EXPLORATION PROJECTS SECTION

Best V. O

140.15.3

 $\mathcal{L}_{\mathcal{L}}$

Selen :

Sec. 6

 $T \sim 2$

MLX 13

SWI-W.S

2000

Sec. Ash

6151.773

all him s

12.64.14

15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	and the fact of the fact that the second of the second second second second second second second second second		
	OLIECHEKT	ORATET	
1994 - J.			
	SOURCE ROCK POI	ENTIAL OF THE	
	17/12-3X WELL,	BREAM FIELD,	
	NORWEGIAN SECTOR C	F THE NORTH SEA	
	JOB NO.	RE1408	
	an an tao an Tao an tao an		
	EPS REPORT	NO. 2604A	
	COPY COPY	2 COPIES	
	$\left \right \left \right \left \right \left \mathbf{D} \right \mathbf{C} \right \mathbf{BOA}$	TWRIGHT	
		BERTSON	
			وزور مراويي أوجد والمراجع
and a second stand of the second s	 A standard stand Standard standard stand Standard standard stand Standard standard st Standard standard st Standard standard stand Standard standard stand Standard standard st Standard standard stand Standard standard stand	and the second	

EXPLORATION AND PRODUCTION GROUP

BARTLESVILLE, OKLAHOMA

15 JUN 1984 REGISTRERT OLJELINEKTORATET

SOURCE ROCK POTENTIAL OF THE 17/12-3X WELL, BREAM FIELD, NORWEGIAN SECTOR OF THE NORTH SEA JOB NO. RE1408

> EPS REPORT NO. 2604A COPY 10 OF 12 COPIES

> > BOATWRIGHT ROBERTSON

PHILLIPS PETROLEUM COMPANY EXPLORATION PROJECTS SECTION BARTLESVILLE, OKLAHOMA APRIL, 1984

Source Rock Potential of the 17/12-3X Well, Bream Field, Norwegian North Sea EPS Report No. 2604A

Summary

This study evaluates the source rock potential of the 6430'-8861' interval of the 17/12-3X well from the Bream Field in the Norwegian sector of the North Sea. Two intervals (6627'-7120' and 7393'-7868') are identified as potential sources of oil.

Introduction

The 6430 to 8861 interval of the 17/12-3x well from the Bream Field in the Norwegian North Sea was evaluated for its source rock potential. The interval studied includes a thin slice of the Neocomian rocks overlying a nearly complete Dogger-Malm These Middle to Late Jurassic sediments unconformably sequence. overlie sediments of/questionable Triassic age. Of the 2431' studied, 1402 appear to have limited source rock potential. Two intervals (6627, +7120, and 7393, -7682) with in the portion of the well dated as Volgian/Kimmeridgian appear to be potential source Two other intervals in the well are identified as rocks for oil. potential sources of gas or a gas/gas liquids mix. One of these (7120'-7393') is in the Volgian/Kimmeridgian whereas the other (8201'-8299') is in the portion of the well dated as Bathonian. An interval of rocks (8299'-8548') in the Bathonian appears to have potential as a gas source.

Summary of Potential Source Rocks

Age	Interval	Thickness	Probable Product
Volgian/Kimmeridgian	6627'-7120'	393 '	Oil
Volgian/Kimmeridgian	7120'-7393'	373 '	Gas or a gas/gas
			liquid mix
Volgian/Kimmeridgian	7393'-7682'	28.9 *	Oil
Bathonian	8201'-8299'	98 '	Gas or a gas/gas
			liquid mix
Bathonian	8299'-8548'	249	Gas

Discussion

Albian/Berriasian; 6430'-6627'

The portion of the Albian/Berriasian interval that was sampled $(6430 \cdot -6627 \cdot)$ is not a potential source of hydrocarbons because the kerogen is oxidized. An Ro (vitrinite reflectance) value of 0.77 and a TAI (thermal alteration index) value of 2indicate that the sediments are mature. The TOC (total organic carbon) value (1.0-3.0%) indicates that a rich source of organic carbon is available for catagenesis, but the marginal marine paleoenvironment suggested by the palynoflora (EPS Rept. 1710A) indicates that the organic component was oxidized before it was incorporated into the sediments. The HI (hydrogen index) value is 108.1 and the HC (hydrogen to carbon) ratio is .636.

Volgian/Kimmeridgian: 6627'-7682'

The portion of the well dated as Volgian/Kimmeridgian (6627'-7682') is divided into three units. The first unit (6627'-7120') is considered to be a source of liquid hydrocarbons. The second unit (7120'-7393') is a secondary source for gas or a mixture of gas and gas liquids whereas the third unit (7393'-7682') is a potential source of oil. This latter interval

is second only to the 6627'-7120' interval in its potential for generation of oil.

The Volgian/Kimmeridgian portion (6627'-7682') of the well is thermally mature. The Ro values range between 0.72 and 0.91 and the TAI values are between 2- and 2+. The slightly lower TAI values at the top of this unit are interpreted to be the result of caving from the less mature overlying sediments. The interval is within the prime "window" for generation of hydrocarbons. High TOC values (1.83-7.14%) indicate that a rich source of organic carbon is available for catagenesis.

Three units are delimited on the basis of their kerogen component. The first unit (6627'-7120') contains liquid prone kerogen with HI values ranging between 221.7 and 526.9 and HC ratios falling between 0.709 and 1.164. The unit is an oil source. The second unit (7120'-7395') has a mixed source of kerogen components that produce gas or a mixture of gas and gas condensates. The HI values are between 175.4 and 180-4 and the HC ratios fall between 0.721 and 0.784. A third unit (7393'-7682') has a kerogen component that is oil-prone with its HI values ranging between 225.0 and 408.4 and HC values between 0.759 and 1.015.

Oxfordian/Callovian: 7682'-7836'/ /

3

The portion of the well dated as Oxfordian/Callovian (7682'-7836') is a poor source of hydrocarbons.

The sediments recovered in the Oxfordian/Callovian portion of the well are representative of the highly oxidative marginal marine depositional environment in which the amorphous alginitic fraction of the kerogen was oxidized prior to preservation. The organic fraction has a higher than usual unoxidized terrestrial component and this kerogen could source gas of a mixture of gas/gas liquids. This section is thermally mature with the Ro values between 0.85 and 0.92 and the TAI values from 2+ to 3-.

Both thermal parameters indicate that the sediments encountered are in the prime thermal "window" favorable for hydrocarbon catagenesis. The TOC values indicate that a rich (2.46 to 5.4%) source of organic carbon is preserved in the sediments. The HI values range between 39.1 and 157.9 and the HC ratios range between 0.558 and 0.607.

Bathonian: 7836'-8548'

١.

2.1

EL CA

 $\left\{ \cdot \right\}$

Second Second

1

Three units are delimited in the Bathonian portion (7836'-8548') of the well. The first unit (7836'-8548') is a poor source of hydrocarbons with the limiting factor being the oxidizing character of its marginal marine depositional environment. A second unit (8201'-8299') is a potential source of gas or a gas/gas liquids mixture, whereas the third unit (8299'-8548') is a potential source of gas.

The Bathonian portion of the well is thermally mature. Ro values are from 0.85 to 0.92 and TAI values range between 2+ and 3-. Both thermal parameters indicate that the sediments are within the prime "window" of hydrocarbon generation. TOC values range between 1.42 and 5.90%. An absence of marine palynomorphs suggests that the two high TOC values (13.87% at 7808'-7907' and 15.91 at 8300'-8399') most likely indicate the presence of paralic coals.

The Bathonian (7836'-8540') is subdivided into three units based on the quality of the kerogen contained in the sediments. The first unit (7836'-8201') is liquid-prone with the limiting factor being the oxidizing character of the depositional environment. The HI values for this unit are from 51.7 to 192.9 and the HC ratios range between 0.565 to 0.716. The second unit (8201'-8299') is a potential source of gas or gas and gas condensate. The HI values range from 178.8 to 288.7 and the HC rations range between 0.725 and 0.864. The third unit (8299'-8548') is liquid-prone. The HI values range between 31.0 and 254.7 and the HC ratios range between 0.539 to 0.826.

1

?Triassic: 8548'-8949'

The portion of the well that is interpreted as questionable Triassic in age is divided into two units. The first unit (8548' to 8758') is a marginal source for gas or a mixture of gas and gas liquids. A second unit (8758-8971') is, at best, a lean source of gas. The factor limiting the hydrocarbon potential of the upper unit (8548' to 8758') is the oxidizing character of its marginal marine environment of deposition. The limiting factor in the second unit (8650' to 8861') is an absence of readily available organic carbon.

The sediments found in the ?Triassic portion of the well are thermally mature based on Ro values of 0.85 to 0.91 and TAI values of 2+ to 3-. This interval is well within the prime generation window for hydrocarbons. The depositional environment is interpreted to range from marginal marine at the top of the interval to estuaring at its base with the boundary roughly corresponding to a two part division of the interval. The first unit (8548' to 8758)) is liquid prone with TOC) values classified as fair (0.23-0.88%). The HI values range between 31.0 and 134.6 whereas the HC ratios fall between 0.539 and 0.670. The second unit (8650'-8861/') is gas or gas/liquid mix prone. This unit has low TOC values (0.32+0.59) and therefore is only a lean source of organic carbon available for catagenesis. The HI values range between 86.4 and 121,5 and the HC ratios range between 0.609 and 0.653.

D. C. Boatwright

E. B. Robertson

Approved:

Approved: <u>Approved</u>:

E. A. Stanley

SRP	AP:	PEN	DI)	<u>۲</u>					
REPO	IRT	#	26	5044	ł	APR]		84	
17/1	2	зх	BRE	EAM					
INTE	RP	RET	ED	ΒY	:	Ε.	в.	ROBERTS	ON

	INTE	RVAL								÷				
	(FE	ETI			(LIQUID)	(GA	รา	RO			R	ANGE		
	TOP	BSE	TYPE	TAI	EX. AM.	VI	IN	M	SDEV	MD	MN	- MX	#	TOC
	6430	6529	С	2-	90	10		0.75	.04	0.73	0.69	0.82	17	
	6627	6726	С	2-	80	20		0.77	.04	0.79	0.66	0.81	13	2.25
	6824	6922	C.	2	80	20		0.77	.05	0.66	0.68	0.87	41	2.30
	6922	7021	С	2	80	20		• 0.77	.05	0.82	0.69	0.84	28	5.84
	7021	7120	С	2	60	40		0.72	.04	0.68	0.66	0.79	36	4.32
	7120	7218	C	2	60	40		0.77	.04	0.73	0.71	0.85	35	1.83
	7218	7316	С	2+	50	50		0.83	.04	0.84	0.76	0.90	33	2.03
	7300	7301	S	2	60	40		0.86	.04	0.83	0.81	0.94	31	2.63
	7316	7415	С	2+	60	40		0.85	.05	0.82	0.72	0.93	22	5.12
	7415	7513	С	2+	70	30		0.91	.04	0.95	0.84	0.97	25	7.14
	7480	7481	S	2	60	40		0.83	.03	0.81	0.77	0.89	25	3.76
	7513	7611	С	2+	80	20		0.92	.05	0.98	0.83	0.98	29	4.16
	7550	7551	S		/			0.82	. 02	0.81	0.79	0.86	18	2.46
	7611	7710	С	2+	70 /	30		0.89	.04	0.94	0.82	0.94	22	3.08
	7650	7651	S	2+	/7.0	20	10	0.89	.05	0.85	0.79	0.97	33	5.44
	7710	7808	С	2+	/ 60	40		0.85	□ ,04□	0.83	0,80	0.93	24	2.99
	7740	7741	S	2+ <	(< 60 [40		0.88	.04	0.91(Q.82	0.95	17	5.10
	7750	7751	S	2+		-40	ПΙ				\mathcal{O}		•	
	7760	7761	S	2+	/ ∕€0 ⊔	30-	10	0.90	.06	0.84	-0.80/	/1.00	22	5.40
	7803	7804	S	2+	60	-40		0.93	.24	0.57	-0.76	1.10	2	0.48
	7808	7907	С	2+	03	40		0.91	.05	0.85	0.85	0.98	22	13.87
	7832	7833	S	3-	/ /60/	.40/		0.88	.08	0.55	0.82	0.93	2	5.30
	7845	7846	S	3-	//60	.40	/	0.88	. 01	0.58_	0.87	88.0	2	0.23
	7875	7876	S	2+	/ / 70	20	16-	0.86	/.08	10.51	0.79	\0\.97	5	5.90
•	7907	8005	C	2+	/ / /70	/30	\cap	0.89	/ .04	(Q.87)	0.84	0.95	18	5.16
	7975	7976	S	2+	80	20 /	/ /	'	/					0.21
	8005	8104	С	2+	70	(30 (0,⁄90	.05	/0.96	0.82	0.96	18	2.54
	8104	8202	C	2+	/ / 60	40_		0.91	.05	_0.85	0.85⁄	0.95	5	2.52
	8110	8111	S	2+	03//	40								1.42
	8202	8300	С	2+	80	20-		0.88	.06	0.86	0.76	/0.95	20	2.17
	8300	8399	C	3-	70	30-		0.89	.05	0.83	0.83	0.98	28	/5.91
	8365	8366	S	3+	70	30	·	-0.86	.03	0.83	0.82	0.91	8	8.60
	8399	8497	С	2+	70	30		0.92	.05	0.94	0.84	0.98	16	9.61
	8440	8441	S	2+	70	20	10	0.92	.06	0.98	0.82	0.98	18	0.87
	8497	8596	С	2+	60	30	10	0.85	.04	0.82	0.82	0.93	18	4.28
	8500	8501	S	3-	70	20	10	0.88	.08	0.81	0.81	0.99	6	1.47
	8596	8694	C.	2+	70	20	10	0.91	.04	0.82	0.82	0.93	18	0.82

SRP APPENDIX REPORT # 2604A APRIL 84 17/12 3X BREAM INTERPRETED BY : E. B. ROBERTSON

ij

が利用

同時代

Constant of

A CONTRACTOR

INTERVAL (FEET) TOP BSE	TYPE	TAI	(LIQUID) EX. AM.	(G/ VI	AS) In	RD M	SDEV	MD	R A MN	NGE - MX	#	TOC
8600 8601 8615 8619 8650 8651 8694 8792 8740 8741 8792 8889 8860 8861	S S S C S C S C S	2+ 2+ 3- 3- 3- 2+ 2+	70 60 70 60 70 60 80	30 40 30 30 30 30 40 20	•••• 10	0.89 0.86 0.91 0.91 0.91	.05 .25 .06 .04 .06	0.86 0.64 0.82 0.87 0.98	0.81 0.68 0.82 0.84 0.82	0.97 1.03 0.99 0.98 0.98	11 2 21 27 18	0.27 0.23 0.32 0.79 0.52 0.59 0.20

PYROLYSIS RESULTS FOR SAMPLES FROM THE BREAM 17/12-3X, NORTH SEA, NORWAY

... EPS REPORT #2604A

and a second	مان	د مکم سک ملک ملک ملک ملک مشر سک		الله الله الله الله الله الله الله الله	المراجع			PAGE 1-OF	2
		TOTAL	S1	S2	PRODUCTION	THERMAL	HYDROGEN	HYDROGEN TO CARBON	GEOCHEM
STRAT. SPL INTERVAL TYP	SAMPLE DEPTH FEET	CARBON- WT.%	MG.HC/ G.ROCK	MG.HC/ G.ROCK	INDEX S1/(S1+S2)	INDEX MG/G.	INDEX MG/G.	ATOMIC RATIO	SAMPLE- CODE
CUT	6529 - 6627 6627 - 6726	1.11	•11	1.20 3.74	084	9.91 12.89	108.1	•636	EP83BSY EP83BSZ
CUT	6726-6824 6824-6922	2.06	•22	4.72	•045	10.68 9.57	229.1 221.7	•789 •779	EP83BTA EP83BTB
TU3 CUT	<u>6922-7021</u> <u>7021-7120</u>	5.84 4.32/	.40	30.77	023	12.50	526.9 459.3	1.164	EPE3BTC EPE3BTD
CUT	7120-7218 7218-7316	2.33	•15 •17	3.30 3.56	043	8 • 2 0 8 • 3 7	180.3 175.4	•727	EP&3BTE EP&3BTF
	7316-7415	2•03 5•12	+22		• 03/9	8•37 5•08	205.3	•759	EP8#4APE - EP8#38-TG
SWC	7480	3.76	32			8.51	286.2	-861 -87	EP854APF
SWC CUT	7550	246		-1.13 4.86			45.9	•000 •558 •699	-EP84APG
SWC CUT	7650 7710-7808	2.99	•17	4.52 2.53	•036	3.12 3.68	83.1 84.6	•605 •607	EP84APH EP83BTK
SWC SWC	7740	5 10	3.30	5•65 2•11	• 0 5 4	64.71 2.22	130.4 39.1	•664 •549	- E P 8 4 A P I E P 8 4 A P J
CUT	7808-7907	13.87	•11	$14 \cdot 00$	•229	22.92	77.1	•597 •627	EP84APK EP803BTL
SWC SWC	7845	-23	• 3 4	3.05	- 187	4-92	51.7	- 565	EP824APL EP824APM ED924APM
CÜT SWC	7907-8005	5 16	43	8.83	048	8.33	171.1	• 716	EP823BTM EP824AP0
CUT	8005-8104 8104-8202	2.54	•20	2.51	•074 •057	7 • 87 13 • 89	98.8 192.9	•625 •743	EP8F3BTN EP83BT0
	8110 8202-8308 9300-9308	1.42 2.17	•41	4.10	• 091	28 • 87 	288.7	•864 •725	EP84APP -EP83BTP
SWC	8365	10.91 8.60 9.61	1.00 •50 45	21.90	•057	6.4/ 5.81	254.7	•635 •821	
SWC CUT	<u>8440</u> 8497-8596	<u> </u>	•05 •06 •48		• 182 • 177			•629	EPODIK EP84APR
SWC CUT	8500 8596-8694	1.47	.12	1.69	•066 •145	8.16 14.63	115.0 85.4	•645 •608	EP84APS EP83BTT
SWC.	8600 8615	•27 •23						· · · · · ·	EP84APT EP84APU
SWC CUT	8650 8694-8792	• 52 • 79	•11	•96	.103	13.92	121.5	•653	EP84APV EP83BTU
CUT SWC	8792-8891 8860	•59 < •28	• 1 0	• 40	•164	16.95	86.4	•609	EP83BTV
****	****	******	* * * * * * * * * *	******	****	*****	*****	*****	*****

PYROLYSIS RESULTS FOR SAMPLES FROM THE BREAM 17/12-3X, NORTH SEA, NORWAY

EPS REPORT #2604A

BREAM 17/12-3X, NORTH SEA, NORWAY

PYROL'SIS RESULTS

EPS REPORT #2604A

COPY____OF___COPIES