WELL 16/11-27

MUD PROGRAM

30" Casing at 430' RKB (36" hole)

Drill the 36" hole with sea water with returns to the sea floor. Pump slugs of thick mud through the hole frequently to clean and seal off surface sands. After the 36" hole has been drilled fill the 36" hole (300 bbls) with thick mud to run the conductor pipe. Mix the thick mud as follows:

Material

Properties

Sea Water Attapulgite 10 to 15 ppb Flosal 2 to 3 ppb Weight 8.8 to 9.5 ppg Viscosity thick Fluid Loss No control

Run shearing device on suction pit (500 to 600 psi) to shear flosal.

20" Casing at 1500'RKB 26" hole

Drill the 26" hole with sea water with returns to the sea floor. Pump slugs of thick mud through the hole as needed to clean. After the 26" hole has been drilled pump 300bbls of 11.0 ppg mud into the hole to make a short trip. Pump the entire surface volume (800 bbls) into the hole to run the 20" casing. Mix the thick mud as above and increase the density to 11.0 ppg with barite.

13 3/8" Casing at 4600'RKB 17 1/2" Hole

Drill the cement, float and shoe with Gyp-Sea water mud with the following properties:

Weight	9.5-9.8
Viscosity	45 to 50 sec/qt
Fluid Loss	[±] 15 cc 30/min.
Ph	9.5 to 10.0
Calcium	800 to 1000 ppm
Oil	5 to 6 %

Drilling 12 1/4" hole

Drill below the 13 3/8" casing with lignosulfonate sea-water mud. Condition the mud to a lignosulfonate mud while nippling up and waiting on cement, condition to the following properties:

Weight	11.0
Viscosity	45 to 50 sec/qt.
Fluid Loss	8 - 10 cc/30 min
Ph	10.0 to 10.5
Solids	15 %
Oil "	4 to 5 8
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

As drilling proceeds, regulate the mud properties as required. It is anticipated that mud weight requirements will not exceed 12.0 ppg.

Run the contrifuge as needed for barite recovery.

Packer Fluid

Condition the mud as follows for testing and packer fluids: Dilute with water and centrifuge as needed and add:

Material		Properties						
Barite Caustic Soda	As needed 1 to 1½ ppb	Weight	12.0 ppg					
Desco	1 to 1_2° ppb	Viscosity Ph	55 to 65 sec/qt.					
Bentonite	As needed	YP	14 to 18					
		Bentonite	το το το το το					

Check bentonite by Methyl-blue test. Add no starch or lignosulfonate to packer fluid for conditioning.

The state of the first the second second state strategy and the second second second second second second second

~2-

1	K 3

PM-633 Ollawa D PBCDUCTACOVISION D conserviced uptrices inc.

FILEN	0			-			P. C	. 80	650.	4 ROUS		XAS 7	770051	713))	76 7 G .	-00			SA	LESM	AN:								<u> </u>	5.ge			
CONT	RACTO	R_0,	DECO		RIGN	0. <u>1</u>	CEA IK	ING	RIG N	MAKE			COLLA	RS: OC	> x 10 1	X LENG	тн						x0. /	D	AY	/ Y	'R.	т.р	DRIL	LERS.	and a second second		
COMP	ANY	PPO	0	FIEL	D				RIG S	SIZE				7	14.	<u>3″</u> ×.	60	0	SPUD			_	/	/	/	·	_				100		
LEAS	E		16/11	WELL N	o. <u>2</u>	'X			PUMP NO. 1 EMSCO									UNDER SURFACE															
STAT	٤			COUNTY	1				PUMF	P NO. 2	0-1350	18"	DRILL	PIPE_	5°	-19.	5#		UNDE	RINT	TER.		/	/				WATE	ER SC	JURCE.			
SEC. T'SHI	P 'RAN	GE							MUD	LIGNA TYPE	9 502F0.	NATE	100L J	OINT_					τοτα	LDE	ртн	 .	/	,		, 		FUEL	501	JRCE			
			1		ושנ ך	5 - 3	2nds	, <u> </u>		· · · · · ·		FEET	1	wτ		1					1			h	Ven			. 1/	. 1			1	
RUN NO.	SIZE	MAKE	TYPE	SERIAL NO.	Reg.	R 0/ 2	r RO 3	DEP OU1	ГН Г	FEET	HOURS	PER HOUR	CUM. HOURS	1000 LBS.	R.P.M.	PUMP	PUMP	SPH	Liner	NO. 2	WI.N	H.L.F.	V P.V.	Y P	Dev.	T	B	d. 8 G	RC			C	Date
1	26	HTC	05C3A	RM264			-	43	5'	116	3.5	33.1	3.5	20	90	1000	634	60	63/4	60	8.9	1	4.	0	K .	Z	2	1	┥╌╽				
ZRR	26*	HIC	OSC3A	RM264	-	-	-	150	5	1102	16	68.9	19.5	35	170	950	h	65	6	65	8.7	TH	ZCA	*	12'	2	4	<u> </u>	┥╌┟				
3	17.5	SEC	5355	436603	24	24	24	30 "	7'	1502	41.	36.6	60.5	15	150	1600	h	60	4	60	9.9	17.4	512	10	2/4 .	3	3	Ι	┥		· · · · · · · · · · · · · · · · · · ·		
4	17/2	HTC	OSCJAJ	26283	22	22	22	459	16'	1589	30.	53.	90.5	25	160	2200	4	60	4	60	10.	11.5	216	10	30	2	2	<u></u>				·	
5	1214	RFED	YT3AJ	NTSOTO	18	18	18	600	3'	1532	36.5	42,	127	35	160	3000	4	50	*	50	11.	6.4	316	9	201	7 '	7	1	 				
6	12/4	SEC	5335	424924	18	18	18	729	15'	1592	-33,	39.2	160	40	170	3000	4	50	4	51	11.	5.8 4	517	9	73/4	7	3	3/16					
7	12/4	SEC	5335	426093	18	18	18	746	6'	171	13,5	12.7	173.5	35	160	3000	u	50		44	11.1	8.4	9 17	12	1	6.	3	Ż					
8	12/4	HTC	OSCIJ	25568	18	18	18	77	99	333	27.5	12.1	201	20	100	3000	H	49	4	49	11.1	7.64	9 18	11	Į	5 :	5	<u></u>					
																				[
"J	,					1									1									1					Π				
														1	1																		
													İ			•• • ••• •••			1														
															†				 							1							
			1						i			(- 						1		[11-												
			1									 		; 	1				† 				+	+					T				
																						_											
			1																														
			1					<u>.</u>																1			·			-			
			1					1						 	1			1					-+-+				†						
	<u>.</u>		1	İ										 .				1	†		\uparrow										··········		
			-		++			 						· ·		-		<u> </u>	<u> </u>		╞╼┼			+									
								 							+						 -			+	-+-		+-		┟╌┨╸		nati		
	•	1	I	1		I	ļ	;						ļ																		1	

DETAILS OF OPERATIONS

MUD_PROGRAM

Depth			Weight	Viscosity	PV	<u>YP</u>	Water Loss	
0 -	1505	ft.	(Sea water	with periodic	spotting	of hig	h viscosity	mud)
1505 -	3007	ft.	9.9	45	12	10	17	
3007 -	4596	ft.	10.	52	16	10	11.	
4596 -	6003	ft.	11.	43	16	9	6.	
6003 -	7295	ft.	lÍ.	45	17	9	5.8	
7295 -	7466	ft.	11.1	49	17	12	8.	
7466 -	7799	ft.	11.1	49	18	11	9.6	

TESTING

The following intervals were perforated and tested.

	7420)' -	738	4 '	1	No	shows
	7355	5'	732	0	. 1	JO	shows
Detailed	test	resi	ults	are	file	eđ	separately.