

scientist Malvin Bjorøy, Peter-Paul Gyørøsi	DATE 14/6 - 77	ргојест NO. 0 - 65
DEPARTMENT	NO. OF PAGES	NO. OF ENCLOSURE
Environmental section	RESPONSIBLE SCIE Cand. real. Ma	NTIST Ivin Bjorøy

SUMMARY

KEY WORDS	
Source Rock	
[لــــ

INDEX

-

-

Evenniment	5 1					Page
Experimenta	1			• • • • • • •	· • • • •	
Light	Hydrocarbon	s	• • • • • • •	• • • • • • •		
Total	Orga <mark>nic C</mark> ar	b on (TOC)	••••••			1
Extrac	ctable Organ	ic Matter ((EOM)			1
Chroma	atographic S	eparation		• • • • • • •	• • • • •	1
Vitrin	nite <mark>Refl</mark> ect	ance		• • • • • • •		2
Spore	Coloration			• • • • . • •		3
Results and	d Dis <mark>cussio</mark> n	•••••	· · · · · · · ·			4
Light	H ydroc arbon	s	• • • • • • • •		• • • • •	4
Total	Organic Car	bon	• • • • • • • •		• • • • •	. 5
Ectra	ctable Organ	ic Matter	and Chro	matogra	phic	
Fract	ions					6
Summan	ry from C _l -C	4 Hydrocarl	oon Anal	ysi <mark>s</mark>	• • • • •	8
Vitri	nite Reflect	ance	• • • • • • • •		• • • • •	. 9
Spore	Coloration					. 13
Conclusion	• • • • • • • • • • •	•••••			•••	. 14

Summary:

The well can be divided into seven zones on the backpround of the light hydrocarbon analyses. A: 1510 - 2550 m, B: 2550 - 2825 m, C: 2825 - 3325 m, D: 3325 - 3500 m, E: 3500 - 3625 m, F: 3625 - 3725 m and G: 3725 - 3775 m.

Zone A has a fair potential as a source rock for oil and gas. Non to moderate mature for the upper 500 m, the rest is mature. Zone B has a fair to good potential as a source rock. The EOM is chemically mature while spore coloration shows moderate maturity. Probably migrated oil in the shale and siltstone in the zone. Significant show at 2675 m. Zone C has a good potential as a source for oil and gas, otherwise as for zone B.

Zone D has a fair potential as a source mock and is chemically mature, but fairly low spore coloration (2.2 - 2.3). Zone E has a good potential as a source mock for oil and gas. Again we find the EOM to be chemically mature, while spore coloration shows moderate maturity.

Zone F has a large abundance of dry gas. The zone has a good/rich potential as a source and is mature. Possibly migrated oil in the shales at 3600 m. Ione G has a rich potential as a source rock and is mature.

The differences in maturity by optical and chemical analyses indicate contamination from hydrocarbons migrated into the shales.

The oilwindow starts at approx. 3000 m, and the vitrinite reflectance shows a good gradient for the well with a maximum of 0.85 at 3725 m.

EXPERIMENTAL

The samples were washed with temperated water on a 0,125 mm sieve to remove drilling mud and thereafter dried at 35 $^{\circ}$ C. The samples from 2325 - 2550 had a distinct smell of diesel, and these samples were also washed in benzene and methanol to remove the diesel.

LIGHT HYDROCARBONS

Aliquotes of the samples were dried at room temperature after washing, and sieved. The cuttings with grain size between 1 and 2 mm were used for light hydrocarbon determination. The cuttings were treated with 6N HCl in a closed evacuated system, thereafter flushed with water and the released gas analysed by gaschromatography. The results are shown in Table I.

TOTAL ORGANIC CARBON (TOC)

The samples which had variation in lithology were sorted, and aliquotes of the different lithologies were crushed to a grainsize of 0,063 - 0,125 mm. The crushed samples were then treated with 6N HCl and analysed on a Leco WR 12 carbon analysator. (Table II).

EXTRACTABLE ORGANIC MATTER (EOM)

From the light hydrocarbon and TOC results, samples for extraction were chosen, and extracted with dichloromethane (DCM) on soxhlets for 48 h. (Table III).

CHROMATOGRAPHIC SEPARATION

The EOM were separated on columns packed with 2/3 siliza and 1/3 alumina, by eluting with hexane, benzene and methanol. (Table III). The saturated fractions were analysed gaschromatographic on a 25 m glas capillary column, using a Carlo Erba FV 2150 chromatograph. The different measurements from the gaschromatograms are shown in Table VII.

VITRINITE REFLECTANCE

Upon receipt, the cutting samples were soaked in warm water and sieved through 72 mesh to remove drilling mud. After oven drying at 40 $^{\circ}$ C, the cuttings were mounted in Bakelite resin blocks; care being taken during the setting in the plastic to avoid temperatures in excess of 100 $^{\circ}$ C. The samples were then ground, initially on a diamond lap followed by two grades of corundum paper. All grinding ond subsequent polishing stages in the preparation were carried out using isopopyl alcohol as lubricant since water leads to the swelling and disintegration of the clay fraction of the samples.

Polishing of the samples was performed on Selvyt cloths using three grades of alumina, 5/20, 3/50 and Gamma, followed by careful cleaning of the surface.

Reflectance determinations were carried out on a Leitz M.P.V. microphotometer under oil immersion, R.I. 1,516, at a wavelength of 546 nm. The field measured was varied to suit the size of the organic particle but was usually of the order of 2 micron diameter.

The surface of the polished block was searched by the operator for suitable areas of vitrinitic material in the sediment. The reflectance of the organic particle was determined relative to optical glass standards of known reflectance. Where possible, a minimum of twenty individual particles of vitrinite was measured although in many cases this number could not be achieved. The search for vitrinitic material was maintained for approximately 45 minutes on each sample before termination if the operator considered that no more vitrinitic particles were likely to be located.

SPORE COLORATION

Samples for spore coloration were chosen amongst those used for biostratigraphic analyses (palynology) at IKU. Samples are from 2600 m, and especially from around 3300 m.

Maturity of the individual samples was determined by visual estimation of the colours of pollen, spores, cuticles, wood remains, and finely dispersed organic matters.

The colour tones are given according to Staplin's index (Staplin, F.L. 1969: Sedimentary organic matter, organic metamorphism, and oil and gas occurence. <u>Bull. Canad. Petr.</u> Geol. 17(1), 47-66).

The thermal alteration index indicates by l(fresh yellow) no alteration, 2(brownish yellow) - slight alteration, 3 (brown) moderate alteration, 4 and 5(black) - strong to severe alteration.

RESULTS AND DISCUSSION

LIGHT HYDROCARBONS

From the light hydrocarbon data we can pick out seven zones, A: 1510-2550 m, B: 2550-2825 m, C: 2825-3325 m, D: 3325-2500 m, E: 3500-3625 m, F: 3625-3725 m and G: 3725-3775 m.

- 4 -

- A: 1510-2550 m. The top 400 m, down to 1900 m, the C_1-C_4 hydrocarbons fall around 200 μ gas/kg rock, and it is a dry gas. From 1900 m the C_1-C_4 hydrocarbon abundance increases and has a maximum of approx. 2000 μ gas/ kg rock at the base of the zone. From 1900 m down to the base of the zone the wetness increases.
- B: 2550-2825 m. The C₁-C₄ hydrocarbon abundance in this zone is higher than in zone A, with 2575-2650 m as the richest part, approx. 4000 µl gas/kg rock. The gas here is wetter than zone A, with 22.5% wetters at 2625 m as the wettest.
- C: 2875-3325 m. The C_1-C_4 hydrocarbon abundance vary a lot in this zone (Fig. 1). In this zone we have a mixed lithology of shale and siltstone, and the variation in gas abundance in the samples may come from different relative amount of the two lithologies in the samples. On the whole, C_1-C_4 hydrocarbons in zone C are less abundant than in zone B, and it is a drier gas.
- D: 3325-3500 m. This zone has a larger abundance of $C_1 C_4$ hydrocarbons than zone C, and the gas is wetter. With exceptance of 3400 m, the samples are quite rich in $C_1 C_4$ hydrocarbons, 4400-6400 [Ju] gas/kg rock.
- E: 3500-3625 m. In this zone we again find a poor amount of C_1-C_4 hydrocarbons, mostly less than 1000 μ l gas/kg rock. The gas is wetter than in zone D, with a maximum wetness of 22.2% at 3525 m.

is dry. We find a peak at 3700 m where we have a shale and limestone lithology.

G: Fair content of wet gas. We understand from the biostratographic group that we are in the Jurassic in this zone.

TOTAL ORGANIC CARBON

Total organic carbon analysis were done on all samples, and where there were significant amounts of different lithologies, TOC was measured on the different lithologies (Table II).

- A: 1510-2550 m. The TOC for the shale in the upper 150 m is quite high (2-3%), but it decreases towards the bottom of the zone, to 1-1.5%. The sandstone stringers at 1800-1925 m have a TOC value of 0.1-0.25%, and a TOC value of 0.2% is quite high for quartz sand. This could indicate a possible oilshow. The limestone at 2400 m has a TOC of 0.9%. Again this is quite high for limestones at such a level.
- B: 2550-2825 m. This zone contains mainly siltstone and shale, and for most of the samples it was very difficult to pick the different lithologies, and a mixture of shale and siltstone has been analysed. The samples from 2750-2850 m could be separated into two lithologies by using larger than 2 mm cuttings, care being taken that cavings were avoided. The siltstone samples have a TOC value of approx. 0.6% which is fairly high, and the shale samples are very rich, 2.0-4.2%. These results indicate that we here will have a very rich source rock or that hydrocarbons have migrated into the shale/siltstone sequence.
- C: 2825-3325 m. This zone is very similar to zone B, with mainly shale/siltstone lithology. The shale and siltstone are analysed together since it was not possible to separate them. The TOC values at the top of the zone is approx. 2%, but decreases all the way towards the bottom

of the zone with an average value of approx. 0.6%. The sample at 3325 m is again very rich, but we suspect this is from drilling mud additives as lignosulphonate. Generally there were a lot of coaly particles in some of the samples, and we have assumed that these are drilling additives.

- Zone D: 3325-2500m, E: 3500-3625 m and F: 3625-2725 m all have a low TOC value of approx. 0.5%. There are relatively small variations between the different samples in these zones.
- Zone G: 3725-3775 m. In this zone we again get a sharp rise in the TOC value with 3775 m at 2.06%.

- 6 -

EXTRACTABLE ORGANIC MATTER AND CHROMATOGRAPHIC FRACTIONS

From the TOC and light hydrocarbon analysis samples for extraction were picked. Generally there was a bad recovery of cuttings from 2700 m to the base of the well, and from 2900 m the samples had to be divided between organic geochemical analysis and biostratographic analysis. Because of these factors, some of the samples which gave high TOC values could not be analysed since there was no material left. Examples of this is 3425, 3525 and 3675 m. Samples from nearby levels were analysed instead.

Zone A has a fair potential as a source for oil and gas, 1510-2000 m is non to moderate mature while 2000-2550 m is mature.

Zone B has a good potential as a source for oil and gas. Traces of oil might have invaded the shales and siltstones in this interval. Significant show at 2625 m. The whole sequence consists of shale and siltstones which were difficult to pick out from each other. Because of this the most of the samples analysed were a mixture of shale and siltstone.

In the samples from 2750 m, 2775 m, 2800 m, 2825 m and

ų

2850 m in zone B the different lithologies could be picked with using 2-4mm cuttings. In this sequence pure shale samples are extracted. For comparison the siltstone from 2825 m was also extracted. The saturated fraction from this sample correlates quite well with the shale samples from 2750-2850 m and also with the oilshow at 2625 m.

- 7 -

The C_{15}^+ abundance is higher than would be expected in view of the amount and type of organic matter which these sediments contain. HC constitutes a high proportion of EOM for sediments of these levels of thermal maturation. All of this indicates non source hydrocarbons. Together with the knowledge that diesel was not added to the mud at these levels we assume that crude oil has migrated into the shale and siltstone at these levels. The saturated extract both from the shales and siltstone contains mainly heavy end n-alkanes which indicate a waxy oil.

Zone C has a good potential as a source rock, and it is mature. For the interval 2825-3025 m goes ery much the same as for zone B, with migrated oil in the shale and siltstone. Some of the samples in this zone and in the underlying zones contained significant amounts of a coal-like material. This was put down as a drilling rud additive and care was taken to remove this from the samples. But some of this additive might have been left in the sample, and in that way contaminated it, and this will then affect the results. On the whole we do not think the contamination contribute with a large factor to the results.

Zone D. This zone has a fair potential as a source, and it is mature. Very small variations over the zone.

Zone E and F have a good and a good to rich potential as a source respectively, and are well matured. Traces of oil may have migrated into the shales at 3600 m.

Zone G has a rich potential as a source and is well matured.

- F: 3625-3725 m. This zone has got the largest abundance of C_1-C_4 hydrocarbons with a peak of $31000 \ \mu$ l gas/kg rock at 3700 m. The gas in this zone is drier than in zone E, with 8.8% wetness at 3700 m.
- G: 3725-3775 m. In this zone we again find a lower abundance of C₁-C₄ hydrocarbons than zone F, and again the wetness of the gas increases to approx. 20% wetness.

SUMMARY FROM C1-CA HYDROCARBON ANALYSIS

- A: Insignificant amounts of gas from 1510-1900 m. From 1900 m the C₁-C₄ hydrocarbon abundance is larger than 200 μl/kg rock and will in this sequence be classified as poor and poor/fair. (K. Le Tran, 1975). The gas wetness also improves in this sequence.
- B: Fair and fair/good content of wet gas. Here we have stringers of siltstones which might contain migrated hydrocarbons. The best gas values are at the top of the zone, 2575-2650 m.
- C: Zone C has very much the same lithology as zone B. The C_1-C_4 hydrocarbon abundance vary a lot in this zone, which might be because of variation in lithology in the analysed samples. On average the zone must be classified as poor/fair.
- D: Good content of gas. The sample at 3425 m has a poor quantity of $C_1 C_4$ hydrocarbons, but this might be because of the same reasons as the large variation in zone C.
- E: Poor content of wet gas. The lithology here changes into mainly shale, and this gives a sharp change in the C₁-C₄ hydrocarbon abundance. This again should indicate that the siltstone in the overlying zones contains migrated hydrocarbons.
- F: Good content of dry gas. This zone has the largest abundance of $C_1 C_4$ hydrocarbons in the whole well. The gas

VITRINITE REFLECTANCE

Samples taken over the whole well (1510 - 3775 m) were sent to Geoconsultants, Newcastle for vitrinite reflectance measurements. Generally it was a very difficult well to analyse, and the additive made things rather awkward since it seemed to be very variable in reflectance with some, possibly heat-affected or chemically altered material. Most of the organic material present was reworked with a very low indigenous content. Together with the actual vitrinite reflectance measurements we also get some other information, and in the following we will discuss each sample.

- 9 -

1510 m: Shale and carbonate, Ro = 0,43.

The sample has a low organic content with a few particles and wisps of vitrinite and inertinite. It was rather corroded. UV light shows a yellow fluorescence from spores and a low to moderate exinite content.

- 1800 m: Mixed shale plus limestone, Ro = 0,31 and Ro = 0,51. The sample has a low organic content with a few low reflectance vitrinite wisps and particles. A lot of small wisps which are unmeasureable. No inertinite recorded. UV light shows a yellow and orange fluorescence from spores. A lot of dull reworked spores and a low exinite content.
- 2000 m: Pyritic mixed shale, Ro = 0,33 and Ro = 0,74. The sample has a low organic content with a few particles of bitumen and vitrinite and a little inertinite. A good deal of bitumen staining and wisps. UV light shows a green/yellow fluorescence from spores, and a moderate exinite content.

2200 m: Shale and limestone, Ro = 0,35.

The sample has a low to moderate organic content. The limestone is barren and the shale has small particles and wisps, mostly of reworked material. UV light shows a yellow and orange fluorescence from spores, and a low exinite content. 2400 m: Mixed shale lithologies plus limestone. Ro = 0,47and Ro = 0,76.

> The sample has a low to moderate organic content. The limestone is barren and the shale has small gnarled particles and wisps of vitrinite plus reworked material. UV light shows a yellow/orange fluorescence from spores and fragments, and a low exinite content.

- 2500 m: Shale and limestone, Ro = 0,49. The sample has a moderate organic content with small particles and wisps of vitrinite and reworked material. Some good wisps. UV light shows a yellow and orange fluorescence from spores plus possible hydrocarbon traces. A trace of exinite.
- 2600 m: Shale, Ro = 0,45, Ro = 0,59 and Ro = 1,45. The sample is very low in organic content with a few wisps, plus particles, of vitrinite and reworked material. The high Ro is from reworked material. UV light shows an orange fluorescence from spores and a trace of exinite.
- 2700 m: Mixed shale lithologies and carbonate, Ro = 0,21 and Ro = 0,71.

The sample has a low to moderate organic content. The additive has two reflectance levels, Ro = 0,30 and Ro = 1,38. Small gnarled high relief particles of vitrinite and inertinite. UV light shows an orange fluorescence form spores and a trace of exinite. No true material is considered to be present.

2900 m: Shale, coal, limestone and cement, Ro = 1,14 and Ro = 3,12. The limestone is barren while the shale has a low to moderate content of small, gnarled particles of reworked material. The measurements are wholly on reworked material. The coal is an additive with Ro = 0,36. UV light shows orange fluorescence from spore fragments and a trace of exinite.

3000 m: Limestone, Calcareous Shale and Coal. Ro = 0,51,

Ro = 0.93 and Ro = 1.43. The limestone is barren while the shale has a low to moderate organic content with small narticles of reworked material. The coal is an additive with large variation in reflectance, Ro = 0,35, Ro = 0,63and Ro = 0,89. UV light shows a dull orange fluorescence from spores and a trace of exinite.

3100 m: Mixed shale lithologies and limestone, Ro = 0,49 and Ro = 0,87.The sample has a low organic content with a few particles of coal (additive). A few gnarled particles of inertinite and vitrinite, some reworked. UV light shows a rather dull orange fluorescence from spores with a low exinite content.

3175 m: Shale, coal and limestone, Ro = 1,09. The limestone is barren while the shale has a low to moderate organic content with a few small particles of reworked material. The coal is additive with . Ro = 0,37 and Ro = 0,91. UV light shows no definite organic fluorescence, and no exinite content, but possible hydrocarbon traces.

3300 m: Chert and shale, Ro = 0,85. The sample shows only a trace of organic material and is virtually barren with a few granled particles. No organic fluorescence in UV light.

3400 m: Mixed shale, chert and limestone, Ro = 0,71 and Ro = 0.98. The sample has a low organic content with a few isolated corroded particles in shale. No good wisps. The organic could be reworked. UV light shows three orange fluorescing spores located in one cutting, possibly cavings. Only a trace of exinite.

3500 m: Shale & chert, Ro = 0,65. The sample has a low organic content with small gnarled particles of intertinite plus reworked material.

Only a trace of true material. UV light shows a dull orange fluorescence from spores and a low exinite content.

- 3575 m: Mixed shale lithologies plus coal. Ro = 0,45 (cavings), Ro = 0,77 and Ro = 1,16. The sample has a low to moderate organic content with a few small gnarled particles of vitrinite. The coal is additive with two refletance levels, Ro = 0,36 and Ro = 1,32. UV light shows a deep orange fluorescence from spores and a low exinite content.
- 3650 m: Chert and shale, Ro = 0,30, Ro = 0,75 and RO = 1,11. The sample has a low organic content and it is restricted to the shale. A few small gnarled particles, nearly all inertinite plus reworked. No definite organic fluorescence.
- 3725 m: Shale and chert, Ro = 0,85. The sample has a low to moderate organic content with gnarled particles of reworked material and inertinite. Some possibly true material. UV light shows an orange fluorescence from spores and a trace of exinite.
- 3775 m: Mixed shale lithologies plus coal, = 0,78 and Ro = 1,15.

The sample has a low organic content except for the additive.

Coal: two rank levels, Ro = 0,39 and Ro = 1,02. The upper level is slightly vesiculated (heat affected).

Shale: Virtually barren, slight bitumen staining plus a few gnarled particles. UV light shows a deep orange fluorescence from spores and a low exinite content.

Altogether the top and the bottom of the series analysed are reasonable, but the middle is very poor. There seems to be a good gradient from appr. 0,3 at 1800 m to appr. 0,8 at the bottom. The fluorescence from the spores agree with the vitrinite reflectance gradient.

SPORE COLORATION

No samples were treated and analysed for palynofossils in zone A.

In zone B, samples from 2600 to 2805 m show indexes of 2.1 - 2.3.

In zone C, samples from 2925 - 3300 m show indexes of 2.1 -2.2.

Zone D gives and index of 2.2 - 2.3 while zone E has an index of 2.2. The index increases slightly in zone F, with 3625 m at 2.3 and 3700 m 2.3 -2.4. The lowermost sample analysed, 3775 m, has an index of 2.3 - 2.4.

All the samples contains marine organic remains.

From the spore coloration data, we see only very small changes in the analysed sequences, and the readings of 2.1 - 2.4 indidate moderate maturity and a possibility of set or dry gas facies.

CONCLUSION

The well from 1510 - 3775 m can be divided into seven different zones based on light hydrocarbon analyses. A: 1510 - 2550 m, B: 2550 - 2825 m, C: 2825 - 3325 m, D: 3325 - 3500 m, E: 3500 - 3625 m, F: 3625 - 3725 m and G: 3725 - 3775 m.

1510-2550nZone A has a fair potential as a source for oil and gas. The upper 500 m are non- to moderate mature while the rest is mature. The C₁-C₄ hydrocarbon abundance is very low for _ the upper 400 m and it is a dry gas. From 1900 m the gas abundance increases to fair.

2550 - 2825m (ref Zone B has a fair to good abundance of $C_1 - C_1$ hydrocarbons and the other analyses give this zone a good potential as a source for oil and gas. Traces of oil might have invaded the shales and siltstones in this zone. The C_{15} + analyses indicate waxy hydrocarbons for the whole zone. A significant show at 2625 m. The chemical analyses show that the zone is mature. On the other hand, spore coloration shows low readings, 2.1 - 2.3 which would indicate a moderate mature source rock. This together with the C_{15} + hydrocarbon results indicate a contamination of migrated hydrocarbons.

2875 - 3325m

Zone C gives a large variation in C_1-C_4 frocarbon abundance, probably because of the lithological consistence of the samples. The zone has a good potential as a source rock, and the chemical analyses show it to be mature. On the other hand spore coloration shows only moderate maturity. As for zone B, we probably have contamination from migrated hydrocarbons in the shale and siltstones in this zone.

3325 - 3500 m

Zone D has a good abundance of C_1-C_4 hydrocarbons, and it is a wetter gas than in zone C. The zone has a fair potential as a source for oil and gas and is chemically mature. Again the spore coloration gives an index of 2.2 - 2.3 which indicates moderate maturity.

3500 - 3625mZone E has a poor abundance of $C_1 - C_4$ hydrocarbons, but the gas is wetter than in zone D, and could be classified as a wet gas. C_{15}^+ analyses show that the zone has a good potential as a source rock and is chemically mature. There is very small variation in the C_{15}^+ abundance for the different samples from this zone. Again the spore coloration is low and indicates moderate maturity.

3625 - 3725 m

Zone F has a large abundance of dry gas. The zone has a good/rich potential as a source rock and is mature. In this zone the spore coloration index increases to 2.3 - 2.4. There is possibly migrated oil in the shales at 3600 m.

3725 - 375mZone G has a fair to good abundance of $C_1 - C_4$ hydrocarbons, and it is a wet gas. The zone has a rich potential as a source rock, and is mature.

Vitrinite reflectance gives a good gradient for the well, even if it was difficult to get any meaningful results in the middle of the well. The oilwindow (0.5 - 1.3) starts at approx. 3000 m, and we find the highest reading of 0.85 for true vitrinite at 3725 m. TABLE I

Concentration (μ gas/kg rock) of C₁-C₄ hydrocarbon in cuttings.

¢ 2

Depth (m)	c ₁	C2	c ₃	iC ₄	nC ₄	Tot C ₁ -C ₄	C2-C4	% Gas wetness	iC ₄ /nC ₄
1510	87	2	< 1	<1	<1	92	5	5.4	
1550	131	3	< 1	<1	<1	137	6	4.4	
1600	75	2	1	<1	< 1	80	5	6.3	
1650	126	3	< 1	<1	< 1	132	6	4.5	
1700	131	1	< 1	< 1	<1	135	4	3.0	
1750	157	3	1	<1	<1	163	6	3.7	
1775	174	5	< 1	< 1	41	182	8	4.4	16 -
1800	241	6	2	<1	< 1	251	10	4.0	
1825	184	7	2	<1	< 1	195	11	5.6	
1850	180	7	2	<1	< 1	191	11	5.8	
1875	148	2	1	< 1	< 1	193	5	2.6	
1900	143	4	1	<1	< 1	150	7	4.7	
1925	621	154	41	1	7	824	203	24.6	0.14
1950	470	14	j.		<1	490	- 20	4.1	
1975	765	93	30	8	11	907	142	15.7	0.73
2000	443	34	11	3	4	495	52	10.5	0.75
2025	330	21	4	< 1	1	357	27	7.6	
2050	388	44	14	4	6	456	68	14.9	0.67
2075	277	22	8	2	3	312	35	11.2	0.67
2100	267	12	3	2	3	287	20	7.0	0.67

TABLE I - p.2

Depth (m)	C ₁	C ₂	c ₃	iC ₄	nC4	Tot C _l -C ₄	Tot C ₂ -C ₄	% Gas wetness	iC ₄ /nC ₄
2125	316	16	6	3	3	344	28	8.1	1
2150	520	27	14	9	8	578	58	10.0	1.13
2175	581	30	13	7	7	638	57	8.9	1
2200	861	89	48	4	17	1019	158	15.5	0.24
2225	672	30	9	4	5	720	48	6.7	0.80
2250	699	35	12	4	5	755	56	7.4	0.80
2275	663	34	12	. 4	5	718	55	7.7	0.80
2300	507	24	5	2	2	540	33	6.1	1
2325	450	23	9	3	4	479	39	8.1	0.75
2350	752	41	17	5	7	822	70	8.5	0.71
2375	672	53	24	8	12	769	97	12.6	0.67
2400	1969	141	56	23	26	2215	246	11.1	0.88
2425	1664	126	51	18	22	1881	217	11.5	0.82
2450	519	49	22	8	10	608	89	14.6	0.80
2475	702	70	31	10	13	826	124	15.0	0.77
2500	191	19	ŋ	4	5	228	37	16.2	0.80
2525	596	118	59	20	28	821	225	27.4	0.71
2550	49	5	3	<1	< 1	59	10	16.9	
2575	3192	471	253	19	90	4025	833	20.7	0.21
2600	2920	427	252	27	96	3722	802	21.5	0.28
2625	3484	563	314	24	112	4497	1013	22.5	0.21
2650	2759	404	214	27	83	3487	728	20.9	0.33

- 17

۲.

TABLE I - p.3

٤ ۽

Depth (m)	C ₁	C ₂	c ₃	iC ₄	nC ₄	Tot C _l -C ₄	Tot C ₂ -C ₄	% Gas wetness	iC ₄ /nC ₄	
2675	543	59	27	8	12	649	106	16.3	0.67	
2700	995	70	37	17	25	1144	149	13.0	0.68	
2725	1030	97	50	19	30	1226	196	16.0	0.63	
2750	2039	227	101	19	40	2426	387	16.0	0.48	
2775	1620	163	73	15	30	1901	281	14.8	0.50	
2800	832	64	35	16	24	971	139	14.3	0.67	
2825	29	2	۷1	<1	<1	34	· 5 ·	14.7		
2850	179	13	7	5	7	211	32	15.2	0.71	
2875	1067	60	33	25	27	1212	145	12.0	0.93	
2900	194	14	7	5	5	225	31	13.8	1	1
2925	134	10	5	2	3	154	20	13.0	0.67	
2950	9 96	85	47	24	34	1186	190	16.0	0.71	
2975	744	47	26	19	20	856	112	13.1	0.95	
3000	1549	133	60	26	34	1802	253	14.0	0.76	
3025	2663	273	147	37	67	3187	524	16.4	0.55	
3050	No reco	very of g	las,							
3075	189	7	4	. 3	3	206	17	8.3	1	
3100	746	67	31	12	1.7	873	127	14.5	0.71	
3125	555	41	20	10	13	639	84	13.1	0.77	
3150	207	12	6		1	227	20	8.8	1	
3175	896	61	32	18	25	1032	136	13.2	0.72	
3200	2889	356	178	25	72	3520	631	17.9	0.35	

TABLE I - p.4

		,	•	1 .					
Depth (m)	C1	C ₂	c ₃	iC ₄	nC ₄	Tot C ₁ -C ₄	Tot ^C 2 ^{-C} 4	% Gas wetness	iC ₄ /nC ₄
3250	72	9	3	<1	<1	86	14	16.3	
3275	562	35	11	2	3	613	51	8.3	0.67
3300	1370	95	34	10	15	1524	154	10.1	0.67
3325	620	39	14	4	6	683	63	9.2	0.67
3350	3957	286	100	32	54-	4429	472	10.7	0.59
3375	4965	707	393	50	161	6276	1311	20.9	0.31
3400	700	49	20	5	9	783	83	10.6	0.56
3425	5708	410	161	52	82	6413	705	11.0	0.63
3450	1114	96	45	27	33	1315	201	15.3	0.82
3475	1056	91	58	48	67	1320	264	20.0	0.72
3500	610	41	14	4	5	674	64	9.5	0.80
3525	643	52	42	36	54	827	184	22.2	0.67
3550	288	18	10	4	7	327	39	11.9	0.57
3575	646	75	52	42	62	877	231	26.3	0.68
3600	1731	131	63	21	36	1982	251	12.7	0.58
3625	1433	109	80	46	72	1740	307	17.6	0.64
3650	2120	139	66	29	42	2396	276	11.5	0.69
3675	7113	529	225	46	93	8006	893	11.2	0.49
3700	27994	1969	506	79	135	30683	2689	8.8	0.59
3725	4232	398	251	95	167	5143	911	17.7	0.57
3750	1411	162	93	71	100	1873	426	22.7	0.71
3775	3410	305	225	97	159	4196	786	18.7	0.61
					-				
	-	•	1	1	1	1	1	1 181 181 18	

- 19

TABLE II

- 20 -

Lithology and TOC measurements.

Sample depth(m)	TOC (%)	 	Lithology
1510	0 90	Ann	OF Chalo grow to light groop
1010	0.09	Abb.	Jimestone and quanta white to
		- 5/6	Limestone and quartz, white to
	• • • • • • • • • • • • • • • • • • •	Max	to brown; Mica; Glauconite.
		Max.	2% Siltstone, coarse, with glau-
	•		conite.
1550	2.28	App.	95% Shale, grey to light green
		< 3%	Limestone and quartz, white to
			brown; Mica; Glauconite.
		Max.	2% Siltstone, coarse, with glau-
			conite.
1600	1.29	App.	95% Shale, grey to light green.
		< 3%	limestone and clartz, white to
			brown: Mica: Glauconite.
		Max.	2% Siltstone, coarse, with glau-
			conite.
1650	2.13	Min.	97% Shale, gree to light green.
		< 3%	Limestone, white to brown.
1700	2.17	Min.	97% Shale, grey to light green.
		< 3%	Limestone, light brown; Siltstone,
			coarse, with glauconite.
1750	2.19	Min.	97% Shale, grey to green.
		< 3%	Limestone. light brown: Quartz
			grains, clear.
1775	2.19	App.	80% Shale, grev to green.
		15-	20% Quartz sand, fine to medium.
			well-rounded, well-sorted.
			with glauconite.

TABLE II - p.2

Sample depth(m)	TOC	Lithology
1800	0.24	60-70% Quartz sand, fine to medium,
		well-sorted, well-rounded.
	2.72	30-40% Shale, grey to green.
		Small amounts quartz and Lime-
		stone, white to brown.
1005	A 85	
1825	0.25	65-70% Quartz sand, fine to medium,
		well-sorted, well-rounded.
	2.56	App. 30% Shale, grey to green.
		4 3% Limestone and quartz; Mica.
1050	0.10	
1850	0.19	65-70% Quartz sand, time to medium,
	0 00	well-sorted, well-rounded.
	2.32	App. 30% Shale, grey to green.
		<pre>4 3% Limestone and quartz, white to transmomentary white to</pre>
		brown; Mica.
1075	0 11	App 70% Quanta cand fine to modium
1075		App. 70% Quartz sand, Time to medium,
	2 42	App 20% Shalo group to group
	2.43	App. 30% share, grey to green.
		brown: Mica
		brown, mica.
1900	0.21	App 70% Quartz sand fine to medium.
		well-sorted well-rounded
	2.23	Ann. 30% Shale, grey to green
		$\chi_{3\%}$ limestone and quartz light
		brown: Mica.
1925	0.22	App. 50% Quartz sand, fine to medium.
		well-sorted. well-rounded.
	2.45	App. 50% Shale. grev to green.
		43% Limestone and quartz, light to
		brown; Mica; Glauconite.

- 21 -

TABLE II - p. 3

Sample depth(m)	TOC	Lithology
1950	3.04	Min. 90% Shale, grey to green. <10% Limestone and quartz, white to
		light brown; Mica.
1975	2.63	Min. 90% Shale, grey to green.
		Limestone, white to light brown; Mica.
2000	3.23	Min.90% Shale, grey to green. < 10% Quartz sand, fipe; Quartz and Limestone, white to light brown.
2025	3.00	Min. 92% Shale, grey to green. Max. 7-8% Quartz; Siltstone, coarse; Limestone; Mica; Glauconite.
2050	2.91	Min. 90% Shale, grey to green. く10% Quartz, partly siltstone, coarse, with glauconite; Limestone.
2075	2.20	Min. 80% Shale, greato green. Max. 20% Quartz; Stitstone, coarse, with glauconite; Limestone.
2100	2.88	Min. 85% Shale. <15% Siltstone, coarse; Quartz; Glauconite, sporadic.
2125	3.12	Min. 85% Shale, grey to green. <15% Siltstone, coarse, with glauco- nite; Quartz; Limestone, sporadic.
2150	2.29	Min. 90% Shale, grey to green. <10% Siltstone, coarse; Quartz; Limestone, sporadic.

TABLE II - p.4

Sample depth(m)	TOC	Lithology
2175	2 66	App 95% Shale
2175	2.00	App. 55% Share.
		App. 5% Quartz; Limescone.
		Glauconite and Fyrite, sporadic.
0000		
2200	2.45	App. 92% Shale, grey to green.
		App. 7-8% Quartz; Siltstone, coarse;
		Some Limestone
		Pyrite observed.
-		
2225	2.62	Min. 90% Shale.
		Max. 10% Quartz; Siltstone, coarse;
		some Limestone.
		Pyrite - marcasite, scoradic.
2250	1.69	App. 60-70% Shale, gray to green.
		App. 30-40% Quartz sand.
		< 2% Limestone; Pyrite.
0075	2 50	App 20 25% Shale show to groop
2275	2.35	May $15-20\%$ Quantz cand
	- -	Max. 13-20% Quartez 3244.
2300	1.76	85-90% Shale, grey to green.
		10-15% Quartz sand
		Pyrite-marcasite, sporadic.
2325	1.70	85-90% Shale, grey to green.
		Max. 10-15% Quartz sand.
		Pyrite, sporadic.
2350	1.95	App. 90% Shale, grey to green.
		Max. 10% Quartz sand.
		< 2% Limestone; Pyrite.
2375	1.42	App. 85-90% Shale, grey to green.
		Max. 10-15% Quartz sand.
		< 3% Limestone; Pyrite.
	\$ \$.	

- 24 -

TABLE II - p.5

Sample depth(m)	TOC	Lithology
2400	1.56	App. 70-75% Shale.
	0.91	Max. 25-30% Limestone; Quartz; Siltstone.
		Pyrite, observed.
2425	1.01	App. 80% Shale, light grey to grey,
		partly light green.
		App. 10% Limestone.
		App. 10% Quartz.
2450	1.18	App. 92% Siltstone, shaly Siltstone,
		Shale, light to light grey.
		Max. 10% Limestone.
		App. 2-3% Quartz same.
2475	1.26	App. 92% Siltstone-Scale, light to grey.
		Max. 5% Limestone.
		2-3% Quartz.
2500	0.86	App. 85% Siltstone-Stale.
		App. 10-12% Limestore.
		App. 2% Quartz.
2525	1.37	App. 97% Shale-Silesone, grev.
		App. 3% Limestone.
2550	1.61	App.100% Shale and some Siltstone, grey
		Siltstone partly light brown.
		App. 1% Limestone and quartz.
2575	1.01	100% Shale and some Siltstone, grey,
		Siltstone partly light brown.
2600	1.01	App. 97% Shale-Siltstone, grey,
		Siltstone partly light brown.
		Max. 3% Limestone.

TABLE II - p.6.

and the second	1	
Sample depth(m)	тос	Lithology
2625	1.18	98-99% Shale and some Siltstone, light
		to grey.
		l- 2% Limestone.
2650	1.24	App.100% Shale, and some Siltstone,
		light grey, Shale partly
		reddish and greenish.
		App. 1% Limestone.
2675	2 05	App 00% Chole Siltetope light
2075	2.05	App. 90% share - structure, right
		Ann 2% Limestere
		App. 2% Elmestone.
		diauconite, quartz, served.
2700	1 40	100% Siltstone - Shale, light to light
		arev.
2725	2.83	100% Shale - Siltstore, light grey.
2750	0.66	App. 65% Siltstone, ight grey.
	4.16	App. 35% Shale, light grey.
2775	0.60	App. 65% Siltstone. light grey.
	3.16	App. 35% Shale, light grey.
		App. 2% Coal-like material (drilling mud)
2800	0.50	App. 65% Siltstone, light grey.
	1.97	App. 35% Shale, light grey.
2825	0.56	App. 65% Siltstone, light grey.
	2.04	App. 35% Shale, light grey, partly
		greenish.
2850	0.75	App. 65% Siltstone, grey.
	2.18	App. 35% Shale, grey.
	1	

Sample depth(m)	тос	Lithology
2875	1.17	App.100% Siltstone - Shale, light
		grey to grey. Pyrite observed.
2900	1.23	100% Siltstone - Shale.
2925	1.22	App.100% Siltstone - Shale, grey. App.1-2% Coal-like material (drilling
		mud).
2950	1.17	100% Siltstone and Shale, grey, partly greenish grey and brownish.
2975	0.56	App.100% Siltstone - Shale, grey, partly brownish.
		App.1-2% Coal-like reterial (drilling mud). Pymito obsorved
3000	0.68	App.100% Siltstone and Shale. App. 1% Coal-like material (drilling mud).
3025	1.47	100% Siltstone - Shale, grey.
3050	1.22	100% Siltstone - Shale, grey.
3075	1.17	100% Siltstone - Shale, grey.
3100	0.61	App.100% Siltstone and some Shale, light to light grey, partly greenish and brownish.
		Max. 1% Coal-like material (drilling mud).
		Limestone observed.

TABLE II - p.8.

Sample depth(m)	тос	Lithology
3125	0.82	100% Siltstone and Shale, grey, some greenish fragments. Pyrite, observed.
3150	0.71	App. 95% Siltstone and som Shale, grey and partly greenish grey. App. 5% Coal-like material (drilling mud).
3175	0.67	App.100% Siltstone and some Shale, grey, partly greenish.
3200	0.69	100% Siltstone/Shale. grey, partly greyish green.
3250	0.63	App. 98% Siltstone and Shale, grey, partly greedish. 2-3% Coal-like material (drilling mud). Pyrite observed.
3275	0.65	100% Siltstone and some Shale, grey, partly greenist. Pyrite, observed.
3300	1.51	100% Siltstone - Shale, light to grey, partly greenish grey.
3325	0.59	100% Siltstone - Shale, grey.
3350	0.40	App. 99% Siltstone/Shale, grey. 1-2% Coal-like material (drilling mud).
3375	0.57	App. 99% Siltstone and some Shale, grey and greenish grey. 1-2% Coal-like material (drilling mud).

TABLE II - p.9.

Sample depth(m)	T0 C	Lithology
3400	0.52	100% Siltstone and some Shale, grey
		and greenish grey.
3425	0.70	100% Siltstone and Shale, grey.
3450	0.48	80-90% Shale, grey.
		10-20% Siltstone, coarse.
		< 2% Coal-like material (drilling mud).
		Limestone, small amounts.
3475	0.50	App. 70% Shale, grey.
	·	Max. 10% Siltstone, coarse.
		Max. 15% Limestone.
		< 3% Coal-like material (drilling mud).
	•	Quartz grains, observed.
3500	0.55	90-95% Shale, grey.
		Max.5% Limestone.
		Max. 3-5% Siltstone. coarse.
3525	0.54	Min. 90% Shale, gr∈ , partly greenish.
		Max. 5% Siltstone. coarse.
		Max. 3% Limestone.
		< 1% Coal-like material (drilling mud).
3550	0.47	Min. 92% Shale, grey, partly greenish
		grey.
		Max. 3-5% Siltstone, coarse.
		Max. 3% Limestone.
		Glauconite, pyrite, observed.
3575	0.59	Min. 85% Shale, grey.
		App. 10% Siltstone, coarse.
		Max. 3% Limestone.
		Max. 2% Coal-like material (drilling mud).

T A B L E II - p. 10.

Sample depth(m)	тос	Lithology
3600	0.48	Min. 88% Shale, grey. Max. 5-7% Limestone; Siltstone, coarse; Quartz, sporadic. ∠5% Coal-like material (drilling mud).
3625	0.59	App. 70% Shale, light to dark grey. App. 20-25% Coal-like material (drilling mud).
		App. 5-10% Limestone; Some quartz; Siltstone, Pyrite, observed.
3650	0.53	Min. 90% Shale, light to dark grey. <10% Siltstone, coarse; Limestone.
3675	0.74	Min. 90% Shale, light to dark grey. <10% Siltstone, coarse; Limestone.
3700	0.45	App. 75% Shale. Max. 25% Limestone, light brown. く 5% Siltstone, coalle.
3725	0.61	App. 90-95% Shale. App. 5-10% Siltstone, coarse; Quartz; Limestone; Pyrite.
3750	0.86	Min. 90% Shale, greenish grey and grey. Max. 5% Siltstone, coarse; Limestone. Max. 5% Coal-like material (drilling mud). Pyrite, observed.
3775	2.06	Min. 90% Shale, light to dark grey. Max. 5-10% Siltstone, coarse; Limestone; Pyrite, sporadic.

TABLE III

- 30 -

Weight (mg) of EOM chromatographic fractions.

Depth (m)	Rock extracted(g)	ЕОМ	Sat.	Aro	Total hydrocarbons (HC)	Non hydrocarbons
1510	100.0	30.0	3.5	2.1	5.6	22.2
1560	100.0	24.8	0.2	1.9	2.1	19.5
1800	44.2	13.4	1.6	2.3	3.9	8.5
1950	100.0	35.3	4.4	4.2	8.6	26.4
2100	100.0	42.4	3.2	11.4	14.6	23.5
2200	100.1	107.0	7.7	27.5	35.2	67.9
2350	100.0	33.9	1.8	4.7	6.5	25.4
2425	30.0	38.8	4.8	8.8	13.6	17.6
2575	100.0	92.3	12.6	22.7	35.3	54.5
2650	25.0	80.6	11.2	6.8	18.0	57.1
2675	60.0	395.7	180.4	190.3	370.7	24.2
2725	80.0	84.6	22.0	22.5	4.5	32.5
2 7 50	45.0	65.0	9.3	17.6	26.9	32.5
2775	34.0	31.9	5.0	6.9	11.9	17.5
2800	15.0	31.1	4.4	9.4	13.8	15.3
2825	25.0	76.4	20.9	23.0	43.9	29.7
2850	50.0	76.0	17.7	19.8	37.5	28.9
2950	25.0	83.9	11.4	18.5	29.9	38.0
3025	50.0	66.9	26.3	16.0	42.3	16.1
3075	30.0	24.7	4.8	7.7	12.5	12.0
3125	40.0	25.7	5.4	12.1	17.5	7.8
3200	40.0	17.5	4.1	6.3	10.4	7.0
3350	40.0	26.3	6.9	6.0	12.9	11.8
3450	53.6	44.0	11.4	7.1	18.5	23.5
3550	40.0	28.8	9.8	6.4	16.2	9.2
3600	30.0	35.5	15.5	3.7	19.2	14.9
3650	40.0	36.8	9.2	4.6	13.8	21.9
3750	35.0	41.7	7.3	8.7	16.0	24.1
3775	35.0	73.0	7.6	20.1	27.7	40.9
2825 Siltst	i cone 15.0	29.3	5.2	6.7	11.9	14.2

- 31 -TABLE IV

Concentration of EOM and chromatographic fractions (Weight ppm of rock).

	•					
Dep th (m)	EOM	Sat	Aro	HC	Non hydrocarbons	
1510	300	35	21	56	222	
1560	250	2	19	21	195	
1800	300	36	52	88	192	т
1950	350	44	42	86	204	
2100	420	32	114	146	235 —	
2200	1070	77	275	352	679	
2350	340	18	47	65	254	
2425	1290	160	296	456	587	
2575	920	126	227	353	545	
2650	3220	4 4 8	272	720	2284	
2675	6595	3007	3172	6179	403	
2725	1060	275	281	556	406	
2750	1440	207	391	598	722	
2775	940	147	203	350	515	
2800	2070	293	627	920	1020	
2825	3060	836	920	1756	1188	
2850	1520	354	396	750	578	
2950	3360	456	740	1196	1520	
3025	1340	526	320	846	322	
3075	820	160	257	417	400	
3125	640	135	303	438	196	•
3200	440	103	158	261	175	
3350	660	173	150	323	295	
3450	820	213	132	245	438	
3550	720	245	160	405	230	
3600	1180	517	123	6 40	497	
3650	920	230	115	345	548	
3750	1180	209	249	458	689	
3775	2090	217	574	791	1168	
2825						
Siltstone	1950	347	447	794	947	

- 32 -

Concentration of EOM and chromatographic fractions (mg/gTOC).

Depth (m)	EOM	Sat	Aro	НС	Non hydrocarbons
	00.7				
1510	33./	3.9	2.4	6.3	24.9
1560	11.2	0.1	0.9	1.0	8.8
1800	.	1.3	1.9	3.2	7.1
1950	11.6	1.4	1.4	2.8	8.7
2100	14.7	1.1	4.0	5.1	8.2
2200	43.7	3.1	11.2	14.3	27.7
2350	17.4	0.9	2.4	3.3	13.0
2425	128.1	15.8	29.0	44.8	58.1
2575	92.3	12.6	22.7	35.3	54.5
2650	260.0	36.1	21.9	58.0	184.2
2675	321.7	146.7	154.7	301.4	19.7
2725	37.3	9.7	9.9	19.6	14.4
2750	34.7	5.0	9.4	14.4	17.4
2775	29.7	4.7	6.4	11.1	16.3
2800	105.2	14.9	31.8	46.7	51.8
2825	149.8	41.0	45.1	86.1	58.2
2850	69.7	16.2	18.2	34.4	26.5
2950	286.8	39.0	63.2	102.2	129.9
3025	91.0	35.8	21.8	57.6	21.9
3075	70.4	13.7	21.9	35.6	34.2
3125	78.3	16.5	36.9	53.4	23.8
3200	63.4	14.9	22.8	47.7	25.4
3350	164.4	43.1	37.5	80.6	73.8
3450	171.0	43.4	27.6	71.0	91.3
3550	153.2	52.1	34.0	86.1	48.9
3600	246.5	107.6	25.7	133.3	103.5
3650	173.6	43.4	21.7	65.1	103.3
3750	137.5	24.3	28.9	53.2	* 80.1
3775	101.2	10.5	27.9	38.4	56.7
2825	348.8	61.9	79.8	141.7	169.1
Siltstone					

TABLE VI

Depth (m)	Sat Eom	Aro Eom	HC EOM	Sat Aro	Non HC EOM	HC Non HC
1510	11.7	7.5	18.7	166.7	74.0	25.2
1560	0.8	7.7	8.5	10.5	78.6	10.8
1800	11.9	17.2	29.1	69.6	63.4	45.9
1950	12.5	11.8	24.4	104.7	74.8	32.6 -
2100	7.5	26.9	34.4	28.1	55.4	62.1
2200	7.2	25.7	32.9	28.0	63.5	47.9
2350	5.3	13.9	19.2	38.3	74.9	25.6
2425	12.4	22.7	35.1	54.5	45.4	77.2
2575	13.7	24.6	38.3	55.5	59 .1	64.8
2650	13.9	8.4	22.3	164.7	70.8	31.5
2675	45.6	48.1	93.7	94.8	5.1	1531.8
2725	26.0	26.6	52.6	97.8	38.4	115.9
2750	14.3	27.1	41.4	52.8	50 .0	82.8
2775	15.7	21.6	37.3	72.5	54.9	68.0
2800	14.1	30.2	44.3	46.8	-9.2	90.2
2825	27.4	29.6	57.0	90.9	33 .9	147.8
2850	23.3	26.1	49.4	89.4	33 .0	129.8
295 0	13.6	22.1	35.7	61.6	-5 . 3	78.7
3025	39.3	23.9	63.2	166.4	24.1	262.7
3075	19.4	31.2	50.6	62.3	-5.3	104.2
3125	21.0	47.1	68.1	44.6	34.6	224.0
3200	23.4	36.0	59.4	65.1	40.0	148.6
3350	26.2	22.8	49.0	115.0	44.9	109.3
3450	25.9	17.5	43.4	160.6	53.4	58.2
3550	34.0	23.1	57.1	152.2	31.9	165.3
3600	43.6	10.4	54.0	418.9	42.0	128.9
3650	25.0	12.5	37.5	200.0	59.5	63.0
3750	17.6	21.0	38.6	83.9	58.2	66.4
3775	10.4	27.5	37.9	37.8	56.0	67.7
					an Antonio de la constante Antonio de la constante	
2825	17.7	22.9	40.6	77.6	48.5	83.8
Siltstone						

Composition in % of the organic material extracted from the rock.

TABLE VII

Depth (m)	Pristane/nC ₁₇	Pristane/Phytane	СРІ
1560	0.52	1.62	1.41
1800	0.86	1.90	1.08
1950	0.78	1.60	1.33
2100	1.08	1.12	1.10
2200	0.74	1.54	1.02
2350	0.56	1.97	0.92
2425	0.80	1.59	0.96
2575	0.63	1.58	0.94
2675	0.42	1.56	0.91
2750	0.36	1.66	1.01
2775	0.50	1.49	0.99
2800	0.45	1.45	0.97
2825	0.39	1.54	0.94
2850	0.40	1.60	1.01
2950	0.45	1.60	0.97
3025	0.41	1.50	1.00
3125	0.49	1.36	0.98
3200	0.37	1.40	1.00
3350	0.42	1.66	1.02
3450	0.39	1.41	0.97
3550	0.43	1.56	1.01
3650	0.53	1.61	0.99
3700	0.35	1.90	0.90
3750	0.51	1.66	0.97
3775	0.38	1.60	0.98
2825	0.30	1 50	0.95
Siltetono	0.33	1.00	0.70
STICSCONE			

Tabulation of datas from the gaschromatograms.

TABLE VIII

- 35 -

Vitrinite reflectance and spore coloration.

(Number of particles measured for vitrinite reflectance in brackets.)

Depth (m)	Spore col.	Vitrinite refl.
1510		
1510		
1800		0.31(17) 0.51(1)
2000		0.33(6) $0.74(3)$
2200		0.35(18)
2400		0.47(17) $0.76(4)$
2500	2022	0.49(21)
2000	2.0-2.2	0.43(6)0.59(8) $1.43(9)$
2700	2.0	0.43(5)
2705	2.1	0.71/0)
2000	2021	0.71(8)
2005	2.0-2.1	
2825	2.1	1 14(0) 2 12
2900	2.1	1.14(8) 3.12
2925	2.1	
3000	2122	0.51(5) $0.93(1)$ $1.43(2)$
3025	2.1-2.2	0.40(8) 0.87(1)
2125	21.22	0.49(8) 0.87(1)
3125	2.1-2.2	1.09(5)
3250	2.1_2.2	1.09(3)
3275	2.1-2.2	
3300	21-22	0.35(2)
3350	2.2	0.03(2)
3400	2.2-2.3	0.71(11) - 0.98(10)
3450	2.2-2.3	
3500		0.26(1) 0.65(6)
3550	2.2	
3575	2.2	0.45(2) 0.77(9) 1.16(3)
3625	2.3	
3650		0.75(4) 1.11(1)
3700	2.3-2.4	
3725	2.2-2.3	
3750	2.3	0.85(9)
3775	2.3	0.78(2) 1.15(7)

PRESENTATION OF ANALYTICAL DATA

$C_1 - C_4$ HYDROCARBONS

	i		

4 3

SANDSTONE

SILTSTONE

• • • • • • • • • • • • • • • • • • •	SILT-	AND	SANDSTONE
and the second se			

LIMESTONE

FIG. 1

TOTAL ORGANIC CARBON (TOC) AND $\rm C_{_R}$ / $\rm C_{_T}$

Presentation of analytical Data

- TOC : Total Organic Carbon
- $\mathbf{C_R}/\,\mathbf{C_T}$: Organic Carbon Residue / Total Organic Carbon
- : Shale

x * * *

- ★ : Sandstone
- C : Siltstone

Fig.2

۰.

C₁₅ HYDROCARBONS

Presentation of Analytical Data

$\mathbf{C_{15}}\texttt{+} \textbf{SATURATED} \textbf{ HYDROCARBONS}$

۰.

× *

•

C₁₅ + SATURATED HYDROCARBONS

•

• ¹

Fig. 4b

• •

+

C₁₅+ SATURATED HYDROCARBONS

۴.

Fig. 4c

MATURATION

ب ۲

- True vitrinite
- O Reworked

1.

3 1

Fig. 5

.

INTERPRETATION DIAGRAM

Park 2:00

Sat: Saturated Hydrocarbons

HC: Hydrocarbons

. .

EOM: Extractable Organic Matter

Fig. 6

+ +

			i i

÷

- TOC: Total Organic Carbon
- Claystone
- ★ Sandstone