

PETROLEUMSTEKNISK FORSKNINGSSENTER - ROGALANDSFORSKNING - STAVANGER AVDELING FOR UNDERSØKELSER (EXPLORATION)

ANALYSIS OF 6 DEASPHALTED ROCK EXTRACTS

13. JUNE 1984.

ORGANISK GEOKJEMI

ANALYSIS OF 6 DEASPHALTED ROCK EXTRACTS

Instrumental conditions

Gas chromatography

Gas chromatograph: HP 5710A (Hewlett Psckard, USA) with capillary column injector.

Injector: Splitless, temperature 250° C.

Oven temperature program: $150 - 320^{\circ}$ (delay 16 min.) with $6^{\circ}/min$.

Carrier gas: ca. 2 ml He/min.

GC/MS interface temperature: 250° C.

MS VG 7250HS (VG Amelyfical, England) Ion energy: 70 eV

Source temperature: 200° C

See Table 1 for more MS information.

The mass spectrometer was operated in the selected ion recording mode with a dwell time of $80~{\rm ms}$ on each channel and an interchannel delay of $20~{\rm ms}$.

Perfluoro kerosene (PFK) was used as calibration reference compound.

Table 1

Soundlings bid.

* SY	STEM:BIOMARKER Parameters fo	r Selective Ion	Recording [G	# 1]	(Sector)				
INA	Maximum volts 4000	GTM TimeCh:mm	1:\$S) 0:00:05	to 1:00:0	38 Mode EI+				
IMR	Maximum mass at IAV 870	CHN MCamu) SC	ms) D(ms)	MCanu)	S(ms) D(ms)				
SMP	#Samples 1	A 259.2418	80 20						
GRP	#Groups 1	6 253.1950	80 20						
DAT	Data filename B:EXTRACT	c 231.2112	80 20						
REF	Reference filename PFK	o 231.1170	80 20						
INS	Instrument type 7250HS	E 218.2028	80 20						
ACN	Customer account STATOIL	F 217.1956	80 20		·				
RES	Instrument resolution 2500	6 211.1482	80 20						
INJ	#Injections 1	H 205.1950	80 20						
CLS	#Calibration scans 4	I 191.1794	80 20						
CST	Cal. scan time (s) 20	J 180.9888	80 20						
CTL	Cal. tolerance (ppm) 200	к 177 . 1638	80 20						
CEX	Cal. examination Y								
INT	Internal standards N								
PEX	Peak examination Y	PwCh:mm:ss) 0:	00:00 00:00	0:00 z a	0.0 dR 0				
TOP	Peak top or profile T	Std.cn(yg/mL)	e. 000000. 0	r 0.ch	0 Rf 0.0				
T. T	Sample# 1: ENTERCIS FROM SOU	FOR FOOD CHMPLE							
H=hardcopy RETURN=next ESC=prev CTRL/A=abort									

A Diasteranes (reananged steromes)
B Monoaromatic steranes (ring C)
C Nuclear methylated steranes (ring A/B)
D Triaromatic steranes
E 14B.(H) Oteranes
F Regular steranes
G Nonoaromatic steranes (ring A/B)
H Multulated lispanes (ring A/B)
I Urponnes (mainly lispanes)
J (Riference mass from Perfusciones)
J (Riference mass from Perfusciones)
K denethylated lispanes (ring H/B)

Results

Six samples of rock extracts of unknown origin were analysed according to the method described by Bjorøy et al. (1981). Table 1 shows the ions of interest for this work, and Figures 1 - 6 show the most important ion chromatograms.

Peak identifications were made in accordance with Meyer et al. (1984, and references therein), Volkman et al. (1983a, b), Pym et al. (1975), Ekweozor & Strausz (1981), Aquino Neto et al. (1981).

Based on the peak intensities and respective peak heights the triterpane ratios described in Cornford et al. were calculated and Tabulated in Table 2.

Table 2. Biomarker ratios.

Sample	a	b	с	d	е	f
S27	41%	1.5	15%	9%	59%	61%
S28	30	2.4	28	12	57	56
S29	8	11.1	2	27	52	53
S30	28	2.5	24	7	54	52
S31	35	1.9	48	9	60	60
S32	28	2.6	34	13	59	55

a, $T_S/(T_m + T_S)$, © $T_t \ddagger 1$, 29 - 100

c, $C_{28}/C_{27} = 29$ hopane, [©] +T_t #4, 0.1 - 46

d, normoretane/(normoretane + norhopane), © T_{t} **‡**5,01 - 21

e, $C_{31} - \frac{34}{34}$ S/(S + R) average value

f, C_{31} S/(S + R), $^{\odot}$ T_t #8, 55 - 73

 $^{\odot}$ = Cornford et al. notation, Cornford et al. range for North Sea samples.

The first striking feature of the present samples is that the content of terpanes appear to be much higher than the content of steranes. Secondly, some of the samples (S27, S28, S30, S31) contain series of tri- and tetracyclic terpanes of which the tricyclic ones are pointed out as being indicative of high maturity (Seifert and Moldowan, 1978; Seifert 1978). They are also believed to survive degradation (Seifert 1978; Philp, 1983).

References

F.R. Aquino Neto, J.E. Tendell, A. Restle, J. Connan and P.A. Albrecht: Advances in Organic Geochemistry 1981, p. 659. M. Bjorøy, P.W. Brooks,

K. Hall: Advances in Organic Geochemistry 1981, p. 87.

C. Cornford, J.A. Morrow, A. Turrington, J.A. Miles and J. Brooks: Some geological controls on oil composition in the U.K. North Sea.

C.M. Ekweozor and O.P. Strausz, Advances in Organic Geochemistry 1981, p. 746.

T. Meyer, O.H.J. Christie and P.W. Brooks, Analy. Chim. Acta, 1984, in press.

J.M. Moldowan, W.K. Seifert and J.E. Gallegos: Geochim. Cosmochim. Acta, 47 (1983) 1531.

R.P. Philp: Geochim. Cosmochim. Acta, 47 (1983) 267.

J.G. Pym, J.E. Ray, G.W Smith and E. V. Whitehead: Anal. Chem. $\underline{47}$ (1975) 1617.

W.K. Seifert: Geochim. Cosmochim. Acta, 42 (1978) 473.

W.K. Seifert and J.M. Moldowan: Geochim. Cosmochim. Acta, <u>43</u> (1978) 111.

W.K. Seifert and J.M. Moldowan: Geochim. Cosmochim. Acta, $\underline{42}$ (1978) 77.

J.K. Volkmann, R. Alexander, R.I. Kagi and G.W. Woodhouse: Geochim. Cosmochim. Acta, <u>47</u> (1983) 785.

J.K. Volkmann, R. Alexander, R.I. Kagi, J. Rullkötter: Geochim. Cosmochim. Acta, <u>47</u> (1983) 1033.

Fig. 18

.

)

Ĭ

Fig. 2B

į

Fig. 3B

ŕ

Ì

ŕ

Fig. 5A

Ĵ.

Fig. 5B

ŝ

Fig. 6A

Fig. 6B

5

ï