND PRODUCTION B.V., RESEARCH AND TECHNICAL SERVICES, RIJSWIJK

Further copies can be obtained from the SIEP RTS Library

• • .

1. INTRODUCTION

At the request of EPXT1. Norske Shell, Risavika, Norway, a source rock screening has been carried out on a total of 51 samples from the well 6510/2-1 (Vega), Norway, (reference e-mail 16-02-98, telex order T97439). The suite comprises 44 cutting samples (interval 1224 - 4698m) and 7 core samples (3 from 1827.52 - 1835.9m and 3 from 2127.16 - 2139.6m). The source rock data of a previously set of 16 sidewall samples from the interval 1597.5 - 2288m, which was screened by Rock Eval analysis to determine suitable samples for extract analysis, is also included in this report.

The following sampled intervals were subjected to source rock analysis:

Depth interval	Number of		No. of analyses				
	samples	ТОС	REV	MAC/VR			
1224 - 1287m	2	2	2	1			
1293 - 1314m	4	4	4	2			
1320 - 1527m	8	8	8	4			
1557 - 1649m	3	2	3	1			
1656	1	1	1				
1758 - 1820m	5	5	5	2			
1824 - 1937m	8	5	8	5			
1959 - 2208m	14	10	14	8			
2259 - 4698	22	20	10	4			
Total	67	57	55	27			

The purpose of the investigation was:

- 1. to detect the presence (or absence) of source rocks in the samples,
- 2. to determine the quality of the organic matter, as well as its distribution within the mineral matrix,
- 3. to establish the degree of organic metamorphism (level of maturity).

t. CONCLU® ONS

Confidential

8

The samples from the deepest interval 2236 - 4698m

are contaminated with mud additives and did not reveal any source rock potential.

Depth	Туре	Tr	тос	S1	S2	S 3	Tmax	н	01	PI	VRE	VR	MAC
1224	С		1.1	0.16	1.49	2.99	396	135	272	0.1			х
1287	С		0.7	0.13	0.67	3.3	375	96	471	0.16			
			0.9	0.15	1.08	3.15	386	116	372	0.13			
1293	С		1.8	0.25	2.56	2.72	403	142	151	0.09			
1302	С		4.4	0.92	10.27	2.89	410	233	66	0.08	0.27		х
1308	С		4.4	1.31	11.05	3.06	416	251	70	0.11	0.37		
1314	С		5.2	1.03	13.04	2.98	413	251	57	0.07	0.32		х
			4.0	0.88	9.23	2.91	411	219	86	0.0.)	0.32		
1320	С		4.8	0.9	9.49	3.15	416	198	66	0.09			х
1344	С		1.6	0.41	2.36	2.5	416	148	156	0.15			
1374	С		1.3	0.27	2.17	2.54	420	167	195	0.11			
1407	С		1.2	0.43	2.34	2.28	417	195	190	0.16			
1437	С		1.6	0.67	2.74	3.29	419	171	206	0.2			Х
1467	С		2.1	0.53	2.59	2.3	424	123	110	0.17			
1497	С		2.3	0.6	3.08	2.56	419	134	111	0.16			х
1527	С		1.5	0.27	1.48	2.65	421	99	177	0.15			Х
			2.1	0.51	3.28	2.66	419	154	151	0.15			
1557	С		1.3	0.23	1.58	2.8	405	122	215	0.13			
1597.5	S			0.07	0.48	0.54	530			0.13			
1649	S		11	2.21	28.18	3.04	413	256	28	0.07	0.32	0.33	Х
			6.2	0.84	10.08	2.13	449	189	122	0.11	0.32		
1656	С		0.4	0.12	0.63	1.36	421	158	340	0.16			

· ·

	Depth	Туре	Tr	тос	S 1	S2	S 3	Tmax	н	Ö	PI	VRE	VB	MAC
	1758	c		1.1	0.27	2.29	3.28	424	208	298	0.11	0.51	••••	X
	1800.8	S	DC	0.2	0.3	1.39	0.81	494			0.18			~
	1817.5	S	DC	0.3	0.27	1.56	1.45	516			0.15			
	1818	С	Pi	61.8	6.85	163.88	11.29	429	265	18	0.04		0.48	x
	1820	S	DC	0.2	0.27	1.59	1.48	522			0.15		0.10	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Average (ex. 1818)				0.5	0.2 8	1.71	1.76	489	208	298	0.15	0.51		
	1824	С		26.6	4	42	10.47	431	158	39	0.09	0.63	0.51	х
	1827.52	R		5.5	0.45	13.46	1.35	424	245	25	0.03	0.51		Х
	1831.7	R		2.8	0.27	7.96	1.78	427	284	64	0.03	0.56		X
	1835.9	R		2.2	0.22	5.47	1.46	430	249	66	0.04	0.61		х
	1857	С		4.2	1.1	8.53	5.03	432	203	120	0.11	0.65		Х
	1887	S			0.09	1.57	0.55	465			0.05			
	1929	S			0.14	1.11	2.01	540			0.11			
	1937	S			0.16	1.84	2.8	495			0.08			
Average				8.3	0.80	10.24	3.18	456	228	63	0.07	0.59		
	1959	С		2.8	0.58	4.97	4.91	428	178	175	0.1	0.58	0.45	х
	2018	S			0.17	1.92	1.53	428			0.08			
	2031.3	S			0.25	1.74	0.88	496			0.13			
	2058	С		7.2	1.41	16.02	3.38	428	223	47	0.08	0.58	0.44	Х
	2104	S			0.06	0.94	2.67	503			0.06			
	2127.2	R		68.5	7.47	208.38	5.25	415	304	8	0.03	0.36	0.44	Х
	2132.9	R		65.5	8.31	144.52	6.73	417	221	10	0.05	0.39	0.48	Х
	2134	R		2.1	0.4	4.54	0.48	362	216	23	0.08			Х
	2139.6	R		60.9	6.92	182.4	3.46	422	300	6	0.04	0.48	0.52	Х
	2160	С		7.3	1.4	13.43	3.12	428	184	43	0.09	0.58	0.50	Х
	2160.5	S	DC	0.7	0.99	2	3.11	414	285	444	0.33			
	2163.5	S	DC	2.2	0.37	3.82	0.67	423	103	30	0.09			
	2202	С		19.6	4.31	32.64	8.33	434	167	43	0.12	0.68	0.56	Х
	2208	S			0.12	1.22	0.56	443			0.09			
Average				23.7	2.34	44.18	3.22	432	218	83	0.10	0.52		

)

Depth	Type Tr	тос	S1	S2	S 3	Tmax	HI	01	PI	VRE	VR	MAC	
2259	С	1.5	0.19	2.71	4.51	432	181	301	0.07	0.65		Х	
2272	S		0.13	0.21	0.73	528			0.38				
2288	S		0.12	1.16	1.01	504			0.09				
2319	С	0.2	0.11	0.58	6.42	356	290	3210	0.16				
2418	С	0.2											
2616	С	0.1											
2817	С	0.1											
3018	С	0.2											
3063	С	0.3											
3165	С	0.5											
3366	С	0.3											
3465	С	0.5											
3576	С	0.5											
3678	С	0.3											
3780	С	0.3											
3978	С	0.4											
4074	С	0.9	1.51	1.36	1.9	377	151	211	0.53			Х	
4179	С	0.4	0.76	1	1.5	366	250	375	0.43				
4278	С	0.7	0.93	1.88	2.28	373	269	326	0.33				
4431	С	1.6	2.54	1.28	3.15	375	80	197	0.66			Х	
4566	С	0.8	1.25	1.75	2.15	366	219	269	0.42				
4698	С	0.9	1.17	1.25	2.46	365	139	273	0.48			Х	
		0.5	0.87	1.32	2.61	404	197	645	0.36	0.65			
Cutting	sample					Tmax:	Relative	maturity in	n degrees	Celsius			
Sidewal	I sample					HI:	Hydroge	n Index (s	ource roc	k type)			
Core sa	mple					OI:	Oxygen Index						
Extracted sample with di-Chloromethane							Production Index						
Picked sample							Vitrinite	ent based	on Tmax	(
Total amount of organic carbon (weight percentage)							Measured Vitrinite Reflectance						
Amount	of free hydr	ocarbons (r	ng/g of ro	ck)		MAC:	Maceral	analysis					
Amount	of hydrocarl	bons forme	d by breal	kdown of H	kerogen								

Amount of CO2 evolved during pyrolysis

Average

C: S: R: DC:

Pi TOC:

S1: S2: S3:

1

.

.

contract e

ŝ

========= Depth	======= Sample Type	Comment
======================================	 C	Sample slightly oxidised Contaminated COMMON CEMENT CONTAMINATION WHITE - LIGHT YELLOW FLUORESCENCE
1302.00m (s 189916)	С	Sample slightly oxidised Sample partly oxidised Desmocollinite grades into SOM associated with framboidal pyrite WHITE - LIGHT YELLOW FLUORESCENCE
1314.00m (s 189918)	С	Sample slightly oxidised Desmocollinite grades into SOM associated with framboidal pyrite WHITE - LIGHT YELLOW FLUORESCENCE -
1320.00m (s 189919)	С	Sample slightly oxidised Sample partly oxidised Desmocollinite grades into SOM associated with framboidal pyrite Contaminated RARE CEMENT CONTAMINATION WHITE - LIGHT YELLOW FLUORESCENCE
1437.00m (s 189923)	С	Sample slightly oxidised WHITE - LIGHT YELLOW FLUORESCENCE
1497.00m (s 189925)	С	Sample slightly oxidised Sample partly oxidised Vitrinite grades into (semi-) fusinite WHITE/LIGHT YELLOW - YELLOW (OXIDATION) FLUORESCENCE
1527.00m (s 189926)	С	Sample slightly oxidised Vitrinite grades into (semi-) fusinite LIGHT YELLOW - YELLOW FLUORESCENCE IMMATURE
1649.00m (s 188726)	S	SAND ASSOCIATED WITH FLUORESCING (CELL STRUCTURE) TELINITE
1758.00m (s 189929)	С	Sample slightly oxidised Desmocollinite grades into SOM WHITE - LIGHT YELLOW FLUORESCENCE
1818.00m (s 189930)	С	Microscopically selected sample WHITE - LIGHT YELLOW FLUORESCENCE TELINITE WITH MINERAL INCLUSIONS
1824.00m (s 189931)	С	LOCALLY CANNEL COAL
1827.52m (s 189957)	R	Sample slightly oxidised WHITE - LIGHT YELLOW FLUORESCENCE MINERAL FLUORESCENCE

Figure 2c

Depth	Sample Type	Comment
	=======	
1831.70m (s 189953)	Ê.	Vitrinite grades into (semi-) fusinite WHITE - LIGHT YELLOW FLUORESCENCE
1835.90m (s 189959)	R	Vitrinite grades into (semi-) fusinite WHITE - LIGHT YELLOW FLUORESCENCE
1857.00m (s 189932)	2	WHITE - LIGHT YELLOW FLUORESCENCE
1959.00m (s 189933)	C	WHITE - LIGHT YELLOW FLUORESCENCE
2058.00m (s 189934)	С	Sample slightly oxidised RARE CANNEL COAL FRAGMENTS LIGHT YELLOW FLUORESCING LIPTINES
2127.16m (s 189960)	R	VERY WEAK BROWN PRIMARY FLUORESCING VITRINITE TELINITE WITH MINERAL INCLUSIONS
2132.90m (s 189961)	R.	RARE FLUORINITE; NO FLUORESCENCE TELINITE WITH MINERAL INCLUSIONS
2134.00m (s 189962)	R	Vitrinite grades into (semi-) fusinite YELLOW/BROWN FLUORESCENCE (OXIDATION?)
2139.60m (s 189963)	R	WHITE FLUORESCENCE TELINITE / TELOCOLLINITE ASSOCIATED WITH MINERAL INCLUSIONS
2160.00m (s 189935)	С	LIGHT YELLOW - LIGHT BROWN FLUORESCENCE
2202.00m (s 189936)	С	Sample slightly oxidised PARTLY SPORINITE-RICH WHITE - LIGHT YELLOW FLUORESCENCE
2259.00m (s 189937)	С	LIGHT YELLOW - YELLOW FLUORESCENCE LARGE QUARTZ GRAINS
4074.00m (s 189951)	С	Sample partly oxidised Sample severely oxidised Contaminated FEW CEMENT FRAGMENTS + MINERAL FLUORESCENCE
4431.00m (s 189954)	С	Sample partly oxidised Sample severely oxidised Contaminated FEW MUD ADDITIVE CONTAMINATION (SOLTEX?) COMMON BIT-METAMORPHISM
4698.00m (s 189956)	С	Sample partly oxidised Contaminated FEW MUD ADDITIVE CONTAMINATION (SOLTEX?)

Figure 2d

~

2. ANALYSIS METHOES

a. The **total organic-carbon (TOC)** content is determined by combustion of the hydrochloric acid treated sample in an automatic Leco equipment. The organic-carbon values are reported in weight percent carbon (1% TOC means 1 g of organic carbon in 100 g of sediment).

By this method the amount of non-carbonate organic carbon is determined. In general a cut-off value of 1.0% organic carbon is used to separate source rocks and non-source rocks. In cutting samples and outcrop samples a cut-off value of 0.5% is maintained because of dilution effects in cutting samples and influence of oxidation in outcrop samples. However, the method cannot distinguish between postmature source rocks that were originally hydrogen-rich or hydrogen-poor. During diagenesis, part of the organic matter in the samples has been released (as CO_2 , hydrocarbons, heterocompounds). As a result of this process the organic-carbon content of a postmature source source rock is lower than its original content in the immature stage.

b. The **Rock-Eval II (REV)** is used to calibrate the presence of hydrocarbons (S-1), the hydrocarbon-generation potential (S-2) and the amount of carbon dioxide (S-3) on those samples, of which the organic carbon determination indicated the presence of source-rock potential (Corg. >1.0%). Tmax is the temperature of maximum rate of S-2 hydrocarbon evolution. Hydrogen Index (HI) is a measure of the hydrocarbon generating potential remaining in the kerogen as opposed to that of the whole rock. The Oxygen Index (OI) is the ratio of the released carbon dioxide to organic carbon content and the Production Index (PI) is the ratio of the amount of hydrocarbons released and cracked during pyrolysis. Source-rock typing by Rock-Eval is based on hydrogen index and oxygen index. These two parameters are plotted in a modified Van Krevelen diagram.

Additional information on type and relative maturity may be obtained from the recorded Tmax. However, the type of source rock also influences Tmax. Therefore, the maturity trend is often obscured by changes in source rock type over longer intervals and maturity determination on Tmax alone can only be a very rough estimate.

c. **Incident-light microscopy** has been used to determine the maceral composition of source rocks by means of microscopy, using incident tungsten light with or without crossed nicols and by means of fluorescence microscopy using incident ultraviolet light. The microscopic classification is based on the different maceral association encountered in different source rocks. For each selected sample a semi-quantitative maceral description is given in terms of abundant, common, few and rare, indicating a visual estimation of the total organic and inorganic rock content. A visual percentage estimation is also given.

d. The maturity of source rocks is determined preferably by measuring the reflectance of vitrinite, the results of which are illustrated by histograms. The maturity is indicated in VR (vitrinite reflectance) or VRE (vitrinite reflectance equivalent) values. Reliable vitrinite reflectance data are of major importance in order to establish the maturity windows for hydrocarbon generation. Very important, therefore, are sample preparation and the identification of the suitable macerals. In RTS, vitrinite reflectance is measured by means of a Leitz Orthoplan microscope equipped with a photometer. This equipment is connected to a computer system. By convention, reflectance of telocollinite is used for maturity determination. Reflectance measurements on desmocollinite generally results in too low values and the results of reflectance measurements on telinite are either too low or too high. In the absence of vitrinite, the maturity or vitrinite reflectance equivalent (VRE) is derived mainly from the state of micrinisation of the SOM (Structureless Organic Matter), fluorescence colours of indigenous liptinites/exsudatinite and reflectance measurements carried out on solid hydrocarbons and graptolites. Fluorescence measurements of liptinites, especially Tasmanites- and Botryococcus-type algae can be used as a maturity tool as well.

Comment:

Sand associated with low mature, fluorescing (cell structure) Telinite

Figure 5

_

Reflectance histogram

Country Norway Well 6510 02-01 Depth 1818 m Reference Derrick floor		Sampl Sampl Analy Date	le type le/Order st	Cutting S189930-01 KMR 25-03-1998			
	Mean	Std	Min	Max	Mode	Measurements	
Telinite	0.48	0.04	0.39	0.59	0.48	100	

Comment:

Telinite with some mineral inclusions

1

Confidential

Reflectance histogram

Country Norway Well 6510 02-01 Depth 1824 m Reference Derrick floor		Sample Sample Analys Date	e type e/Order st	Cutting S189931-01 KMR 25-03-1998		
	Mean	Std	Min	Max	Mode	Measurements
Telinite	0.51	0.04	0.44	0.6	0.51	100

Comment:

Figure 7

Ţ

Confidential

Reflectance histogram

Country Norway Well 6510 02-01 Depth 1959 m Reference Derrick floor		Sample type Sample/Order Analyst Date			Cutting S189933-01 KMR 25-03-1998			
	Mean	Std	Min	Max	Mode	Measurements		
Desmocollinite/Telinite	0.45	0.03	0.39	0.5	0.47	80		

Reflectance histogram

Country Norway Well 6510 02-01 Depth 2058 m Reference Derrick floor		Sample type Sample/Order Analyst Date		Cutting S189934-01 KMR 25-03-1998		
	Mean	Std	Min	Max	Mode	Measurements
Desmocollinite/Telinite	0.44	0.04	0.37	0.51	0.44	100

Figure 9

Reflectance histogram

Country Well Depth Reference	Norway 6510 02-01 2127 16 m Derrick floo	r		Sampi Sampi Analy Date	Sample type Sample, Order Analyst Date		60 01 -1998		
			Mean	Std	Min	Max	Mode	Measureme	ents
Telini	te		0.44	0.02	0.4	0.5	().43	102	
N			Ŀ						
	 :	t van							
						: 	5		
				2	. .				
	1								•
•									
		,							
4				m					

Comment:

Telinite with weak brown primary fluorescence + Hydrogen index 300 => suppressed reflectance mineral inclusions

Confidential

Reflectance histogram

CountryNorwayWell6510 02-01Depth2132.9 mReferenceDerrick floor		Sample type Sample/Order Analyst Date		Core S189961-01 KMR 25-03-1998		
	Mean	Std	Min	Max	Mode	Measurements
Telinite	0.48	0.03	0.42	0.55	0.48	55

Comment:

Telinite with abundant fine mineral inclusions

•

Reflectance histogram

Country Well Depth Reference	Norway 6510 02-01 2139.6 m Derrick floor		Sampl Sampl Analy: Date	e type e/Order st	Core S189963 01 KMR 25-03-1998		
		Mean	Std	Min	Max	Mode	Measurements
Telini	te/Telocollinite	0.52	0.03	0.43	0.59	0.51	90

Comment:

Telinite / Telocolinite associated with mineral inclusions

Ţ

Reflectance histogram

Country Well Depth Reference	CountryNorwayWell6510 02-01Depth2160 mReferenceDerrick floor		Sample type Sample/Order Analyst Date		Cutting S189935-01 KMR 25-03-1998		
		Mean	Std	Min	Max	Mode	Measurements
Desmocollinite/Telinite		0.5	0.04	0.4	0.58	0.48	100

Comment:

Desmocollinite / Telinite associated with some mineral inclusions

Confidential

Reflectance histogram

CountryNorwayWell6510 02-01Depth2202 mReferenceDerrick floor			Sample type Sample/Order Analyst Date		Cutting S189936 01 KMR 24-03-1998		
		Mean	Std	Min	Max	Mode	Measurements
Desmocollinite/Telinite		0.56	0.03	0.47	0.64	0.56	100

Comment:

Telinite / desmocollinite / telocollinite associated with some mineral matter