Final Well Report Well 7120/6-2 S PL 097

Doc. No. EPDS-7120/6-2S-019 Date 2008-01-20

Rev. no.

0

Page **47** of **139**

Table 4-8

Formation pressure measurements from XPT and MDT

Test No FORMATION		DEPTH		Hydrostatic Before	Hydrostatic After	Formation pressure	Temp.	Mobility	Comments				
		m MD	m TVD MSL	bar	bar	bar	degr C	md/cP					
RUN 1 XPT Pressure point													
1	Stø	2568.9	2352.0	297.090		266.068	77.5	1.3	OK, Took test 3 times for QC				
2	Stø	2571.9	2354.9	297.401	297.200	265.895	77.5	8.4	ОК				
3	Stø	2582.2	2364.7	298.607	298.400	266.040	78.0	30.0	ОК				
4	Stø	2584.4	2366.8	298.760	298.676	266.219	78.7	4.0	OK, Took test 3 times for QC				
5	Stø	2589.4	2371.5	299.255			80.0	0.4	Super charged				
6	Stø	2601.7	2383.2	300.994	300.700	266.632	80.1	1.1	ок				
7	Stø	2612.0	2393.0	302.140	301.930	266.628	80.9	20.0	ОК				
8	Stø	2615.0	2395.9	302.359	302.280	266.693	81.2	14.0	ОК				
9	Stø	2618.0	2398.7	302.728	302.620	266.766	81.4	71.0	ОК				
10	Stø	2622.4	2402.9	302.294	303.140	266.865	81.5	18.0	ОК				
11	Stø	2623.9	2404.4	303.418	303.340	266.874	81.5	7.0	ОК				
12	Stø	2626.0	2406.5	303.620	303.603	266.925	81.8	5.0	ОК				
13	Stø	2627.9	2408.4	303.916	303.830	267.046	82.0	21.0	ок				
14	Stø	2630.5	2410.6	304.208	304.130	267.212	82.1	10.0	ОК				
15	Stø	2631.5	2411.6	304.275	304.270	267.279	82.1	16.0	ОК				
16	Stø	2632.9	2412.9	304.462	304.440	267.382	82.2	40.0	ок				
17	Stø	2634.0	2413.9	304.588	304.540	267.448	82.2	8.0	ОК				
18	Stø	2636.0	2415.9	304.874	304.820	267.583	82.4	10.5	ок				
19	Stø	2638.0	2417.8	305.140	305.060	267.728	82.6	18.7	ОК				
20	Stø	2640.0	2419.7	305.312	305.278	267.965	82.7	1.8	ОК				
21	Stø	2642.3	2421.9	305.625	305.570	268.164	82.8	7.0	ОК				
22	Stø	2647.6	2426.9	306.293	306.200	268.688	83.1	19.0	ОК				
23	Stø	2652.9	2432.0	306.950	306.820	269.237	83.3	36.0	ок				
24	Stø	2657.3	2436.2	307.510	307.390		83.4	0.8	Super charged, tight				
25	Stø	2662.8	2441.4	308.197	308.000	270.240	83.8	4.7	good, took test 3 times for QC				
26	Stø	2676.9	2454.9	310.000	309.670	271.676	84.0	4.4	good, took test 3 times for QC				
27	Nordmela	2689.2	2466.6	311.196	311.200		84.4	0.1	tight				
28	Nordmela	2694.7	2471.9	311.940	311.930		84.4	0.4	tight				
29	Nordmela	2700.0	2477.0	312.597	312.470		84.7	0.2	tight				
30	Nordmela	2703.5	2480.3	312.991			84.7	0.3	tight				
31	Nordmela	2705.8	2482.6	313.202	313.140		84.8		tight				
32	Tubåen	2764.0	2538.8	319.980	319.960	280.988	86.2	0.9	Unstable pressure, repeat test, good				
33	Tubåen	2802.2	2576.0	324.934	324.560	284.775	86.6	2.1	good, took test 3 times for QC				
34	Tubåen	2848.9	2621.7	330.368	330.150	289.895	87.5	1.3	good, took test 3 times for QC				
35	Tubåen	2874.5	2646.8	333.512	333.210	292.516	88.3	3.0	good, took test 2 times for QC				
36	Snadd	3145.6	2915.6	366.315					lost seal, repeat, no pressure increase when setting probe				
37	Snadd	3145.2	2915.2	366.280	366.240		94.4	0.1	tight				
38	Snadd	3175.2	2945.2	369.988					tíght				
39	Snadd	3183.8	2953.8	371.141			96.0		tight				
40	Snadd	3212.5	2982.4	374.320	374.330	330.774	97.5	29.0	good				
41	stø	2618.3	2399.0	302.777	302.750	266.786	81.1	8.4	good				

Final Well Report Well 7120/6-2 S PL 097

Doc. No. EPDS-7120/6-2S-019 Date 2008-01-20

🖒 STATOIL

Rev. no. 0

Page 48 of 139

42	stø	2618.1	2308.8	302,901	302.811	266.783	82.2	6.4	good
	2 MDT for XPT qu			JUZ,801		200.100	02.2	0.4	9000
1	Stø	2568.9	2352.0	297.230	297.090	266.038	82.7	2.0	Repeat test OK
2	Stø	2582.2	2364.7	298.786	298.640	266.106	83.5	7.4	OK
3	Stø	2584.4	2366.8	298.747	298.704	266.080	84.8	12.2	Repeat with 5cc
4	Stø	2601.7	2383.2	300.414	300.710	266.650	85.0	4.6	OK
5	Stø	2612.0	2393.0	302.130	301.920	266.617	85.7	91.4	ок
6	Stø	2618.0	2398.7	302.800	302.630	266.687	86.0	273.6	ок
7	Stø	2627.9	2408.4	304.048	303.795	266.947 86.4		194.0	ок
8	Stø	2632.9	2412.9	304.528	304.380	267.278	86.6	161.0	ок
9	Stø	2640.0	2412.0	305.392	305.220	267.830	87.2	101.8	ок
10	Stø	2662.8		308.242	307.890	270.122	87.5	81.5	ок
	3 MDT pressure p			000.242		LIUITEL	101.0	01.0	
1	Stø	2630.0		306.877	303.910	267.120	87.5	125.0	Good
Run 4	Quicksilver MD]	Τ		1		
1	Stø	2676.9	2454.9	313.157	309.760	271.813	86.9	7.7	Good
4	Tubåen	2802.0	2575.8	324.722	T	284.595	90.9	22.1	Good
Run (5 MDT gas/oil san	npling, V	ит		1		1	1	
1	Stø	2615.0	2395.9	302.650	302.410	266.765	85.2	332.0	Good
2	Stø	2632.0	2412.0	304.410	304.346	267.329	87.7	106.0	Good
3	Stø	2636.0	2415.9	304.960	304.781	267.585	88.9	128.0	
4	Stø	2625.8	2406.3	303.718	303.500	266.969	88.5	1972.0	scanning
5	Stø	2625.3	2405.8	303.659	303.483	266.953	88.5		scanning
6	Stø	2624.8	2405.3	303.525	303.371	266.961	88.5		scanning
7	Stø	2626.3	2406.8	303.645	303.540	266.942	88.4	21.0	scanning
8	Stø	2627.5	2408.0	303.789	303.703	267.016	88.3	78.0	scanning and sampling
Run (6 MDT oil samplir	ng	•					·	
1	Stø	2630.5	2410.6	304.121		267.256	86.0		sampling
2	Stø	2631.0	2411.1	304.092		267.139	86.8	68.0	sampling
Run 7	′ MDT gas/oil san	npling						_	_
1	Stø	2623.5	2404.0	303.501	303.182	266.800	88.4		
2	Stø	2625.8	2406.3	303.508		267.018			
3	Stø	2626.8	2407.3	303.570		267.017			
4	Stø	2627.3	2407.8	302.914		267.007			
5	Stø	2626.3	2406.8	303.592		266.990			

Doc. No. EPDS-7120/6-2S-019 Date 2008-01-20

Rev. no.

0

Page **49** of **139**

Sample depth (m MD)	Run No.	Formation	Chamber volume	Drawdown (bar)	Formation Pressure (Bar)	Pump volume (liters)	Mobility (mD/cp)	
2630	1A	Stø	18 Gal	8.2	267.12	94.5	125	
2630	1A	Stø	420 cc	7.1	267.12	176	125	
2630	1A	Stø	420 cc	7.0	267.12	182.4	125	
2630	1A	Stø	420 cc	7.0	267.12	188.8	125	
2630	1A	Stø	420 cc	7.0	267.12	195.2	125	
2630	1A	Stø	420 cc	7.0	267.12	202.5	125	
2630	1A	Stø	420 cc	7.0	267.12	208.3	125	
2630	1A	Stø	2 3/4 Gal	7.2	267.12	216.7	125	
2630	1A	Stø	2 3/4 Gal	7.0	267.12	239	125	
2630	1A	Stø	1 Gal	7.1	267.12	262.5	125	
2676.9	1B	Stø	1 Gal	44.0	254.00	50	7.7	
2802	1B	Tubåen	1 Gal	42.0	284.60	43.9	11	
2615.7	1C	Stø	420 cc	11.2	266.84	23.7	81.8	
2615.7	1C	Stø	1 Gal	10.1	266.84	29.5	81.8	
2632	1C	Stø	420 cc	12.1	267.33	91	106	
2632	1C	Stø	420 cc	1 1.9	267.33	95.9	106	
2632	1C	Stø	1 Gal	12.1	267.33	99.5	106	
2632	1C	Stø	2 3/4 Gal	1 1.6	267.33	106.7	106	
2636	1C	Stø	420 cc	10.4	267.58	32.2	128	
2636	1C	Stø	420 cc	9.8	267.58	37	128	
2627.5	1C	Stø	420 cc	7.5	267.02	8.5	78	
2631	1D	Stø	2 3/4 Gal	12.0	267.14	40	68	
2631	1D	Stø	2 3/4 Gal	11.0	267.14	55	68	
2631	1D	Stø	1 Gal	9.0	267.14	68	68	
2631	1D	Stø	420 cc	9.0	267.14	77	68	
2631	1D	Stø	420 cc	9.0	267.14	82	68	
2631	1D	Stø	420 cc	8.0	267.14	86	68	
2631	1D	Stø	420 cc	8.0	267.14	89	68	
2631	1D	Stø	420 cc	8.0	267.14	92	68	
2630.5	1D	Stø	420 cc	8.0	267.26	95	68	
2623.5	1E	Stø	420 cc	1.6	266.80	35.9		
2625.8	1E	Stø	420 cc	2.7	267.02	29.3		
2626.8	1E	Stø	420 cc	6.9	267.02	58	1	
2627.3	1E	Stø	420 cc	12.6	267.01	72		
2626.3	1E	Stø	420 cc	7.7	266.99	18		

Table 4-9List of samples collected

The hydrocarbon samples were of good quality, but the water samples were of various qualities. The water sample from the Tubåen sandstone was too contaminated to be used due to plugging of the probe, whereas the water sample from the Stø Formation had acceptable quality.

Well: Field: Rig:				-2 S it Appraisal Pioneer	Appraisal																
	HOLE		G/LINER	MUD TYPE	MW	LGS	10 sec.	10 min.	Fann 100 rpm	Fann 3 rpm	O / W ratio	PV	API FL	HTHP FL	MBT	рН	Kcl	Glyc.	ES	Funnel Visc.	Usage Volume
SIZE	TVD MD	SIZE	TVD MD		[SG]	[KG/m²]	(Pa)	[Pa]				[mPa]	[m]]	[ml]	[KG/m³]		[KG/m³]	[%]		[%]	[m³]
36"	411 30 " 407 411 407															8 - 9				>100	298
				Before spudding t and 2 kg/m3 HEC 150 m³ of 1.50sg	for viscosity.	About 100	m3 CMC I	- Hi-Vis muo											mer and 0.	5 kg/m3 Ma	gOx for fluid loss
17 1/2"	1225,3 1259	13 3/8"	1218,1 1251,3	SW/ Bentonite Spec # 1 1.35 SG CaCl2 (Displ, fluid)	1.03 - 1.35											8 - 9				>100	1381
12 1/4"	23 74 2566	9 5/8"	2373 2564	stretch the benton The pills were furth rearming were unin prepared by addin utilising the Active FormPro	her thickenec tentionally le g CaCl2 brink pit #1 that ha 1.30 -	I so that, w ft out, indic e to the hig ad been us 0 -	hen testing ates strong h concentr ed for bent 4.5 -) the visco gly that the rated displa onite mud 9 -	sity, the mu pack-off p acement m	ud would no rroblems wu ud This ga acement m 9 -	ot at all run are drilling we a final i	through th or well bor concentrati to effectiv 15 -	e Marsh F e stability i on of Di-Tr ely stabilis 3.6 -	unnel. The related Wh rol of 25 kg	problem v en reachir /m3 and a until casin 1 -	vith packin g TD for II concentra g were set 9 -	g off reoccurr re section at tion of HEC o and cemente 140	red when th 1259 metra of 2 kg/m3.	te hi-vis pi as the disp	II around the	e BHA after ud was quickly
8 1/2"	3034.8 3242		3033,8 3241	The drilling fluid us content was broug section and the ce higher than norma gels Approaching level. 160 m3 Frompro r FormPro	ght up to 20 k entrifuge runn ally seen. Due (TD of the se	g/m3. Due ling continu a to the high action we al	to the natu lously, cou h dilution ra lso noticed	ure of the l kd not cour ates with k that the g	formation w Interact this pw weight p els were cr	e observed . The MBT premix (lots eeping up.	l quite a bi rose up to of drill wa It is not po	g influx of : 31 kg/m3 ær), the K+ ssible to ke	solids to th of which is content d sep mud w	e mud, ad rather hig lecreased a veight, LGS	ding to the h in this sy accordingly S content a	mud weig stern. Of ti of which :	nt. Even the 2 iis reason the igain probabl	230 mesh i e dilution ra ly effected	nstalled or ate in this s inhibition,	h all shakers section was hence the h	most of the obviously high, igh MBT and
	J242	7"	3241	A 11.5 15	1,28	160	6	18		9		16	7,8		22,5	10	800				
				As this section wa made up in advan Based on experier Polypac polyment in After coring, a ble was maintained th The sulphate cont The mix of CaCO: these formations, we drilled to TD T The K+ level slow	ice and displa nce from last to the modifie he mud weigi and of CaCO3 troughout the tent was mea 3/Polypac an Both API flui fhis was cons	aced in to h section an d starch sy ht was afte medium a section. A sured by a d Trol Fi re d loss test sidered to b	ole. The sy of previous stem and i r the XLOT ind fine wa Jso radio-a third-party duced the and the HT be sufficien	ystem was experience running as I decided I s mixed in cotive tritiur company filter loss I FHP (85oC it and there	pre-treated e on other fine mesh to be increa- to the syste n tracer wa through out through out o an accept permeab	d with bican wells in the screens as used to 1,2' em while dr as added to the section table level, ility test per	bonate an Barents s practicab /sg. As a r illing ahear the circula on, and wa though th formed will	d citric acid ea, we foo e. With les esult of this d. Concent ting system s averaging e main rea h a 35µ ce	I as we we sused on m s flow rate s we mana ration was n as we st between son for the ramic disk	re drilling (hinimising I (2100 ltr/r ige to keep raised to (arted drillin 50 and 60 (use of Po (were furth	but the central did loss a min), we mine the K+ co 50 kg/m3. ring. All track mg/tr. Ilypac polytier improve	nent inside anaged to ntent on th main purpo er contamin mer was to ed. The AP	the liner, lation of solic run both 270 e high side o se was to ad hated mud wa help encaps I came down	ds in the sy mesh and if the speci Id bridging as held sep ulate and b to +/- 4 ml	stem by a 325 mesh fication. to the rese parated fro	dding appro i together wi ervoir. This c m the non p ne fine solids	x 5 kg/m3 th the 230 mesh concentration olluted mud.

Final Well Report Well 7120/6-2 S PL 097

Doc. No. EPDS-7120/6-2S-019 Date 2008-01-20

Rev. no. 0

Page 91 of **139** **O** STATOIL