Continental Shelf Institute

Institutt for kontinentalsokkelundersøkelser

REPORT TITLE	
SOURCE ROCK EVALUATION OF WEL	_L 30/7-3
CONTRACTOR	
NORSK HYDRO A/S	
CONTRACTORS REF.	JOB NO.
Asbjørn Sæbøe	0-36/1
1	

Malvin Bjorøy Peter Paul Gyørøsi	DATE 17.1.77 NO. OF PAGES 73	PROJECT NO. 0-36 NO. OF ENCLOSURE
Thor Hægh	RESPONSIBLE ENGIN	IEER
Environmental section	Malvin Bjorøy	

The analyses used for the source rock evaluation were the following: Total Organic Carbon, (TOC), CR/CT ratio, Vitrinite Reflectance, Extractable Organic Matter, (EOM), Liquid Chromatographic Separation and Gas Chromatographic determination of saturated hydrocarbons.

The different analyses show that there is very little organic matter in the samples, apart from the interval from 3700 m - 3890 m, where an oil show is found. Vitrinite reflectance shows extended reworked material, especially towards the base of the well.

The different analyses suggest that the hydrocarbon generation zone must lie below the total depth of the well.

KET W	OND	3	
Sour	^ce	Rock	
			_
			_

KEN WODDE

The samples for analysis were cuttings from different depths. The cuttings together with the drilling mud were canned on the rig and arrived in Trondheim for analysis 22nd Nov. 1976. With the samples were also canned samples of mud and the information that diesel oil had been added to the mud from the depth of 2420 m.

INDEX

INTRODUCTION Total Organic Carbon (TOC): CR/CT ratio: Vitrinite Reflectance: Extractable Organic Matter (EOM): Hydrocarbon Content (HC): Normal Paraffin Distribution: Carbon Prefferance Index (CPI):]	4 5 7 9 1 2 3		
EXPERIMENTAL:	on:	6 6 6 7		
RESULTS AND DISCUSSION:	lues:	18 18 19 20 21		
CONCLUSION: COMMENTS TO THE DIFFERENT ANALYSES:		23 24		
Table IV, Total Organic Carbon (TOC) a Residue/Total Organic Carbon	nd Carbon (CR/CT):	26		
Table V. Extractable Organic Matter (Chromatographic Separation, pristane/phytane ratio:	CPI and	28		
Table VI. EOM, Saturates and HC as a f	unction of TOC	31		
Table VII. Vitrinite reflectance		33		
Fig. 5 Details of vitrinite reflect	tance:	35	-	60
Fig. 6-14 GC chromatograms:		61	-	69
Fig.15-16 Variation of TOC, CR/CT, Vit EOM, HC, Saturates, n-alkane and CPI with depth:	e distribution	70	.* _	
REFERENCES:		7′2	_	7:

INTRODUCTION

In the last decade our understanding of the processes of petroleum genesis has increased considerably. This has largely resulted from the advent of modern analytical techniques which have made possible the analysis of small quantities of organic matter in sediments. Also it is now appreciated that new techniques must be used if oil deposits located in difficult geological situations are to be found.

Philippi (1965) made a detailed study of the genesis of hydrocarbons in the Ventura and Los Angeles Basins of California. He found that the generation of hydrocarbons could be related to geothermal gradient and depth of burial. Similar conclusions have since been reached by a number of workers (e.g. Albrecht and Ourisson, 1969; Tissot et al, 1971). In addition laboratory studies have demonstrated the feasibility of generating hydrocarbons at the relatively low temperatures found in sedimentary sequences (e.g. Hoering and Abelson, 1963; Douglas et al, 1970).

In recent years interest has shifted to the development of techniques which could be used to define the degree of diagenesis of organic matter in sedimentary rocks and hence the zones of petroleum diagenesis. Parameters which have been used include coal rank or reflectance (Shibaoka et al 1973), spore colour (Staplin, 1969), cuttings gas analysis (Evans and Staplin, 1971; Le Tran, 1976) kerogen composition (McIver, 1967; Tissot et al 1971 and 1974) and, of course the nature of the sedimentary hydrocarbons themselves (Philippi 1965). In the following we will give a more detailed introduction to the types of analyses used in this work.

TOTAL ORGANIC CARBON (TOC)

The first requirement for generating oil or gas within a sedimentary basin is the presence of sufficient raw material in the form of sedimentary organic material. Under the most favorable conditions only about 10% of the organic matter in a sediment is converted to a soluble form. Since no more than 25% of this migrates from its point of origin, values of the present organic content of a sediment provide a good approximation of the amount of organic content initially available as source material for petroleum (Hunt and Jamieson 1956).

The concentration of TOC essential for petroleum generation in a non-reservoir rock is not well defined and probably varies from basin to basin. Nixon (1973) described the occurrence of source-bed properties of the Mowry Shale in relationship to the occurrence of oil reservoirs associated with the Mowry. The oil fields occur in areas where TOC is greater than 2% and often greater than 3%. Philippi (1965), in his study of the origin of Tertiary oils in California, found the average TOC value in the source rocks of the Los Angeles Basin to be 2.9% and of the Ventura Basin to be 2.1%. Baker (1962), in his study of the relationship of source-rocks and reservoirs in the Cherokee Group, found that in the Burbank Shale source-rock interval, TOC averaged 2.0%.

The minimum concentration of TOC which is essential for a non-reservoir formation to function as a source-rock is not known and is subject to interpretation for each case. Clearly the higher the concentration of non-structured marine organic matter the better the source-rock potential. Minimum TOC limits generally accepted as essential for a source-rock are 0.5% for shales and 0.2% for carbonates. Samples containing less TOC generally are not considered as source-rocks and further chemical analyses are not performed. Optical determination of maximum paleotemperature and possibly of organic kerogen type may, however, be of value.

C_R/C_T RATIO

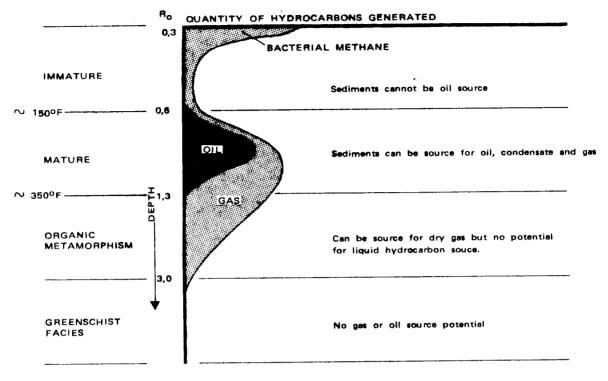
It has frequently been shown that the diagenetic evolution of organic sedimentary material takes place by the formation of bitumen at the expense of kerogen (Philippi 1965; Welte 1966; Louis and Tissot 1967; Tissot, et. al. 1973). The production of bitumen is limited by the fact that, bitumen being richer in hydrogen than is kerogen, the latter must become prograssively carbon-enriched (cf graphitisation). It is therefore possible to form an idea of the degree of evolution of the kerogen by measuring the amount of bitumen it can still produce before reaching the graphitic stage.

Gransch and Eisma (1966) have with this reaction in mind, introduced the parameter C_R/C_T . By thermal treatment under standard conditions, they produced, from a sample of which the organic carbon content was known (C_T) , the maximum amount of bitumen which was removed by a flow of inert gas. In the sample remained a carbonaceous residue (C_R) which is proportionally greater as the organic material is more evolved.

The ratio $\mathrm{C}_{\mathrm{R}}/\mathrm{C}_{\mathrm{T}}$ is thus a measure of the degree of diagenetic evolution of the kerogen.

The determination of the C_R/C_T ratio is an empirical method. It is possible that it is influenced by inorganic matter. However, Gransch and Eisma (1966) showed that correspondence between the C_R/C_T ratios of coaly sediments and associated coal seams, and between C_R/C_T ratio and reflectance of vitrinite particles of some Liassic sediments, and the relation between C_R/C_T ratios and environment of Liassic sediments all indicate that the C_R/C_T ratios reflect properties that are inherent in the insoluble organic matter itself. The C_R/C_T ratio is concerned with the total insoluble organic matter in contrast to rank determinations such as translucency of pollen (Gutjahr, 1966) and reflectance of vitrinite particles (Teichmüller, 1958). Like the volatile matter and fixed carbon contents of coals it can only be used to indicate the temperature history if the insoluble organic matter represents one type i.e. either favourable (with respect to the generation of hydrocarbons) or unfavourable (e.g. humic coaly) matter.

The C_R/C_T ratio, however, has in many cases been used to indicate differences in the type of organic matter. If the C_R/C_T ratio is below 0.6 it indicates organic matter favourable to the generation of hydrocarbons. If samples of various sediment layers of one section are compared, the unfavourable organic matter (C_R/C_T ratio 0.6-0.8) can be distinguished from favourable. (Granch and Eisma, 1966). Generally, however, when the C_R/C_T ratio is above 0.6, rank determinations are necessary for the distinction between favourable and unfavourable organic matter.


In conclusion, for the interpretation of the $\mathrm{C}_{\mathrm{R}}/\mathrm{C}_{\mathrm{T}}$ ratio three cases have to be distinguished:

- 1. The organic matter occurring in different sediments has attained the same degree of diagenesis; differences in the C_R/C_T ratios here represent different types of organic matter.
- 2. The organic matter occurring in different sediments is of the same type; differences in the C_R/C_T ratio here represent different degrees of diagenesis.
- 3. The organic matter occurring in different sediments represents different types and different degrees of diagenesis. Other parameters have to be used to establish the degree of diagenesis. When sporomorphes are present, transluscency measurements can be applied, or when vitrinite particles can be detected their reflection can be used.

VITRINITE REFLECTANCE

For many years coal petrographers have determined the extent of metamorphism of coal by determining the fraction of incident light reflected from a polished surface of the coal. The numerical value of the reflectance has been calibrated in terms of the degree of metamorphism, which in turn is determined by the time-temperature history of the sample. The same technique can be applied to the small fragments of organic matter which are dispersed in most geological samples. Vitrinite reflectance then, provides a method for determining the time-temperature history of geological formations, and thus can be used as a tool in petroleum exploration for determining the effects of organic metamorphism, i.e., the thermal maturity of the sediments being examined.

As can be seen in Fig. 1, the transition from immature to mature sediments with a temperature history adequate for oil generation is generally thought to occur at a temperature of about 150° F, which corresponds to a Reflectance Value (R₀) of 0.6. If reflectance values, are below 0.6, the generation of oil within that formation is unlikely. On the other hand, if the temperature has been above about 350° F (R₀ = 1.3), any oil initially generated would have undergone thermal cracking, and gas not oil, would be the expected hydrocarbon product.

Schematic Diagram showing variations of type of Hydrocarbons as a function of Thermal Alteration.

FIGURE 1

If the temperature had been such that the reflectance of the dispersed organic matter had increased to a value greater than 3.0, even the gas would have been degraded, and graphite would be the major carbon-containing product.

It has been generally recognized that a lower temperature for a long period of time could bring about the same change as a higher temperature over a short period of time. In fact Connan (1974) showed that the time required for petroleum generation (realization of an $R_{\rm O}$ = 0.6) can be represented as a function of the threshold temperature as follows:

$$\log t = 3,014 \times \frac{1}{T} - 6.498$$

where $t = time in 10^6 years$

 $T = temperature in {}^{O}K$

Even though the "temperature" measured by vitrinite reflectance actually results from a combined effect of time and temperature, temperature still is the predominate factor because the rate of chemical reactions approximately doubles with each 10° C increase in temperature. Since in the evaluation of a formation as a source-rock, the degree of organic transformation is the factor of interest, vitrinite reflectance is useful because it provides a measure of the degree of transformation regardless of the cause.

By measuring several values in a well, a paleotemperature profile can be constructed. By assuming the same reflectance gradient, the profile can be extrapolated below the lowest level actually sampled and probable depth intervals appropriate for oil generation and for preservation of gas as the only hydrocarbon can be estimated. In addition, a maximum feasible depth for drilling within a basin can be calculated. For basin survey purposes, where data from many wells are available, extrapolations based on as few as two points per well can provide useful information if both formations are well characterized.

EXTRACTABLE ORGANIC MATTER (EOM)

It is generally believed (Philippi, 1965; Nixon 1973) that no more than 25% of the petroleum formed in a source-rock migrates from it, and a source-rock can therefore be recognized by the petroleum left behind. The tacit assumption is made that migration of oil from a source-rock occurs only after the oil has been formed in a suitably high temperature regime, i.e., migration occurs late. Optical techniques for source-rock evaluation such as vitrinite reflectance, spore coloration and visual kerogen-type analysis indicate whether the conditions have been suitable for oil generation; whereas, the chemical techniques show whether oil actually has been generated.

Because determination of the amount and type of residual petroleum-like material provides the basis for direct source-rock determination, any petroleum product introduced to the cuttings during drilling can interfere with the determination. It is therefore important that samples of the drilling mud and any organic additive to the mud are provided along with the cuttings or core samples. Where it is possible, core samples or side wall cores should be used.

The bitumen extracted from sediments is often referred to as Extractable Organic Matter (EOM). The succession of organic matter from the time of deposition in a recent sediment to conversion to petroleum may be represented as follows:

Biopolymers - Biomonomers - Geopolymers - Geomonomers

The organic matter of living and recently dead organic systems consists of biopolymers. Biopolymers are degraded, primarily by hydrolysis, to biomonomers such as individual fatty acids and aminoacids. These biomonomers polymerize to geopolymers (kerogen) which then, upon being heated, decompose in part to geomonomers (petroleum-like hydrocarbons). Both biomonomers and geomonomers as well as heavier asphalt-like molecules are extractable; therefore, the presence of significant quantities of EOM are necessary but not sufficient for identification of a sediment as a source-rock.

It has been usual to give the EOM as ppm of whole rock (Nixon 1973; Philippi 1965) but lately authors have started to give the EOM as mg/g TOC. (Powell 1975; Albreckt et al 1976). An arbitrary classification based on the first system is given in Table I.

TABLE I

Classification based on EOM

EOM (ppm of whole rock)	Classification
200	Poor
200 - 1000	Adequate
1000	Rich

In his study of the Mowry, Nixon (1973) found values of EOM above 750 ppm and in many cases above 1000 ppm in the areas where the Mowry serves as a source-rock. Powell (1975) in his study of the Dampier Sub-basin, Western Australia, reckoned on more than 60 mg/g TOC of EOM for the sediments to have served as a source-rock, while Albrecht et al (1976) tended to go down to 50 mg/g TOC as their lower limit.

HYDROCARBON CONTENT (HC)

As was mentioned in the section on EOM, the soluble bitumen may contain biomonomers and asphaltic materials as well as the petroleum-like hydrocarbon fraction (geomonomers). Hydrocarbons (HC) are the portion of the bitumen of interest; consequently, separation of that fraction is necessary. Adsorption chromatography is used for separating the EOM into aliphatic, aromatic, and asphaltic fractions. The aliphatic and aromatic fractions together make up the petroleum-like hydrocarbon fraction; thus, the sum of these two fractions is referred to as Hydrocarbons (HC). Since the asphaltic fraction contains significant amounts of the elements Nitrogen, Sulphur and Oxygen, it sometimes is known as the NSO fraction. A high asphaltic, low hydrocarbon bitumen indicates an immature sediment.

Since the hydrocarbon portion of the bitumen extracted from a sediment is the petroleum-like portion, it is used as an important parameter in source-rock evaluation. As with EOM, the value of the HC can be given in different ways, either as ppm of whole rock, as mg/g TOC or as percent of EOM. Two interpretative schemes which often are used are those given by Philippi (1957) (Table II) and Baker (1972) (Table III).

TABLE II

Philippi Source-rock Rating

Hydrocarbons (ppm)	Interpretation
0 - 50	Very poor
50 - 150	Poor
150 - 500	Fair
500 - 1000	Good
1500 - 5000	Very good
> 5000	Exceptional

TABLE III

Baker Source-rock Rating

Hydrocarbons (ppm)

0 - 50

50 - 1000

1000 - 6000

Interpretation

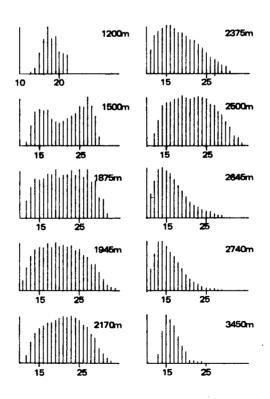
Inadequate

Common and Adequate

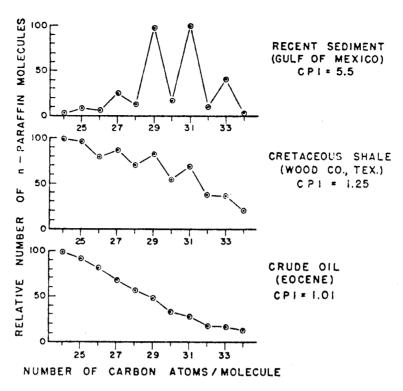
Best

Ratios of the various parameters are used for evaluating the source potential by many geochemists. For example, Philippi (1965) states that the HC (%)/TOC (%) ratio for a source-rock should be between 0.03 and 0.120. He assumes that the "oil" generated within a sediment is dissolved in the kerogen and migrates through the kerogen which acts like a wick. If the ratio is less than 0.03, the interpretation is that very little petroleum has been generated, whereas if the ratio is greater than 0.120 the kerogen is super-saturated indicating that migration has not occurred for some reason.

Nixon (1973) showed that not only does EOM increase with increasing maximum paleotemperature experienced by the formation, but the relative HC content of the EOM also increases. Although Nixon does not assign a critical value for HC/EOM ratio, his data suggest that in the Mowry Shale, hydrocarbons make up 35% or more of the bitumen in sediments which have matured to source-rock.


Powel (1975) reckoned on a minimum of 10% saturates (of EOM) in a source-rock.

NORMAL PARAFFIN DISTRIBUTION


More conclusive data useful in source-bed evaluation can be obtained by examining the distribution of normal paraffins within the aliphatic fraction of the hydrocarbons. The overall shape of the distribution changes with the maturity of the sample. Albrecht and Ourisson (1971) have illustrated the change by showing the results of analyses of samples taken from 1200 m (3937 ft.) to 3450 m (11,318 ft.) in a well in the Douala Basin of Africa (Fig. 2). In the shallowest samples, the paraffins are in the carbon-number region characteristic of biogenic systems; as the samples experienced higher temperatures at greater depths, higher carbon number paraffins form from the breakdown

of kerogen. Finally, at greater depths the higher carbon-number paraffins are cracked to those of lower carbon number. Ultimately, of course, thermal cracking of the hydrocarbons occurs, resulting in the production of methane and residual graphite. The overall shape of the paraffin distribution, therefore, shows the degree of maturity of the sample and, coupled with the concentration of asphaltic material, allows speculation as to the maturity (gravity) of the oil generated in the sediment.

Carbon Preference Index (CPI) ---Bray and Evans (1965) reported that in recent sediments, as in biological systems, the normal paraffins are predominately those with odd numbers of carbon atoms, whereas in crude oils there is an approximately equal distribution of odd- and even-carbon-numbered paraffins (Fig. 3). The normal paraffins extracted from shales are found to have values intermediate between recent sediments and crude oils. A new parameter, Carbon Preference Index (CPI), was defined as a means of quantitatively expressing the ratio of odd- to even-carbon-numbered paraffins (Bray and Evans, 1961).

Variation of the distribution of n-alkanes with depth in the Upper Cretaccous sediments of the Douala Basin (Cameroon). Ordinate: Signal area; abseissa: number of carbon atoms.

Examples of *n*-paraffin distributions in sediments and crude oils.

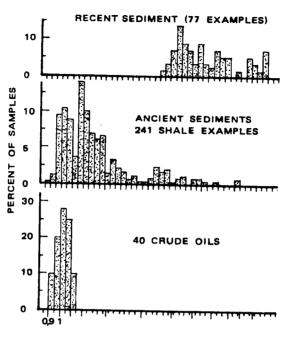

(Bray and Evans, AAPG Bull., 49, 249 (1965))

FIGURE 3

CPI =
$$1/2$$
 25 25 Odd-Carbon Paraffins 25 25 25 26 Even-Carbon Paraffins 26 Even-Carbon Paraffins 24 Even-Carbon Paraffins

This number is simply the average ratio of odd-to-even carbon numbered normal paraffins over the molecular weight (carbon number) range of interest.

Distribution of CPI values for recent sediments, ancient sediments (shales and carbonates), and crude oils are shown in Figure 4. Since the values for crude oils range from 0.9 to 1.15 and since most of the petroleum generated within a sediment will still be there, CPI values for ancient sediments which have served as source beds should be within the range of 0.9 to 1.15.

CARBON PREFERENCE INDEX

Distribution of carbons preference indices in sediments and crude oils.

(Bray and Evans, AAPG Bull., 49,250 (1965))

FIGURE 4

EXPERIMENTAL

The samples were washed with lukewarm water on a 0.125 mm sieve, and dried at 35° C. The cuttings were then sieved on a 2 mm sieve and the cuttings \angle 2 mm were used for the source-rock analysis. The samples from 2670 m to 3870 m contained such small amounts of cuttings \angle 2 mm that it was necessary to use cuttings up to 4 mm. The chance of having cavings in the samples is therefore greater in these samples than the others. After sieving, the samples were handpicked to remove any impurities before crushing and sieving. For further work, samples with a grain size of 0.063 - 0.125 mm were used.

TOC AND C_R/C_T

Aliquotes of the different samples were extracted ultrasonically in dichloromethane (DCM) for 10 min., filtered and dried in a vacuum oven at 50° C for 3 hours. The samples were then weighed and treated with hot 6N HCl to remove carbonates, filtered and washed with water and organic solvents. Then dried again as before and weighed.

The TOC was then measured on a Carlo Erba elemental analyser. (Table IV). The C_R/C_T ratio was measured on an instrument developed in Norway by IKU. (Table IV).

EOM AND LIQUID CHROMATOGRAPHIC SEPARATION

The samples that contained enough material (> 50 g) were extracted on soxhlet extractors for 48 h using DCM as solvent. Activated copperfoil was used to bind any free sulphur that was extracted. The EOM was separated on columns with 2/3 silica and 1/3 alumina using the following sequence of solvents: Hexane, benzene and methanol (Table V).

CARBON PREFERANCE INDEX (CPI)

The hexane eluates (saturated hydrocarbon fractions) were run on gaschromatographs (Perkin Elmer F30 and Carlo Erba FTV 2150) using 25 m 0V101 glas capillary columns with N_2 as carrier gas (0.6 ml/min.) The CPI and the pristane/phytane ratios were calculated from these chromatograms. (Table V).

VITRINITE REFLECTANCE

Upon receipt, the cutting samples were soaked in warm water and sieved thorugh 72 mesh to remove drilling mud. After oven drying at 40° C, the cuttings were mounted in Bakelite resin blocks; care being taken during the setting in the plastic to avoid temperatures in excess of 100° C. The samples were then ground, initially on a diamond lap followed by two grades of corundum paper. All grinding and subsequent polishing stages in the preparation were carried out using isoprpyl alcohol as lubricant since water leads to the swelling and disintigration of the clay fraction of the samples.

Polishing of the samples was performed on Selvyt cloths using three grades of alumina, 5/20, 3/50 and Gamma, followed by careful cleaning of the surface.

Reflectance determinations were carried out on a Leitz M.P.V. microphotometer under oil immersion, R.I. 1.516, at a wavelength of 546 nm. The field measured was varied to suit the size of the organic particle but was usually of the order of 2 micron diameter.

The surface of the polished block was searched by the operator for suitable areas of vitrinitic material in the sediment. The reflectance of the organic particle was determined relative to optical glass standards of known reflectance. Where possible, a minimum of twenty individual particles of vitrinite was measured although in many cases this number could not be achieved. The search for vitirinitic material was maintained for apporximately 45 minutes on each sample before termination if the operator considered that no more vitrinitic particles were likely to be located.

EXTRACTION OF DRILLING MUD

To get some knowledge of the organic additives in the drilling mud, some of this was extracted ultrasonically with hexane. The extract was then run on capillary g.c. columns under the same conditions as before.

RESULTS AND DISCUSSION

TOTAL ORGANIC CARBON (TOC)

TOC varies slightly over the whole sequence analysed. For the first 700 m (1820 - 2520 m) the approximate value is 1.3%. At 2570 begins a carbonate rich sequence and there is a sudden drop in the TOC to 0.3%. Below the carbonate sequence, there is a sudden rise in the TOC to 3.1% at 2720 m, and then it drops to a more normal value of 1.1%. There are other sudden sharp increases and decreases in the TOC values in the analysed samples. This can be caused by various reasons, such as sudden changes in the lithology (Powell, 1975; Albrecht et al, 1976). It is well known (Gehman 1962) that carbonate rich sequences give lower TOC values than shale sequences. Another reason for the sudden variations can be contamination from additives to the drilling mud, such as lignosulphonate. Over all, there is a fairly steady value of 0.6 - 1.4 over most of the well, and this value is above the minimum value reckoned for a possible source-rock.

C_R/C_T RATIO

 $\rm C_R/C_T$ starts at a fairly low value of 0.3 at 1820 m. This is expected since we here will have a fairly immature sediment. The $\rm C_R/C_T$ value is fairly steady to a depth of approximately 2100 m (Table IV). At 2120 there is a sudden jump of 0.1. This jump coincides with the Eocene/Paleocene boundary.

At 2320 m there is again a sudden jump of 0.1 in the $\rm C_R/\rm C_T$ ratio. Vitrinite reflectance measurements show that there are fairly large amounts of reworked material in most samples from this depth, and down to the base of the well. From 2320 m - 2520 m the $\rm C_R/\rm C_T$ value is steady around 0.5. At 2570 m we find, for the first time in this well, a $\rm C_R/\rm C_T$ value of 0.6 or higher. This coincides with the Paleocene/Creteaseous boundary for this well. From 2570 m to the bottom of the well, the $\rm C_R/\rm C_T$ ratio varies from 0.6 $\stackrel{1}{\sim}$ 0.8, with a few exceptions 0,58 at 3500 m, 0,41 at 3650 m and 0,53 at 3990 m (Table IV). These few samples could then indicate the "true" value for the $\rm C_R/\rm C_T$ ratio. But because of the large amount of samples with $\rm C_R/\rm C_T$ ratio between 0.6 and 0.8, together with the knowledge of extended reworked material it is very difficult to draw conclusions from the $\rm C_R/\rm C_T$ measurements alone.

VITRINITE REFLECTANCE

The results of the vitrinite reflectance determinations are shown in Table VII of this report. Values underlined indicate what are considered to be the true reflectance for the sample in cases where there is contamination by reworked or caved material. The number in brackets following the value quoted for the vitrinite reflectance indicates the number of particles on which the determination is based.

Equivalent carbon contents, dry ash free, are quoted relative to data published by Teichmüller based on European coals (Fig. 5).

The vitrinite reflectance starts with a value of 0.4 at 1820 m. Most of the particles measured, seem allright, but there is a wide spread in the values, and those above 0.5 could perhaps be separated out and classed as reworked. The sample from 2020 m is good and gives a true value of 0.35. At 2320 m we find some particles with values around 0.3 but also some with far higher reflectance values (Table VII). The latter are reckoned as reworked.

At 2520 m we find particles with slightly higher values than before (0.44), and no reworked material is recorded. Since this depth is close to the Paleocene/Cretacous boundary, it was decided to do vitrinite reflectance measurements on the samples from the two next depths, 2570 m and 2670 m. These measurements show that we have reworked material in the samples from Cretaceous, while this was not found in the sample from 2520 m (Paleocene). We also find a quite sharp increase going down in the Cretaceous. At 2900 m we find a sample which gives an excellent reading on coal praticles (0.64), and we are quite confident that this is a true value. From 3100 m and down there are coal particles with reflectance of approx. 0.35. These are most probably particles which are additives to the drilling mud. There was no information on such an additive when the measurements were carried out but later we learned that lignosulphonate was added. This is expected to give a reflectance value of approximately 0.3.

The reflectance value of 0.76 at 3100 m could be a true value. It is a quite high value, but because the measurements were done on wisps, we feel that it is not reworked. On the other hand, the value of 0.92 at 3250 m, is definitly from reworked material. The reflectance values found for the samples from 3350 m, 3450 m, 3550 m and 3600 m are believed to be true.

At 3650 m we again find a very high value (0.98) and this is believed to be reworked material.

The reflectance values of 0.80 and 0.85 found for the samples from 3700 m and 3750 m might be a bit high, but there is no definite evidence that it is reworked material.

At 3800 m there are two definite classes of values (0.66 and 1.27). Here we believe that 0.66 is a true value and 1.27 from reworked material.

Two core samples were also measured (3818.50 m and 3824 m). Both the core samples showed slight exinite fluorescence and one particle at 3824 m gave a reading of 0.71. Apart from this all the measurements were on reworked material.

The measurements on the cuttings from 3940 m gave one reading of 0.75 and the rest at approx. 1.4. The latter are reworked material. Alle the samples measured from 3960 m and down to the base of the well show only reworked material. In most of the samples measured, very little organic material was reported.

EXTRACTABLE ORGANIC MATTER (EOM)

Looking at Table V, we see that most of the samples give an EOM value that would be rated as adequate for source-rock, and that the hydrocarbon content would be reckoned as poor to fair for most samples. There are a few exceptions, mainly from 3750 m to 3890 m, where the EOM must be rated rich and the hydrocarbon content good to very good (Philippi 1957).

The latest ways of interpreting the EOM and hydrocarbon values (Powell, 1975, Albrecht et al, 1976), where EOM, saturates and hydrocarbons are expressed in mg/g TOC, can also be used. (Table VI).

Most of the well has EOM values which are smaller than what Powell (1975) reckoned to be the minimum value for a sediment to be a source-rock (60 mg/g TOC). The exception is the sequence from 3750 m to 3890 m which has very high values for the EOM. (Table VI).

We understand an oil show was found in this interval. If we plot the EOM, HC and Saturates as ppm of whole rock, as a function of depth, we find two other intervals that have a small increase in EOM, HC and Saturates. These intervals are 2950 m - 3200 m and 3200 m - 3350 m (Fig. 15). These increases in EOM, HC and Saturates coincides with an increase in TOC (Table IV and Fig. 15).

If we, however, plot EOM, HC and Saturates as mg/g TOC as a function of depth, these two intervals are not distinct. (Fig. 16).

NORMAL PARAFFIN DISTRIBUTION AND CPI VALUES

Since there was so small amounts of EOM in the samples from the first 300 m (1820 m - 2120 m), liquid chromatographic separation was not done on these samples (Table V). Because of this, the distribution of the normal paraffins is not known. At 2170 m, the normal paraffin distribution seems to have two maxima, one at nC_{16} and a smaller one at nC_{24} (Fig. 15). This shows that at this depth the organic matter is not well matured, and that some of the organic matter could have derived from algae.

Going down the well, the maximum at nC_{24} gradually decreases, and from 3200 m there is a very smooth distribution of the normal paraffins, with a maximum at nC_{16} . This shows that the organic matter has undergone changes, and from 3200 m, we have a matured sediment with a normal paraffin distribution normally found for crude oils (Fig. 15).

When working with cuttings there is always the possibility of contamination. This will particularly show up in the normal paraffin distribution and the CPI value.

Gas chromatograms of the saturated hydrocarbon fraction from samples of cuttings taken from depths just above and below where diesel oil was started to be added to the drilling mud, show very much the same pattern. This makes us fairly confident that there is very little contamination from the diesel oil in our samples.

The CPI values were calculated for the different samples, and showed a very constant value around 1.00. Most of the samples had very small amounts of higher n-alkanes (above nC_{25}) so it was difficult to calculate the CPI value with sufficient accuracy. Also we had to calculate the CPI on very few n-alkanes, since most samples did not show any evidence of n-alkanes above nC_{30} . Some capillary gas chromatograms are shown in Fig. 6 - 14.

ISOPRENOIDS

At the top of the well there are large amounts of pristane and phytane compared to $n\text{C}_{17}$ and $n\text{C}_{18}$ (Fig. 6). This shows that this is a fairly immature sediment. The ratios pristane/nC $_{17}$ and phytane/nC $_{18}$ decreases going down the well. At 2170 m we find 2.3 and 1.1 for the two ratios, while at 2570 m, the pristane/nC $_{17}$ ratio is approx. 1.0. From 3200 m to the base of the well, the ratios pristane/nC $_{17}$ and phytane/nC $_{18}$ are those usually found for crude oil (0.5 and 0.3).

CONCLUSION

The results from the different analyses are plotted as function of depth in Figs. 15 and 16.

The Eocene (down to 2060 m) shows only negligeble variation for the different analyses. At the top of the Paleocene the $\rm C_R/\rm C_T$ shows a sudden increase, while the results from other analyses are fairly constant, right through the Paleocene. At the boundary between Paleocene and Cretaceous, there is again a sharp increase in the $\rm C_R/\rm C_T$, and a drop in the TOC. EOM, HC and Saturates are fairly constant in this interval.

From 3000 m we start to get an increase in TOC, EOM, HC and Saturates. These measurements again show a low value at 3200 m, which is close to the Campanian/Santonian boundary. The interval between 3200 m and 3350 m again has higher values for the TOC, EOM, HC and Saturates. The vitrinite reflectance for these two intervals show that we are within the "oil window" and the normal paraffin distribution shows fairly matured organic matter. If we look at Fig. 16, where EOM, HC and Saturates are plotted as mg/g TOC as a function of depth, these two intervals are not so distinct. On the whole we conclude that matured organic matter is formed in these two intervals but the amount is negligible.

The different measurements show very little variation from 3500 m down to 3700 m. From 3700 m the EOM, HC and Saturates show large, very sudden increases, and there are large amounts of EOM, HC and Saturates in the interval between 3700 m and 3890 m. From the data we have from our analysis we interpret this interval as an oil show.

From 3890 m to the base of the well, the TOC shows very erratic values, and the vitrinite reflectance gives results that indicate only reworked material. The EOM, HC and Saturates are again very low and with small variations.

The conclusion from the different analysis on samples from this well, is that the hydrocarbon generation zone lies below the total depth of this well.

COMMENTS TO THE DIFFERENT ANALYSES.

Earlier experience with material from the North Sea shows that there is a large degree of reworked material. Because of this a fairly large number of samples were taken for vitrinite reflectanse, but still it was difficult to find samples that gave good readings. On top of the problem with reworking there is also the possiblity of cavings. If possible, we would suggest that sidewall cores are taken for this type of analysis.

As mentioned in the Results and Discussion part, very little weight was put on the C_R/C_T measurements. This was because all measurements of EOM etc. gave clear evidence that there was no source rock in the analysed interval. If, however, the evidence had not been so clear, optical means to get more knowledge of the organic matter would have been used, to help interpret the C_R/C_T measurements.

In the extraction of the sediment we have used dichloromethane (DCM), this to avoid benzene, with its carcinogenic effect, as much as possible. DCM will lower the value for EOM compared with the benzene/methanol mixture usually used. But since the loss normally will be from the NSO fraction, we still get the required information. Other institutions have also left the benzene/methanol mixture (i.e. IFP, SNPA and Philips Petroleum).

In this work we have not analysed for light hydrocarbons. Analysis of light hydrocarbons provides a rapid knowledge of the maturety of the sediment and this aids in the interpretation of the data. IKU can do this type of analysis, but since it was not requested by Norsk Hydro, and since it was not mentioned in the contract this analysing method was not used. Any show of light hydrocarbons will not be detected by the analysing methods used on samples from this well. We understand that a small gas-show was found at appróx 2200 m.

On request from Norsk Hydro, total analysis for heavy hydrocarbons was done on all samples where there was enough material. A sequence of analyses of this type, with extraction, liquid chromatographic separation and CPI measurements of all the samples is very time

consuming and expensive. We would therefore suggest that a screening method i.e. TOC is used on all samples and from this, the samples for further analyses can be picked.

If, however, the different companies wish to have a complete analysis of all the samples, we would be prepared to do this.

TABLE IV $\label{total} \mbox{Total Organic Carbon (TOC) and Carbon Residue/Total Organic Carbon ratio (C_R/C_T).}$

Sample	Depth (m)	TOC (%)	c _R /c _T	
1	1820	1,52	0,30	
2	1870	1,01	0,36	
3	1920	1,47	0,36	
4	1970	1,30	0,31	
5	2020	1,31	0,32	
6	2070	1,31	0,32	
7	2120	1,40	0,42	
8	2170	0,88	0,41	
9	2270 Set A	1,58	0,43	
10	2270 Set B	1,34	0,42	
11	2320	1,01	0,54	
12	2370	0,83	0,52	
13	2420	1,75	0,52	
14	2470	0,87	0,47	
15	2520	0,83	0,56	
16	2570	0,30	0,65	
17	2670	0,34	0,60	
18	2720	3,13	0,63	
19	2800	1,16	0,76	
20	2900	1,10	0,70	
21	2950	0,60	0,69	
22	3010	0,61	0,64	
23	3050	2,18	0,78	
24	3100	2,31	0,70	غ. غ
25	3150	1,35	0,77	•
26	3202	0,69	0,72	
27	3250	3,92	0,77	
28	3300	2,90	0,76	
29	3350	0,71	0,69	

Sample	Depth (m)	TOC (%)	c _R /c _T	
30	3450	1,41	0,70	
31	3500	0,89	0,58	
32	3550	2,97	0,60	
33	3600	0,67	0,61	
34	3650	0,58	0,41	
35	3700	0,76	0,65	
36	3750	0,69	0,62	
37	3800	0,77	0,74	
38	3810	1,17	0,72	
39 [*]	3820			
40	3830	0,85	0,71	
41	3840	0,66	0,68	
42	3850	0,58	0,71	
43	3870	1,19	0,63	
44	3880	1,33	0,73	
45	3890	1,05	0,71	
46	3900	2,45	0,74	
47	3940	1,59	0,75	
48	3950	1,65	0,76	
49	3960	1,33	0,77	
50	3970	2,15	0,71	
51	3980	0,89	0,76	
52	3990	0,98	0,53	
53	4000	0,60	0,74	
54	4010	1,13	0,81	
55	4020	0,89	0,78	
56	4030	1,98	0,84	
57	4040	1,28	0,84	
58	3924 (Core)	1,03	0,81	

^{*} No returns of cuttings.

TABLE V

Extractable Organic Matter (EOM), Liquid Chromatographic Separation, Carbon Preferance Index (CPI) and Pristane/ Phytane ratio.

Depth	EOM ppm of whole rock	Saturates ppm of whole rock	Nonsaturates ppm of whole rock	Methanol eluate ppm of whole rock	Hydrocarbons ppm of whole rock	CPI	Pristane Phytane	1-2-2
1820 *	77							
1870 *	80							
1920 *	111							
1970 ×	101							28 -
2020 *	71							·
2070 ×	106							
2120 ×	102							
2170	145	33	32	54	65	0,98	2,53	
2270 Set A	210	39	45	84	84	0,98	1,85	
2270 Set B	235	48	39	87	87	1.00	1.71	
2320	205	34	34	69	68	0,98	1,59	
2370	400	25	45	27	70		2,10	
2420	100	12	19	36	31	1.01	2.21	
2470	270	9	168	40	177	0.99	2.44	
2520	325	106	79	101	185	1.03	1.46	
2570	128	16	46	32	62			
2670	260	43	56	41	99	1.02	1.50	
2720	344	61	80	177	141	0,98	1,71	
2800	210	17	41	105	58			

Depth	EOM ppm of whole rock	Saturates ppm of whole rock	Nonsaturates ppm of whole rock	Methanol eluate ppm of whole rock	Hydrocarbons ppm of whole	CPI	Pristane Phytane
2900	356	58	90	82	148	1,01	2.34
2950 3010 **	325	100	68	48	168	0,99	1.87
3050 3100 **	820	208	274	146	482	1.00	1.89
3150	729	50	183	239	233	0,98	1.37
3202	157	23	. 63	56	86	0,96	1,74
3250 3300 **	1180	82	270	276	352	1,01	1,51
3350	436	56	93	175	149	1,03	1,66
3450	456	62	129	151	191	1,02	1,80
3500	389	88	122	120	210	1,01	2,28
3550	430	81	174	101	255	0,99	1,78
3600	370	47	83	88	130	1,00	1,85
3650	333	37	48	61	85	1,01	1,47
3700	350	29	45	92	74	1,02	1,58
3750	2390	677	449	271	1126	1,00	1, 87
3800	3338	1521	728	615	2249	0,99	1,91
3810 3820 **	2300	750	743	801	1493	1,01	1,86
3830	970	204	224	216	428	0,99	1,74
3840	1250	526	284	292	810	1,01	1,55
3850	1863	493	389	295	882	0,99	1,16

* * * . . .

¥c sk

29

Depth	EOM ppm of whole rock	Saturates ppm of whole rock	Nonsaturates ppm of whole rock	Methanol eluate ppm of whole rock	Hydrocarbons ppm of whole rock	CPI	Pristane Phytane
3870	4447	702	809	809	. 1511	1,01	1,55
3880	5140	1737	1509	548	3246	1,00	1,44
3890	800	170	235	238	405	1.00	1.60
3900	1130	344	267	312	611	1.00	1.65
3940	440	137	107	168	244	1.00	1.33
3950	510	126	127	177	253	1,01	1,40
3960	760	88	116	181	304	1,01	1,40
3970	410	87	105	181	192	0,99	1,45
3980	310	60	52	111	112	0,99	1,43
3990	290	65	77	78	142	0,98	1,41
4000	.210	59	36	60	95	0,99	1,42
4010	-210	35	64	82	99	1,01	1,41
4020	240	43	56	68	99	1,00	1,41
4030	600	172	123	198	295	0,98	1,58
4040	350	91	62	106	153	1,01	1,61
3924 (core)	270	7	28	57	35	1.00	1.84

 $[\]star$ Not enough sample for liquid chromatographic separation.

 $[\]boldsymbol{\mathsf{x}}\boldsymbol{\mathsf{x}}$ Not enough sample for extraction.

TABLE VI

Extractable Organic Matter (EOM), Saturates and Total Hydrocarbons as a function of Total Organic Carbon.

Depth	EOM m /g TOC	Saturates m /g TOC	Total HC m /g TOC	Saturates % of EOM	Total HC % of EOM.
1820 ×	5.1				
1870 ×	7,9				
1920 ×	7,6				
1970 ×	7,8				·
2020 ×	5,4				
2070 ×	8,1				
2120 *	7,3				
2170	16,3	3,8	7,4	23	45
2270 Set <i>F</i>	13,2	2,5	5,3	19	40
2270 Set E	3 17,5	3,6	6,5	20	37
2320	20,2	3,4	6,7	17	34
2370	48,2	3,0	8,4	6	18
2420	8,5	0,7	1,8	12	31
2470	31,0	1,0	20,3	3	66
2520	39,2	12,8	22,3	33	57
2570	42,7	5,3	20,7	13	48
2670	79,3	12,6	29,1	17	38
2720	11,0	1,9	4,5	18	41
2800	18,1	1,5	5,0	8	28
2900	32,4	5,3	13,5	16	42
2950	54,2	16,7	28,0	31	52
3010 **					
3050	37,6	9,5	22,1	25	59
3100 **					
3150	54,0	3,7	16,5	7	32
3202	22,8	3,3	12,5	15	55
3250	30.1	2,1	9,0	7	30
3300 XX					
3350	61,4	7,9	21,0	13	34

Depth	EOM m /g TOC	Saturates m /g TOC	Total HC m /g TOC	Saturates % of EOM	Total HC % of EOM
3450	32,3	4,4	13,5	14	42
3500	43,7	9,9	23,6	23	54
3550	14,5	2,7	8,6	25	77
3600	55,2	7,0	19,4	13	35
3650	57,4	6,4	14,7	11	26
3700	46,1	3,8	9,7	8	21
3750	346,4	98,1	163,2	28	47
3800	433,5	197,5	292,1	46	67
3810	196,6	64,5	127,6	33	65
3820 **					
3830	114.1	24.0	48,4	21	41
3840	189,4	79,7	122,7	42	65
3850	325,2	85,0	152,1	26	47
3870	373,7	59,0	127,0	16	34
3880	386,5	130,6	244,1	34	63
3890	76,2	16,2	38,6	21	51
3900	46,1	14,0	24,9	30	54
3940	28,2	8,6	15,3	31	55
3950	30,9	7,6	15,3	25	50
3960	57,1	6,6	15,3	12	27
3970	19,1	4,0	8,9	21	47
3980	34,8	6,7	12,6	19	36
3990	29,6	6,6	14,5	22	49
4000	31,8	9,8	15,8	28	45
4010	18,5	3,1	8,8	17	47
4020	27,0	4,8	11,1	18	41
4030	30,3	8,7	14,9	29	49
4040	27,3	7,1	12,0	26	44
3924 Core	26,2	0,7	3,4	3	13

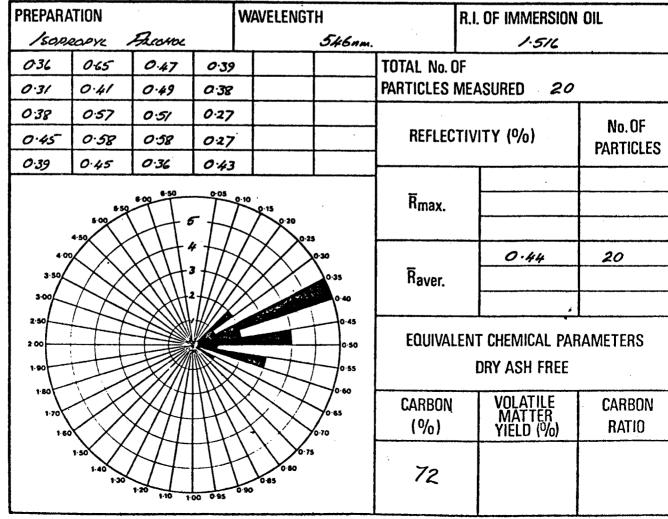
Not enough sample for liquid chromatographic separation.

 $[\]star\star$ Not enough sample for extraction.

Depth				Re	eflectance.				
1820		0,44(20)							
2020	0,35(16)	<u></u>							
2320	0,32(10)		0,65(8)						
2520		0,44(20)							
2570		0,44(14)		0,79(2)					
2670		0,50(<u>4)</u>		0,84(4)				
2900			0,64(22)Co	al					
3100	0,36(20)Coal		-	0,75(5)					
3250	0,36(11)Coal					0,92(9)			
3350			0,68(20)						
3450	0,35(10)Coa1		0,67(10)						
3550	0,35(23)Coal		0,67(5)						
3600	0,34(1)Coal		0,61(11)						
3650						0,98(6)			
3700	0,28(6)Coal				0,80(14)				
3750	0,22(7)Coal				0,85(13)				
3800	0,38(5)Coal	,	0,66(2)				1.27(9)		
3918 [*] 50							(12/(3)	1.42(2	0)
3924 [*]	•			0,71(1)				1,38(20)	•
3940	0,38(21)Coa1			0,74(1)				·	
3960	0,36(20)Coal								

ယ

<u>Depth</u>		Reflec	tance.	
3980	0,37(5)Coal		1.39(16)
4000 4020			1.21(11)	21)
4040		0,64(1)	1.11(19)	2.03(1)


* Core somples.

40

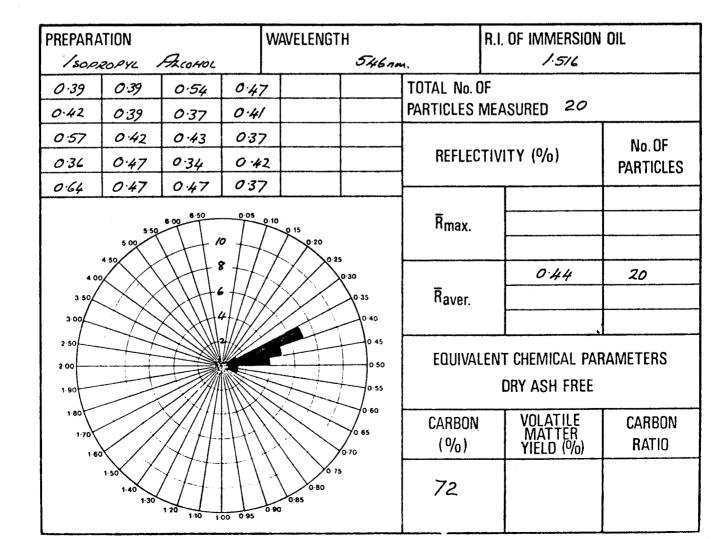
Fig. 5.

Details of the vitrinite reflectance measurements.

ORIGIN 1. K. U.	SAMPLE Our Ref: A.S. J.M.J. Your Ref: 1820
LITHOLOGY Sugge + CARBONATE	
MINERALOGY	GENERAL COMMENTS SERVES SATISFACTORY BUT SAFAD OF VALUES RATHER WIDE. STORE
ORGANIC MATERIAL MODERATE ORGANIC CONTENT. PRATE Or VITENITE, RATHER ROUNDED. MERTIN + REWORKED MATERIAL DOMINANT	
APPEARANCE IN U.V. LEEN/YERLOW + CAMER FLUORESCENCE FROM STORES	Ash House Bell Villas Ponteland Northumberland

ORIGIN /.K. U.	SAMPLE Our Ref: J.M. J.L.M.J. Your Ref: 2020
LITHOLOGY SHALE + CAR	. ,
MINERALOGY	GENERAL COMMENTS
ORGANIC MATERIAL LOW- MODERATE ORGANIC ISOLATED PARTICLES MAINLY VITRINITE + INERTINITE. A I PARTICLES OF POSSIBLY TR	For Remorked
APPEARANCE IN U.V. GREEN/YELLOW + O. FLUORESCENCE FROM	Ash House Bell Villas Ponteland Northumberland
EXINITE CONTENT	Signature Date 15- Oct. 1976

	7.576 OF MEASURED 16 TIVITY (%)	No.OF PARTICLES
PARTICLES I	MEASURED /6	
REFLEC		
	TIVITY (%)	
R _{max} .		
$\overline{R}_{\text{max.}}$		
Raver.	0-35	16
EQUIVAI	LENT CHEMICAL PAF DRY ASH FREE	RAMETERS
CARBON (%)	VOLATILE MATTER YIELD (%)	CARBON RATIO
65		
	EQUIVA CARBON (%)	EQUIVALENT CHEMICAL PARDRY ASH FREE CARBON VOLATILE MATTER YIELD (%)


: . .

.

DRIGIN J. K. U. SAMPLE OUR Ref: J.M. / J.M. J. Your Ref: 3320 LITHOLOGY MINER LIMOLOGIES, SANDSTONE + LIMESTONE MINERALOGY SHALE RATHER PRETTY GENERAL COMMENTS TWO RO. VALUES. INTERPRETYTION UNCERTAIN BUT LOWER VALUE FAVOURED; WARE - REWERED. DRIGANIC MATERIAL MODERATE DIREMINE CONTENT, SANDSTONE UNDER - REWERED. DRIGHT SHALE SHALL PRETTYLES + WISS OF WITH INTERPRETYTION UNIT INTERPRETYTION APPEARANCE IN U.V. LOOD YELOW FLUORESCENCE FROM SPECES ESTIMATE EXINITE CONTENT IN U.V. LOW - MODERATE SIGNATURE SIGNATURE Date 15 TOR. 15 TO.	- 38 -	
SHALE RATHER PRATTICE ORGANIC MATERIAL MODERATE ORGANIC CONTENT, SANDSTONE + LIMESTONG BARREN - PLL READINGS ON SHALE. SHALL PARTICLES + WISPS OF WITENITE APPEARANCE IN U.V. GOOD YELLOW FLUORESCENCE FROM SPORES EXINITE CONTENT EXINITE CONTENT TWO RO. VALUES. INTERPRETATION UNCERTAIN BUT LOWER VALUE FAUGUSES; VAPER - REWARKED. TWO RO. VALUES. INTERPRETATION UNCERTAIN BUT LOWER VALUE FAUGUSES; VAPER - REWARKED. THE GOOD STATES INTERPRETATION UNCERTAIN BUT LOWER VALUE FAUGUSES; VAPER - REWARKED. THE GOOD STATES INTERPRETATION UNCERTAIN BUT LOWER VALUE FAUGUSES; VAPER - REWARKED. THE OR CONTENTS INTERPRETATION UNCERTAIN BUT LOWER VALUE FAUGUSES; VAPER - REWARKED. THE ORGANIC FAUGUSES; ASH HOUSE BELL VILLES PONTE OF THE ORGANIC FAUGUSES. THE ORGANIC FA	7-2.0.	Your Ref: 2320
ORGANIC MATERIAL MODERATE ORGANIC CONTENT, SANDSTONE + LIMESTONIC BADDEN - PLL READINGS ON SHALE, SHALL PARTICLES + WISPS OF WITEINITE APPEARANCE IN U.V. GOOD YELLOW FLUORESCENCE FROM SPORES EXINITE CONTENT EXINITE CONTENT Delta (1972) FORE OFFICIAL PROPERTY OF THE PROPERTY O	The state of the s	Two Ro. VALUES. INTERPRETATION UNCERTAIN BUT LOWER VALUE FAUGURED;
IN U.V. Good YELLOW FLUORESCENCE FROM SPORES Ash House Bell Villas Ponteland Northumberland NEZO 9BE	MODERATE ORGANIC CONTENT, SANDSTONE + LIMESTONG BAIREN - ALL READINGS ON SHALE, SMALL PARTICLES + WISPS OF VITRINITE BUT MOSTRY RENDERKED WITH	
EXINITE CONTENT	IN U.V. GOOD YELLOW FLUORESCENCE	Ash House Bell Villas Ponteland
	1	NEZU YBE

PREPARATION	REPARATION WAVELENGTH						R.I. OF IMMERSION	I OIL	
ISOPRO PY	ISOPROPYL PRIOHOL 546 nm						m. 1.516		
	.78	0.28	0:50			TOTAL No. OF PARTICLES MEASURED /8			
0.25 0	-66	036	0.38			ran Hules	INICASOUCH	T	
0.75 0.	-60	0.27	0.37	·		DEC. CO	TUUTN (01)	No. OF	
0.39 0	-62	0.59				REFLEC	CTIVITY (%)	PARTICLES	
0.71 0	.3/	0.28							
	5.00 6.50 0.05 0.10 0.15								
4.50	4-50						0.32	10	
3.50	X		2		0.35	R _{aver.}	0.65	8	
2.50	#				EQUIVALENT CHEMICAL PARAMETERS				
1-90							DRY ASH FREE		
1.70			#		0 65	CARBON (%)	VOLATILE MATTER YIELD (%)	CARBON RATIO	
1.50	1:40	120		0.79		63 78			
			00 0 95	V 9V					

ORIGIN 1. K. U. SAM	MPLE Our Ref: J. M. IPW Your Ref: 2520
LITHOLOGY MIXED SHALE LITHOLOGIES	
MINERALOGY	GENERAL COMMENTS SEEMS REMARKE RESULT
ORGANIC MATERIAL VARIABLE ORGANIC CONTENT WITH SHALE LITHOLOGY CENERALLY LOW MODERATE WITH LITHOLOGY CENERALLY LOW MIRINITE DOMINAN INERTINITE + REMORKED VITRINITE DOMINAN RACGED, CORRODED PARTICLES + WISPS	
APPEARANCE IN U.V. YELLOW / ORANGE FLUORESCENCE FROM SHOZES EXINITE CONTENT IN U.V. MODERATE	Ash House Bell Villas Ponteland Northumberland NE20 9BE Date 15 1970

ORIGIN J. K. U. LITHOLOGY SHALE + CHALK	AMPLE Our Ref: J.M. JP.W. Your Ref: 2570
MINERALOGY Praise + Trinces or Generalise	GENERAL COMMENTS SEEMS RELIABLE. HIGHER VALUE REWORKING.
ORGANIC MATERIAL CHAIR - VIRTUALLY BARREN SHALE - MODERATE ORGANIC CONTENT - PRESENT DE SMALL INERTINITE PARTICLES + VITANITE WISES. RATHER RACCED + CORRODED.	
APPEARANCE IN U.V. STRONG CARBONATE FLUORESCENCE + YEZLOW AND ORANGE SAGRES	Ash House Bell Villas Ponteland
EXINITE CONTENT IN U.V. MODERATE	Northumberland NE20 9BE Signature Date 1: 27 1976

PREPAR	ATION			WAVELENGT	TH		R.I. OF IMMERSIO	V OIL	
150,	PROPYL	Azronol	<u> </u>		546 n	m.	1.516		
0.89	0.42	0.39	0.4	6		TOTAL No. C)F		
0.47	0.48	0.43				PARTICLES !	MEASURED 16		
0.47	0.45	0.68						No OF	
0.39	0:39	0.46				REFLEC	TIVITY (%)	No. OF PARTICLES	
0.35	0.47	0.50				<u> </u>		TAITTIOLLS	
	6.00 6.50 0.10								
	5 500					R _{max} .			
4-06	4 500				i 0·30		14		
3.50	\times	1116	H		0.35	Raver.	0.44	2	
3.00		X	4///		0.40			<u> </u>	
2-50	-				0.45	EQUIVALENT CHEMICAL PARAMETERS			
2.00					0.50	EUUIVALI	RAMETERS		
				0-55	DRY ASH FREE				
1-80		X//[[1777		0.60	CARBON	VOLATILE	CARBON	
1-60	1.60					(%)	MATTER YIELD (%)	RATIO	
	1.50	// []		0.75		72			
	1 40								
		1-10 1-0	0 0.95			80			

ORIGIN 1. K. U.	SAMPLE Our Ref: A.S. JPW. Your Ref: 2670
LITHOLOGY SILTSTONE	wo PO
MINERALOGY .	GENERAL COMMENTS
·	
ORGANIC MATERIAL LOW - MODERATE ORGANIC CO SHALL VITRINITE PARTICLES O REWORKED MATERIAL AND INE DOMINANT.	BUT
APPEARANCE IN U.V. ORANGE FLUORESCENCE SPORES	Bell Villas Ponteland Northumberland
EXINITE CONTENT IN U.V. Low	Signature Date 15 Date 1570

PREPARA	ATION		,	WAVELENGT	Н		R.I. OF IMMERSIO	N OIL	
/sopx	ROPYL	Axcoroc			546nm	•	1.516		
0:3/	0.59	0.44	04	3		TOTAL No. 0			
0.81	0.44	0.47	0.44	<i>i</i>		PARTICLES I	MEASURED /8		
0.57	0.61	0.56	0.44	2				No. OF	
0.61	0.87	0.50				REFLEC	PARTICLES		
0.84	0.82	0.59							
		6.00 6.50	0.05	0-10		R _{max.}			
	5.00		5 L	0.15		Miliax.			
4-00	4 500						0.50	14	
3.50		3 0.35				Raver.	0.84	4	
3.00	<i>}</i>	XXW	2///		0.40				
2 50	4				0.45	EQUIVALENT CHEMICAL PARAMETERS			
2.00					0.50				
1.90					_ /	DRY ASH FREE			
1.80	//	////	++1		0 65	CARBON	VOLATILE	CARBON	
1-70		11/	111		0 70	(%)	VOLATILE MATTER YIELD (%)	RATIO	
	1:50	111	1-1-1	0 75		73			
	1:40	120		0.85		81			
		1-20 1-10 1	00 0 95	0.90					

- 42 -	
ORIGIN 1. K. U.	SAMPLE Our Ref: J.M. P.W. Your Ref: 2900
LITHOLOGY MIXED SHALE + COAL PA	
MINERALOGY	GENERAL COMMENTS
	MAJORITY OF READINGS ON GAL
ORGANIC MATERIAL MODERATE ORGANIC CONTESS. PLAIOST EXCLUSIVERY RAGED, CHARLED PRATICLES OF INERTINITE + REWORLED VITEINITE CORL - VITEINITIC WITH PLATTLE INERTINITE	
APPEARANCE IN U.V. YEZLOW JORANGE FLUORESCENC FROM SPORZES	Bell Villas Ponteland Northumberland
EXINITE CONTENT IN U.V.	Signature Date 15 Date 1976

PREPARATION WAVELENGTH SOPROPYL FACONOL 546nm.							R.I. OF IMMERSION	OIL
0.58 0.55	0.81	0.75	0.65 0.58			TOTAL No. OF PARTICLES MEASURED 22		
0.55 0.51	0.79	0.64	0·59 0·63			REFLEC	TIVITY (%)	No.OF Particles
0.53 0.62 0.67 0.63 6.50 0.05 0.10 0.15 0.20 4.50 0.35 0.35 0.35 0.35 0.40						R _{max.}		
						Raver.	0.64	22
2 50 0 45 0 50 1 80 0 60					EQUIVAL	ENT CHEMICAL PAR DRY ASH FREE	RAMETERS	
1.70						CARBON (%)	VOLATILE MATTER YIELD (%)	CARBON RATIO
	1-50	1 20 1.10 1	00 095	0.75	,	ファ		

ORIGIN 1. K. U.	SAMPLE Our Ref: A.S./P.W. Your Ref: 3100
LITHOLOGY SHALE, COAL + LIMESTO	ONE TRACES
MINERALOGY	GENERAL COMMENTS
ORGANIC MATERIAL LIMESTONE BARREN. KICH IN COAL CUTTINGS - STRUCTURELESS VITRINITE WITH ONLY INERTINITE TRACES. SOME CARBARGILLITE. SHALE - LOW/MOD. CONTENT - RAGGED WISPS + PARTICLES CHIEFLY INERTINITE + REWORKED.	
APPEARANCE IN U.V. YELLOW / ORMIGE FLUORESCEN FROM SACRES	Ponteland
EXINITE CONTENT IN U.V. Low	Northumber land NE20 9BE Signature Date 15 Dec. 1970

PREPARATION			WAVELENGTH			R.I. OF IMMERSION OIL		
150PROPYL PACOHOL			546nm.			1.516		
0.78	0:33	0.28	0.76	0.72		TOTAL No. OF		
<i>0</i> ·33	0.33	0.32	0.50	0.35		PARTICLES	MEASURED 25	Y
0.32	0:33	0.84	0.42	0.39				No.OF
0:32	0.35	0.42	0.32	0.46		REFLEC	TIVITY (%)	PARTICLES
0.37	0.31	0.29	0.72	0.42				
6.00 6.50 0.05 0.10						R _{max} .		
	5 00	11/	0 //	0.15		i iii		
4 000						0.36	20 COAL	
3 50	\times	XX+++	· H/		0.35	Raver.	0.76	5
3.00		XXXIII.			0.40			
2.50					0.45	EQUIVALENT CHEMICAL PARAMETERS		
1.80					DRY ASH FREE			
					CARBON (%)	VOLATILE MATTER YIELD (%)	CARBON RATIO	
1.50						66	11220 (70)	
	1:40	1-20 1-10 1	00 0.95	0.85		80		

7. X. U.	SAMPLE Our Ref: J.M. J.M.J. Your Ref: 3250
LITHOLOGY SHALE + COAL	
MINERALOGY	GENERAL COMMENTS
ORGANIC MATERIAL COAL - LOW PONK, VITRINITIC BUT WITH SOME CARBARGILLITE CUTTINGS SHALE- VARIABLE LITHOLOGIES. CORRODED PRETICLES + WISPS MANNY OF REWORKED VITRINITE	
APPEARANCE IN U.V. ORANGE FLUORESCENCE FROM SAURES EXINITE CONTENT IN U.V. LOW	Ash House Bell Villas Ponteland Northumberland NE20 9BE Date 15 Dec. 1976

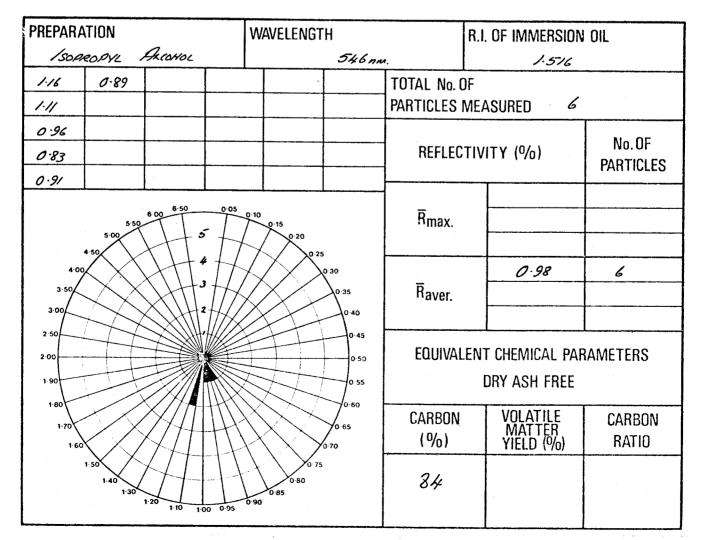
PREPARA	ATION			WAVELENGTH		R.	I. OF IMMERSION	OIL	
/50/	OROPYL	ALONO	c	54	6nm.		1.516		
1-12	0.94	0.36	0:34			TOTAL No. OF			
1.03	0.98	0.34	0.35		PARTI	CLES ME	ASURED 20		
1-15	0.71	0.39	0.34				10/ \	No.OF	
0.82	0.65	0.41	0.32		К	EFLECTIV	VITY (%)	PARTICLES	
0.97	0.29	0.42	0.38				<u> </u>		
		6.00 6.50	0.05	0-10	R	max.			
	5.00	5	- +1	0.15	["'	illax.			
4 00	4.50						0.36	II CoAL	
3-50	\times	SHT:	3 H/		5 R	aver.	0.93	9	
3.00		XXXII:			0.40				
2 50					0 45 0 50 EC	EQUIVALENT CHEMICAL PARAMETERS			
1.90						DRY ASH FREE			
1.80	///				CA	RBON	VOLATILE	CARBON	
1.60		411	11/	0.70		º/o)	MATTER YIELD (%)	RATIO	
	1:50	/-[]		0.75	6	6		-	
	1.40	120		0.80		3			
			00 0.95						

·		
ORIGIN 1. K. U.	SAMP	PLE Our Ref: J.M. / J.M. J Your Ref: 3350
LITHOLOGY MIXED SHALE LITHOLOGIC	ez	
MINERALOGY		GENERAL COMMENTS
		SEEMS REZIABLE
ORGANIC MATERIAL LOW- MODERATE ORGANIC CONTENT SHALL, GNARLED PARTICLES AND A FEN WISPS. SOME INERTINITE + REWORKED VITRINITE		
APPEARANCE IN U.V. ORANGE FLUORESCENCE FROM SPORES		Ash House Bell Villas Ponteland Northumberland
EXINITE CONTENT TRACE		Signature NE20 9BE Date 15 1971

PREPARATION WAVELENGTH			r.i. of immersion oil					
/so P	ROPYL	Azionoc			546nr	١.	1.516	
0-85	0·56 0·67	0.76	0.67			TOTAL No. OF PARTICLES MEASURED 20		
0.85	0·76 0·63	0.62	0.61			REFLEC	TIVITY (%)	No. OF Particles
045 065 049 1.06					R _{max} .			
							0.68	20
2 50 2 00 1 90 1 80					EQUIVALENT CHEMICAL PARAMETERS DRY ASH FREE			
							VOLATILE MATTER YIELD (%)	CARBON RATIO
	1-40	1-20 1-10 1	00 0.95	0 80		78		

ORIGIN 1. K. U.	SAMPLE Our Ref: A.S. IP.W. Your Ref: 3450
LITHOLOGY SHALE + COAL	730)
MINERALOGY	GENERAL COMMENTS
ORGANIC MATERIAL LOW- MODERATE ORGANIC CONTENT - SMALL VERY RACKED PARTICLES BUT W INERTIMITE DOMINANT. COAL (LOW RO., VITEINITIC WITH ONLY TRACE OF INERTIMITE	(rav) -
APPEARANCE IN U.V. ORMEE FLUORESCENCE FROM SPORE FRAGMENTS	Ash House Bell Villas Ponteland Northumberland
EXINITE CONTENT LOW - MODERATE	Signature Date 15 Det. 1970

1			WAVELENGT			r.i. of immersion oil				
ISOPROPYL PALONOL 546mm				ш,	1.516					
0.68	0.67	037	1.07	0.68		TOTAL No. (
0.38	0.7/	036	0.69	0.70		PARTICLES	MEASURED 22			
0.33	0.3/	0.42	0.62					No. OF		
0:33	0.36	030	0.75	5		REFLEC	TIVITY (%)	PARTICLES		
0.63	0.39	1.04	0.61	<u> </u>						
		6.00 6.50	0.05	_0·10		R _{max.}				
	5.00	1		0.15		Tillax.				
40	4 50 4 00 30						0:36	10 CODL		
3 50					0.35	Raver.	0.67	10		
3.00		XXXH	·H//		0.40		1.06	2		
2.50							EQUIVALENT CHEMICAL PARAMETERS			
1.90					_ /	DRY ASH FREE				
1.80					0.65	CARBON	VOLATILE MATTER YIELD (%)	CARBON		
1.6	\langle / \rangle	741	17	$\langle \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	070	(%)	YIELD (%)	RATIO		
	1.50	1-1-1	1 1 1	0.80	5	66				
	1:30	1-20 1-10 1	00 0 95	0.90 0.85		78 85				
						<u>L</u>		<u> </u>		


ORIGIN 1. K. U.	SAMPLE Our Ref: J.M. J.P.W. Your Ref:
LITHOLOGY SHALE, COAL + CARE	3550 3550
MINERALOGY	GENERAL COMMENTS
	Come Annexas Too Presence To Be Courses
ORGANIC MATERIAL COAL - PLENTIFUL, LOW REFLECTME LARGEN VITEINITE WITH TENNITE STRUCTURE SHALE - LOW ORGANIC CONTENT - SHALE PRETICUES OF INERTINITE + REMOVED VITEINITE.	· ·
APPEARANCE IN U.V. LOW YELLOW FLUORESCANCE FROM SPORES & RESIN IN CORL. ORANGE SAME IN SHALE	Gian-consultants Ltd Ash House Bell Villas Ponteland Northumberland
EXINITE CONTENT IN U.V. Low- MORRATE	Signature Date 10 1970

PREPARATION W				WAVELENGTH			r.i. of immersion oil		
ISOPROPRI PAROPOR				546nm.			1.516		
0.38	0.30	0.32	0.34	0.39	0.42	TOTAL No. 0)F		
0.39	0:33	032	0:33	0.38	0.69	PARTICLES	MEASUF	RED 28	
0.39	0.35	0.77	0:35	0.59	0.62			101	No.OF
0:30	0:38	0.30	034	0.36		REFLEC	TIVITY	(%)	PARTICLES
0.27	0.38	0.68	0.33	0.42			<u>-</u>		
		6.00 6.50	0.05	0-10		R _{max} .	_P		
	5.00	11	, [0.15		Willax.	-		
4-06	4 50	111	8)°2	s \0 30			0.35	23 Con
3 50	$\rightarrow \rightarrow$	XXX	6///		0.35	Raver.		0.67	5
3.00		XXH	•{///	A STATE OF THE STA	0.40				
2:50	1		2		0.45	EQUIVALENT CHEMICAL PARAMETERS			
2.00					0 50	EUDIVAL			IMIVIL I LITO
1.90					DRY ASH FREE				
1.80						CARBON		OLATILE	CARBON
						(%)	Ϋ́	MATTER TELD (%)	RATIO
	1:50	417	11	0.7	5	65			
	1.40	It	1	0.85		78			
		1-20 1-10 1	00 0.95	0.90					

ORIGIN /. K. U.	SAMPLE Our Ref: J.M. J.M.J. Your Ref: 3600
LITHOLOGY MIXED Sugar LimoLogi	,
MINERALOGY	GENERAL COMMENTS
ORGANIC MATERIAL LOW ORGANIC CONTENT PRETICES AS A FEW WISTS RATHER CORRODED. M. WISPS TOO SHALL FOR DETERMINATION. WERTINITE + REWORLD MATERIAL DOWNAMIT	rs r
APPEARANCE IN U.V. ORANGE SQUORESCENCE FROM B FEW STORKS	Ash House Bell Villas Ponteland Northumberland
EXINITE CONTENT IN U.V. Tence	Signature Date 15 Day 1975

PREPARATION WAVELENGTH			H	R.I. OF IMMERSION OIL		
ISOPROPYL PACOMOL 546mm			4	1.516		
0.75 0.46	0.85			TOTAL No. 0)F	
0.51 0.69	0.67			PARTICLES I	MEASURED /	2
0.34 0.77				BEEI EC	TIVITY (%)	No.OF -
1.00 0.82				HELFEO	110111 (70)	PARTICLES
0.59 0.52	<u> </u>		<u> </u>			
5·50 5·00	6.00 6.50	0.15		R _{max.}		
4-50	HI I	21				
400	XTIL	<i>1747)</i>	0-30	_	0.34	
3 500	XXIII		0.35	Raver.	0.61	//
2.50			0.45			<u> </u>
2.00			0.50	EQUIVAL	ENT CHEMICAL PAF	RAMETERS
1.90			0.55		DRY ASH FREE	
1.70	X/////		0.60	CARBON	VOLATILE	CARBON
1 60	4/11		070	(%)	MATTER YIELD (%)	RATIO
1-50	4	0 80	,	64 77		
1-30	1-20 1-10 1-00 0	95 0.90				

ORIGIN 1. K. U. SAM	IPLE Our Ref: A.S. I.M.J. Your Ref: 3650
LITHOLOGY MINED SURLE LITHOLOGIES	0650
MINERALOGY	GENERAL COMMENTS REDDINGS PROBABLY ON REMODERED VITRINITE. LITHOLOGY LOOKS LOWER RANK
DRGANIC MATERIAL LOW DRAWNE CONTENT SCATTERED PARTICLES OF VITRINITE + INERTIMITÉ. RATHER CORRODED WITH A LOT OF RENORKING	THAN I'L AND SPORE SOURCESCENCE PLSO INDICATES LOW RANK.
APPEARANCE IN U.V. ORMICE FLOORESCENCE FROM STORES EXINITE CONTENT IN U.V. LOW	Ash House Bell Villas Ponteland Northumberland NE20 9BE Signature Date 15 Dr. 1970

ORIGIN 1. K. U.	SAMPLE Our Ref: A.S. J.M.J. Your Ref:
LITHOLOGY SHALE + Com	3700
MINERALOGY	GENERAL COMMENTS
ORGANIC MATERIAL SHALE - LOW ORGANIC CONTENT. A. PRETICLES + WISAS, SMALL + CORRODAD. COAL - ONLY A FEW COTTINGS - VITEMAN WITH LITTLE INERTIMIZE	
APPEARANCE IN U.V. OVERALL CARBONATE FLUGGET + ORMER SORES	n pontetano t
EXINITE CONTENT IN U.V. Teace-	Signature Date 15 Dec 1876

PREPARATION WAVELENGTH					R.I. OF IMMERSION OIL				
/50	PROPYL	AKOHOL			546 nm		1.516		
1.12	0.68	0.29	0.30		· · · · · · · · · · · · · · · · · · ·	TOTAL No. C)F		
1.22	0:56	0.59	0.28			PARTICLES I	MEASURED 2	<i>'0</i>	
1.02	0.87	0.7/	C.28					No.OF	
0.79	0.63	0.29	0.80		·	REFLEC	TIVITY (%)	PARTICLES	
0.91	0.63	0.25	0.69						
		6.00 6.50	0.05	0 10		R _{max.}			
	5.00		5 //	0.15		···iiux.	Milax.		
4 0	4 00 25						0.28 6	6 Com	
3.50	\times	SHT:	11/		0.35	Raver.	0.80	14	
3.00		XXXXX	1		0.40				
2.50					0.45	ΕΠΙΙΙΛΔΙ	ENT CHEMICAL PAI	RAMETERS	
1.90					0.50	20011712	DRY ASH FREE	TO THE PERIOD	
180					0.60		DITT AOTI THEE		
1-70	///	Z/[[]			0 65	CARBON	VOLATILE MATTER	CARBON	
1 60		411	[//	$\langle \cdot \rangle \langle \cdot \rangle$	/ 0·70	(%)	YIELD (%)	RATIO	
•	1-50	/-		0.80		61			
	1:30	1:20		0.85		81			
		1-10 1-1	0.95						

- 51 -	
ORIGIN 1. K. U.	SAMPLE Our Ref: A.S. J.M.J. Your Ref: 3450
LITHOLOGY MINED SHALE + LIMESTON	
MINERALOGY	GENERAL COMMENTS
ORGANIC MATERIAL LOW - MODERATE ORGANIC CONTENT. TWO CORL COTTINGS GIVING LOW REFLECTMENT VALUES SHARE - RATHER GIVENED SHALL PRATICLES - WISES WITH A MIGH PROJECTION OF INEXTHINES + RANDERING. LIMESTONE BARREN	
APPEARANCE IN U.V. ORDINGE FRUDENSCENCE FROM STATES. SOME MODEOCREPONS PRESENT - SCHOOLE IN IMPROPRIEM OIL	Ash House Bell Villas Ponteland Northumberland NE20 9BE
EXINITE CONTENT IN U.V. Low	Signature Date 15 Det 1970

PREPARA		2		WAVELENGTH		R.I. OF IMMERSIO	N OIL
ISOARONNI ALLONOL			540	6 mm.	1.516		
0.70	0.85	112	0.24		TOTAL No. ()F	
0.73	0.67	1.21	0.22		PARTICLES	MEASURED 20	,
0.58	0.72	1.04	0.21				No Or
0.71	0.93	0:22	0.20		REFLEC	TIVITY (%)	No. OF PARTICLES
0.78	1.07	0.23	0.23				TAITIOLES
	5:50.	6 00 6 50	0.05	10	R _{max} .		
	5.00	1+1	10 /	0-15	"Illax.		
4.00	4 50	1	8	0.25		0.22	7 6092
3-50	XX	XXXII.	6 H.	0.35	Raver.	0.85	
3.00		<i>₹}}</i> ₩		040	4,01.	0.83	<i>/3</i>
2.50	4			0.45	50,111,44,1		<u> </u>
2 00				0.50	EUUIVAL	ENT CHEMICAL PAI	RAMETERS
1.90				0.55		DRY ASH FREE	
1.70	///		1177	0 60	CARBON	VOLATILE	CARBON
1.60		41	1]/	070	(%)	MATTER YIELD (%)	RATIO
. 1	50	///		0 75	58		
	1:30	20		0.85	82		
		1-10 1-0	0 0 95				

#

ORIGIN 1.K.U.	SAMPLE Our Ref: A.S. JPW. Your Ref: 3800
LITHOLOGY LIMESTONE, SHALE COMEN	
MINERALOGY RATHER PREITE RICH	GENERAL COMMENTS
ORGANIC MATERIAL LINESPINE - VIRTUALLY BARREN LOTA - LOW RE., WHOLL , VIRENITE SUPLE - LOW ORLANDE CONTRAT - SAMU GNAR PRETILES PROBABLY WALLY REWISHED. O GOOD PARTICLE (RO. 0.55) LOCATED	W:
APPEARANCE IN U.V. STRONG PARBONATE FLUORESCEN NOTHING ORGANE	Ash House Bell Villas Ponteland And Northumberland
EXINITE CONTENT N/2	Signature Date 15 Date 1975

PREPARATION WAVELENGTH						R.I. OF IMMERSION OIL			
150,	PROPY	Accord			546 nr	·.	1.516		
1.07	1.23	0.76	0.36			TOTAL No. C)F		
0.55	1.17		0:34			PARTICLES I	MEASURED /6		
1.30	1.15		0.38					No.OF	
1.17	1.45		0.41			REFLEC	TIVITY (%)	PARTICLES	
1.52	1.39		0.42					TAITTIOLEO	
		6 00 6 50	0.05	2:10		R _{max.}			
	5.00	5	- 1 7	0.15		nmax.			
4 00	4 50	1	#	0 25	o·30				
3 50		وللك	\mathcal{H}		0.30	Raver.	038	5 Com	
3 00	\times	XX.	HI		0.40	waver.	0.66	2	
2 50	\rightarrow			4	0.45		1.27	1 9	
2 00					0.50	EQUIVAL	ENT CHEMICAL PA	RAMETERS	
1.90					0 55		DRY ASH FREE		
1.80	///			$\times\!$	0 60	CARBON	VOLATILE	CARBON	
1.60	(/)	4/11		$\times \setminus \times$	0 70	(%)	MATTER YIELD (%)	RATIO	
1	1:50	//]]		0.75		68			
	1:40	120		0.85		78			
·		1-10 1-0	0 0.95			87			

ORIGIN 1. K.U.	SAMPLE Our Ref: J.M. J.M.J. Your Ref: 3918.5
LITHOLOGY LIANT SHALE	CORE
MINERALOGY	GENERAL COMMENTS
ORGANIC MATERIAL MODERATE ORGANIC CONTENT. STARLE, LNARLED PARTICLES OF VITEWINE + INVETTING POSSIBLY WHOLLY REWORKED. NO LOW REFLECTANCE MATERIAL	15
APPEARANCE IN U.V. DRED ORDICE FAUDRESCENCE FROM SORES EXINITE CONTENT IN U.V. TRACE	Ash House Bell Villas Ponteland Northumberland NE20 9BE Date 15 Dec 1990

PREPARATION WAVELENGTH				R.I. OF IMMERSION OIL				
ISOPROPIE ALCOHOL 546					546 mm.		1.516	
1.28 1.51	1:37	1.41	1.19 1.52	·		TOTAL No. 0 PARTICLES I		
1.16 1.49 1.52	1:56 1:35	1.29	1.49			REFLEC	No. OF Particles	
	5-50	6.00 6.50	0.05	0.10		R _{max.}		
3·50 3·00	$\wedge X$			025	30 0·35 0·40	Raver.	1.42	20
2.50					0.45	EQUIVAL	ENT CHEMICAL PAR DRY ASH FREE	RAMETERS
1-70					0-60 70-65 70	CARBON (%)	VOLATILE MATTER YIELD (%)	CARBON RATIO
	1.40	1-20 1-10 1-0	00 0 95	0 75		88		

- 54 -	
ORIGIN 1. K.U.	SAMPLE Our Ref: J.M. J.M. J. Your Ref:
LITHOLOGY Sugar	3924 Goze-
MINERALOGY	GENERAL COMMENTS
ORGANIC MATERIAL MODERATE ORGANIC CONTENT. GNARED ROUNDED PARTICLES OF REWORKED VITEMITE + INERTINITE. POSSIBLY NO TRE MATERIAL	·
APPEARANCE IN U.V. ORMER / RED LAUDRESCENCE FROM SPORE SPERKS	Gen-consultants Ltd Ash House Bell Villas Ponteland
EXINITE CONTENT TRACE	Northumberland NE20 9BE Date 15 Dec. 1870

PREPARA	ATION			WAVELENGTH	1		R.I. OF IMMERSION	N OIL
І 50 РАОРУІ АСОНОС					546	4 m.	1.516	
1.56 1.27	1.29	1.14	1.51	0.7/		TOTAL No. (PARTICLES		,
1.05 1.62	1-23 1-33	1.66	1.41			REFLECTIVITY (%) PART		
1.42	5 500	6.00 6.50	0:05	0.10		R _{max.}		
3·50/ 3·00/	1-50	ATT	3	0.25	30 0·35 0·40	R _{aver.}	0.71	20
2.50					0.45	EQUIVAL	ENT CHEMICAL PA DRY ASH FREE	RAMETERS
1.70					0·60 /0·65 70	CARBON (%)	VOLATILE MATTER YIELD (%)	CARBON RATIO
	1-50	1-20 1-10 1	00 0.95	0.85		79		

ā

<u> </u>	
ORIGIN 1. K. U.	AMPLE Your Ref: A.S. J.M.J.
LITHOLOGY SINCEOUS SHAKE - COAL	3940
MINERALOGY	GENERAL COMMENTS ALL READINGS ON CORE SAVE FOR THE SINGLE HOW VALUE - MAY BE
ORGANIC MATERIAL SHALE - BARREN COAL - LOOD VIRWITH BUT WITH A LOW PROPORTION OF MERTINAS	TRUE 10 CORL 15 CAVED.
APPEARANCE IN U.V. YOUGH / OARWAR FLUORESCENCE FROM SERRE	Gen-consultants Ltd Ash House Bell Villas Ponteland
EXINITE CONTENT IN U.V. LOW - MODERATE	Northumberland NE20 9BE Signature Date 1970

.

Scape Scape Scape Scape Stape Stap	PREPAR.				WAVELENG	TH		R.I. OF IMMERSIO	N OIL	
04/ 074 038 037 037 PARTICLES MEASURED 22 040 042 036 036 036 040 040 049 038 REFLECTIVITY (0/0) No. OF PARTICLE Reflectivity (0/0) No	150,0	ROPYL 1	KOHOL	Г		546 nm		1.51	· C	
040 042 034 034 REFLECTIVITY (%) No. OF PARTICLE RESECTIVITY (%) No. OF PARTICLE RESECTIVE RESECTI	0.42	0.37	035	0.39	0.36		TOTAL No. O)F		
036	0.41	0.74	038	0.37	0.37		PARTICLES N	MEASURED 2	2	
0:33	0.40	0.42	036	036					N 05	
Rayer	036	0.40	040	0:38			REFLECT	TIVITY (%)	1	
Rayer. O 38 Z1 Conc.	0:33	0-41	0.41	0.41			PARI			
1-30 1-30 1-30 1-30 1-30 1-30 1-30 1-30			6.00 6.50	0.05	0-10		ō			
## A 100 1-20			1	, 1			nmax.			
3-50 3-50 3-50 3-50 3-50 3-50 3-50 3-50	4.0	\wedge \times	8	+	/\/\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\					
EQUIVALENT CHEMICAL PARAMETERS DRY ASH FREE CARBON (%) VOLATILE MATTER YIELD (%) RATIO	3.50	\times	1	#/		1	<u>R</u>	0:38	21 Conc	
EQUIVALENT CHEMICAL PARAMETERS DRY ASH FREE CARBON (1/0) 1-80	3.00		XXXXX	$+\!$			raver.	0.74	/	
1.90 1.70 1.60 1.50 1.40 1.30 1.20 0.65 DRY ASH FREE CARBON (%) VOLATILE MATTER YIELD (%) RATIO	2.50	11				0.45				
1-80 1-70 1-60 1-50 1-40 1-30 1-20 0-60 0-60 0-60 0-60 0-60 0-60 0-60 0	2.00					0.50	EQUIVALE	ent Chemical Pai	RAMETERS	
CARBON (%) VOLATILE MATTER YIELD (%) RATIO	1.90					0-55		DRY ASH FREE		
1.50 1.40 1.30 1.20 0.80 0.80 0.80 0.80 0.80 0.80 0.80 79	_		X////	HT)	$\times \times $	0.60	CARRON	VOLATILE	CARRON	
1-50 1-40 1-30 1-20 0-85 79		$\langle \rangle \rangle$	4//	111	XX			I MATTER	i	
130 120 0.85		1.50	1711	11	0.75	· ·			IIAIIU	
120 1.10 1.00 0.95		1:30	\mathcal{I}^{\dagger}	11	0.85					
		1		0.95	90		17		·	

<u>- 56 - </u>	
ORIGIN I.K.U.	SAMPLE Our Ref: J.M. J.M.J. Your Ref: 3.01
LITHOLOGY SINCEOUS SHALE + COAL	3 960
MINERALOGY RATHER PRINCE	GENERAL COMMENTS
ORGANIC MATERIAL SHALE - BARREN COAL - VITRINITIC WITH A SHALL PROCENTAGE OF INERTINISE	
APPEARANCE IN U.V. ORANGE FAUORESCENCE FROM SOURCES	Ash House Bell Villas Ponteland Northumberland
EXINITE CONTENT TRACE	Signature Date 1976

PREPAR		_		WAVELENGTH	R.I. OF IMMERSION OIL			
/se	PROPYL	Axconol		546an	1.516			
0.42	0.33	0:35	0.32	·	TOTAL No. ()F		
0.41	0.36	0.37	0.34		PARTICLES	MEASURED 20	20	
038	0:33	0.39	0.35		No.			
0.36	0.35	0.39	0.37		REFLEC	PARTICLES		
0.36	0.36	0.34	0.35					
	5-50	6.00 6.50	0.05	0:10	R _{max} .	 		
	4.50	1+1	5	0.20				
40	X	HT	2	030		0.36	20	
3.50	$\times \times$	XXII:	.11/	0.35	Raver.			
3.00		$\leq > < 1$		0.40			<u> </u>	
2.00				0.50	EQUIVAL	ENT CHEMICAL PAI	RAMETERS	
1-90				0 55		DRY ASH FREE		
1.80	///			0 60	CARBON	VOLATILE	CARBON	
1-60	\langle / \rangle	411		0.70	(%)	MATTER YIELD (%)	RATIO	
	1 50	1-		0·75 0·80	66			
		1-20	00 0.95	. 90				

=

•

- 57 -	
ORIGIN 1. K.U.	SAMPLE Our Ref: A.e /J.M.J. Your Ref: 3980
LITHOLOGY SHALE - COAL	J 780
MINERALOGY	GENERAL COMMENTS
ORGANIC MATERIAL Super - 2 LITHOLOGIES - a) SILEGOUS - BARREN, b) SOFT SUPER - MODERATE COM OF PRATICLES ON VITHINITE - INVESTIMITE IN HE EQUAL PROPORTIONS. COAL - ONLY PI FAM CUTTINGS - VITHINITE	17205 Your
APPEARANCE IN U.V. No Desimine Fluorescence	Ash House Bell Villas Ponteland Northumberland
EXINITE CONTENT IN U.V. Viz	Signature NE20 9BE Date 15 Date 1970

PREPAR	ATION		1	NAVELENGT	Ή		R.I. OF IMMERSION	I OIL	
ISOPROPYI PRIOHOL 546 nm.						1.576			
1.41	138	1.44	1.37 0.37	0.35		TOTAL No. OF PARTICLES MEASURED 21			
1.62 1.43 1.47	1.57	1.34	0:39			REFLEC	No.OF PARTICLES		
	5-06 5-00		0.05	0.15		R _{max.}			
3·50/ 3·00	4-50		2	0.22	0 30	R _{aver.}	0·37 1·39	5 16	
2.50					0.45	EQUIVAL	ENT CHEMICAL PA DRY ASH FREE	RAMETERS	
1.70	1.50	120		0.75	0-60 0-65 0-70	CARBON (%) 67 88	VOLATILE MATTER YIELD (%)	CARBON RATIO	

Geo-consultants Ltd

Date 15 1970 1970

Ash House Bell Villas Ponteland Northumberland

NE20 9BE

+ INERTINIE

EXINITE CONTENT

IN U.V.

No FLUORESCANE

Nic

APPEARANCE IN U.V.

PREPARATION				WAVELENGTH			R.I. OF IMMERSION OIL		
ISOPROPYE ARCOHOL					546 nm	6 nm. 1.516			
1.34 1.35	1.22	0.90				TOTAL No. OF PARTICLES MEASURED //			
1:31 1:35 1:34	1.20					REFLECT	IVITY (%)	No. OF PARTICLES	
	5-50	6.00 6.50	0.05	0.15		$\overline{R}_{\text{max.}}$			
3·50 3·00	150	3		0.25	0.35	Raver.	1.21	11	
2 50					0.45	EQUIVALE	NT CHEMICAL PAI DRY ASH FREE	RAMETERS	
1.80				0.70	70·60 0·65	CARBON (%)	VOLATILE MATTER YIELD (%)	CARBON RATIO	
	1.50	1	1+	0.85		87			

Signature

MODERATE DRAMMIC CONTENT. SMALL CNARLED PARTICLES, CHIEFLY OF INERTINIE Possibly ALL REWORKED

APPEARANCE IN U.V.

No FLUORESCENCE

EXINITE CONTENT IN U.V.

NIL

Geo-consultants Ltd

Ash House Bell Villas Ponteland Northumberland

NE20 9BE

Date 15 Dat. 1976

PREPARATION WAVELENGTH						R.I. OF IMMERSION OIL				
150 PRO PYL PACOHOL 546 nm.						1.516				
1.06	1:39	1.04	1.46	1.60		TOTAL No. O				
1.15	1.41	1.24	1.16	·	ļ	PARTICLES MEASURED 2/				
1.13	1.09	1.04	1.48					No. OF		
1.47	1.47	1.47	1.14			REFLECT	TIVITY (%)	PARTICLES		
1.56	1.18	1.45	1.35				1			
	5·5(6.00 6.50	0.05	0-10		R _{max.}				
	5 00	- 1 1	10 /	0.20		liiux.				
4-0	4-50	1	8 /	0.51	s ,o:30		1.30	2/		
3 50/	$\langle \rangle \langle \rangle$	XXX	6		0.35	Raver.				
3.00		H/L/X	4		0.40					
2-50	\rightarrow		1		0.45	ΕΩΙΙΙΛΑΙ	ENT CHEMICAL PA	RAMETERS		
1.90					0.50	EQUIVALENT CHEMICAL PARAMETERS DRY ASH FREE				
1.80					J _{0 60}		DITI ASTITULE	·		
1-70	///				0.65	CARBON	VOLATILE MATTER	CARBON		
1 6	\langle / \rangle	74[1///>	0.70	(%)	YIÉLD (%)	RATIO		
	1 50	4	-	0.75		87				
		1-20 1-10 1	00 0.95	0 90						

Signature

- 6C	
ORIGIN 1. K. U.	SAMPLE Our Ref: A.S. /J.M.J. Your Ref: 4040
LITHOLOGY MIXED SHALE KITHOLOGIE	S + CARBONATE
MINERALOGY RATHER PRINTE	GENERAL COMMENTS
ORGANIC MATERIAL LOW ORGANIC CONTENT. MOST COTINGS BARREN. IT FAW CONTAIN A MODERATE CONTENT OF INERTIMITE PRETICUES. RATHER CORRODED AND POSSIBLY REWORKED	
APPEARANCE IN U.V. ORDING FROM FROM PAGAE IN ONE CUTTING, REST BARREN	Ash House Bell Villas Ponteland Northumberland
EXINITE CONTENT IN U.V. TRACE	Signature NE20 9BE Date 15th 1970

PREPAR			1	WAVELENGTH			R.I. OF IMMERSIO	N OIL	
/sox	ROPYI.	ALCOMOL		546 nm.			1.511		
1.29	1.05	1.46	0.86	0.85		TOTAL No. 0)F		
1-01	1.20	1.16	0.94			PARTICLES MEASURED 2/			
1.08	1.05	1.12	0.64					N. OF	
1.26	1.42	1.07	0.96			REFLECTIVITY (%)			
1.18	1.20	2.03	0.90					PARTICLES	
		6 00 6 50	0:05	10		<u> </u>			
	5:00	- 1	5	0 15		R _{max.}			
4.0	4 50	11.	4	0.25					
3.50		XIII.	3 H.L	$\times \times \times$, D-35	Raver.	0.64	/	
3.00		XXYH	2///		0 40		2.03	19	
2.50	-			4	0 45				
200					o-so	EQUIVALI	ent chemical pa	RAMETERS	
1.90				*************************************	0.55		DRY ASH FREE		
1.80	///				0·60	CARBON	VOLATILE	CARBON	
1.60			11)	070	65	(%)	MATTER YIELD (%)	RATIO	
	1-50	1	1)	0 75	ľ	フフ	111111111111111111111111111111111111111		
	1.40	120		0.85		77 86 91			
		1-10 1-0	0 0 95	Ю	ļ	91		1	

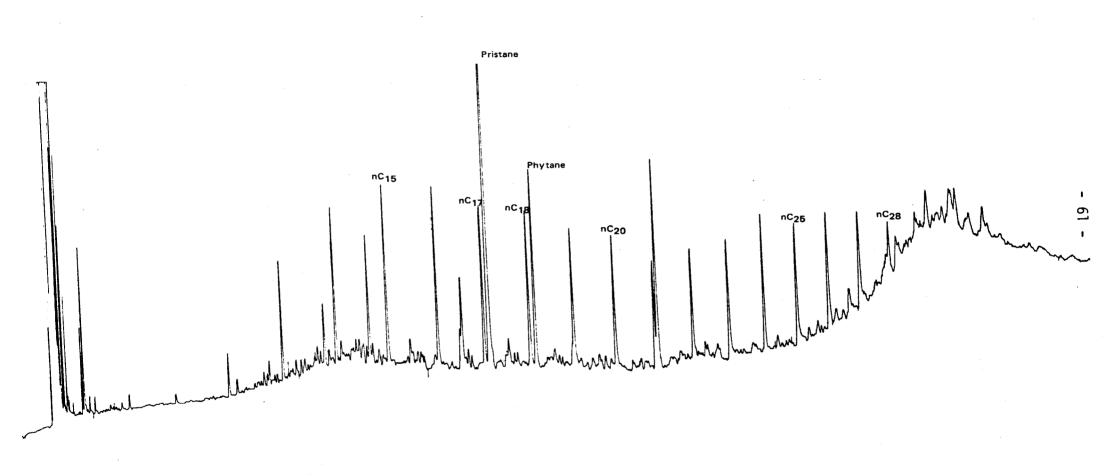


Fig. 6. Capillary GC chromatogram of the saturate fraction at 2170 m.

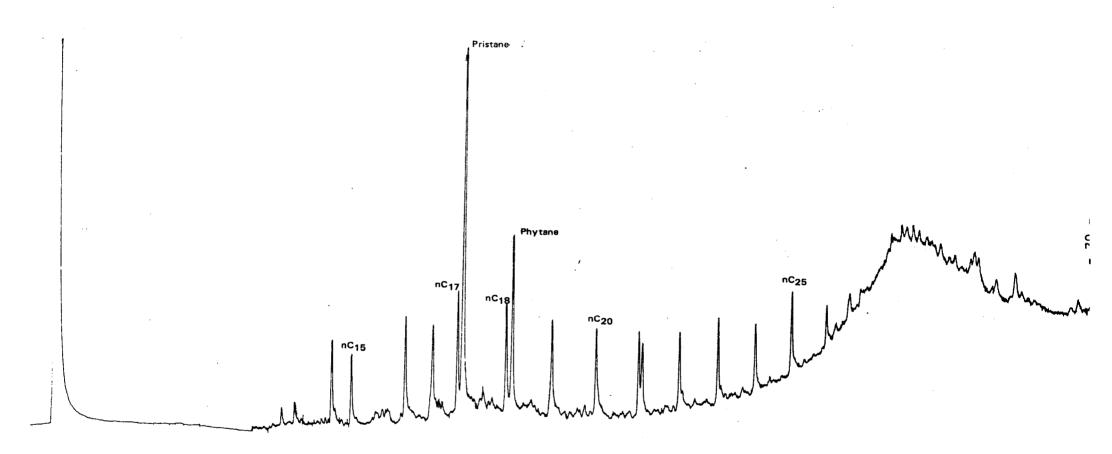


Fig. 7. Capillary GC chromatogram of the saturate fraction at 2420 m.

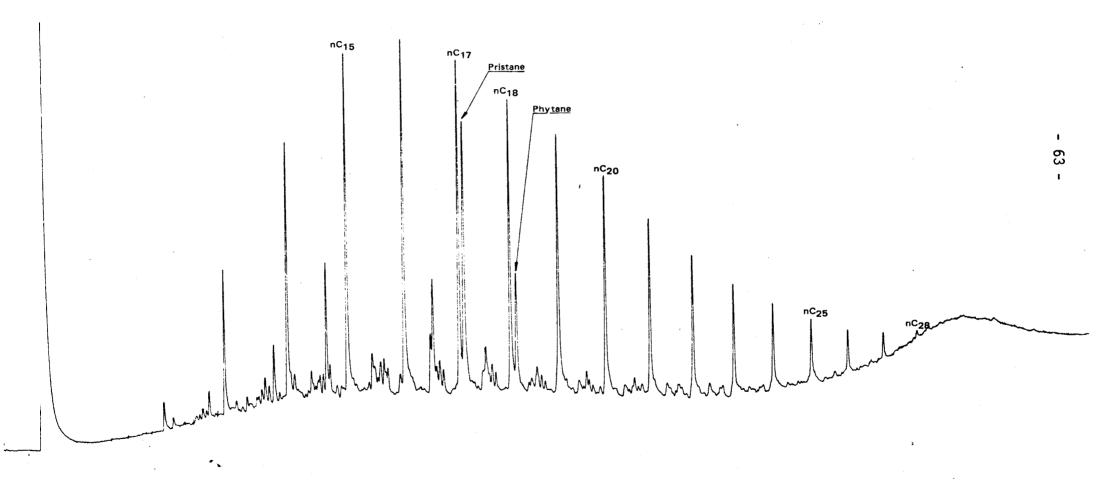


Fig. 8. Capillary GC chromatogram of the saturate fraction at 2900 m.

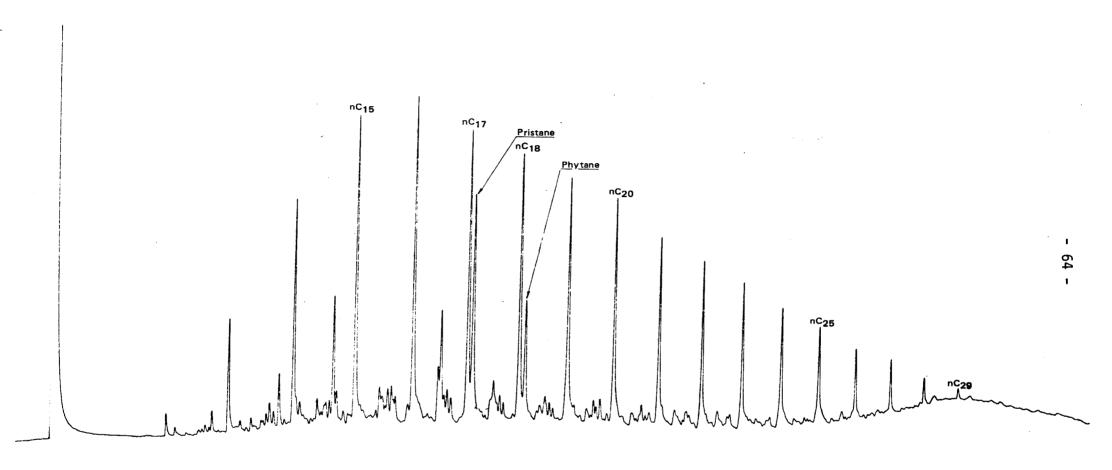


Fig. 9. Capillary GC chromatogram of the saturate fraction at 3050 m.

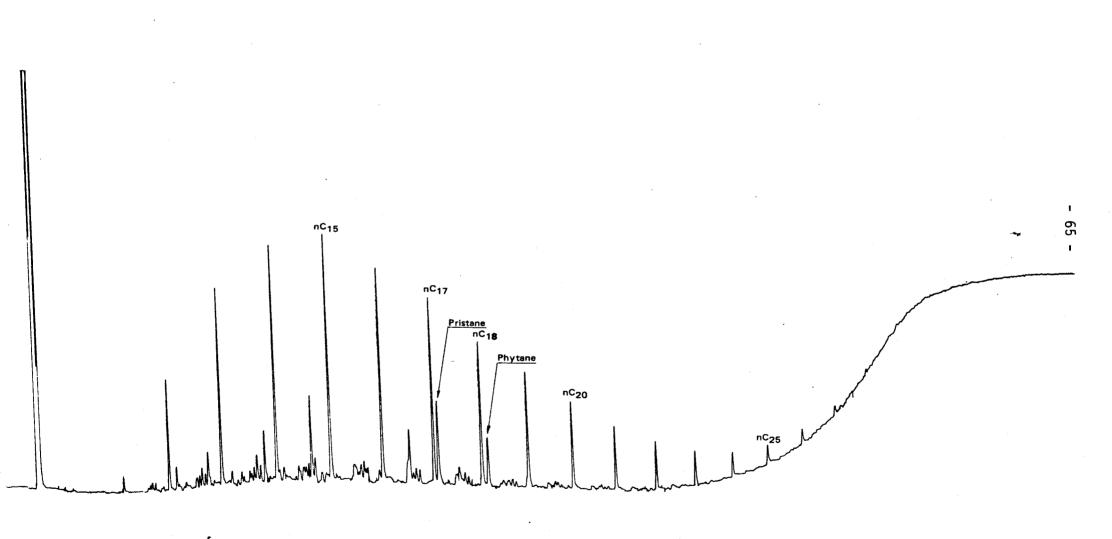


Fig. 10 Capillary GC chromatogram of the saturate fraction at $3350\ \mathrm{m}$.

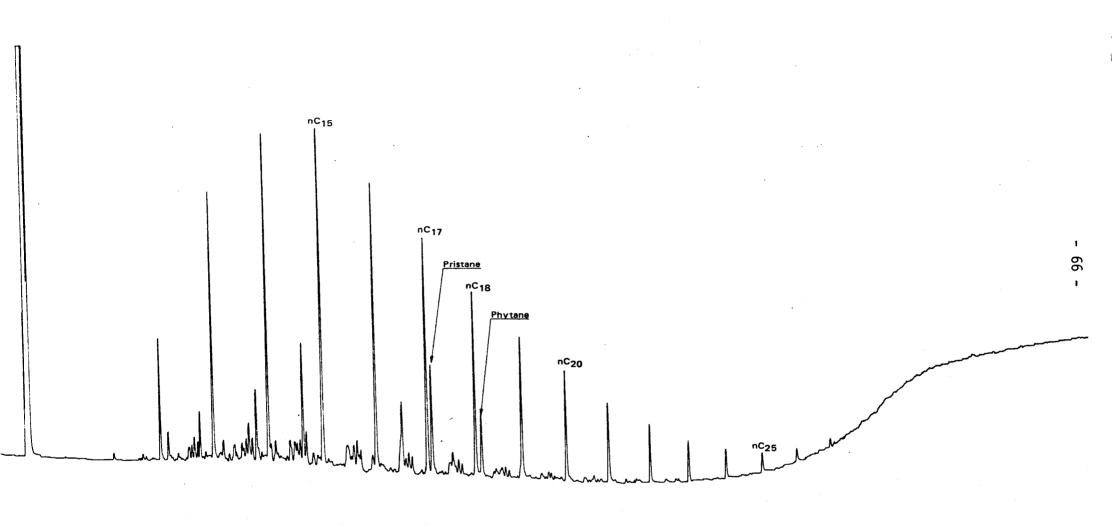


Fig. 11. Capillary GC chomatogram of the saturate fraction at 3600 m.

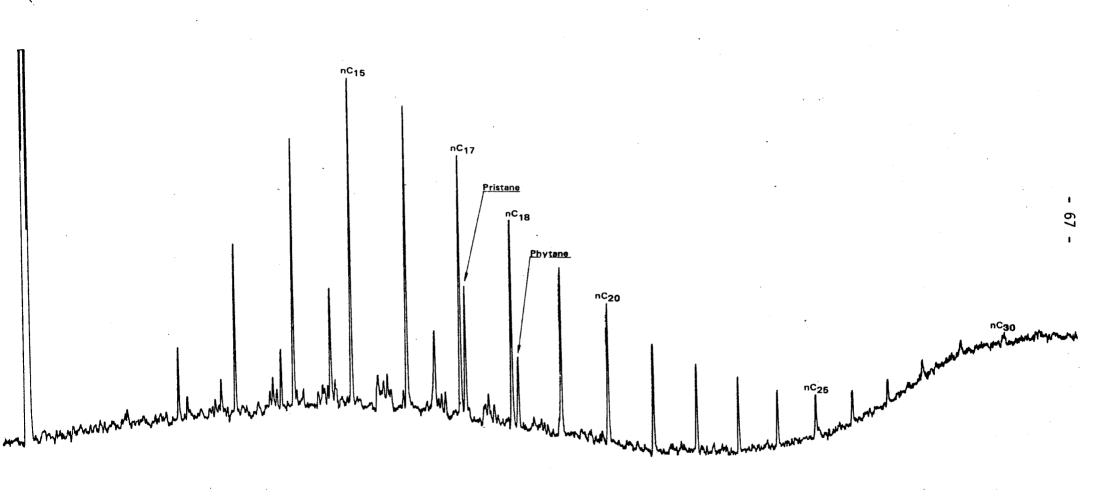


Fig. 12. Capillary GC chromatogram of the saturate fraction at 3810 m.

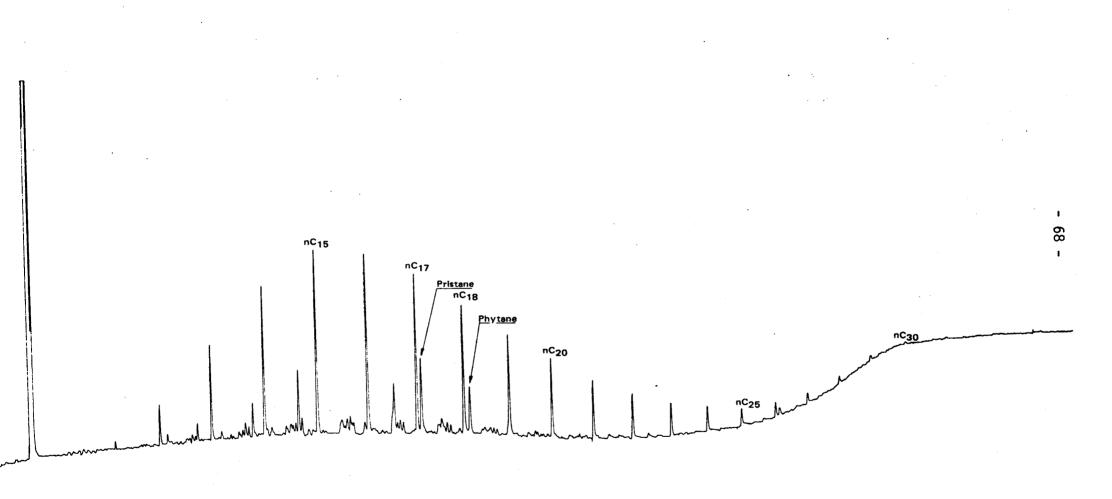


Fig. 13. Capillary GC chromatogram of the saturate fraction at 3890 m.

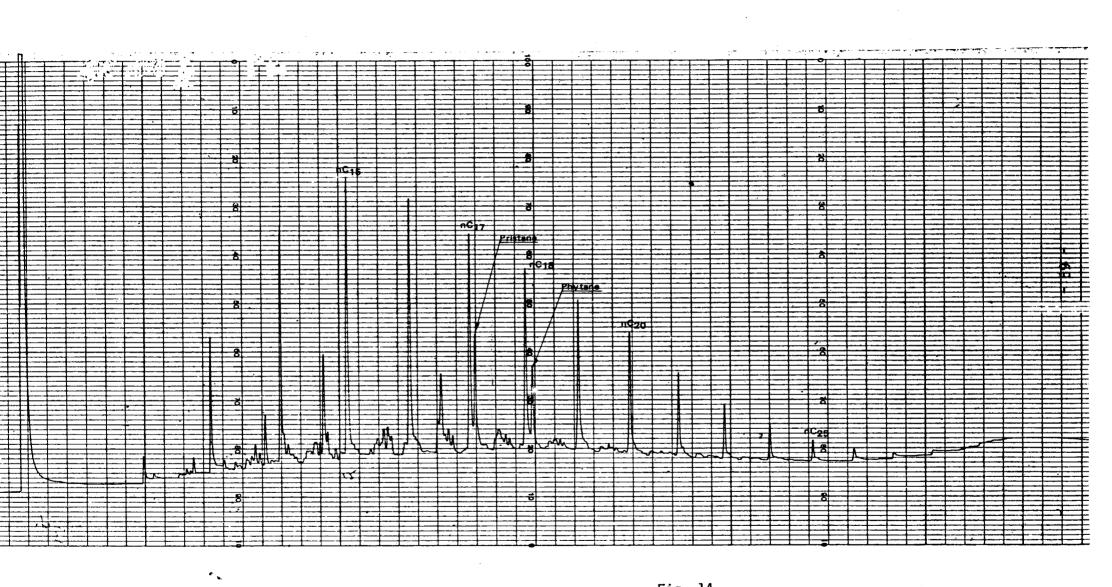


Fig. 14. Capillary GC chromatogram of the saturate fraction at 4010 m.

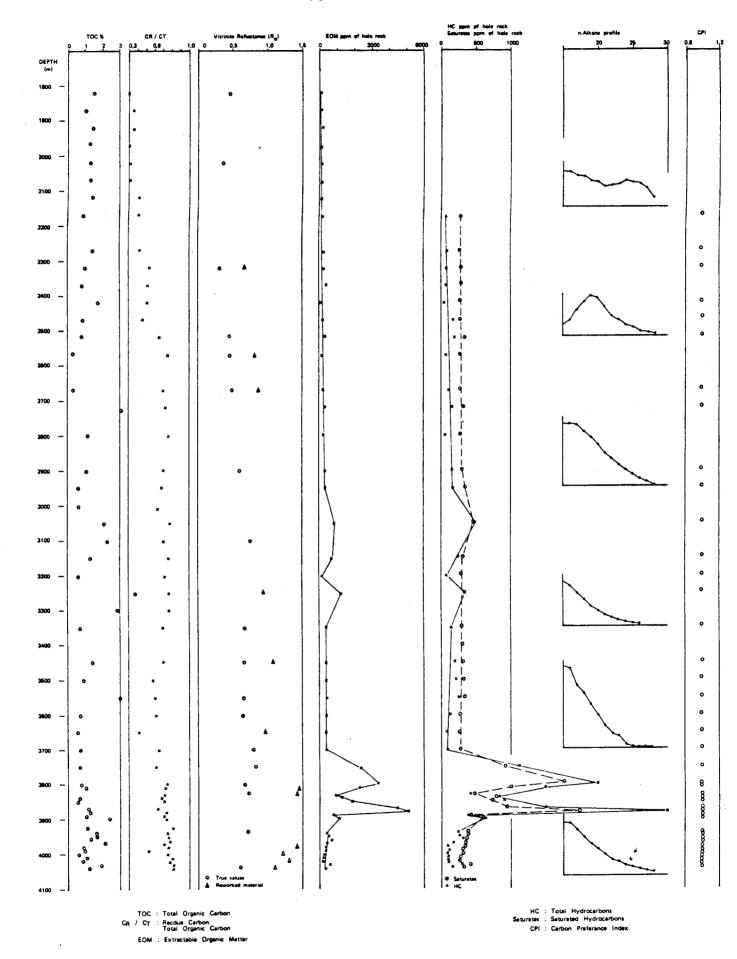
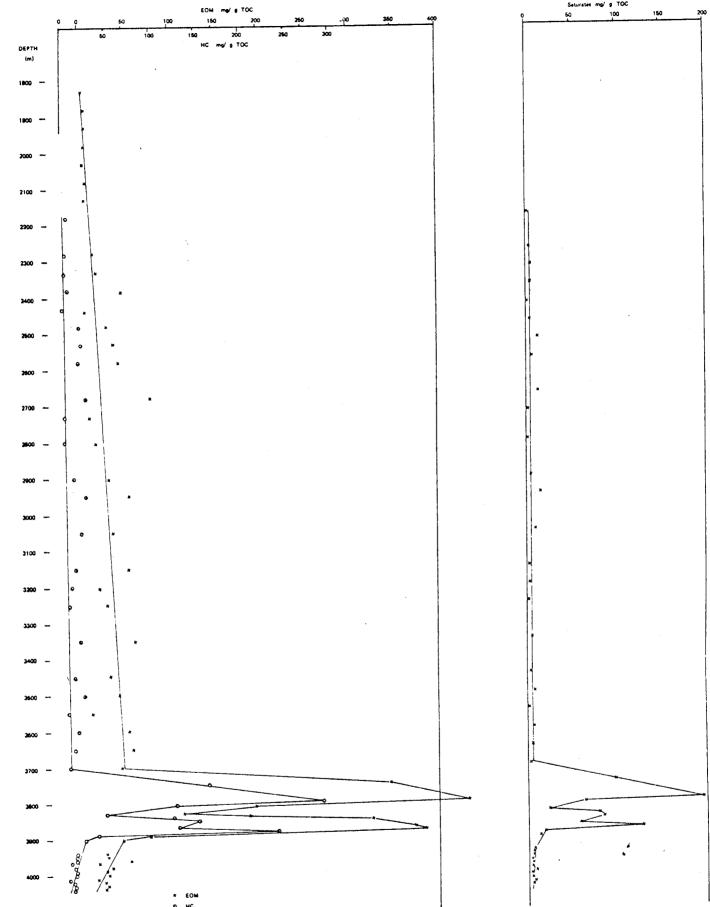



Fig. 15 $\label{eq:Variation} \mbox{Variation of TOC, C_R/C_T, vitrinite reflectance, EOM (ppm) hydrocarbons (ppm), n-alkane distribution and CPI with depth.}$

TOC: Total Organic Carbon
EOM: Extractable Organic Matter
HC: Total Hydrocarbons

Fig. 16 Variation of EOM (mg/g TOC), hydrocarbons (mg/g TOC) and Saturates (mg/g TOC) with depth.

REFERENCES

- Albrecht, P. and Ourisson, G., 1969. Diagénese des hydrocarbures saturés dans une sére sédimentaire épaisse (Douala, Cameroun), Geochim. Cosmochim. Acta, 33:138-142.
- Albrecht P. and Ourisson G (1971) Biogenic Sustances in Sediments and Fossils, Angew. Chem. Intl. Ed. 10:209-225.
- Albrecht,P., Vanderbrouche M. and Mandengue,M., 1976.Geochemical studies on the organic matter from the Douala Basin (Cameroun)-I. Evolution of extractable organic matter and the formation of petroleum, Geochim. Cosmochim. Acta, 40:791-799.
- Baker, D.R. (1972) Organic Geochemistry and Geological Interpretations, J. Geol. Ed. 20:221-234.
- Bray, E.E. and Evans, E.D. (1961) Distribution of n-Paraffins as a Clue to Recognition of Source Beds, Geochim. et Cosmochim. Acta 22:22-15.
- Bray, E.E. and Evans E.D. (1965) Hydrocarbons in Non-Reservoir Rock Source Beds, Am. Assoc. Petrol. Geol. Bull. 49:248-257.
- Connan, J. (1974) Time-Temperature Relation in Oil Genesis, Am. Assoc. Petrol.Geol.Bull. 58: 2516-2521.
- Douglas, A.G., Eglinton, G and Henderson, W., 1970. Thermal alteration of the organic matter in sediments, In:G.D. Hobson and G.C. Speers (Editiors), Edvances in Organic Geochemistry 1966. Pergamon, London, pp. 369-388.
- Evans, C.R. and Staplin, F.L., 1971. Regional facies of organic metamorphism, Can. Inst. Min. Metall., Spec. Vol., 11:517-520.
- Evans, C.R., Rogers, M.A. and Baileu, N.J.L., 1971. Evolution and alteration of petroleum in western Canada, Chem. Geol., 8:147-170.
- Gehman, Jr., H.M. (1972) Organic Matter in Limestones, Geochim. et Cosmochim. Acta 26:885-897
- Hoering, R.C. and Abelson, P.H., 1963. Hydrocarbons from Kerogen, Carnegie Inst. Wash. Yearb. (1963-1964), pp.256-262.
- Hunt, J.M. and Jamieson, G.W. (1956) Oil and Organic Matter in Source Rocks of Petroleum, Am. Assoc. Petrol. Geol. Bull. 40:477-488.
- Le Tran,K.,(1975) Analyse et etclue des hydrocarbures gazeux occlus dans les sediments, Example d'application a léxploration petroliere. Bull. Centre Rech. Pau-SNPA 9, 223.
- Louis, M.C. and Tissot B.(1967). Influence de la temperatur et de la pression sur la formation des hydrocarbures dans les argiles à kérogene. In. Proc. 7th World Petr.Congr.Vo.2:47-60.
- Mc.Iver, R.D., 1967. Composition of kerogen clue to its role in the origin of petroleum, Inc. Proc.7th World Pet. Congr. Vol. 2:25-36.
- Nixon, R.P. (1973) Oil Source Beds in Cretaceous Mowry Shale of Northwestern Interior United States, Am. Assoc. Petrol. Geol. Bull. 57:136-161.

- References cont'd
- Philippi, G.T. (1957) Identification of Oil Source Beds by Chemical Means, Intl. Geol. Congr., 20th, Mexico 1956, Comptes rendus, ser. 3:25-38.
- Philippi, G.T. (1965) On the Depth, Time, and Mechanism of Petroleum Generation, Geochim. et Cosmochim. Acta 29:1021-1049.
- Powell, T.G. (1975). Geochemical studies related to the occurence of oil and gas in the Dampier Sub-Basin, Western Australia, J. Geochem. Expl. 4:441-466.
- Shibaoka, M., Bennett, A.J.R. and Gould, K.W., 1973. Diagenesis of organic matter and occurrence of hydrocarbons in some Australian sedimentary basins, Aust. Pet. Explor. Assoc. J., 13:73-80.
- Staplin, F.L., 1969. Sedimentary organic matter, organic metamorphism and oil and gas occurence, Bull. Can. Pet. Geol., 17:47-66.
- Teichmüller M.(1958). Métamorphose du charbon et prospection du petrôle. Revue de L'Industrie Minerale 40:100-111.
- Tissot,B., Califet-Debyser, Y., Deroo, G. and Oudin, J.L., 1971.
 Origin and evolution of hydrocarbons in early Toarcian shales, Paris
 Basin France, Am. Assoc. Pet. Geol. Bull., 55:2177-2193.
- Tissot,B., Durand,B., Espitalie J. and Combay A.(1974). Influence of nature and diagenisis of organic matter in formation of Petroleum, Amer. Assoc. Petrol. Geol. Bull. 58:499-506.
- Welte, D.H. (1965). Relation between petroleum and source rock, Amer. Assoc. Petrol. Geol. Bull. 49:2246-2268.