OLJEDIREKTORATET Journai nr.: BA 81-540dato 25 MAI 1981

ROBERTSON RESEARCH INTERNATIONAL LIMITED

NORWAY II STUDY - PRELIMINARY REPORTS G15 TO G23

AND PRELIMINARY REPORTS B11 TO B19

ROBERTSON RESEARCH INTERNATIONAL LIMITED

NORWAY II STUDY - PRELIMINARY REPORTS G15 TO G23

Project No. RRPS/8182/B/2043

PRELIMINARY PETROLEUM GEOCHEMISTRY RESULTS OF 33/9-1, 33/9-3, 33/12-2, UK 23/11-1, UK 30/18-2, D-1, F-1, J-1 AND K-1 WELLS

APRIL 1981

G15	:	33/9-1
G16	:	33/9-3
G17	:	33/12-2
G18	:	UK 23/11-1
G19	:	UK 30/18-2
G20	:	D-1
G21	:	F-1
G22	:	J-1
G23	:	K-1

LIST OF CONTENTS

WELL: 33/9-1 MOBIL

SAMPLE DEPTH	SAMPLE	GENERALISED	SPORE COLOUR		KEROGE (by micr	EN COMPOSI	TION (%)	KE (bv c	ROGEN CON		%) (ata)
(FEET)	TYPE	LITHOLOGY	INDEX (1 - 10)	IN OIL, R av%	INERTINITE	VITRINITE	SAPROPEL	INERTINITE	VITRINITE	ALGAL SAPROPEL	SAPROPEL
6000-110	Ctgs	SH, ol-gy, slty	2.5-3	$\frac{0.31(6)}{0.52(3)};$	80	10	10				
6390-520	п	A/a	3	0.35(5)	70	20	10				
6900-960	11	A/a	3	$\frac{0.34(3)}{0.65(4)};$	70	20	10				
7350-420	n	A/a	3	0.37(7)	80	10	10				
7710-760	п	SH, a/a+10% SH, med gy						60	40	*	*
7770-820	n	A/a	*	*	*	*	*				
7990	11	A/a	3.5		80	10	10				
8090	11	A/a	4		90	10	*				}
8180-260	11	A/a					I.	50	50	*	*
8270-320	11	SLTST, yel-gy+ 30% SND+20% SH, med-dk gy+10% COAL						75	10	*	15
	Р	SH, med-dk gy						30	20	5	45
	P	COAL		0.51(30)							
8300	Ctgs	SH, med-dk gy+ 30% SND+40% SLTST, a/a 10% COAL	4-4.5		70	30	*				
8330-390	n	SH, gn-gy, slty+ 20% COAL						65	25	*	10
8460-510	11	SH, coaly+20% SH, med gy+20% SST, pale yel- brn						70	15	*	15
	Р	COAL		0.51(26)							
85 206 20	Ctgs	SH, gn~gy+20% SH, med-dk gy+ 10% SH, coaly+ 30% SND						60	40	*	*
8700	11	SST, yel-gy+20% SH, med-dk gy+ 10% SH, gn-gy +mnr COAL	4-4.5		70	30	*				
87,50-800	11	SND+30% SH, med gy+30% SH, gn- gy+mnr SST, lt brn+tr COAL						75	25	*	*
8870-920	Р	SH, med-dk gy			Ì			50	50	*	*
8900	Ctgs	SST, yel-gy+30% SH, a/a	4-4.5		80	20	*				
8930-980	11	SST, a/a+SH, a/a						20	80	*	*
1	Р	SH, med-dk gy						70	30	*	*
9100	Ctgs	SST, a/a+30% SH, a/a	4.5-5		50	30	20				

TABLE 1 A Maturity and Kerogen Data

Market 10 Prove of a transmission of a stranget of a strange	CAMPLE DEDTU	0.0.1601 5	CENEDAL 1850	SPORE COLOUR	VITRINITE	KEROGE	N COMPOSI	TION (%)	, KE	%)		
9110-160 Sc. Sc	(FEET)	TYPE	LITHOLOGY	INDEX (1 - 10)	REFLECTIVITY IN OIL, R av%	(by micr INERTINITE	VITRINITE	ination) SAPROPEL	(by c Inertinite	VITRINITE	M PYROLYSIS O ALGAL SAPROPEL	ata) WAXY Sapropel
110-220 P Sh1, mod-dk gy,	9110-160	Ctgs	SH, med-dk gy, mic+40% SH, gn- gy						70	30	*	*
9170-220 ? Site, med-dk syy, med-dk sy, med-dk syy, m		P	SH, med-dk gy, mic						60	40	*	*
9230-360 7 SH, At gr 1 <th1< th=""> 1 1 <</th1<>	9170-220	P	SH, med-dk gy, mic						60	40	*	*
920-310 Corps SH, 4/2407 SML (algorithm condition) 0.33(26) 40 50 40	9230-260	Р	SH, dk gy					-	80	20	*	*
P COAL 0.33(26) N <th< td=""><td>9290-310</td><td>Ctgs</td><td>SH, a/a+40% SST, yel-gy+tr COAL</td><td></td><td></td><td></td><td></td><td></td><td>60</td><td>40</td><td>*</td><td>*</td></th<>	9290-310	Ctgs	SH, a/a+40% SST, yel-gy+tr COAL						60	40	*	*
9300 Ctgs St, ad-dt 207 SST 4.5 40 30 30 II III III III 9320-370 III St, mad-dt gy/ dt gr/dt gr/dt gr/dt gr/ gt gr/dt gr/dt gr/dt gr/ gt gr/dt gr/dt gr/ gr/ gr/ gr/ gr/ gr/ gr/ gr/ gr/ gr/		Р	COAL		0.53(26)							
9220-37 1" SH, mad-dE go/ & SH, odd go/ SH, dx gy Image of the second go/ & SH, mad gy Image of the second go/ & SH, bx	9300	Ctgs	SH, a/a+20% SST, a/a	4.5		40	30	30				
P SH, mod-dik gy/ dk gy	9320-370	11	SH, med-dk gy/ dk gy+30% SND									
9380-430 P SH, dk syy 9440-490 Gtgs SH, a/a+207 SH K syy 9 SH, dk syy 9500 Ctgs SH, a/a+207 SH K syy 9500 Ctgs SH, a/a+207 SH K syy 9500 Ctgs SH, a/a+207 SH SH-302 SH, a/a 9500 SH SH-302 SH, a/a 9500 SH SH-403 SH 9500 SH SH-302 SH, a/a 9500 SH SH-302 SH, a/a 9700 Ctgs SH-107 SH, a/a 9700 Ctgs SH+107 SH, a/a 9700 Ctgs SH+107 SH, a/a 9700 Ctgs SH+107 SH, a/a 9700 SH SH 9700 SH SH <td></td> <td>P</td> <td>SH, med-dk gy/ dk gy</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>75</td> <td>20</td> <td>*</td> <td>5</td>		P	SH, med-dk gy/ dk gy						75	20	*	5
9440-490 Crgs SR, a/a 207 SND/SST, yel-gy 9500 Crgs SR, dx gy 9500 Crgs SND/SST, a/a P SNL aday 9700 Crgs SND+107 SH, a/a 9700 Crgs SND+107 SH, a/a P SNL aday 9700 Crgs SND+107 SH, a/a P SNL aday P	9380-430	P	SH, dk gy						60	40	*	*
P SH, ak gy	9440-490	Ctgs	SH, a/a+20% SND/SST, yel-gy						60	40	*	*
9500 Ctgs SH, a/a+007, s/a 4.5 40 30 30 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII		P	SH, dk gy						75	25	*	*
9560-610 " SND+20% SH, med gy 9700 Ctgs SND+10% SH, a/a 4.5-5 40 30 30 5 * * * 9700 Ltgs SND+10% SH, a/a 4.5-5 40 30 30 5 * * *	9500	Ctgs	SH, a/a+30% SND/SST, a/a	4.5		40	30	30				
P SH, med gy 9700 Ctgs SND+10Z SH, a/a 4.5-5 40 30 30 1 1 1 1 1<	9560-610	"	SND+20% SH, med gy						55	45	*	*
9700 Ctgs SND+10Z SH, a/a 4.5-5 40 30 30		P	SH, med gy						75	25	*	*
	9700	Ctgs	SND+10% SH, a/a	4.5-5		40	30	30				
										l ç		
					}	}						

TABLE 1 B Maturity and Kerogen Data

WELL: 33/9-1

	G	ENERAL DATA	CHEMICAL ANALYSIS DATA												
SAMPLE	w	· · · · · · · · · · · · · · · · · · ·	<u> 2 % ×</u>	()		PYRO	LYSIS			SOLVE	NTEXT	RACTIO	N		
DEPTH (FEET)	SAMPL TYPE	ANALYSED LITHOLOGY	ORGAN CARBON OF ROC	TEMP – Erature °(HVDROGEN	OXYGEN INDEX	PRODUCTION	POTENTIAL VIELD (ppm)	TOTAL EXTRACT (ppm)	HYDRO- CARBONS (ppm)	EXTRACT % OF ORGANIC CARBON	mg/g0F Organic Carbon Carbon	% OF EXTRACT	ALKANES % DF HYDRO- CARBONS	
6000-110	Ctgs	SH, ol-gy, slty	0.42												
6180-240	"	A/a	0.37												
6250-310	11	A/a	0.39												
6320-380	11	A/a	0.46												
6390-520	"	A/a	0.55												
6540-620	п	A/a	0.48												
6640-760	"	A/a	0.43]			
6780-880	11	A/a	0.37												
6900-960	"	A/a	0.38												
6980-7060	11	A/a	0.39												
7080-140	19	A/a	0.37												
7160-220	11	A/a	0.43												
7230-280	11	A/a	0.35												
7290-340	п	A/a	0.46												
7350-420		A/a	0.45												
7480-530	11	SH, a/a+mnr SH, med gy	0.42												
7540→590	11	A/a	0.63												
7600-640	11	A/a	0.43												
76 50 - 700	"	A/a	0.54												
7710-760	"	SH, a/a+10% SH, a/a	0.67	429	42	60	0.1	300							
7770 - 820	"	A/a	0.53												
7830-890	. 11	A/a	0.43												
7900-950	"	A/a	0.58												
7960-8070	,,	A/a	0.88												
8030-070	"	SH, med gy+mnr SH, gy-gn +mnr SH, gy-red	1,68						1690	510	10.1	30	30	82	
8180-260	11	SH, ol-gy+10% SH, med gy	1.90	431	53	20	0.2	1000							
8250-300	· 11 ·	COAL+SH, med gy+SH, gy-gn	8.43						8080	1470	9.6	17	18	64	
8270-320	11	SLTST, yel-gy+30% SND+20% SH, med-dk gy+10% COAL	10.48	433	1 20	12	0.2	1 2600				-			
	P	SH, med-dk gy	4.05	435	394	15	0.1	16000							
8330-390	Ctgs	SH, gn-gy, slty+20% COAL+ CMT	7.07	432	113	16	0.2	8000							
	P	SH, gn-gy, slty	0.32												
8370-400	Ctgs	SH, med gy+SH, gy-gn+tr COAL	2.94						3340	9 20	11.4	31	27	73	
8400-450	"	SH, gn-gy, slty+10% COAL+ CMT+30% SND	4.21												
8460-510	11	SH, coaly+20% SH, med gy+ 20% SST, pale yel-brn	13,43	434	149	9	0.1	20100							

TABLE 2 A Chemical Analysis Data

	CHEMICAL ANALYSIS DATA													
SAMPLE	ш	······	<u>د % ت</u>		·····	PYRO	LYSIS			SOLVE	NTEXT	RACTIO	N	
DEPTH (FEET)	SAMPL	ANALYSED LITHOLOGY	ORGANI CARBON OF ROC	TEMP ERATURE °C	HYDROGEN	OXYGEN INDEX	PRODUCTION	POTENTIAL VIELD (ppm)	TOTAL EXTRACT (ppm)	HYDRO- CARBONS (ppm)	EXTRACT % OF ORGANIC CARBON	mg/gOF Organic Carbon Carbon	K OF STRACT	ALKANES % OF HYDRO- CARBONS
85 20 − 6 20	Ctgs	SH, gn-gy+20% SH, med-dk gy +10% SH, coaly+30% SND+mnr SST+PYR	2.65	433	45	16	0.2	1 200						
86 30-6 80	77	SH, med-dk gy+20% SH, gn-gy +30% SND+tr COAL+mnr LST, sndy	1.38											
8690-740	11	SST, yel-gy+30% SH, a/a+mnr SH, a/a+10% SH, gy-red+ mnr COAL	-											
8750-800		SND+30% SH, med gy+30% SH, gn-gy+mnr SST, lt brn+ tr COAL	2.63	435	49	12	0.2	1300						
8750-800		A/a	2.72						1680	260	6.2	10	15	7.4
8810-860	u	SST, yel~gy+30% SH, med-dk gy	-											
8820-900	"	SH, dk gy	2.90						1980	530	6.8	18	27	78
8870-920	.,11	SST, a/a+30% SH, med-dk gy	1.63											
	P	SH, med-dk gy	1.75	436	70	22	0.2	1 200						
89 30-9 80	Ctgs	SST, a/a+30% SH, a/a	1.87	440	61	33	0,1	1100						
	P	SH, med-dk gy	1.56	427	37	14	0,2	600						
8990-9040	Ctgs	SST, a/a+20% SH, a/a	-											
9040-080	11	SH, med-lt gy	2.10						1210	270	5.8	13	23	80
9050-100		SST, a/a+30% SH, med-dk gy	1.46											
9110-160		SH, med-dk gy, mic+40% SH, gn-gy	1.39	433	60	58	0.2	800						
	P	SH, med-dk gy, mic	1,53	435	50	17	0.1	800						
	P	SH, gn-gy	0.39											
9170-220	Ctgs	SH, med-dk gy, mic+30% SST, yel-gy	1.27											
	Р	SH, med-dk gy, mic	1.50	439	54	15	0.1	800		ĺ				
9230-260	Ctgs	SH, dk gy+20% SST, a/a	1.54											
	Р	SH, dk gy	1.74	437	44	9	0.1	300						
9 240- 250	Ctgs	SH, med-lt gy (caved?)	2.20						1240	360	5.6	16	29	73
9290-310		SH, dk gy+40% SST, a/a+tr COAL	1.50	430	45	51	0.2	700						
9 300 340	п	SH, med-lt gy (caved?)	2.03						2540	1150	12.5	57	.45	65
9320-370		SH, med-dk gy/dk gy+30% SND	1.33											
	P	SH, med-dk gy/dk gy	1.59	439	70	12	0.2	1100						
9380-430	Ctgs	SND/SST, yel-gy+20% SH, dk gy	1.53											
	Р	SH, dk gy	1,40	440	26	16	0.3	400			1			
9440-490	Ctgs	SH, a/a+20% SND/SST, a/a	1.69	435	43	41	0.2	700						
	Р	SH, dk gy	1.93	442	36	12	0.1	700						

TABLE 2 B Chemical Analysis Data

· . (

-	G	ENERAL DATA	CHEMICAL ANALYSIS DATA											
SAMPLE	ш		<u>లిన</u> గ			PYRO	LYSIS			SOLVE	NTEXT	RACTIO	N	
DEPTH (FEET)	SAMPL TYPE	ANALYSED LITHOLOGY	ORGAN CARBON OF ROC	TEMP - Erature °(HYDROGEN INDEX	OXYGEN INDEX	PRODUCTION INDEX	POTENTIAL YIELD (ppm)	TOTAL Extract (ppm)	HYDRO- CARBONS (ppm)	EXTRACT % OF ORGANIO CARBON	mg/gOF ORGANIC CARBON	% OF EXTRACT	ALKANES % OF HYDRO- CARBONS
9480-520	Ctgs	SH, gy	2.00						2060	280	10.3	14	13	71
9500 - 550	"	SH, dk gy+30% SND/SST, yel-gy	1.53											
9560-610	"	SND+20% SH, med gy	2.46	436	11	18	0.2	300						
1	P	SH, med gy	1.46	443	22	11	0.3	300						
96 20-6 70	Ctgs	SND+10% SH, a/a	-											
9680-730	11	A/a	-		:									
9740 - 790	"	SND+mnr SH, a/a	-											
9770		SH, gy (caved?)	1.20						1660	650	13.8	54	39	61
9800-850		SND+mnr SH, dk gy	-											
9860-900	"	A/a	-											
99 50	"	A/a	0.21									-		
		•												
		· · · · ·												
L	<u> </u>		1			l			L	l	L	l	L	

TABLE 2 ^c Chemical Analysis Data

.

∆ ×

FIGURE 1 Spore Colour Indices against Depth

Pofloativity Coved Vitrinite	
nenectivity – Caved vitilite	
Reflectivity - Semifusinite/Reworked Vitrinite	×
Low Reflecting "Vitrinite"	Э
Reflectivity Gradient	
Inferred Reflectivity Gradient	
Casing Point	4

1.4 1.6 1.8 2.0

2.5

3.0

FIGURE 2 Vitrinite Reflectivity against Depth

ROBERTSON RESEARCH INTERNATIONAL LIMITED

Project No. RRPS/8182/B/2043

NORWAY II STUDY - PRELIMINARY REPORT G16 (30/4/81)

PRELIMINARY PETROLEUM GEOCHEMISTRY RESULTS OF 33/9-3 WELL

SUMMARY

The Triassic to Early Tertiary section (5220' to 9810') is immature to early mature, and contains no significant oil source rocks. Dark grey shales from a number of cuttings samples between 8120' and 8530' exhibit minor oil potential, and are attributed to the interval between 7890' and 7909' which has a relatively high gamma ray log response. However, on-structure these shales are not sufficiently rich , thick, or mature enough to generate significant quantities of oil. The remaining analysed intervals contain either insufficient organic carbon (Early Tertiary and Cretaceous), or predominantly inertinitic kerogens (most of the Jurassic), and are without oil source potential.

GENERAL COMMENTS

Well status:	Plugged and abandoned, oil discovery (Statfjord field).
Drilling data:	Drilled with sea water/gel and lignosulphcnate based muds to 9815' (T.D.). Casing points at 725' (30"), 1503' (20"), 3039' (13%"), 7045' (9%"). BHT 187°F at 9815' (T.D.).

Interval analysed: 5220' to 9810' (T.D. 9815').

Age of analysed interval: Triassic to Early Tertiary.

Sample type and quality: 92 composited dried ditch cuttings samples of generally good quality.

Maturation data quality: Adequate to good.

Source rock data quality: Adequate to good.

Gas chromatography run at: 7920'-8040'.

MATURATION (Table 1; Figures 1 and 2)

The spore colour indices increase with depth from 2.5-3 at 5500' to 4.5 at 9800' and vitrinite reflectivities increase from 0.32% (interpreted) to 0.55% (interpreted) over the same interval. A transition from an immature to an early mature state is thus inferred at a depth of around 7000'. Oil-prone kerogen present below this depth will yield liquid hydrocarbons.

OIL SOURCE ROCKS (Tables 1 and 2)

Picked dark grey shale lithologies from a number of horizons between 8120' and 8530' are rich in organic carbon (3.33% to 6.91%) and yield fair to good quantities of hydrocarbon (3600 ppm to 11100 ppm) on pyrolysis, although the kerogen has relatively poor oil source quality. These shales are attributed to the interval with a relatively high gamma ray log response between 7890' and 7909'. On-structure this interval is of no importance as an oil source, but if its lateral equivalents are thicker and more deeply buried, then it could have some significance as an oil source rock.

GEOCHEMICAL CHARACTERISTICS OF THE REMAINING SEDIMENTS

The Triassic to Jurassic intervals between 7900' and 9755' mostly contain about average quantities of predominantly inertinitic organic matter so that these horizons have no source potential irrespective of thermal maturity. The hydrocarbon contents are generally low except between 7900' and 8210' where migrated oil is indicated. The sample from 7920'-8040' was analysed by gas chromatography and revealed a crude oil-like alkane distribution.

The Late Cretaceous to Early Tertiary sediments between 5220' and 7820' are organically lean and have no significant hydrocarbon generating potential. Extractive source potential evaluation of the interval confirmed both the lack of hydrocarbon generating potential and the absence of migrated oil in the Tertiary.

MAND WEL

. 1

SAMPLE DEPTH	SAMPLE	GENERALISED	SPORE COLOUR		KEROGE (by micr	N COMPOSI oscopic exam	TION (%) ination)	KE (by ca	ROGEN CON alculation fro	IPOSITION (m pyrolysis d	%) ata)
(FEET)	TYPE	LITHOLOGY	INOEX (1 - 10)	IN OIL, R av%	INERTINITE	VITRINITE	SAPROPEL	INERTINITE	VITRINITE	ALGAL SAPROPEL	WAXY SAPROPEL
5220-360	Сотр	SLTST/SH,ol-gy +mnr LST		*							
5500	Ctgs	SLTST, lt ol-gy +40% SLTST gn- gy, sl calc+10% LST, wht	2.5-3	*	30	70	*				
5540-700	11	SLTST/SH,ol-gy +mnr LST		0.34(15)							
5600-620	11	SLTST, gn-gy, sl calc+10% LST, a/a	2.5-3	*							
5800-820	n	SLTST, a/a+30% SLTST, ol-gy, sl calc	3	0.43(4)					-		
5900-920	IT	SLTST, gn-gy, sl calc	3								
6000-020	*1	SLTST, lt ol-gy/ ol-gy, sl calc+ 10% LST, v lt gy	3	*							
6100-120	14	SLTST, gn-gy+ 50% SLTST, ol-gy calc+mnr LST, med gy	3								
6 200 240	12	SLTST, 1t ol-gy, calc+30% SLTST, ol-gy, calc+mnr LST, wht	3	*							
6300-340	11	SLTST, gn-gy, calc+10% LST, .wht/med gy	3-3.5								
6500-550	II	SH, a/a+10% LST, a/a+mnr SH,ol-gy	3.5	0.33(6)	-						
6600-640	11	SH, lt ol-gy, sl calc+20% SH, med -lt gy, mic+mnr SH,yel-gy,calc	3.5	0.36(7)							
6800-820	ri .	SH, lt ol-gy, calc+10% LST, wht/med gy	3.5	0.33(2)					-	-	
7000-020	17	SH, mtl, med-lt gy/lt ol-gy, calc		*							
7150-210		A/a		0.40(4)							
7200-210	f1	SLTST, lt gy/ v lt gy, calc +20% SLTST/SH, med-lt gy, calc		*							
7400-410	11	SH, mtl, lt gy/ med-lt gy, calc, slty+mnr SLTST, pale red		0.35(1)							
7430-630	Comp	SND/SLTST, mod yel-brn+SST, lt gy+SND+SH, gn-gy	3-3.5	0.43(11)							
7600-610	Ctgs	SH, a/a		0.45(1)							

WELL: 33/9-3

SAMPLE DEPTH	E DEPTH SAMPLE GENERALISED SPORE COLOUR VITRINITE					N COMPOSI	TION (%)	KEROGEN COMPOSITION (%)					
(FEET)	TYPE	LITHOLOGY	INDEX (1 - 10)	REFLECTIVITY	INERTINITE	VITRINITE	SAPROPEL	INERTINITE	VITRINITE	ALGAL	WAXY SAPROPEI		
7800-810	Ctgs	SH, mtl, lt gy/ med-lt gy, calc, slty+10% SLTST, lt gy, calc+mnr SLTST, pale red		0.38(9)									
7860	11	SH, med gy, slty +20% LST, wht	3-4		50	50	*						
7900	11	A/a	?3.5		20	50	30						
7920	"	A/a	24										
8000-010	17	SH, mtl, lt gy/ med-lt gy+mnr LST, a/a		0.44(4)									
8057	Core	SST, brn+mnr SH, dk gy+COAL						50	50	*	*		
8078	11	A/a	3.5			-							
8120-180	Ctgs	SND+20% SH, a/a +10% LST, a/a+ mnr SLTST, mod yel-brn		0.46(13)									
	P	SH, dk gy						70	10	*	20		
8200-210	Ctgs	SH, mtl, lt gy/ med-lt gy+mnr LST, a/a+10%, SH a/a+10% SND+mnr SLTST, wht, mic		0.33(5)									
8260-320	P	SH, dk gy			1			70	20	*	10		
8260-390	Сотр	SND+20% SH, a/a +30% SH, med gy+ LST, a/a+mnr SST lt gy						80	20	*	*		
8300-310	Ctgs	SH, mtl, lt gy/ med-lt gy+10% SH dk gy+40% SND		0.46(1)									
8400-410	17	SH, mt1, lt gy/ med-lt gy+30% SND		0.44(7)									
8400-460	71	SST, a/a+30% SH, dk gy+20% SND+ mnr LST, a/a						90	10	*	*		
	Р	SH, dk gy						60	30	*	10		
8470-530	Р	SH, dk gy						50	40	*	10		
8500-510	Ctgs	SH, lt gy/med- lt gy, calc, slty+30% SND	-	*									
8558	Core	SH, dk gy						60	40	*	*		
8540-600	Р	SH, dk gy					-	35	65	*	*		
8600-610	Ctgs	SH, lt gy/med- lt gy, calc, slty		0.43(13)									
8610	11	SH, dk gy+50% SH med gy	4.5		70	30	*						
8610-670	P	SH, dk gy						40	60	*	*		
	P	SH, med gy						60	40	*	*		

TABLE 1 ^B Maturity and Kerogen Data

SAMPLE DEPTH	SAMPLE	GENERALISED	SPORE COLOUR		KEROGE	N COMPOSI oscopic exam	TION (%) ination)	KE (by c	ROGEN CON alculation fro	POSITION (m pyrolysis d	%) lata)
(FEET)	TYPE	LITHOLOGY	INOEX (1 - 10)	IN OIL, R av%	INERTINITE	VITRINITE	SAPROPEL	INERTINITE	VITRINITE	ALGAL SAPROPEL	SAPROPEL
8650	Ctgs	SH, dk gy+50% SH, med gy	4-4.5		50	50	*				
8680-740	Р	SH, dk gy						80	20	*	*
	Р	SH, med gy					1	80	20	*	*
8680-820	Comp	SH, dk gy+SH, a/a+SMD+LST,a/a						80	20	*	*
8770	Ctgs	SH, med gy+SH, dk gy+LST, a/a	4-4.5		40	60	*				
8800-810	11	SH, mtl, lt gy/ med~lt gy, calc, slty+20% SLTST, med~lt gy		0.53(1)							
8840-910	Р	SH, dk gy						60	30	*	10
8890	Ctgs	SH, a/a+mnr SST, lt gy	4-4.5		50	30	20				
8920-980	11	A/a						80	20	*	*
	Р	SH, dk gy						75	25	*	*
8990-9050	Ctgs	SH, a/a, slty+ mnr SST, a/a						80	20	*	*
9000-010	11	SH, mtl, med-lt gy/med-dk gy+mnr LST, a/a+mnr SND		0.52(13)							
9050	17	SH, dk gy, slty+	4-4.5		40	60	mnr				

4

*

4.5

4.5

20

20

20

20

0.53(7)

0.53(3)

*

0.37(20)

60

60

60

30

20

20

20

50

75

75

25

25

*

*

*

*

TABLE 1c Maturity and Kerogen Data

9130-190

9200-210

9270-330

9400-410

9420

9530

9650

9800

9800-810

9600-610

"

11

н

11

11

.,

,,

11

"

 \mathbf{n}

A/a

SH, mtl, med-lt

SH, dk gy, slty +mnr SST

SH, mtl, med gy/ med-dk gy+40%

SND, wht, crs

SH, dk gy+40%

SH, mtl, med gy/

SH, a/a+50% SND/

SST, +mnr SH, gy

med-dk gy+30% SND, a/a+mnr SLTST, gn-red

SND

A/a

A/a

A/a

-red

.

gy/med-dk gy+

mnr SND

	G	ENERAL DATA	1				CHEM		NALYSIS	DATA				
SAMPLE	w	· ·	<u>లిన</u> *			PYRO	LYSIS			SOLVE	NTEXT	RACTIO	N	
DEPTH (FEET)	SAMPL TYPE	ANALYSED LITHOLOGY	ORGANI CARBON OF ROC	TEMP ERATURE °C	HYDROGEN INDEX	OXYGEN	PRODUCTION	POTENTIAL Yield (ppm)	TOTAL EXTRACT (ppm)	HYDRO- CARBONS (ppm)	EXTRACT % OF ORGANIC CARBON	mg/g0F Organic Carbon Socanic	% OF EXTRACT W	ALKANES % DF HVDRD- CARBONS
5220-360	Comp	SLTST/SH, ol-gy+mnr LST	0.69	*	37	69	0.1	300						
5380-440	Ctgs	SLTST/SH, a/a+20% LST	-											
5460-520	u	SLTST/SH, a/a+10% LST	0.55											
5500-520		SLTST, lt ol-gy+40% SLTST, gn-gy,sl calc+10% LST, wht	0.31						140	20	4.5	6	*	*
	P	LST, wht	0.11											
5540-700	Comp	SLTST/SH, a/a+10% LST	0.54											
5600-620	Ctgs	SLTST, gn-gy, sl calc+10% (LST a/a	0.31	×.					310	220	10.0	71	71	93
5720-780	11	SLTST/SH, a/a+mnr LST	0.35*											
5800-820		SLTST, a/a+30% SLTST, ol-gy, sl calc	0.39						150	20	3.8	5	*	*
	P	LST, wht	0.10*	N										
5880-6020	Comp	SLTST/SH, a/a+mnr LST	0.53	V										
5900-920	Ctgs	SLTST, a/a+30% SLTST, a/a	0.32	ł					140	25	4.4	8	18	> 80
6000-020	t1	SLTST, lt ol-gy/ol-gy, sl calc+10% LST, v lt gy	0.33*	1					120	45	3.6	14	36	> 80
	P	SLTST, ol-gy, sl calc	0.19	ł										
6040-100	: 11	SLTST/SH, a/a+mnr LST	0.31√											
6100-120	п	SLTST, gn-gy+50% SLTST, ol- gy, calc+mnr LST, med gy	0.33	,					120	85	3.6	26	68	> 90
6120-180	11	SLTST/SH, a/a+mnr LST	0.20											
6200-240	IT	SLTST, lt ol-gy, calc+30% SLTST, ol-gy,calc+mnr LST, wht	0.36√						120	20	3.3	6	16	> 80
6200-260	"	SLTST/SH, a/a+mnr LST	-							1	ſ			
6280-340	T 1	A/a	0.42	4										
6300-340	11	SLTST, gn-gy, calc+10% LST, wht+mnr LST, med gy	0.32						180	50	5.6	16	29	> 90
	P	SLTST, gn-gy, calc	0.35	ł										
6360-420		SLTST/SH, a/a+mnr LST	-											
6440-500	п.	A/a	0.48	Ý										
6500, 540	11	SH, a/a+10% LST, a/a+mnr LST, a/a+mnr SH, ol-gy	0.37	Ŷ					<120					
6520-580	"	SLTST/SH, a/a+mnr LST	-											
6600-640		SH, lt ol-gy, sl calc+20% SH, med-lt gy, mic+mnr SH, yel-gy, calc	0.34	V					<120					
6600-740	Comp	SLTST/SH, a/a +mnr LST	0.64											
6700-740	Ctgs	SH, lt ol-gy, calc+30% LST, v lt gy+LST, med-dk gy	0.28						<120					
6760-820		SLTST/SH, a/a+mmr LST	-											
L								<u> </u>						

TABLE 2 A Chemical Analysis Data

se a

	G	ENERAL DATA					CHEN		ALYSIS	DATA				
SAMPLE	ш	· · · · · · · · · · · · · · · · · · ·	<u>د * ت</u>			PYRO	LYSIS			SOLVE	NTEXT	RACTIO	N	
DEPTH (FEET)	SAMPL	ANALYSED LITHOLOGY	ORGANI CARBON OF ROC	TEMP - Erature °C	HYDROGEN INDEX	OXYGEN INDEX	PRODUCTION INDEX	POTENTIAL YIELD (ppm)	TOTAL EXTRACT (ppm)	HYDRO- CARBONS (ppm)	EXTRACT % OF ORGANIC CARBON	mg/g0F ORGANIC CARBON	RBO LOF ROLL	ALKANES % OF HYDRO- CARBONS
6800-820	Ctgs	SH,lt ol-gy,calc+10% LST,wht +mnr LST, med-gy	0.41											
6840-900	"	SLTST/SH, ol-gy+mnr LST	0.45											
6900-940	11	SH, mtl, med-lt gy/lt ol-gy, calc+10% SH, red, calc	0.47						<220					
6920-980	a	SLTST/SH, a/a+mnr LST	-											
7000-020	11	SH, a/a+10% SH, a/a	0.47						380	60	8.1	13	16	> 90
7000-060	11	SLTST/SH, a/a+mnr LST	-											
7080-140	18	SH, gn-gy, slty+20% SH, med- lt gy, slty+mnr SH, gy-red	-											
7100-120	11	SLTST, lt gy, sl calc+50% SLTST, v lt gy, sl calc+mnr LST, med-dk gy	0.39						<120					
7150-210	п	SH, med-dk gy+30% SLTST, mod yel-brn+20% SND	0.64											
7200-210	ιτ	SLTST, v lt gy, calc+30% SLTST, lt gy, calc+20% SH, med-lt gy, calc	0.46						<180					
7220-280	11	SST, lt gy+mar SH, gn-gy, slty+30% SLTST, mod yel-gy	0.40											
7290-350	п	SND+30% SST, a/a+30% SLTST, a/a	-											
7300-320		SH, mtl, lt gy/med-lt gy, calc, slty+10% SLTST, lt gy, calc	0.59						780	60	13.2	10	8	>90
7360-420	"	SND/SST, lt gy+SLTST, a/a	-											
7400-410	n	SH, a/a+10% SLTST, lt gy, calc+mnr SLTST, pale red	0.68						500	70	7.4	10	13	90
	P	SLTST, pale red	0.14								·			
7430-630	Сощр	SND/SLTST, mod yel-brn+SST, lt gy+SND+SH, gn-gy	0.43											
7500-510	Ctgs	SH, mtl, lt gy/med-lt gy, calc, slty+10% SLTST, lt gy, calc+mnr SLTST, pale red	0.81						450	60	5.6	7	13	83
7600-610	п	A/a	0.80						250	35	3.1	4	14	> 90
7640-700	11	SND/SLTST, a/a+SST, lt gy	0.23											
7700-710	11	SH, a/a+10% SLTST, lt gy, calc+mnr SLTST, pale red	0.82						510	90	6.2	11	18	33
7710-770	11	SND/SLTST, a/a+SST, a/a	-											
7780-840		A/a+tr LST	0.31											
7800-820	"	SH, a/a+10% SLTST, lt gy, calc+mnr SLTST, pale red	0.82						400	140	4.9	17	35	64
7850-910	u	SH, med gy, slty+20% LST, wht	-											

TABLE 2^B Chemical Analysis Data

SAMPLE DEPTH (FEET)	SAMPLE TYPE		<u>5%</u> ×			DVDO	1/010			COLVE	NT CVT	DACTIC		
DEPTH (FEET)	SAMPL TYPE	ANALYSED LITHOLOCY				FINU	L 1 515			JULVE	NICAI	nAUTIU	IN	
			ORGANI CARBON DF ROC	TEMP – Erature °C	HYDROGEN INDEX	OXYGEN INDEX	PRODUCTION	POTENTIAL YIELD (ppm)	TOTAL EXTRACT (ppm)	HYDRO- CARBONS (ppm)	EXTRACT % OF ORGANIC CARBON	mg/g0F Organic add	% OF 80 % EXTRACT	ALKANES % OF HYDRO- CARBONS
7900-910	Ctgs	SH, mtl, lt gy/med-lt gy, calc, slty+10% SLTST, lt gy, calc+mnr SLTST, pale red+30% LST, wht	0.95						1580	680	16.6	72	43	73
	Р	SH, mtl, med-lt gy, slty	1.01											
7920-8040	Comp	SND+SH, dk gy+SST, lt gy+mnr SLTST, mod yel-brn+mnr LST, a/a	-											
7980-8040	Р	SH, dk gy	0.23											
8000-010	Ctgs	SH, mtl, lt gy/med-lt gy+mnr LST, a/a	0.67	:	5	7.			400	80	6.0	12	19	68
8057	Core	SST, brn+mnr SH, dk gy+COAL	4.07	427	8	21	0.8	300						
8100-110	Ctgs	SH, mtl, lt gy/med-lt gy+mnr LST, a/a	1.24						1 200	250	9.7	20	21	41
8120-180	n	SND+20% SH, dk gy+10% LST, a/a+mnr SLTST, a/a	-											
	Ρ	SH, dk gy	6.91	430	161	14	0.5	11100						
8190-250	Ctgs	SND+SH, med gy/dk gy	-											
8200-210	"	SH, mtl, lt gy/med-lt gy+mnr LST, a/a+i0% SH, dk gy+i0% SND+mnr SLTST, wht, mic	1.11						1390	460	12.5	41	33	76
	P	SH, dk gy	10.12											
8260-320	Р	SH, dk gy	4.50	436	111	15	0.5	5000						
8260-390	Сотр	SND+20% SH, a/a+SH, med gy+ LST, a/a+mnr SST, lt gy	1.26	434	50	47	0.6	600						
8300-310	Ctgs	SH, mtl, lt gy/med-lt gy+10% SH, dk gy+40% SND	0.81						500	75	6.2	9	15	57
	P	SH, dk gy	5.01											
8400-410	"	SH, mtl, lt gy/med-lt gy+30% SND	0.52						600	120	11.5	23	20	67
8400-460	11	SST, a/a+30% SH, dk gy+20% SND+mnr LST, a/a	0.89	433	24	91	0.8	200						
	Р	SH, dk gy	4.50	436	98	19	0.6	4400						
8470-530	Ctgs	SST, a/a+30% SH, a/a+20% SND+10% LST, a/a	0.71											
	P	SH, dk gy	3.33	437	108	24	0.5	3600						
8500-510	Ctgs	SH, lt gy/med-lt gy, calc, slty+30% SND	1.14						720	70	6.3	6	10	57
8558	CORE	SH, dk gy	2.48	433	32	18	0.5	800						
8540-600	Ctgs	SH, med gy+20% SH, dk gy+30% SND	1.38											
	Р	SH, dk gy	3.03	438	106	32	0.5	3200						
8600-610	Ctgs	SH, lt gy/med-lt gy, calc, slty	1.10						750	90	6.8	8	12	62

TABLE 2 c Chemical Analysis Data

TABLE 2 D Chemical Analysis Data

an in the second

	۵ ۵	ENERAL DATA					CHEN	IICAL AN	ALYSIS	DATA				
SAMPLE DEPTH (FEET)	SAMPLE TYPE	ANALYSED LITHOLOGY	ORGANIC CARBON % OF ROCK	TEMP – ERATURE °C	HYDROGEN INDEX			POTENTIAL YIELD (ppm)	TOTAL EXTRACT (ppm)	HYDRO- CARBONS (ppm)	EXTRACT % DF ORGANIC CARBON	mg/gOF DRGANIC CARBON	XOF BOX	ALKANES %
 8610-670	Ctgs	SH, dk gy+50% SH, med gy	1.67											
	יטי	SH, dk gy	2.45	438	56	29	0.5	1400						
	ų	SH, med gy	0.89	438	37	35	0.5	300						
 8680-740	rđ	SH, dk gy	2.26	439	61	29	0.6	1400						
	יט	SH, med gy	1.21	437	59	44	0.6	700						
 8680-820	Сотр	SH, dk gy+SH, a/a+SND	1.71	430	49	42	0.6	800						
 8700-710	Ctgs	SH, 1t gy/med-1t gy, calc, slty	1.12						790	100	7.1	9	13	S,
 8800-810	=	SH, a/a+20% SLTST, med-1t gy	1.14						550	45	4.8	4	~~~~	&
 8840-910	Ξ	SH, dk gy+mnr SST, lt gy	1.58											
	יט	SH, dk gy	1.93	436	95	18	9.0	1800						
 8900-910	Ctgs	SH, mtl, med-lt gy/med-dk gy	1.32						590	80	4.5	6	14	00
	ъ	SH, med-dk gy	1.75											
 8920-980	Ctgs	SH, dk gy+mmr SST, a/a	1.82	433	52	50	0.7	1000						
	'n	SH, dk gy	1.90	436	84	36	0.7	1600						
 8990-9050	Ctgs	SH, a/a, slty+mnr SST, a/a	1.73	431	46	36	0.7	800				•		
 010-0006	=	SH, med-lt gy/med-dk gy+mnr LST, wht+mnr SND	1.29						540	130	4.2	10	24	Ś
 9060-120	=	SH, dk gy, slty+mnr SST	1.66											
 9100-110	=	SH, med-lt gy/med-dk gy	1.37						620	80	4.5	<u>б</u>	ω	m
 9130-190	3	SH, dk gy, slty+mnr SST	1.57	432	72	42	7:0-7	1 200						
 9200-210	=	SH, mtl, med-lt gy/med-dk gy+ mnr SND	1.34						650	80	4.9	6	۲ ۵	<i>m</i>
 9200 260	2	SH, dk gy, slty+mnr SST	1.72											
 9270-330	=	A/a	1.52	433	84	24	0.6	1300						
 9300-310	2	SH, mtl, med gy/med-dk gy	1.37						640	100	4.7	7	16	8
 9340-400	4	SH, dk gy+30% SND	1.24								_			
 9400-410	=	SH, mtl, med gy/med-dk gy+40% SND, wht, crs	0.71						430	110	6.1	15	25	m
	чЭ	SH, med-dk gy	1.50											
 9420-500	Ctgs	SH, dk gy+40% SND	0.79											
 9500-510	=	SH, mtl, med gy/med-dk gy+ 50% SND, a/a	0.52						260	80	5.0	15	29	Ň
	קי	SH, med-dk gy	1.30											
 9600-610	Ctgs	SH, mtl, med gy/med-dk gy+ 30% SND a/a+mnr SLTST, gn-red	0.20						<120					
	q	SH, med-dk gy	1.42								•			
 9700-710	Ctgs	SND a/a+40% SH, mtl, med gy/ med-dk gy+mnr SLTST, a/a	0.23						140	80	6.1	ω S	59	×
									I					

WELL: 33/9-3

. . . .

	G	ENERAL DATA					CHEN		ALYSIS	DATA				
SAMPLE	ш		2××			PYRO	L Y SIS			SOLVE	NTEXT	RACTIC	REANS	
DEPTH (FEET)	SAMPL	ANALYSED LITHOLOGY	ORGAN CARBON OF ROC	TEMP - ERATURE °	HYDROGEA	UXYGEN INDEX	PRODUCTIO INDEX	POTENTIAI VIELD (ppm)	TOTAL EXTRACT (ppm)	HYDRO- CARBONS (ppm)	EXTRACT % OF ORGANI CARBON	mg/g0F ORGANIC CARBON	% OF EXTRACT	ALKANES OF HYDRO CARBONS
9 800- 810	Ctgs	SH,mtl,med gy/med-dk gy+50% SND/SST+mnr SH, gy-red	0.34						160	130	4.7	38	82	94
	P	SH, med-dk gy	2.04											
					ł									
					6			,						
													:	
									1)					
					1									
								-						
												r.		

TABLE 2 E Chemical Analysis Data

SPORE COLOUR INDEX (S.C.I.)

THERMAL ALTERATION INDEX (T.A.I.)

.

FIGURE 1	Spore Colour	Indices	against	Depth
----------	--------------	---------	---------	-------

10

4

3.5

Reflectivity - True Vitrinite	E
Reflectivity — Caved Vitrinite	
Reflectivity - Semifusinite/Reworked Vitrinite	Х
Low Reflecting "Vitrinite"	¢
Reflectivity Gradient	
Inferred Reflectivity Gradient	
Casing Point	-

1.4 1.6 1.8 2.0

2.5

3.0

FIGURE 2 Vitrinite Reflectivity against Depth

ROBERTSON RESEARCH INTERNATIONAL LIMITED

Project No. RRPS/8182/B/2043

NORWAY II STUDY - PRELIMINARY REPORT G17 (30/4/81)

PRELIMINARY PETROLEUM GEOCHEMISTRY RESULTS OF 33/12-2 WELL

SUMMARY

No significant oil source rocks have been identified in the analysed section (5500' to 13900'). The Triassic, Cretaceous and Early Tertiary intervals contain insufficient organic carbon, and the Jurassic interval, although mostly containing average amounts of organic matter, is inertinitic. The Early Cretaceous - Late Jurassic 'hot' shale interval between 8140' and 8148' contains above average organic carbon content, but being very thin, it is unlikely to generate significant quantities of hydrocarbons, irrespective of kerogen composition. Oil stain is noted in the Triassic interval particularly between 10100' and 10400'. The section is early mature in the Jurassic to Early Tertiary, and middle to late mature in the Triassic.

GENERAL COMMENTS

Well status: Plug	ged and abandoned, oil discovery (Statfjord field).
Drilling data: Dr mu 10 a:	rilled with sea water/gel and lignosulphonate based uds to 14286' (T.D). Casing points at 729' (30"), 619' (20"), 5248' (13¾"), 9542' (9½"). BHT 224°F t 13635'.
Interval analysed:	5500' to 13900' (T.D. 14286').
Age of analysed inter	rval: Triassic to Early Tertiary.
Sample type and qual: sa	ity: 107 dried ditch cuttings samples and 2 core amples of fair quality.
Maturation data qual	ity: Adequate to good.
Source rock data qua.	lity: Adequate to good.
Gas chromatography ru	un at: 8890' - 8950'.

MATURATION (Table 1; Figures 1 and 2)

The Triassic sediments between 9900' and 13600' are middle to late mature, with spore colour indices increasing with depth from 6.5 to 7.5-8. The kerogen composition in this interval is dominantly inertinitic; vitrinite reflectivity data were unobtainable as no reliably identified vitrinite was observed. Spore colour indices increase with depth from 3 to 4 in the Early Cretaceous to Jurassic section, while the interpreted vitrinite reflectivity data increase from 0.36% to 0.53% over the same interval, indicating early thermal maturity. Oil-prone kerogen at such maturity levels should generate minor quantities of

stage of maturity for hydrocarbon generation from oil-prone kerogen. Early maturity is also inferred in the Cretaceous sediments analysed, by a spore colour index of 3.5.

OIL SOURCE ROCKS (Tables 1 and 2)

Oil source rocks are present in the analysed cuttings samples between 8270' and 8510'. In these samples the hydrocarbon potential appears to be derived from secondary quantities of waxy sapropel contained in the medium - dark grey and coaly shales. The samples contain above average (up to around 10%) organic carbon, high pyrolysis hydrocarbon yields (8000 ppm to 20100 ppm), and fair quantities (920 ppm) of free hydrocarbons. At elevated levels of thermal maturity these samples could generate oil such as that reservoired in the Middle Jurassic sands in this well.

It seems likely that these oil prone samples are caved from the 'hot' shale interval (8033' to 8050'), which has a characteristically high gamma ray log response; the interval 8270' to 8510' is dominantly sandstone and contains only minor shales and coals. The small thickness of the 'hot' shale interval limits its potential for hydrocarbon generation, but with thickening off-structure it could become a major oil source.

The hydrocarbon contents of the shales analysed between 8033' and 8900' are between 260 ppm and 1470 ppm, and gas chromatographic analysis indicates that they have mature, crude oil-like alkane distributions often with a significant high molecular weight alkane component. These hydrocarbons are considered to have migrated into the section, and probably represent oil-staining from the Middle Jurassic sandstone reservoirs in this well. It is anticipated that more deeply buried lateral equivalents of the 'hot' shale interval 8033' to 8050', could generate oil with alkane distributions such as those noted in the oil stain.

GEOCHEMICAL CHARACTERISTICS OF THE REMAINING SEDIMENTS

Between 8520' and 9770', the Early Jurassic - Late Triassic to Middle Jurassic shales contain average to above average amounts of organic carbon, but lack hydrocarbon generating potential because of inertinitic kerogen. Between 6000' and 8260', the samples generally contain insufficient organic matter to generate hydrocarbons, irrespective of their level of maturity or type of kerogen present.

Gas chromatography of the analysed horizons between 8750' and 9520' shows mature crude oil-like alkane distributions with significant wax contents; at 9770' a biodegraded 'dead' oil-like distribution is noted. The quantities (up to 1150 ppm) of hydrocarbons and the alkane distributions indicate that the hydrocarbons have migrated into the section.

DOREKIZOU

Statoil WELL: 33/12-2

1811. 1871 - 1841 - 1841 - 1841 - 1841 - 1841 - 1841 - 1841 - 1841 - 1841 - 1841 - 1841 - 1841 - 1841 - 1841 - 1841 -

SAMPLE DEPTH	SAMPLE	GENERALISED	SPORE COLOUR		KEROGE (by micr	N COMPOSI oscopic exam	TION (%) ination)	KE (bv e	ROGEN COM	POSITION () m pyrolvsis d	%) ata)
(FEET)	TYPE	LITHOLOGY	INDEX (1 - 10)	IN OIL, R av%	INERTINITE	VITRINITE	SAPROPEL	INERTINITE	VITRINITE	ALGAL SAPROPEL	WAXY SAPROPEL
5500	Ctgs	SH, 1t ol-gy+mnr SH, red		*							
5600	11	SH, ol-gy/lt ol- gy+mnr SST, dk gy		*							
5700	11	A/a		0.38(6)							
5800	n	SH, a/a		0,38(2)							
5900	11	SH, 1t ol-gy		0.38(6)							
6000	18	SH, a/a, slty		*							
6100	n	SH, a/a+mnr SH, gy-gn		*							
6170-230	н	SH, ol-gy, slty	3	0.41(3)	80	10	10				
6200	11	SH, lt ol-gy, slty+mnr SH, gy-gn		0.37(1)							
6300	11	A/a		0.36(3)							
6400	11	A/a		*							
6460-520	IT	SH, ol-gy, slty						∿ 100	*	*	*
6500	17	SH, 1t ol-gy, slty+mnr SH, gy- gn		*							
6600	**	SH, 1t ol-gy/gn- gy		0.39(4)							
6620-680	11	SH, ol-gy, slty	3	*	80	10	10				
6700	**	SH, 1t ol-gy/gn- gy		0.46(5)							
6800	11	A/a		* *							
6900	11	SH, a/a, slty		*							
6940-7000	п	SH, ol-gy, slty	3-3.5	0.41(6)	80	10	10				
7000	11	SH, lt ol-gy/gn- gy, slty+tr SH, red-brn		* .							
7100	"	A/a		0.60(20)	1						
7100-160	н	SH, ol-gy, slty					-	~ 100	*	*	*
7200	11	SH, lt ol-gy/gn- gy, slty		0.40(17)							
7250-310	11	SH, ol-gy, slty	3-3.5	*	80	10	10				
7300	13	SH, gn-gy+mnr SH, lt ol-gy		*							
7400	23	SH, gn-gy+tr SLTST/SST		0.41(1)							
7500	11	SH, ol-gy, slty+ 10% SND		*							
7600	- 11	SND+SH, a/a		*							
7700	11	SND+40% SH, ol- gy		*							
7740-940	IT	SND+SLTST, mod yel-brn+SST, lt gy+SH, dk yel-brn	3		80	10	10				

TABLE 1A Maturity and Kerogen Data

1-1-2

SAMPLE DEPTH	SAMPLE	GENERALISED	SPORE COLOUR	VITRINITE	KEROGE (by micr	N COMPOSI oscopic exam	FION (%) ination)	KÉ (by ca	ROGEN CON alculation fro	POSITION (m pyrolysis d	%) ata)
(FEEI)	TYPE		INDEX (1 - 10)	IN OIL, R av%	INERTINITE	VITRINITE	SAPROPEL	INERTINITE	VITRINITE	SAPROPEL	SAPROPEL
7800	Ctgs	SH, gy+SH, ol-gy +20% SND		*							
7810-870	n	A/a		*							
7900	IT	SH, gy+SLISI		0.61(11)							
8000	"	SH, a/a+SH, ol- gy+mnr SND		*							
8100	11	SH, gy+mnr SND		0.62(8)							
8180	19	SND+SST, lt gy+ SLTST, mod brn+ tr SH, med-dk gy/dk gy	? 3		70	30	*				
8180-270	11	A/a	4-4.5		80	20	*				
8200	"	SLTST+20% SH, gy		*							
8260-320	π	SH, dk gy+30% SST, lt brn-gy+ 30% SND+10% SLTST, dk yel- brn						80	20	*	*
	P	SH, dk gy						60	40	*	×
8280	Ctgs	SH, a/a+SST, a/a+SND+SLTST, a/a	3-3.5		60	40	*				
8290-750	11	SH, dk gy/med-dk gy+SND+SST, a/a+ SLTST, a/a	4.5-5		40	40	20				
8300	IT	SH, gy+20% SH, lt ol-gy+30% SLTST		0.36(3)							
8330-390	11	SH, dk gy+20% SST, a/a+30% SND+20% SLTST, a/a						70	30	*	*
	P	SH, dk gy						60	40	*	*
8400	Ctgs	SH, gy+20% SH, lt ol-gy+30% SLTST	3-3.5	*	20	50	30				
8400–460	tr.	SH, dk gy+10% SST, lt brn-gy +30% SND+30% SLTST, dk ye1- brn						80	20	*	*
	Р	SH, dk gy						45	55	*	*
8470-530	Ctgs	SH, a/a+20% SST, a/a+30% SND+30% SST, a/a						85	15	*	*
	P	SH, dk gy						45	55	*	*
8500	Ctgs	SH, gy+20% SLTST		0.38(5)							
8540-600	17	SLTST, a/a+20% SH, dk gy+10% SST, a/a+30% SND						90	10	*	*
8600	11	SH, gy+20% SLTST	3.5	*	20	50	30				

SAMPLE DEPTH	SAMPLE	GENERALISED	SPORE COLOUR		KEROGE (by micr	N COMPOSI oscopic exam	TION (%) ination)	KE (by c	ROGEN CON alculation fro	POSITION (m pyrolysis d	%) ata)
(FEET)	TYPE	LITHOLOGY	INDEX (1 - 10)	IN OIL, R av%	INERTINITE	VITRINITE	SAPROPEL	INERTINITE	VITRINITE	ÁLGÁL SAPROPEL	WAXY SAPROPEL
8610-670	Ctgs	SH, dk gy+30% SST, 1t brn-gy+ 30% SND+10% SLTST, dk yel-brn						85	15	*	*
	P	SH, dk gy						50	50	*	*
8662-692	Core	SH, med gy/med ol-gy, mic		0.50(3)							
8680-740	Ctgs	SH, med-dk gy+ 30% SLTST, a/a+ 20% SND						80	20	*	*
8700	17	SH, gy+20% SLTST	4	0.53(9)	70	20	10				
8750-810	11	SH, med-dk gy+30Z SND+20Z SLTST, a/a						80	20	*	*
8800	IT	SH, gy/ol-gy, slty+20% SLTST, a/a	4	0.45(6)	80	20	*				
8820~880	11	SH, med-dk gy+ 30% SND+20% SLTST a/a						85	15	*	*
8890-950	P	SH, med-dk gy						35	65	*	*
8900	Ctgs	SH, ol-gy+10% SH, gn+20% SND/SLTST+ mnr LST		*							
8950 [.]	17	SND+20% SH, med- dk gy	4		70	10	20				
9000	*1	SH, gy-gn+40% SND, crs		0.41(1)							
9100		A/a		0.45(9)							
9150	"	SH, a/a+SND	4		70	10	20				
9300		SND, med gy+30% SH/CLYST, gn	4-4.5		80	20	*				
9410	17	SND+10% SH/CLYST a/a+30% SH/CLYST, mt1, red/gy-gn		?0.67(9)							
9700	11	SH/CLYST, mt1, red/gy-gn		*							
9900	11	SH/CLYST, a/a+ SH/CLYST, yel- brn		1.45(6)							
10200	11	SH/CLYST, mt1, red/gy-gn		1.42(2)							
10500	п	A/a		1.51(3))	
10700	n	A/a		1.01(3)							
10903	SWC	A/a	6.5		95	5	*				
10990	Ctgs	A/a		1.79(2)							
11196	SWC	A/a	*		∿100	*	*				
11200	Ctgs	A/a		1.39(7)		1		1			
11290	SWC	A/a	*		∿100	*	*				
11700	Ctgs	MDST/SLTST, red- brn, calc+tr ANH+ SLTST, gy-gn		*							

TABLE 1 c Maturity and Kerogen Data

WELL: 33/12-2

٠

ر در 1

: Mine (

SAMPLE DEPTH	SAMPLE	GENERALISED	SPORE COLOUR		KEROGE (by micr	N COMPOSI oscopic exam	TION (%) ination)	KE (by c	ROGEN CON alculation fro	POSITION (m pyrolysis c	%) lata)
(FEET)	TYPE	LITHOLOGY .	INDEX (1 - 10)	IN OIL, R av%	INERTINITE	VITRINITE	SAPROPEL	INERTINITE	VITRINITE	ALGAL SAPROPEL	WAXY SAPROPEL
12100	Ctgs	MDST/SLTST, red- brn, calc +SLTST, gy-gn		1.60(3)							
12343	SWC	A/a	*		∿100	*	*				
12378	17	A/a	*		∿100	*	*				
12410-910	Comp	A/a	7-7.5		∿90	10	*				
12500	Ctgs	A/a+30% SH, gy, calc		1.52(2)							
12910-13510	Сотр	MDST/SLTST, a/a+ SH, a/a+mnr SST, wht	7.5		∿ 90	10	*				
13000	Ctgs	MDST/SLTST, a/a+ 20% SH, a/a+mnr SST, a/a		1.43(8)							
13300	"	MDST/SLTST, a/a+ 20% SH, a/a+10% SST, pnk		1,54(19)							
13500	11	MDST/SLTST, a/a+ 30% SH, a/a+mnr SST, a/a		1.73(22)							
13510-14240	Сотр	MDST/SLTST, a/a +SH, gy+SH, red +SST, a/a	7.5-8		~ 90	10	*				
13600	Ctgs	MDST/SLTST, a/a +30% SH, gy, calc+mnr SST, a/a		1.55(18)							
									-		

TABLE 1 D Maturity and Kerogen Data

,

.

	CHEMICAL ANALYSIS DATA													
SAMPLE	ш		ఆశిశ		··	PYRO	LYSIS	,		SOLVE	NTEXT	RACTIC	N	
DEPTH (FEET)	SAMPL	ANALYSED LITHOLOGY	ORGANI CARBON OF ROCI	TEMP - ERATURE °C	HYDROGEN INDEX	OXYGEN	PRODUCTION INDEX	POTENTIAL YIELD (ppm)	TOTAL EXTRACT (ppm)	HYDRO- CARBONS (ppm)	EXTRACT % OF ORGANIC CARBON	HADBOF ORGANIC CARBON CARBON	RBONS Extract 8	ALKANES % OF HYDRO- CARBONS
5500	Ctgs	SH, 1t ol-gy+mnr SH, red	0.17						370	70	21.8	41	19	57
5600	rı	SH, ol-gy/lt ol-gy+mnr SST/ ?BASALT, dk gy	0.27						390	30	14.4	11	8	32
5700	11	A/a	0.37						470	80	12.7	22	17	35
5800	11	SH, a/a	0.39						600	80	15.4	21	14	40
5900	11	SH, lt ol-gy	0.34						390	75	11.5	22	19	53
6000	11	SH, a/a, slty	0.40						570	25	14.3	6	4	35
6100	п	SH, a/a+mnr SH, gy-gn	0.47						430	85	9.1	18	20	61
6170-230	11	SH, ol-gy, slty	0.30											
6200	IT	SH, lt ol-gy, slty+mnr SH, gy-gn	0.50						500	55	10.0	11	11	41
6240-300	11	SH, ol-gy, slty	0.30											
6300	tτ .	SH, lt ol-gy, slty+mnr SH, gy-gn	0.41						450	60	11.0	1.5	13	51
6310-370	11	SH, ol-gy, slty	0.38						-					
6380-440	IT	A/a	0.39											
6400	11	SH, lt ol-gy, slty+mnr SH, gy-gn	0.38						150	35	3.9	9	23	31
6460-520	11	SH, ol-gy, slty	0.44	*	13	115	0.4	< 100						
6500	11	SH, lt ol-gy, slty+mnr SH, gy-gn	0.42						510	100	12.1	24	19	46
6540-600	н	SH, ol-gy, slty	0.41											
6600	11	SH, lt ol-gy/gn-gy	0.38						580	130	15.3	34	23	36
6620-680	11	SH, ol-gy, slty	0.45											
6700	11	SH, lt ol-gy/gn-gy	0.43						440	65	10.2	15	15	45
6700-760	**	SH, ol-gy, slty	0.43											
6780-840	17	A/a	0.40											
6800	11	SH, 1t ol-gy/gn-gy	0.43						680	110	15.8	26	16	34
6860-920	n	SH, ol-gy, slty	0.42											
6900	11	SH, lt ol-gy/gn-gy, slty	0.48						480	100	10.0	21	21	32
6940-7000	11	SH, ol-gy, slty	0.43											
7000	11	SH, lt ol-gy/gn-gy, slty+tr SH, red-brn	0.52						610	90	11.7	17	15	37
7020-080	11	SH, ol-gy, slty	0.46											
7100	17	SH, lt ol-gy/gn-gy, slty+tr SH, red-brn	0.51						450	65	8.8	13	14	34
7100-160	"	SH, ol-gy, slty	0.45	*	17	83	0.3	< 100						
7180-240	11	A/a	0.38											
7200	11	SH, lt ol-gy/gn-gy, slty	0.59						450	80	7.6	14	18	33
7250-310	11	SH, ol-gy, slty	0.40											

TABLE 2A Chemical Analysis Data

GENERAL DATA				CHEMICAL ANALYSIS DATA												
SAMPLE	ш		<u> </u>			PYRO										
DEPTH (FEET)	SAMPL	ANALYSED LITHOLOGY	ORGAN CARBON OF ROC	TEMP - ERATURE °C	HYDROGEN INDEX	OXYGEN	PRODUCTION INDEX	POTENTIAL VIELD (pµm)	TOTAL EXTRACT (ppm)	HYDRO- CARBONS (ppm)	EXTRACT % OF ORGANIC CARBON	mg/g0F Organic Carbon Carbon	% OF EXTRACT ON	ALKANES % OF HYDRO- CARBONS		
7300	Ctgs	SH, gn-gy+mnr SH, 1t ol-gy	0.53						530	85	10.0	16	16	40		
7320-380	11	SH, ol-gy, slty	0.32	-												
7390 - 450	. 11	SH, a/a	0.34													
7400- [.]	U U	SH, gn-gy+tr SLTST/SST	0.72						510	65	7.1	9	13	46		
7460-520	11	SH, ol-gy, slty	0.38													
7500	11	SH, a/a+10% SND	0.46						480	60	10.4	13	13	42		
7530 - 590	11	SH, a/a	0.03													
7600	11	SND+SH, a/a	0.39								r r					
7600-660	11	SND+SH, a/a+SH, brn-gy	-													
7670-730	11	A/a	-													
7700	11	SND+40% SH, ol-gy	0.38													
7740-940	. 11	SND/SLTST, mod yel-brn+SST, lt gy+SH, dk yel-brn	6.44													
7800	n	SH, gy+SH, ol-gy+20% SND	0.48						480	75	10.0	16	16	42		
790 0	31	SH, gy+SLTST	0.58													
7950 - 8010		SND+SH, ol-gy	-													
8000	"	SH, gy+SH, a/a+mnr SND	4.20						1270	130	:3.0	3	10	56		
8020-080	11	SST, lt gy+SND+SLTST, mod yel-brn	-													
8090-150	11	A/a	-													
8100	н	SH, gy+mnr SND	2.12						3000	260 [.]	14.2	12	9	39		
8160-250	11	SND+40% SST, a/a+10% SLTST, mod brn+tr SH, med-dk gy+tr SH, dk gy	_													
8200	11	SLTST+20% SH, gy	4.44													
8260-320	Π	SH, dk gy+30% SST, lt brn-gy +30% SND+10% SLTST, dk yel- brn	1.20	425	23	60	0.4	300								
	P	SH, dk gy	1.54	436	54	19	0.3	800								
8300	Ctgs	SH, gy+20% SH, lt ol-gy+30% SLTST	2.11						2650	340	12.6	16	13	57		
8330-390	IT	SH, dk gy+20% SST, a/a+30% SND+20% SLTST, a/a	1.04	440	43	78	0.4	500								
	P	SH, dk gy	1.66	437	67	19	0.3	1100								
8400	Ctgs	SH, gy+20% SH, lt ol-gy+30% SLTST	2.19						2170	700	9.9	32	32	42		
8400-460	11	SH, dk gy+10% SST, a/a+30% SND+30% SLTST, a/a	0.44	432	41	155	0.5	200								
	Р	SH, dk gy	1.65	433	82	28	0.3	1400			• ,					
8470-530	Ctgs	SH, a/a+20% SST, a/a+30% SND +30% SLTST, a/a	0.40	431	35	151	0.4	200								
	P	SH, dk gy	1.56	434	68	25	0.3	1100								

TABLE 2 B Chemical Analysis Data

	CHEMICAL ANALYSIS DATA														
SAMPI F	ш		<u>ں</u> % ک			PYRO	LYSIS		SOLVENT EXTRACTION						
DEPTH (FEET)	SAMPLI TYPE	ANALYSED LITHOLOGY	ORGANI CARBON OF ROCI	TEMP - Erature °C	HYDROGEN INDEX	DXYGEN INDEX	PRODUCTION INDEX	POTENTIAL YIELD (ppm)	TOTAL EXTRACT (ppm)	HYDRO CARBONS (ppm)	EXTRACT % OF ORGANIC CARBON	HYDROCA ORGANIC CARBON CARBON	R OF SO	ALKANES % OF HYDRO- CARBONS	
8500	Ctgs	SH, gy+20% SLTST,dk yel-brn	3.88						1580	360	4.1	9	23	57	
8540-600	17	SLTST, a/a+20% SH, dk gy+10% SST, 1t brn-gy+30%SND	0.58	*	19	103	0.4	100							
8600	"	SH, gy+20% SLTST	2.84						1440	220	5.1	8	15	55	
8610-670	11	SH, dk gy+30% SST, a/a+30% SND+10% SLTST, a/a	0.33	*	30	248	0.3	100							
	P	SH, dk gy	1.47	435	59	22	0.2	900							
8662	Core	SH, med gy/med ol-gy, mic	0.92						710	110	7.7	12	15	38	
8672	"	SH, a/a, carb	0.92						750	110	8.2	12	15	34	
8680-740	Ctgs	SH, med-dk gy+30% SLTST, a/a +20% SND	0.79	430	47	66	0.3	400							
8682	Core	SH, med gy/med ol-gy, carb	1.40						940	120	6.7	9	13	41	
8692	11	A/a	1.20						730	100	6.1	8	14	42	
8700	Ctgs	SH, gy+20% SLTST	1.13												
8750-810	78	SH, med-dk gy+30% SND+20% SLTST, a/a	0.81	434	49	78	0.2	400							
8800	17	SH, gy/ol-gy, slty, lam+20% SLTST	1.19						970	70	8.2	6	7	68	
8820-880	п	SH, med-dk gy+30% SND+20% SLTST, a/a	0.74	435	34	87	0.4	300							
8890-950	u.	SND+20% SH, a/a	-												
	P	SH, med-dk gy	1.44	440	62	29	0.2	900							
8900-	Ctgs	SH, ol-gy+10% SH, gn+20% SND/ SLTST+mnr LST	0.72						780	90	10.8	13	12	40	
8960-9020	п	SND+20% SH, med-dk gy	0.37												
9000	12	SH, gy-gn+40% SND, crs	0.73						980	90	13.4	12	9	50	
9100	11	SH, a/a +40% SND	0.43						550	40	12.8	9	7	52	
9200	"	SND, med gy+10% SH, a/a	0.11								-				
9300	11	SND, a/a+30% SH/CLYST, gn	0.14												
9410	11	SND+10% SH/CLYST, a/a+30% SH/CLYST, mtl, red/gy-gn	0.20												
9500	TP.	SND+10% SH/CLYST, gy/gn-gy+ 30% SH/CLYST, mtl, red/gy-gn	0.13												
9600	11	SH/CLYST, mtl, red/gy-gn+20% SLT/SLTST	0.48						370	85	7.7	18	23	71	
9700	**	SH/CLYST, a/a	0.10						330	55	33.0	55	17	75	
9820	n	SH/CLYST, a/a+SH/CLYST, yel- brn	0.14						430	55	30.7	40	13	72	
9900		A/a	0.07		1				240	40	34.3	57	17	78	
10000	19	SH/CLYST, mtl, red/gy-gn	0.08		-				220	40	27.5	50	18	84	
10100		A/a	0.07						5240	460	750.0	657	9	64	
10200	.11	A/a	0.08						170	160	21.3	200	94	63	

TABLE 2 c Chemical Analysis Data

1 Bar 10

: .*

4

SAMPLE DEPTH (FEET) 10300 10400 10500 10610 10610 10800 10800 10890 11000 11100 11200 11300 11700		GENERAL DATA			CHEMICAL ANALYSIS DATA												
DEPTH (FEET) 10300 10400 10500 10610 10700 10800 10890 11000 11100 11200 11300 11700	SAMPLE w				PYROLYSIS SOLVENT EXTRACTION												
10300 10400 10500 10610 10700 10800 10890 11000 11100 11200 11300 11700	SAMPLI	ANALYSED LITHOLOGY	ORGANI CARBON OF ROCI	TEMP – Erature °C	HYDROGEN INDEX	OXYGEN INDEX	PRODUCTION INDEX	POTENTIAL YIELD (ppm)	TOTAL EXTRACT (ppm)	HYDR0- CARBONS (ppm)	EXTRACT % OF ORGANIC CARBON	Mg/gOF Agentic Carbon V3080 V304 V3080 V304 V304 V304 V304 V304 V304 V304 V30	K OF STRACT	ALKANES % OF HYDRO- CARBONS			
10400 10500 10610 10700 10800 10890 11000 11100 11200 11300 11700	Ctgs	SH/CLYST, mtl, red/gy-gn	0.09						790	130	87.8	144	16	63			
10500 10610 10700 10800 10890 11000 11100 11200 11300 11700		A/a	0.09						1290	240	143.0	267	10	58			
10610 10700 10800 10890 11000 11100 11200 11300 11700		A/a	0.13						170	100	13.1	76	59	42			
10700 10800 10890 11000 11100 11200 11300 11700	17	A/a	0.10														
10800 10890 11000 11100 11200 11300 11700	"	A/a	0.11														
10890 11000 11100 11200 11300 11700	11	A/a	0.16														
11000 11100 11200 11300 11700	"	A/a	0.14														
11100 11200 11300 11700		A/a	0.11														
11200 11300 11700	11	A/a	0.10														
11300 11700	11	A/a	0.12						470	180	39.2	150	39	31			
11700	17	A/a	0.12														
	13	MDST/SLTST, red-brn, calc+ tr ANH+SLTST, gy~gn	0.08						480	80	60.0	100	17	41			
12100	н	MDST/SLTST, a/a+SLTST, a/a	0.09		1				270	130	30.0	144	48	40			
12500	n	MDST/SLTST, a/a+30% SLTST, a/a+30% SH, gy, calc	0.18				-		210	100	11.7	56	48	42			
	Р	MDST/SLTST, red-brn, calc	0.16														
13000	Ctgs	MDST/SLTST, a/a+20% SH, a/a+ mnr SST, wht	0.17														
13300		MDST/SLIST, a/a+20% SH, a/a +10% SST, pnk	0.19						560	140	29.5	74	25	37			
13500	IT	MDST/SLTST, a/a+30% SH, a/a+ mnr SST, a/a	0.25														
13600	"	A/a	0.27						300	100	11.1	37	33	50			
13800-900		SH, gy	0.66														
13800-900		SH, red	0.12														

TABLE 2 D Chemical Analysis Data

ts.a

Spore Calour Index — Indigenous Spores	A
Spore Colour Index — Caved Spores	Δ
Spore Colour Index - Reworked Spores	×
Range of Spore Colour Indices - Indigenous Spores	ـــــا
Spore Colour Index Gradient	
Inferred Spore Colour Index Gradient	
Casing Point	4

10

4

SPORE COLOUR INDEX (S.C.I.)

THERMAL ALTERATION INDEX (T.A.I.)

Reflectivity - Caved Vitrinite Reflectivity - Semifusinite/Reworked Vitrinite Х Low Reflecting "Vitrinite" Ø **Reflectivity Gradient** Inferred Reflectivity Gradient 4

 \times

2.5

3.0

ROBERTSON RESEARCH INTERNATIONAL LIMITED

Project No. RRPS/8182/B/2043

NORWAY II STUDY - PRELIMINARY REPORT G18 (30/4/81)

PRELIMINARY PETROLEUM GEOCHEMISTRY RESULTS OF U.K. 23/11-1 WELL

SUMMARY

The interval 8500' to 9740' (Triassic and Early Cretaceous to Early Tertiary) is immature to transitionally mature and contains no source rocks, due to insufficient, or unsuitable kerogen compositions. Minor stain by biodegraded oil is noted between 8500' and 9630'.

GENERAL COMMENTS

Well status: Plugged and abandoned, dry hole.

Drilling data: Drilled with SS 100/KCl based mud to 10087' (T.D.). Casing points at 1164' (18%"), 3017' (13%"), 7510' (9%"). BHT 190°F at 9080'.

Interval analysed: 8500' to 9740'.

Age of analysed interval: Triassic and Early Cretaceous to Early Tertiary.

Sample type and quality: 12 dried ditch cuttings samples of poor to fair quality.

Maturation data quality: Fair to good.

Source rock data quality: Good.

Gas chromatography run at: 8500'-8560', 8570'-8630'

MATURATION (Table 1; Figures 1 and 2)

The spore colour indices increase from 2.5-3 at 8500'-8560' to 3.5 at 9620'-9640' and the vitrinite reflectivity data increase from 0.32% at 8500'-8560' to 0.37% at 9560'-9620'. These data suggest palaeotemperatures slightly lower than the present day bottom hole temperature of 190°F at 9080', and may point to a relatively recent increase in the geothermal gradient. The analysed section is immature to transitionally mature.

OIL SOURCE ROCKS (Tables 1 and 2)

No oil source rocks have been identified in the analysed interval of this well.

GEOCHEMICAL CHARACTERISTICS OF THE SEDIMENTS

There is insufficient organic carbon in the interval 8640' to 9720' to generate significant quantities of hydrocarbons, irrespective of thermal maturity. The interval between 8500' and 8630' contains an average quantity of organic matter, but despite containing a proportion of amorphous kerogen, it has no source potential.

Solvent extraction shows that the samples from 8500'-8560' and 8570'-8630' contain more hydrocarbon than expected considering the poor source quality (600 ppm and 275 ppm of hydrocarbon respectively). Gas chromatographic analysis reveals a composition suggestive of a partially biodegraded 'dead' oil, but the quantities present are probably not significant.

WELL: U.K. 23/11-1

SAMPLE DEPTH	SAMPLE	GENERALISED	SPORE COLOUR	VITRINITE	KEROGE	N COMPOSI	TION (%)	KE (hv.c	ROGEN CON		%) ata)
(FEET)	TYPE	LITHOLOGY	INDEX (1 - 10)	IN OIL, R av%	INERTINITE	VITRINITE	SAPROPEL	INERTINITE	VITRINITE	ALGAL SAPROPEL	WAXY SAPROPEL
8500-560	Ctgs	SH, ol-gy	2.5-3	0.32(18)	30	50	20	35	65	*	*
8570-630	t I	SH, med-dk gy+ 40% SH, gn-gy						35	65	*	*
	Р	SH, med-dk gy						35	65	*	*
8710-770	Ctgs	SH, gn-gy+50% SH, gy-red	2.5-3	0.34(10)	30	60	10				
9070-130	n	CHK+tr SH	*	0.37(2)	10	20	?70				
9560-620	17	CHK+30% SH, gn- gy+10% SH, gy- red	3-3.5	0.37(4)	90	10	*				
9620-640	"	CHK+30% SH, a/a +20% SH, a/a	?3.5		40	50	10				
9720-740	r1	A/a	*		20	. ⁸⁰	*				
					-						

TABLE 1 Maturity and Kerogen Data

÷

	GENERAL DATA														
SAMPLE	ш	//////////////////////////////////////	ر ۲% ت			PYRO	LYSIS			SOLVE	NTEXT	RACTIO	N		
DEPTH (FEET)	SAMPLI	ANALYSED LITHOLOGY	ORGANI CARBON OF ROCI	TEMP - ERATURE °C	HYDROGEN INDEX	UXYGEN INDEX	PRODUCTION INDEX	POTENTIAL Vield (ppm)	TOTAL EXTRACT (ppm)	HYDRO- CARBONS (ppm)	EXTRACT % OF ORGANIC CARBON	mg/g0f Organic Carbon	RBONS 40 K EXTRACT	ALKANES % OF HYDRO- CARBONS	
8500-560	Ctgs	SH, ol-gy	1.23	430	70	73	0.2	900	1030	600	8.4	49	58	67	
8570-630	"	SH, med-dk gy+40% SH, gn-gy	1.17	435	75	82	0.1	900	5 2 5	275	4.5	24	53	64	
	P	SH, gn-gy	0.23					•							
	Р	SH, med-dk gy	1.28	432	79	36	0.1	1000							
8640-700	Ctgs	SH, gn-gy+50% SH, gy-red+tr SH, med gy	0.44												
	Р	SH, gn-gy	0.09												
	P	SH, gy-red	0.09												
8710-770	Ctgs	SH, gn-gy+50% SH, a/a	0.33									,			
8790-850	τ	CHK+20% SH, med-dk gy+10% SH, gn-gy	0.23												
	Р	SH, med-dk gy	0.46												
8860~920	Ctgs	CHK+tr SH	-						- -		1				
8930-990	"	A/a	-	-											
9000-060	11	A/a	-												
9070-130	17	A/a	0.56												
	P	SH, med-dk gy	0.55												
9140-200	Ctgs	CHK+tr SH	-												
9210-270	11	A/a	-												
9280-340	"	A/a	0.13												
9350-410	11	A/a	0.03												
9420-480	"	A/a	0.15												
9490-550		CHK+10% SH, med-dk gy	0.14												
	Р	SH, med-dk gy	0.54												
9560-620	Ctgs	CHK+30% SH, a/a+10% SH, gy- red	.0.18		-										
	P	SH, med-dk gy	0.35												
9630-720	Ctgs	CHK+30% SH, a/a+20% SH, gy- red	0.27												
	Р	SH, med-dk gy	0.42												
				-											
									-						

TABLE 2 Chemical Analysis Data

FIGURE 1 Spore Colour Indices against Depth

a g

Reflectivity — True Vitrinite	
Reflectivity – Caved Vitrinite	
Reflectivity - Semifusinite/Reworked Vitrinite	×
.ow Reflecting "Vitrinite"	¢
Reflectivity Gradient	
nferred Reflectivity Gradient	
Casing Point	

2.5

3.0

Х Х

1.4

1.6 1.8 2.0

ROBERTSON RESEARCH INTERNATIONAL LIMITED

Project No. RRPS/8182/B/2043

NORWAY II STUDY - PRELIMINARY REPORT G19 (30/4/81)

PRELIMINARY PETROLEUM GEOCHEMISTRY RESULTS OF U.K. 30/18-2 WELL

SUMMARY

The Late Jurassic to Early Cretaceous section between 13400' and 14925' comprises claystones and siltstones, some of which are late mature oil source rocks with only minor potential for condensate and gas remaining. The interval between 14240' and 14595' has a high gamma ray log response and is probably the richest part of this section. No other significant hydrocarbon source rocks have been identified in the analysed sections. The analytical data indicate the presence of migrated oil in the Late Jurassic and to a lesser extent in the Tertiary.

GENERAL COMMENTS

Well status: Plugged and abandoned, dry hole.

Drilling data: The well was drilled with sea water/lignosulphonate based mud to 15050' (T.D.). Casing points at 415' (30"), 828' (20"), 4525' (13½"), 10307' (9½"), 13982' (7" liner). BHT 240°F at 13700' and 298°F at 15050' (T.D.).

Intervals analysed: 9180' to 10000' and 13400' to 15050' (T.D.).

Ages of analysed intervals: Late Jurassic to Early Cretaceous and Tertiary.

Sample type and quality: 23 composited dried ditch cuttings samples of fair to good quality.

Maturation data quality: Variable; poor to good.

Source rock data quality: Poor to fair.

Gas chromatography run at: 9580'-9680', 9680'-9780', 9880'-10000', 13590'-13670', 14380'-14500', 14640'-14750', 14760'-14880'.

MATURATION (Table 1; Figures 1 and 2)

Between 9180'-9280' in the Tertiary and 15050' (T.D.) in the Late Jurassic the spore colour indices increase from 3-3.5 to 8.5, while the vitrinite reflectivity data increase from 0.37% to 1.20% (interpreted) over the same interval. The transition between early maturity in the Tertiary and late maturity in the Late Jurassic is inferred to occur at a depth of about 11000' in the Late Cretaceous. Oil-prone kerogen in the early mature Tertiary sediments may only generate minor quantities of hydrocarbon. However, any

source rocks present in the Late Jurassic will have already realised most of their potential, and have only minor remnant potential for condensate and/or gas generation. In the Early Cretaceous the sediments are late mature.

OIL SOURCE ROCKS (Tables 1 and 2)

Between 13400' and 14925' the claystones and siltstones contain above average quantities of amorphous (possibly sapropelic) kerogen, which is at a high level of thermal maturity. Olive-grey/olive-black claystones between 14240' and 14430' and siltstones between 14430' and 14595' have a high gamma ray log response, and are probably the richest part of this section. The present pyrolysis potential yields of up to 3100 ppm indicate good original oil source potential, although only minor potential for condensate and gas now remains. High production indices reflect the presence of poorly soluble ?bitumen-like material, and extractable hydrocarbons.

Between 14380' and 14880' the silty lithologies contain extensive solvent extractable oil staining, which gas chromatography analysis reveals contains a mature oil-like alkane distribution.

GEOCHEMICAL CHARACTERISTICS OF THE REMAINING SEDIMENTS

The Late Jurassic sandstones between 14925' and 15050' (T.D.) do not have any source potential, probably because of insufficient organic matter. This is not evident in the data, however, because the samples contain dominantly shale and siltstone cavings.

The early mature Tertiary shales between 9180' and 10000' have no oil source potential due to predominantly inertinitic kerogen compositions. However, the Tertiary picked shale lithologies between 9480' and 9680' have above average carbon content and contain vitrinitic kerogen, and could generate minor quantities of gas, but only at a very much elevated level of thermal maturity. Migrated hydrocarbons are present in the interval 9680' to 10000' and have a mature oil-like alkane distribution.

SAMPLE DEPTH	SAMPLE	GENERALISED	SPORE COLOUR		KEROGE (by micr	N COMPOSI	TION (%) ination)	KE (by c	ROGEN CON	POSITION (%) ata)
(FEET)	TYPE	LITHOLOGY	INDEX (1 - 10)	IN OIL, Rav%	INERTINITE	VITRINITE	SAPROPEL	INERTINITE	VITRINITE	ALGAL SAPROPEL	WAXY SAPROPEL
9180-280	Ctgs	SH, gn-gy, mic+ 40% SH, brn-gy, mic+10% SH, ye1- gy+mnr SH, dk gy	3-3.5	0.37(4)	10	90	mnr	70	30	*	*
9280-380	17	SH, gn-gy+20% SH, dk red-brn+ 10% SH, dk gy		-				80	20	*	*
9380-480	n	SH, gn/dk gn-gy +20% SH, dk red- brn+10% SH, dk gy	3-3.5	0.39(9)	30	50	20	90	[0	*	*
9480-580	IT	SH, gn-gy+30% SH, brn-gy+10% SH, dk red-brn+10% SH, dk gy						70	30	*	*
	Р	SH, brn-gy						65	20	*	15
9580-680	Ctgs	SH, gn-gy+20% SH, brn-b1k+20% SST+mnr SH, dk gy						40	60	* .	*
	Р	SH, gn-gy						70	30	*	*
	Р	SH, brn-blk						30	70	*	*
9680-780	Ctgs	SH, gn-gy+20% SH, brn-gy+20% SH, ye1-gy+10% SH, dk gy	3~3.5	0.39(18)	10	90	mnr	70	30	*	*
9780-880	11	SH, dk gn-gy+30% SH, brn-gy+30% SH, yel-gy						60	40	*	*
9880-10000	n	SH, dk gn-gy+40% SH, brn-gy/brn- blk+mnr LST	3.5	0.41(19)	20	50	30	60	40	*	*
13400-470	T	SH, dk gy+mnr SH, gy-red+mnr SLTST, brn	8	0.73(8)	80	20	*				
13590-670	T F	SH, a/a+tr SH, a/a+20% SLTST, a/a	8	*	*	*	*				
13810-930	"	SH, a/a+mnr SH, a/a+mnr SLTST, a/a+mnr LST, pnk-gy	8	*	90	10	*				
14030-130	11	SH, dk gy	7,5-8	*	10	30	60				
14200-240	"	SH, a/a+50% SH, med gy+mnr LST, brn-gy	8-8.5	*	40	60	*				
14350-390	11	SH, a/a+40% SH, a/a+mnr LST, a/a	8-8.5	0.84(4)	40	*	?60				
14500-540	n	SH, med-dk gy+ 40% SH, med gy	8-8.5	1.29(9)	40	*	?60				
14600-640	11	SH, a/a+50% SH, a/a	8.5	1.12(2)	30	20	?50				
14750-790	11	SH, a/a+40% SH, a/a	8.5	*	30	*	?70				
14900-940	11	SH, a/a+60% SH, a/a	8.5	*	70	*	?30				

TABLE 1 A Maturity and Kerogen Data

WELL: UK 30/18-2

1

SAMPLE DEPTH	SAMPLE	GENERALISED	SPORE COLOUR		KEROGE (by micr	N COMPOSI oscopic exam	TION (%) ination)	KE (by c	ROGEN COM alculation fro	POSITION (m pyrolysis d	%) ata)
(FEET)	TYPE	LITHOLOGY	INDEX (1 - 10)	IN OIL, R av%	INERTINITE	VITRINITE	SAPROPEL	INERTINITE	VITRINITE	ALGÁL SAPROPEL	WAXY SAPROPEL
15010-050	Ctgs	SH, med-dk gy+ 40% SH, med gy	8.5	*	70	*	?30				
NOTE: CALCU LEVEL	LATIONS (S OF THEI	DF KEROGEN COMPOSIT	 [ION (%) FROM 	PYROLYSIS	 DATA NOT	POSSIBLE	BELOW	13400' B	ECAUSE O	F HIGH	

TABLE 1 ^B Maturity and Kerogen Data

ł

į

C 6 6 6 0 1 5			<u>1</u> 82			PYRO	LYSIS			SOLVE	NTEXT	RACTIO	N	
DEPTH (FEET)	SAMPLE TYPE	ANALYSED LITHOLOGY	ORGANIC CARBON OF ROCK	TEMP ~ ERATURE °C	HYDROGEN INDEX	OXYGEN INDEX	PRODUCTION INDEX	POTENTIAL YIELD (ppm)	TOTAL EXTRACT (ppm)	HYDRO- CARBONS (pµm)	EXTRACT % OF ORGANIC CARBON	mg/g0F A Organic 20 Carbon 20	% OF EXTRACT %	ALKANES % DF HYDRO- CARBONS
9180-280	Ctgs	SH, gn-gy, mic+40% SH, brn- gy,mic+10% SH, yel-gy+mnr SH, dk gy	0.68	440	62	51	0.1	400						
9280-380	17	SH, gn-gy+20% SH, dk red-brn +10% SH, dk gy	0.66	435	54	56	0.1	400						
9380-480	п	SH, gn/dk gn-gy+20% SH, dk red-brn+10% SH, dk gy	1.02	430	39	42	0.1	400						
9480-580	п.	SH, gn-gy+30% SH, brn-gy+10% SH, dk red-brn+10% SH, dk gy	1.09	430	78	43	0.04	900						
	P	SH, brn-gy	3.90	432	147	22	0.01	5800						
9580-680	Ctgs	SH, gn-gy+20% SH, brn-blk+ 20% SST+mnr SH, dk gy	0.90	431	88	109	0.04	800						
	Р	SH, gn-gy	1.03	436	61	50	0.04	600						
	P	SH, brn-blk	2.87	438	125	40	0.01	3600						
9680-780	Ctgs	SH, gn-gy+20% SH, brn-gy+20% SH, yel-gy+10% SH, dk gy	1.01	430	80	65	0.04	800						
9780-880	11	SH, dk gn-gy+30% SH, brn-gy +30% SH, yel-gy	1.00	429	114	68	0.1	1100						
9880-10000	**	SH, dk gn-gy+40% SH, brn-gy/ brn-blk+mnr LST	0.92	428	100	79	0.1	900						
13400-470	11	SH, dk gy+mnr SH, gy-red+mnr SLTST, brn	1.00	415	152	100	0.2	1500						
	P	SH, dk gy	1.58	453	32	22	0.4	500						
13480-580	Ctgs	SH, a/a+mnr SH, gy-red+mnr SLTST, a/a	0.61										1	
13590-670	"	SH, a/a+tr SH, a/a+20% SLTST, a/a	2.41	*	103	197	0.6	2500	725	415	3.0	17	58	71
		After Extraction	2.63	*	54	205	0.8	1400						
13680-800	21	SH, a/a+mnr SH, a/a+mnr SLTST, a/a+10% LST, pnk⊸gy	0.65											
1	Р	SH, dk gy	0.79											
13810-930	Ctgs	SH, a/a+mnr SH, gy-red+mnr SLTST, a/a+mnr LST, a/a	0.43											
13940- 14020	*1	SH, a/a+mnr SH, a/a+tr SLTST, a/a+mnr LST, a/a	1.54	400	184	137	0.3	2800						
		After Extraction	1.18	*	91	241	0.4	1100						
	P	SH, dk gy	1.09	454	37	29	0.4	400						
14030-130	Ctgs	SH, a/a	-											
	Р	SH, dk gy	1.08	*	189	75	0.7	2000						
14140-260	Ctgs	SH, a/a	-								1			
	Р	SH, dk gy	0.45											
14270 - 370	Ctgs	SH, a/a	-											
	Р	SH, dk gy	0.40											
14380-500	Ctgs	SH, a/a	2.22	420	73	123	0.6	1600	1775	1580	8.0	71	89	69

TABLE 2 A Chemical Analysis Data

WELL: UK 30/18-2

and a second s

	G					CHE		NALYSIS	DATA					
SAMPLE	ш		<u>ల గ</u> గ			PYRO	LYSIS			SOLVE	NTEXT	RACTIC	N	
DEPTH (FEET)	SAMPL TYPE	ANALYSED LITHOLOGY	ORGANI CARBON OF ROC	TEMP - Erature °C	HYDROGEN	OXYGEN	PRODUCTION INDEX	POTENTIAL Vield (ppm)	TOTAL Extract (ppm)	HYBRO- CARBONS (ppm)	EXTRACT % OF ORGANIC CARBON	mg/g0F Organic Carbon	K 0F K 0F EXTRACT	ALKANES % OF HYDRO- CARBONS
14510-630	Ctgs	SH, dk gy+20% SLTST, brn	1.11											
	Р	SH, dk gy	0.44											
14640-750	Ctgs	SH, a/a+40% SLTST, a/a	3.03	421	84	106	0.6	2500	2560	2185	8.9	72	86	77
14760-880	"	SH, a/a+30% SLTST, a/a	2.56	. *	123	81	0.3	3100	4325	3270	16.9	128	76	75
	Р	SH, dk gy	0.52											
14890-980	Ctgs	SH, a/a+30% SLTST, a/a	1.56	*	59	108	0.4	900						
		After Extraction	0.89	*	88	249	0.3	800						
	Р	SH, dk gy	1.15	433	40	49	0.6	, 500						
14990- 15050	Ctgs	SH, a/a+20% SLTST, a/a	0.63											
	P	SH, dk gy	0.84	448	55	38	0.4	500						
												-		
									c.					
				ł										
											•			

FIGURE 1 Spore Colour Indices against Depth

2.3

1.6 1.8 2.0

1.2

1.4

2.5

3.0

FIGURE 2 Vitrinite Reflectivity against Depth

ROBERTSON RESEARCH INTERNATIONAL LIMITED

Project No. RRPS/8182/B/2043

NORWAY II STUDY - PRELIMINARY REPORT G20 (30/4/81)

PRELIMINARY PETROLEUM GEOCHEMISTRY RESULTS OF D-1 WELL

SUMMARY

The Late Jurassic to Early Cretaceous dark grey shales of the interval 5040' to 5180' are presently immature, but at an elevated level of thermal maturity they will have significant oil generating potential. The interval 4920' to 5020' contains insufficient organic matter to source significant quantities of hydrocarbons.

GENERAL COMMENTS

Well status: Plugged and abandoned, dry hole.

Drilling data: Drilled with salt-saturated mud with 7% oil to 3309', then salt-saturated mud to 11689' (T.D.). Casing points at 368' (42"), 732' (20"), 3309' (133%"). BHT 160°F at 11689' (T.D.).

Interval analysed: 4920' to 5180' (T.D. 11689').

Age of analysed interval: Late Jurassic to Early Cretaceous.

Sample type and quality: 5 dried ditch cuttings samples of fair quality.

Maturation data quality: Adequate.

Source rock data quality: Good.

Gas chromatography run at: 5040'-5080', 5090'-5120', 5140'-5180'.

MATURATION (Table 1, Figure 1)

Spore colour indices of 3-3.5, and pyrolysis temperatures of less than 431°C indicate that the analysed section is presently immature. No vitrinite reflectivity data were obtained.

OIL SOURCE ROCKS (Tables 1 and 2)

Dark grey shales in the interval 5040' to 5180' are very rich in oil-prone kerogen, containing up to 6.92% organic carbon, of which up to 40% is waxy (with minor algal) sapropel. The pyrolysis potential yields of these shales are as high as 29400 ppm, showing that they would generate abundant oil when mature.

The hydrocarbon contents of the shales are between 245 ppm and 670 ppm,

indicating the presence of migrated oil. This is confirmed by gas chromatography analysis which reveals mature, crude oil-like alkane distributions. The pristane to phytane ratios of the alkane distributions are around unity (or less), suggesting a highly reducing source environment; this is in accord with the interpretation of the presence of waxy sapropels.

GEOCHEMICAL CHARACTERISTICS OF THE REMAINING SEDIMENTS

The limestones and olive-grey shales of the interval 4920' to 5020' contain insufficient organic carbon to source significant quantities of oil, irrespective of thermal maturity.

12

SAMPLE DEPTH	SAMPLE	GENERALISED	SPORE COLOUR		KEROGE (by micr	N COMPOSI oscopic exam	FION (%) ination)	KE (by c	ROGEN COM	POSITION (m pyrolysis d	() ata)
(FEET)	TYPE	LITHOLOGY	INDEX (1 - 10)	IN OIL, R av%	INERTINITE	VITRINITE	SAPROPEL	INERTINITE	VITRINITE	ÁLGÁL Sapropel	WAXY SAPROPEL
4980-5020	Ctgs	SND+SH, ol-gy+ SH, red-brn+LST, wht	?3-3.5	*	10	90	*				
5040-080	24	SND+30% SH, dk gy+10% SH, o1- gy+10% SLTST, mod ye1-brn						35	65	*	*
	Р	SH, dk gy						25	40	*	35
5090 - 120	Ctgs	SH, a/a+SH, ol- gy+mnr SLTST, a/a+40% SND	3	*	10	40	50	25	50	*	25
	P	SH, dk gy						35	20	10	35
5140-180	Ctgs	SND+20% SH, a/a						40	60	*	*
	Р	SH, dk gy						20	55	5	20
		.									
							i				
					1						
		· · · · · · · · · · · · · · · · · · ·									

TABLE 1 Maturity and Kerogen Data

् । जन्म जन्म

· ·	GENERAL DATA						CHEN		ALYSIS	DATA				
SAMPLE	AMPLE 비 ANALYSED LITHOLOGY					PYRO	LYSIS			SOLVE	NTEXT	RACTIO	N	
DEPTH (FEET)	SAMPL TYPE	ANALYSED LITHOLOGY	ORGANI CARBON OF ROC	TEMP - ERATURE °C	HYDROGEN INDEX	OXYGEN	PRODUCTION	POTENTIAL VIELD (ppm)	TOTAL EXTRACT (ppm)	HYDRO- CARBONS (ppm)	EXTRACT % OF ORGANIC CARBON	mg/g0f Organic Carbon Carbon	% OF EXTRACT 08	ALKANES % OF HYDR0- CARBONS
49 20-960	Ctgs	LST, wht+tr SH, ol-gy	-											
4980-5020	11	SND+SH, a/a+SH, red-brn+LST, a/a	0.34											
	Р	SH, ol-gy	0.65											
5040-080	Ctgs	SND+30% SH, dk gy+10% SH, o1-gy+10% SLTST, mod yel-brn	1.90	431	119	73	0.1	2300	830	245	4.3	13	29	80
	P	SH, dk gy	6.23	431	390	28	0.01	24300						
5090-120	Ctgs	SH, a/a+tr SH, ol-gy+mnr SLTST, a/a+40% SND	3.81	428	301	49	0.02	11500	1100	530	2.9	14	48	63
	Р	SH, dk gy	6.92	426	425	20	0.01	29400		ł				
5140-180	Ctgs	SND+20% SH, a/a+tr LST	1.31	430	87	141	0.2	1100	1067	670	8.1	51	63	73
	P	SH, dk gy	6.27	428	334	37	0.01	20900						

TABLE 2 Chemical Analysis Data

ر الا

ROBERTSON RESEARCH INTERNATIONAL LIMITED

Project No. RRPS/8182/B/2043

NORWAY II STUDY - PRELIMINARY REPORT G21 (30/4/81)

PRELIMINARY PETROLEUM GEOCHEMISTRY RESULTS OF F-1 WELL

SUMMARY

The Jurassic to Early Cretaceous analysed interval between 4850' and 6620' is immature to early mature. A minor Jurassic grey shale in the interval 5870'-5900' would generate minor quantities of oil and gas at suitably elevated levels of thermal maturity. However, there are no other source rocks in the analysed section because of a dominance of inertinitic kerogens, and no significant traces of migrated hydrocarbons are noted.

GENERAL COMMENTS

Well status:	Plugged	and	abandoned,	dry	hole.	
--------------	---------	-----	------------	-----	-------	--

Drilling data: Drilled with freshwater gel mud to 7938' (T.D.). Casing points at 336' (32"), 705' (13%"), 2598' (9%"). BHT 258°F at 7938' (T.D.).

Interval analysed: 4400' to 6620' (T.D. 7938').

Age of analysed interval: Jurassic to Early Cretaceous.

Sample type and quality: 28 composite dried ditch cuttings samples of generally fair quality.

Maturation data quality: Adequate to good.

Source rock data quality: Fair to good.

Gas chromatography run at: 5870'-5900', 6520'-6560'.

MATURATION (Table 1; Figures 1 and 2)

Vitrinite reflectivity and spore colour indices increase from 0.31% and 2.5 respectively, to 0.40% and 3.5 respectively, over the interval 4850' to 6620'. These data indicate that the analysed section is immature, to just early mature.

OIL SOURCE ROCKS (Tables 1 and 2)

A picked dark grey shale from 5870'-5900' is rich in organic matter, (8.21% carbon content) and has a good pyrolysis potential yield of 11800 ppm. The kerogen composition is dominantly inertinite, with secondary quantities of vitrinite and waxy sapropel. It is considered that this shale will have minor oil and minor gas generating potential at suitably elevated levels of thermal maturity. Gas chromatography analysis of the hydrocarbons of this horizon

shows a mixture of both mature and immature alkane distributions.

GEOCHEMICAL CHARACTERISTICS OF THE REMAINING SEDIMENTS

The shales indigenous to the interval 5090' to 6620' contain average to above average quantities of organic matter, but this is mainly inertinite, and hence they have no source potential irrespective of maturity. The sample from 6520'-6560' contains 280 ppm of extractable hydrocarbon, the alkane distribution of which has a mature oil-like pattern; this hydrocarbon is considered to have migrated into the section, but is present in insignificant amounts.

i

j in

j

SAMPLE DEPTH	SAMPLE	GENERALISED	SPORE COLOUR		KEROGE (by micr	N COMPOSI oscopic exam	TION (%) ination)	KE (by c	ROGEN CON alculation fro	IPOSITION (m pyrolysis d	%) ata)
(FEET)	TYPE	LITHOLOGY	INDEX (1 - 10)	IN OIL, R av%	INERTINITE	VITRINITE	SAPROPEL	INERTINITE	VITRINITE	ALGAL SAPROPEL	WAXY SAPROPEL
4850-5060	Ctgs	CHK+SH, med gy +SND+SLTST, gy- red	2.5	$\frac{0.31(8)}{0.21(5)};$	60	40	*				
5090-130	11	SH, med-dk gy, s1ty+30% SND						∿90	v10	*	*
5150-180	TP	SH, a/a+25% SND						∿90	∿10	*	*
5210-240	18	SH, a/a+20% SND						∿90	∿10	*	*
5210-300	11	SH, a/a+SND+ SLTST+CHK	2.5	*	30	70	*				
5270-300	11	SH, a/a+30% SND						∿95	∿5	*	*
5330-360	11	SH, a/a+40% SND +10% SLTST, a/a						∿95	∿5	*	*
5390-420	11	SH, a/a						∿95	∿5	*	*
5450-510		SH, a/a+20% SND)					∿9 0	~10	*	*
5450-600	11	SH, a/a+SND	2.5-3	*	70	30	*				
5540 - 600	11	SH, a/a+30% SND						∿90	∿10	*	*
5630-660	11	SH, dk gy						∿90	∿10	*	*
5690 - 720	17	SH, a/a						∿90	∿10	*	*
5750-780	11	SH, a/a	3.5	$\frac{0.35(3)}{0.52(4)};$	70	20	10	∿85	∿15	*	*
	P	SH, dk gy						∿85	∿15	*	*
5870-900	P	SH, dk gy						70	15	15	*
5920-950	Ctgs	SH, med-dk gy+ 20% SH, a/a+ 10% CHK						∿85	∿15	*	*
5960-6010	п	SH, a/a+20% SH, a/a	3	$\frac{0.38(3)}{0.51(4)};$	40	30	30				
6080-120	11	SH, med-dk gy						∿80	∿20	*	*
	P	SH, med-dk gy						∿80	∿20	*	*
6140-180	Ctgs	SH, a/a+mnr CHK						∿80	∿ 20	*	*
6200-240	n	SH, dk gy+10% SND	3.5	0.35(5)	50	40	10				
	P	SH, dk gy						∿85	∿15	*	*
6 260 - 290	Ctgs	SH, a/a						∿80	∿ 20	*	*
	P	SH, dk gy						∿80	∿ 20	*	*
6380-430	Ctgs	SH, a/a	3.5	$\frac{0.41(4)}{0.54(10)}$;	70	20	10	∿90	∿ 10	*	*
	Р	SH, dk gy						∿100	*	*	*
6520-560	Ctgs	SH, a/a+30% SH, ol-gy						~90	~10	*	*
	Р	SH, dk gy						∿90	~10	*	*
6580-620	Ctgs	SH, a/a+30% SH, ol-gy+20% SND	3.5	$\frac{0.40(21)}{0.62(7)};$	70	20	10				
	P	SH, dk gy						~90	~10	*	*
L		l	U	L	L),	L	L	L	L	l

-

TABLE 1 Maturity and Kerogen Data

	GENERAL DATA															
SAMPLE	ш		2×~0			PYRO	LYSIS			SOLVE	NTEXT	RACTIO	N			
DEPTH (FEET)	SAMPL TYPE	ANALYSED LITHOLOGY	ORGANI CARBON OF ROC	TEMP Erature °C	HYDROGEN INDEX	OXYGEN	PRODUCTION INDEX	POTENTIAL Vield (ppm)	TOTAL Extract (ppm)	HYDRO- CARBONS (ppm)	EXTRACT % OF ORGANIC CARBON	mg/g0F Organic Carbon Carbon	% OF Extract	ALKANES % OF HYORO- CARBONS		
5090-130	Ctgs	SH, med-dk gy, s1ty+30% SND +mnr SLTST, gy-red+mnr CHK	1.07	*	21	80	0.3	200								
5150-180	н	SH, a/a+25% SND+tr SLTST, a/a+mnr CHK	1.03	420	25	58	0.2	300								
5210 - 240	"	SH, a/a+20% SND+tr SLTST, a/a+mnr CHK	0.74	417	18	86	0.2	100								
5270-300	TP .	SH, a/a+30% SND+mnr SLTST, a/a+mnr CHK	0.84	424	17	66	0.2	100								
5330-360	11	SH, a/a+40% SND+10% SLTST, a/a+mnr_CHK	0.68	425	13	146	0.3	100								
5390-420	11	SH, a/a+mnr SND+mnr SLTST, a/a+tr CHK	0.90	425	10	144	0.5	100								
5450-510	17	SH, a/a+20% SND+mnr SLTST, a/a+mnr CHK	1.04	427	21	55	0.1	200								
5540-600	п.	SH, a/a+30% SND+mmr SLTST, a/a+mmr CHK	0.84	422	23	52.	0.2	200								
5630 - 660	11	SH, dk gy+mmr SND	1.28	424	18	27	0.1	200								
5690-720	11	SH, a/a+mnr CHK	1.10	424	24	31	0.1	300		3						
5750-780		A/a	1.60	427	28	27	0.1	400								
	р	SH, dk gy	2.01	430	32	15	0.1	600								
5810-840	Ctgs	SH, med-dk gy+10% SH, a/a+ mnr CHK+mnr SLTST, a/a +30% SND	1.97													
5870 <u>9</u> 00	TI	SND+30% SH, dk gy+20% SH, med-dk gy+tr SLTST														
	P	SH, dk gy	8.21	437	144	11	0.02	11800								
5920-950	Ctgs	SH, med-dk gy+20% SH, dk gy +mnr SND+10% CHK	1.30	430	40	35	0.1	500								
5960-6010	11	SH, a/a+20% SH, a/a+mnr SND +mnr CHK+mnr SLTST, a/a	1.61													
6080-120	"	SH, med-dk gy	1.28	433	47	29	0.1	600	200	55	1.6	4	28	6		
	P	SH, med-dk gy	1.97	435	42	19	0.1	800								
6140-180	Ctgs	SH, a/a+tr SLTST+mnr CHK	1.33	431	45	30	0.1	600								
6200-240	11	SH, dk gy+10% SND	1.89													
	P	SH, dk gy	2.41	438	36	16	0.1	800								
6260-290	Ctgs	SH, a/a	1.67	437	48	23	0.1	800	425	16	2.5	1	4	60		
	P	SH, dk gy	2.16	440	48	10	0.1	1000								
6320-360	Ctgs	SH, a/a	1.69													
6380-430	"	A/a	1.03	436	24	32	0.1	200								
	Р	SH, dk gy	1.28	*	11	32	0.1	100								
6460-500	Ctgs	SH, a/a	1.39													
6520-560	11	SH, a/a+30% SH, ol-gy+tr SLTST	. 1.01	438	26	40	0.2	300	520	280	5.2	28	. 53	81		
	Р	SH, dk gy	1.26	343	24	16	0.2	300								

TABLE 2 A Chemical Analysis Data

WELL: F-1

ः ः ः १ २ ३

	Ģ	ENERAL DATA	CHEMICAL ANALYSIS DATA											
SAMPLE	ш	· · · · · · · · · · · · · · · · · · ·	2×~5			PYRO	LYSIS			SOLVE	NTEXT	RACTIO	N	
DEPTH (FEET)	SAMPL	ANALYSED LITHOLOGY	ORGANI CABBON OF ROC	TEMP - Erature °C	HYDROGEN INDEX	0XYGEN INDEX	PRODUCTION INDEX	FOTENTIAL YIELD (ppm)	TOTAL EXTRACT (ppm)	HYDR0- CARBONS (ppm)	EXTRACT % OF ORGANIC CARBON	mg/gOF organic 30 carbon 20 20 20 20 20 20 20 20	% OF EXTRACT 08%	ALKANES % OF HYDRO- CARBONS
65 80-620	Ctgs	SH, dk gy+30% SH, ol-gy+mnr SLTST+tr CHK+20% SND	1.39											
	Р	SH, dk gy	1.17	343	28	10	0.1	300						
											•			
						1								

TABLE 2 B Chemical Analysis Data

FIGURE 1 Spore Colour Indices against Depth

i i

0.3

Eren of

Reflectivity - True Vitrinite							
Reflectivity — Caved Vitrinite							
Reflectivity - Semifusinite/Reworked Vitrinite	X						
Low Reflecting "Vitrinite"							
Reflectivity Gradient	<u> </u>						
Inferred Reflectivity Gradient							
Casing Point							

2.5

3.0

FIGURE 2 Vitrinite Reflectivity against Depth

ROBERTSON RESEARCH INTERNATIONAL LIMITED

Project No. RRPS/8182/B/2043

NORWAY II STUDY - PRELIMINARY REPORT G22 (30/4/81)

PRELIMINARY PETROLEUM GEOCHEMISTRY RESULTS OF J-1 WELL

SUMMARY

No potential source rocks have been identified in the Early Jurassic to Early Cretaceous interval 1010' to 5840'. The section is immature to early mature and the intercept of the maturity gradient at the surface suggests that some 3000' of section is missing. Non-indigenous hydrocarbons in the section below 3540' are attributed to diesel oil additive.

GENERAL COMMENTS

Well status: Plugged and abandoned, dry hole.

Drilling data: Drilled with gel and freshwater spersene mud to 6518' (T.D.). Casing points at 345' (36"), 744' (20"), 3481' (13%)". BHT 170°F at 6518' (T.D.).

Interval analysed: 1010' to 5840' (T.D. 6518').

Age of analysed interval: Early Jurassic to Early Cretaceous.

Sample type and quality: 46 dried ditch cuttings samples of generally good quality, but of very small quantity in the uppermost part of the analysed interval.

Maturation data quality: Good.

Source rock data quality: Good.

Gas chromatography run at: 1400'-1490', 3540'-3640', 3880'-3960', 4400'-4480', 4700'-4800', 5800'-5840'.

MATURATION (Table 1; Figures 1 and 2)

The spore colour indices progressively increase from a value of 2.5 at 1010' to 4 at 5800', indicating a transition from an immature state to an early mature state at around 4000'. The vitrinite reflectivity data increase from 0.28% (interpreted) at 1490', to 0.44% (interpreted) at 5800', showing reasonable accord with the spore colour indices. Extrapolation of the maturity gradient gives an intercept at the surface indicating that up to 3000' of section may be missing by erosion.

OIL SOURCE ROCKS (Tables 1 and 2)

No oil source rocks have been identified in the analysed section of this well.

GEOCHEMICAL CHARACTERISTICS OF THE SEDIMENTS

The analysed horizons contain average (around 1%) amounts of organic carbon, but because of a dominantly (70% to 90%) inertinitic kerogen composition, yield only insignificant quantities of hydrocarbons on pyrolysis. These sediments have no oil or gas generating potential, irrespective of thermal maturity.

The hydrocarbon contents of the samples are anomalously high between 3540' and 5840', ranging between 240 ppm and 850 ppm. The alkane distributions of these hydrocarbons show a pattern characteristic of a fully mature source. However, it is noted that diesel oil was added to the drilling mud at 3400' and at 3530', and the alkane distributions of the samples can be attributed to diesel oil. The observed oil stain is thus considered to be attributable, at least in part, to contamination.

ł

terra en la constante de la co

SAMPLE DEPTH	SAMPLE	GENERALISED	SPORE COLOUR		KEROGE (by micr	N COMPOSI oscopic exam	FION (%) ination)	KE (by c	ROGEN COM alculation fro	POSITION (9 m pyrolysis d	%) ata)
(FEET)	TYPE	LITHOLOGY	INDEX (1 - 10)	IN OIL, R av%	INERTINITE	VITRINITE	SAPROPEL	INERTINITE	VITRINITE	ALGAL SAPROPEL	WAXY SAPROPEL
1010 070	Ctgs	SH+SND+PEBBLES	2.5	*	90	10	*				
1400-490	Ш	SLTST, dsky yel- brn/med gy						90	10	*	*
1490-550	11	A/a	2,5	0.30(2)	80	10	10				
1640~730	P	SH, slty, med-dk gy						90	10	*	*
1970-2030	Ctgs	SH, ol-gy+SH, a/a+SND+SLTST, mod brn	2.5-3	$\frac{0.34(2)}{0.43(2)};$	60	40	mnr				
2450-510	17	SH, ol-gy+SLTST, a/a	3	*	40	40	20				
2600-690	11	SH, a/a+mnr SLTST, a/a+mnr SH, med-dk gy						80	20	*	*
2840-930	**	SH, a/a+60% SH, a/a						80	20	*	*
2900-960	II	SH, a/a+SLTST, a/a+SH, a/a	3	0.33(13)	90	mnr	10				
3050-110	n	A/a	3.5	0.32(11)	90	10	mnr				
3080170	11	SH, a/a+50% SH, a/a						85	15	*	*
3290-380	11	SH, a/a+SH, a/a+ SLTST, a/a+SH, dk gy	3-3.5	*	90	10	mnr				
3320-410	IT	SH, dk gy+10% SH, ol-gy						90	10	*	*
	Ρ	SH, dk gy						75	25	*	*
3410-500	Ctgs	SH, a/a+SST, wht/ brn	3.5	0.29(3)	70	30	*			-	
3440-520	11	SH, a/a+10% SST, a/a						85	15	*	*
3540-640	IT	A/a						75	25	*	*
	P	SH, dk gy						75	25	*	*
3580-620	Ctgs	SH, a/a+SST, a/a	3.5	0.33(22); 0.53(2)	60	10	30				
3660-760	**	SH, a/a+20% SLTST, a/a						80	20	*	*
3740-820	13	SH, a/a+SLTST, a/a+SH, dk yel- brn	3.5	0.34(13)	30	50	20				
3780-860	P	SH, dk gy						75	25	*	*
3880-960	Ctgs	SH, dk yel-brn+ 10% SLTST, a/a						60	30	*	?10
4200-280	11	SH, a/a+10% SLTST, a/a						70	30	*	*
	Р	SH, dk yel-brn						55	25	*	? 20
4200-320	Ctgs	SH, a/a+SLTST, a/a+SH, dk gy	3.5	0.38(15)	70	10	20				

TABLE 1 A Maturity and Kerogen Data

WELL: J-1

÷

1

TYPE Ctgs	LITHOLOGY SH, dk yel-brn+ SLTST, mod brn+	INDEX (1 - 10)	IN OIL, R av%	INERTINITE	VITRINITE	SAPROPEL	INERTINITE	WITCHNITC	ALGAL	WAXY
Ctgs	SH, dk yel-brn+ SLTST, mod brn+	1						VITAINTE	SAPRUPEL	SAPROPEL
	20% SH, dk gy						80	20	*	*
Р	SH, dk gy					:	75	25	*	*
Ctgs	SH, dk yel-brn+ mnr SLTST, a/a+ 30% SH, a/a						80	20	*	*
Р	SH, dk gy						80	20	*	*
Ctgs	SH, a/a+SH, dk yel-brn+SLTST, a/a	4	0.40(21); 0.62(5)	80	10	10				
11	SH, a/a+60% SH, a/a						80	20	*	*
Р	SH, dk gy						85	15	*	*
Ctgs	SH, a/a+30% SH, dk yel-brn+10% SST, wht						90	10	*	*
71	SH, dk gy+20% SST, a/a						85	15	*	*
11	SH, a/a+SST, a/a	3.5	0.41(8)	80	10	10				
"	SH, a/a+30% SST, a/a						90	10	*	*
11	SH, a/a+SST, a/a	4	0.48(24)	90	10	nnr				
"	A/a						80	20	*	*
	P Ctgs " P Ctgs " " " " "	Ctgs SH, GK yel-Din mnr SLTST, a/a+ 30% SH, a/a P SH, dk gy Ctgs SH, a/a+SH, dk yel-brn+SLTST, a/a P SH, dk gy Ctgs SH, a/a+30% SH, dk yel-brn+10% SST, wht " SH, dk gy+20% SST, a/a " SH, a/a+SST, a/a " SH, a/a+SST, a/a " SH, a/a+SST, a/a " A/a	Ctgs SH, ak yel-Dru- mr SITST, a/a 9 SH, dk gy Ctgs SH, a/a+SH, dk yel-brn+SLTST, a/a " SH, a/a+60% SH, a/a P SH, dk gy Ctgs SH, a/a+30% SH, dk yel-brn+10% SST, wht " SH, dk gy+20% SST, a/a " SH, a/a+SST, a/a 3.5 " SH, a/a+30% SST, a/a " SH, a/a+SST, a/a 4 " A/a 4	Ctgs SH, ak yei-brut mit SLTST, a/a 307, SH, a/a 4 P SH, dk gy 4 Ctgs SH, a/a+SH, dk yei-brutSLTST, a/a 4 P SH, a/a+607, SH, a/a 4 P SH, a/a+307, SH, dk yei-brut107, SST, wht 5 " SH, a/a+307, ST, a/a 3.5 0.41(8) " SH, a/a+307, SST, a/a 3.5 0.41(8) " SH, a/a+307, SST, a/a 3.5 0.41(8) " SH, a/a+307, SST, a/a 3.5 0.41(8) " SH, a/a+SST, a/a 3.5 0.48(24) " A/a 0.48(24) 4/a	Ctgs SH, ak ye1-br.tr P SH, dk gy Ctgs SH, a/a+SH, dk ye1-br.tr " SH, a/a+SH, dk ye1-br.tr " SH, a/a+60Z SH, a/a a/a " " SH, a/a+60Z SH, a/a a/a " SH, a/a+60Z SH, a/a a/a SH, a/a+30Z SH, dk ye1-br.tr " SH, a/a+30Z SH, dk ye1-br.tr " SH, a/a+SST, a/a " SH, a/a+30Z SST, a/a " SH, a/a+SST, a/a SH, a/a+SST, a/a 0.48(24) " SH, a/a+SST, a/a " A/a	Ctgs Sh, 0k y21-Dth' 307 SH, a/a P SH, dk gy Ctgs SH, a/a+SH, dk yal-brn*SLTST, a/a 4 0.40(21); 0.62(3); 80 10 " SH, a/a+60Z SH, a/a 4 0.62(3); 80 10 " SH, a/a+60Z SH, a/a - - - - " SH, a/a+30Z SH, a/a - - - - " SH, a/a+30Z SST, a/a 3.5 0.41(8) 80 10 " SH, a/a+30Z SST, a/a 3.5 0.41(8) 80 10 " SH, a/a+SST, a/a 3.5 0.41(8) 80 10 " SH, a/a+SST, a/a 4 0.48(24) 90 10 " SH, a/a+SST, a/a 4 0.48(24) 90 10 " A/a - - - - - SH, a/a - - - - - - " SH, a/a+SST, a/a - - - - - SH, a/a - - - - <td>Ltgs a, a</td> <td>Utgs Sn. ac y 2-0 to '' mmS1237. a/a 302 SH. a/a* P SH. a/a* P SH. a/a* BH. a/a*ST. a/a 0.40(21); "SH. a/a*ST. a/a P SH. a/a*507 SH. a/a a/a 80 P SH. a/a*507 SH. a/a "SH. a/a*007 SH. a/a 85 Ctgs SH. a/a*507 SH. a/a "SH. a/a*507 SH. a/a 3.5 SH. a/a*537. a/a 3.5 "SH. a/a*537. a/a 0.48(24) "SH. a/a*537. a/a 0.48(24) "A/a 80</td> <td>Ctgs Sh. dx gy </td> <td>CCgg Sh, dz yz - Dr.** 302 SH, «/a* 300 20 * P SH, dz gy 300 20 * Ccgg SH, afa*SH, dk ycl-bra*SLIST, afa 4 0.40(21); 0.62(5) 50 10 10 80 20 * " SH, afa*607 SH, afa - - - 80 20 * " SH, afa*607 SH, afa - - - 80 20 * " SH, afa*307 SH, dx ycl-bran*102 SST, afa - - - 85 15 * " SH, afa*307 SH, afa - 0.41(6) 50 10 10 -</td>	Ltgs a, a	Utgs Sn. ac y 2-0 to '' mmS1237. a/a 302 SH. a/a* P SH. a/a* P SH. a/a* BH. a/a*ST. a/a 0.40(21); "SH. a/a*ST. a/a P SH. a/a*507 SH. a/a a/a 80 P SH. a/a*507 SH. a/a "SH. a/a*007 SH. a/a 85 Ctgs SH. a/a*507 SH. a/a "SH. a/a*507 SH. a/a 3.5 SH. a/a*537. a/a 3.5 "SH. a/a*537. a/a 0.48(24) "SH. a/a*537. a/a 0.48(24) "A/a 80	Ctgs Sh. dx gy	CCgg Sh, dz yz - Dr.** 302 SH, «/a* 300 20 * P SH, dz gy 300 20 * Ccgg SH, afa*SH, dk ycl-bra*SLIST, afa 4 0.40(21); 0.62(5) 50 10 10 80 20 * " SH, afa*607 SH, afa - - - 80 20 * " SH, afa*607 SH, afa - - - 80 20 * " SH, afa*307 SH, dx ycl-bran*102 SST, afa - - - 85 15 * " SH, afa*307 SH, afa - 0.41(6) 50 10 10 -

TABLE 1^B Maturity and Kerogen Data

W

 \langle , \rangle

EL	L:	1-1

<u></u>	G	ENERAL DATA					CHEM		IALYSIS	DATA				
SAMPLE	щ	· · · · · · · · · · · · · · · · · · ·	5×2			PYRO	LYSIS			SOLVE	NTEXT	RACTIO	N	
DEPTH (FEET)	SAMPL TYPE	ANALYSED LITHOLOGY	RGAN ARBON F ROC	remp – Ature °(OROGEN	X YGEN INDEX	DUCTION	TENTIAL VIELD (ppm)	TOTAL KTRACT (ppn)	YDR0- ARBONS (ppm)	TRACT % ORGANIC ARBON	HADROCY BONC RBONC	LACT SWOR	KANES % HYDRO- Arbons
800 800	Chan	CUIV	0.30	ER .	Ĥ		_PR(Od	ш 	- ±0	X ²	CA OR	EX.	490
920-1010	"	SH+SND+PEBBLES	_											Í
10/0-130			_											
1160-250		SITST dsky vel~brn+40%	_											
1100 250		SLTST, mod brn												
(280-370		SLTST, dsky yel-brn/med gy+ SND	-											
1400-490	"	A/a	1.23	425	32	132	0.3	400	3400	145	27.6	12	4	83
1520-610		A/a	-		1									
1640-730		SH, slty, ol-gy+30% SH, slty, med-dk gy	0.70											
	P	SH, slty, ol-gy	0.59		l.									
	Р	SH, slty, med-dk gy	1.01	*	19	57	0.1	200						
1760-850	Ctgs	SH, med-dk gy	-											
1880 - 970	n	SH, ol-gy+mnr SH, a/a+mnr SND	0.56											
2000-090	"	SND+SH, ol-gy+SLTST, mod brn	-											
2120-210	н	A/a	-							[
2240-330	11	A/a	-											
2360-450	"	SH, ol-gy+30% SLTST, mod brn	0.61											
	Р	SH, ol-gy	0.47											
2480-570	Ctgs	SH, a/a+30% SLTST, a/a	0.46											
2600-690	"	SH, a/a+mnr SLTST, a/a+mnr SH, med~dk gy	0.55	428	39	50	0.1	200						
2720-810	п	SH, a/a+mnr SLTST, a/a+10% SH, a/a	0.56											
2840-930	11	SH, a/a+tr SLTST, a/a+60% SH, a/a	0.72	430	42	48	0.1	300			-			
2960-3050	TT .	SH, a/a+tr SLTST, a/a+40% SH a/a	0.64											
	Р	SH, med-dk gy	0.76											
3080-170	Ctgs	SH, ol-gy+tr SLTST, a/a+50% SH, a/a	0.69	*	36	: 56	0.04	300						
3200-290	79	SH, med-dk gy+40% SH, ol-gy +tr SLTST, a/a	0.67											
3320-410		SH, dk gy+10% SH, ol-gy	0.79	435	24	57	0.1	200						
	P	SH, dk gy	1.37	441	49	38	0.05	700						
3440-520	Ctgs	SH, a/a+10% SST, wht/brn	1.11	434	32	42	0.1	400						
3540-640	. 11	A/a	1.35	439	54	41	0.1	700	7 20	430	.5.3	32	60	70
	P	SH, dk gy	1.60	443	54	23	0.05	900						
3660-760	Ctgs	SH, a/a+20% SLTST, a/a	0.96	435	38	71	0.3	400						
	Р	SH, dk gy	1.34											

TABLE 2 A Chemical Analysis Data

	GENERAL DATA														
SAMPLE	ш	· · · · ·	× [%] ن			PYRO	LYSIS			SOLVE	NTEXT	RACTIO	N		
DEPTH (FEET)	SAMPL TYPE	ANALYSED LITHOLOGY	ORGANI CARBON OF ROC	TEMP - ERATURE °C	HYDROGEN INDEX	OXYGEN INDEX	PRODUCTION	POTENTIAL VIELD (ppm)	TOTAL Extract (ppm)	HYDRO- CARBONS (ppm)	EXTRACT % OF ORGANIC CARBON	mg/gOF ORGANIC CARBON CARBON	% OF EXTRACT	ALKANES % OF HYDRO- CARBONS	
3780-860	Ctgs	SH, dk yel-brn+10% SH, dk gy	0.85												
	Р	SH, dk gy	1.59	440	52	31	0.1	800							
	Р	SH, dk yel-brn	0.90												
3880-960	Ctgs	SH, a/a+10% SLTST, a/a+tr SH, dk gy	1.51	431	112	64	0.2	1700	1105	850	7.3	56	77	76	
3980 - 4060	"	SH, a/a+mnr SLTST, a/a+mnr SH, dk gy	1.01												
4080-160	"	SH, a/a+10% SLTST, a/a+10% SH, a/a	1.00												
4200-280	"	SH, a/a+10% SLTST, a/a+mnr SH, a/a	1.17	436	56	62	0.2	700							
	P	SH, dk yel-brn	2.01	437	165	49	0.05	330 0							
4300-380	Ctgs	SH, a/a+mnr SLTST, a/a+10% SH, dk gy	1.14			-									
4400480	11	SH, a/a+mnr SLTST, a/a+20% SH, a/a	1.12	436	38	106	0.3	400	765	460	6.8	41	60	75	
	Р	SH, dk gy	1.47	443	53	30	0.1	800							
4500-580	Ctgs	SH, dk yel-brn+mnr SLTST, a/a+30% SH, a/a	0.99	437	38	81	0.3	400							
4600-680	11	A/a	0.88												
	P	SH, dk yel-brn	0.58												
	F	SH, dk gy	1.33	442	42	23	0.2	550							
4700 - 780	Ctgs	SH, dk yel-brn+mnr SLTST, a/a+40% SH, a/a	0.86	436	40	75	0.4	300	440	240	5.1	28	54	68	
4800-880		SH, dk gy+mnr SLTST, a/a+ 40% SH, dk yel-brn	0.83												
	Р	SH, dk yel-brn	0.87												
	P	SH, dk gy	1.18	443	29	30	0.1	300							
4900-980	Ctgs	SH, a/a+30% SH, dk yel-brn +mnr SLTST, a/a+10% SST, wht	0.82	437	23	59	0.3	200							
5000-080	11	SH, dk gy+30% SST, a/a+mnr SLTST, mod yel	0.88												
	P	SH, dk gy	1.06												
5100-180	Ctgs	SH, a/a+10% SST, a/a+mnr SLTST, a/a	0.79												
5200-280	"	SH, a/a+20% SST, a/a+mnr SLTST, a/a	0.84	438	33	68	0.2	300							
	P	SH, dk gy	1.05												
5300-380	Ctgs	SH, a/a+30% SST, a/a+mnr SLTST, a/a	0.76		E										
5400-480	н	A/a	0.95												
÷	Р	SH, dk gy	0.95												
5500-580	Ctgs	SH, a/a+30% SST, a/a+mnr SLTST, a/a	0.84	437	24	41	0.3	200							
	La construction of the second				L	L			h			·			

TABLE 2^B Chemical Analysis Data

ter the

1. WALL -

. N j

	G	ENERAL DATA	CHEMICAL ANALYSIS DATA											·
SAMPLE	ш	· · · · · · · · · · · · · · · · · · ·	2×2			PYRO				SOLVE	NTEXT	RACTIC	N	
DEPTH (FEET)	SAMPL TYPE	ANALYSED LITHOLOGY	ORGAN CARBON OF ROC	TEMP ~ ERATURE °	HYDROGEN INDEX	OXYGEN INDEX	PRODUCTIO INDEX	POTENTIAL VIELD (ppm)	TOTAL EXTRACT (ppm)	HYDRO- CARBONS (ppm)	EXTRACT % OF ORGANI CARBON	my/gOF ORGANIC CARBON	% OF EXTRACT	ALKANES % OF HYDRO Carbons
5600-680	Ctgs	SH, dk gy+30% SST, wht+mnr SLTST, mod ye1	0.87											
	P	SH, dk gy	1.01											
5700-780	Ctgs	SH, a/a+30% SST, a/a+mnr SLTST, a/a	0.83											
5800-840	п	A/a	1.06	438	37	53	0.2	400	765	405	7.2	38	53	79
	Р	SH, dk gy	1.01											
											-			

TABLE 2 C Chemical Analysis Data

j

Spore Colour Index — Indigenous Spores	
Spore Colour Index — Caved Spores	Δ
Spore Colour Index – Reworked Spores	×
Range of Spore Colour Indices — Indigenous Spores	ليسمعا
Spore Colour Index Gradient	
nferred Spore Colour Index Gradient	
Casing Point	

SPORE COLOUR INDEX (S.C.I.)

THERMAL ALTERATION INDEX (T.A.I.)

FIGURE 1 Spore Colour Indices against Depth

effectivity - True Vitrinite	
leflectivity — Caved Vitrinite	
eflectivity – Semifusinite/Reworked Vitrinite	×
ow Reflecting "Vitrinite"	¢
leflectivity Gradient	
nferred Reflectivity Gradient	
Casing Point	

1.6 1.8 2.0 .

2.5

3.0

FIGURE 2 Vitrinite Reflectivity against Depth

ROBERTSON RESEARCH INTERNATIONAL LIMITED

Project No. RRPS/8182/B/2043

NORWAY II STUDY - PRELIMINARY REPORT G23 (30/4/81)

PRELIMINARY PETROLEUM GEOCHEMISTRY RESULTS OF K-1 WELL

SUMMARY

No source rocks have been identified in the ?Triassic/?Early Jurassic to Early Cretaceous interval (3860' to 6920'), irrespective of maturity, because of a dominance of inertinitic kerogens. The Jurassic and Early Cretaceous interval is early mature, and the ?pre-Jurassic interval is middle mature. Minor oil stain noted between 4850' and 5300' is from a mature source and has migrated into the section.

GENERAL COMMENTS

Well status: Plugged and abandoned, dry hole.

Drilling data: Drilled with freshwater gel and freshwater XP-20 spersene based muds to 7518' (T.D.). Casing points at 372' (36"), 711' (20"), 1882' (13%"). BHT 163°F at 7518' (T.D.).

Interval analysed: 3860' to 6920' (T.D. 7518').

Age of analysed interval: ? Triassic/?Early Jurassic to Early Cretaceous.

Sample type and quality: 22 dried ditch cuttings samples of fair quality.

Maturation data quality: Good.

Source rock data quality: Good.

Gas chromatography run at: 4850'-4940', 4970'-5060', 5090'-5180', 5210'-5300'.

MATURATION (Table 1; Figures 1 and 2)

Over the analysed interval, the spore colour indices and vitrinite reflectivity increase with depth, from 3-3.5 to 5, and 0.39% to 0.63% respectively. These data are in reasonable accord, and indicate early thermal maturity over the Jurassic to Early Cretaceous section, and middle maturity at 6830'-6920' in the ?pre-Jurassic interval. The intercepts of the maturity gradient lines at the surface suggest the possibility that some section is missing within the Tertiary.

OIL SOURCE ROCKS (Tables 1 and 2)

No oil source rocks have been identified in the analysed section of this well.

GEOCHEMICAL CHARACTERISTICS OF THE SEDIMENTS

A picked shale from the sample at 3980'-4070' shows a potential yield of 5800 ppm, and a dominantly vitrinitic kerogen composition. At a much elevated level of thermal maturity this shale could generate gas, but because the horizon appears to have very limited thickness, it is unlikely to generate significant quantities.

The remaining horizons analysed in the Jurassic and Early Cretaceous interval, between 3950' and 6470', contain around average quantities of organic matter, but with a dominantly inertinitic composition. The samples give very low pyrolysis yields and are considered to have no source potential, irrespective of thermal maturity.

High production indices and extraction analyses confirm the presence of minor amounts of oil stain (up to 450 ppm) between 4850' and 5300'. Gas chromatography analysis indicates that these hydrocarbons are derived from a middle to late mature source, and they are therefore considered to have migrated into the section.

WELL:	K-1
-------	-----

SAMPLE DEPTH	SAMPLE	GENERALISED	SPORE COLOUR		KEROGE (by micr	N COMPOSI oscopic exam	TION (%) ination)	KE (by c	ROGEN COM	POSITION (m pyrolysis d	%) ata)
(FEET)	TYPE	LITHOLOGY .	INDEX (1 - 10)	IN OIL, R av%	INERTINITE	VITRINITE	SAPROPEL	INERTINITE	VITRINITE	ÁLGÁL SAPROPEL	WAXY SAPROPEL
3880~950	Ctgs	LST, pnk-gy+10% SH, med-dk gy+10% SH, mod brn	3.5		100	*	*				
3980-4070	P	SH, med-dk gy						35	50	*	15
4100-190	Ctgs	SH, med-lt gy+ 10% SH, a/a+20% LST, a/a						80	20	*	*
4220-310	н	A/a+SND						85	15	*	*
4240-310	11	A/a	3-3.5	0.39(1)	70	20	10				
4370-460	IT	SH, med gy						60	35	*	5
4490-580	11	SH, med-dk gy+ 10% SH, med-1t gy+10% SLTST						80	20	*	*
4610-670	11	SND+20% SH, dk gy+30% SH, med gy+10% SLTST	3.5-4	*	40	20	40				
4610-700	11	A/a						85	15	*	*
	P	SH, dk gy						65	35	*	*
	P	SH, med gy						75	25	*	*
4730-820	Ctgs	SH, dk gy+20% SLIST						75	25	*	*
4850-940	11	SH, a/a+10% SLTST						80	20	*	*
4970–5030	11	SH, a/a+mnr SLTST	. 3.5	0.43(13)	60	30	10				
4970-5060		A/a						80	20	*	*
5090-180	IT	SH, med-dk gy+ 10% SLTST			-			90	10	*	*
5210-300	17	SH, med-1t gy+ 40% SH, dk gy						90	10	*	*
5330-390	"	SH, med-dk gy +10% SLTST	3.5-4	0.46(1)	70	20	. 10				
5330-420	11	A/a						90	10	*	*
5450-540	11	SH, dk gy						90	10	*	*
5570 - 660	**	SH, med-dk gy/dk gy						90	10	*	*
5690-750	11	SH, dk gy	4	*	80	20	*				
5690-780	17	A/a]			90	10	*	*
	Р	SH, dk gy						80	20	*	*
5810-900	Ctgs	SH, a/a						90	10	*	*
59 30-60 20	11	A/a						85	15	*	*
	р	SH, dk gy						85	15	*	*
6050-110	Ctgs	SH, a/a	4	0.49(4)	80	20	*				
6050-140	11	A/a						85	15	*	*
	Р	SH, dk gy						85	15	*	*

TABLE 1^A Maturity and Kerogen Data
WELL:	K-1
-------	-----

SAMPLE DEPTH SAM	MPLE	GENERALISED	SPORE COLOUR		KEROGEN COMPOSITION (%)		KE (by c	ROGEN CON	POSITION (%) ata)	
(FEET) TY	TYPE	LITHOLOGY	INDEX (1 · 10)	IN OIL, R av%	INERTINITE	VITRINITE	SAPROPEL	INERTINITE	VITRINITE	ALGAL SAPROPEL	WAXY SAPROPEL
6170-260 Ct	tgs	SH, dk gy	-					85	15	*	*
6 290-380 "	"	A/a						85	15	*	*
P	P	SH, dk gy						. 80	20	*	*
6410-470 Ct	tgs	SH, a/a						90	10	*	*
6440-530 "	11	SH, a/a+SND	4.5		60	30	10		-		
6830-920 "		SND+mnr SH, a/a	5	0.63(26)	70	30	*				
			-								
				r							
										-	

WELL: K-1

	G	ENERAL DATA	CHEMICAL ANALYSIS DATA											
SAMPLE	ш		<u>د %</u> د			PYRO	LYSIS			SOLVE	NTEXT	RACTIO	N	
DEPTH (FEET)	SAMPLI	ANALYSED LITHOLOGY	ORGANI CARBON OF ROCI	TEMP - ERATURE °C	HYDROGEN INDEX	OXYGEN	PRODUCTION INDEX	POTENTIAL VIELD (ppm)	TOTAL EXTRACT (ppm)	HYDRO- CARBONS (ppm)	EXTRACT % OF ORGANIC CARBON	mg/gOF Organic Carbon Vou	% OF EXTRACT 098	ALKANES% OF HYDRO- CARBONS
3860-950	Ctgs	LST, pnk-gy+10% SH, med-dk gy+10% SH, mod brn	-											
3980-4070	11	LST, a/a+20% SH, a/a+mnr SH, a/a+20% SH, med-lt gy	0.79											
	P	SH, med-dk gy	3.17	433	184	33	0.03	5800						
4100-190	Ctgs	SH, med-lt gy+10% SH, a/a +20% LST, a/a+mnr SH, mod brn	0.43	*	41	242	0.05	200				-		
4220-310	"	A/a+SND	0.51	*	31	252	0.1	200						
4370-460	н	SH, med gy+mnr SH, mod brn+ mnr SLTST	0.98	437	89	189	0.1	900						
	P	SH, med gy	1.01											
4490-580	Ctgs	SH, med-dk gy+10% SH, med-1t gy+10% SLTST	1.21	431	40	53	0.1	500						
4610-700	"	SND+20% SH, dk gy+30% SH, med gy+mnr SH, mod brn+10% SLTST	0.98	436	34	74	0.1	300						
	Р	SH, dk gy	1.83	435	73	29	0.04	1300						
	P	SH, med gy	2.12	434	48	27	0.1	1000						
4730-820	Ctgs	SH, dk gy+20% SLTST	1.21	436	49	66	0.1	600						
4850-940	"	SH, a/a+10% SLTST	1.20	436	40	84	0.2	500	515	435	4.3	36	85	86
4970-5060	"	SH, a/a+mnr SLTST	1.24	435	40	78	0.3	500	530	450	4.3	36	86	77
5090-180	"	SH, med-dk gy+10% SLTST+mnr SH, mod brn	1.09	431	25	85	0.3	300	490	355	4.5	33	73	79
5210-300	п	SH, med-lt gy+40% SH, dk gy+ mnr SLTST	1.29	435	28	67	0.2	400	350	315	2.7	24	90	66
5330-420	n	SH, med-dk gy+mnr SH, mod brn+10% SLTST	1.01	434	28	57	0.1	300						
5450-540	11	SH, dk gy+mnr SH, mod brn +mnr SLTST	1.01	435	24	56	0.1	200						
5570-660	11	SH, med-dk gy/dk gy+mnr SH, mod brn+mnr SLTST	1.03	*	20	50	0.3	200						
	P	SH, med-dk gy/dk gy	0.96											
5690-780	Ctgs	SH, dk gy+mnr SH, mod brn +mnr SLTST	1.03	433	24	51	0.1	200						
	P	SH, dk gy	1.02	435	43	21	0.1	400						
5810-900	Ctgs	SH, a/a+mnr SH, mod brn+mnr SLTST	1.05	435	23	42	0.1	200						
5930-6020	"	A/a	1.04	435	29	40	0.1	300						
	P	SH, dk gy	1.04	433	28	22	0.1	300						
6050-140	Ctgs	SH, a/a+mnr SH, mod brn	1.02	435	29	59	0.1	300			- - -			
	Р	SH, dk gy	۱.00	434	33	25	0.04	300						
6170-260	Ctgs	SH, a/a+mnr SH, mod brn	1.05	438	28	46	0.1	300						
6290-380	"	A/a	0.95	435	30	67	0.1	300						
	P	SH, dk gy	1.00	434	47	20	0.03	500						

TABLE 2 A Chemical Analysis Data

The second se

	G	ENERAL DATA	CHEMICAL ANALYSIS DATA											
SAMPLE	щ		2%×		· ·	PYRO	LYSIS	r		SOLVE	NT EXT	RACTIO	N	
DEPTH	AMPL	ANALYSED LITHOLOGY	RB0N RB0N	TURE °	ROGEN	VGEN	DEX	ENTIAL LELD ppm)	DTAL FRACT ppm)	0R0- RBONS pm)	RACT % RGANI RBON	BONCH	IACT OF	ANES % IYORO- RBONS
(FEEI)	s.		535	TE ERA	UXH IN	ă€ 	PROD	104		E E E	EXTI OF O CA	mg/ ORG/ CAR	5 (EXTR	ALK OF H CAF
6410-470	Ctgs	SH, dk gy+mnr SH, mod brn	0.95	438	26	42	0.1	300						
		•						-						
		- - -												
-														
											1			
									:					
		- - -												
L														

FIGURE 1 Spore Colour Indices against Depth

FIGURE 2 Vitrinite Reflectivity against Depth

NORWAY II STUDY - PRELIMINARY REPORTS B11 TO B19

Project No. RRPS/8182/B/2043

PRELIMINARY BIOSTRATIGRAPHIC BREAKDOWNS OF 2/4-11, 2/4-B19, 15/3-1, 15/6-2, UK 16/23-1, UK 23/11-1, UK 23/21-2, UK 30/13-2, AND UK 30/18-2 WELLS

APRIL 1981

LIST OF CONTENTS

B11 :	2/4-11
B12 :	2/4 - B19
B13 :	15/3-1
B14 :	15/6-2
B15 :	UK 16/23-1
B16 :	UK 23/11-1
B17 :	UK 23/21-2
B18 :	UK 30/13-2
B19 :	UK 30/18-2

Project No. RRPS/8182/B/2043

NORWAY II STUDY - PRELIMINARY REPORT B11 (30/4/81)

PRELIMINARY BIOSTRATIGRAPHIC BREAKDOWN OF 2/4-11 WELL

Tops	(in	feet)	

Late Cretaceous	early Campanian	12080	(top not seen)
ان ان چه به چه و می ان ان ان ان می موجد و موجد و موجد به به می او در ان م	Unconformity		
	(early Aptian - ?Barremian (Unconformity	12288	(log)
Early Cretaceous	(Hauterivian (Hauterivian (Hauterivian	12425 12480	
	(Valanginian (early Valanginian -	12600	
	(latest Ryazanian	12900	
Early Cretaceous - Late Jurassic	Ryazanian - middle? Volgian	13072	
والد وال الله الله بعد بعد بين الله الله الله الله البه عنه الله عنه الله عنه الله بين الله الله بين ا	Unconformity		
Late Jurassic		13521	(log)
ور میں ایک ایک روز ایک ایک ایک ایک ایک ایک ایک ایک ایک روز ایک ایک روز ایک ایک روز ایک ایک ایک ایک ایک ایک ایک	Unconformity		
Late Permian	Zechstein	13800 14045	to T.D.

Project No. RRPS/8182/B/2043

NORWAY II STUDY - PRELIMINARY REPORT B12 (30/4/81)

PRELIMINARY BIOSTRATIGRAPHIC BREAKDOWN OF 2/4-B19 WELL

		-
Late Palaeocene	9640	(top not seen)
Early Palaeocene Danian	9774	(log)
Late Cretaceous?	10210	(log)
(late Maastrichtian (Maastrichtian - early? Late Cretaceous (Campanian (Santonian - ?Turonian (Turonian - Cenomanian	10280 10320 11380 12389	(log)
<pre>(Albian (early Albian - Aptian (early Aptian (Barremian (Barremian - (Valanginian (early Valanginian - latest (Ryazanian</pre>	12600 12720 12810 12940 12990 13220	
Early Cretaceous - late Ryazanian - late Late Jurassic Volgian	13362	(log)
(middle Volgian Late Jurassic (early? Volgian (early Volgian	13400 14440 15000	to 15108 T.D.

Project No. RRPS/8182/B/2043

NORWAY II STUDY - PRELIMINARY REPORT B13 (30/4/81)

PRELIMINARY BIOSTRATIGRAPHIC BREAKDOWN OF 15/3-1 WELL

		<u>Tops</u>	(in metres)
Late Cretaceous		3800	(top not seen)
	-Unconformity		
Early Cretaceous	Albian early Albian - Aptian early Aptian Barremian - Neocomian	3812 3830 3860 3880	
Early Cretaceous - Late Jurassic	Ryazanian - middle Volgian	3 9 47	(log)
(Late Jurassic (middle Volgian early Volgian - Kimmeridgian Oxfordian early Oxfordian - Callovian	3985 4090 4195 4535	to 5129 T.D.

UK 16/23-1 Well conti	nued			
Late Jurassic	(Kimmeridgian (Oxfordian (Callovian	10720 11060 11167	(log) (log) (log)	
ی اور	?Unconformity	هه بين بنه تنه هه جي به به به حد عد آن بن		
?Jurassic		11431	(1og)	
یں کہ ایک جود سے عرف ایک ایک ایک بھی ہوت ہوتا ہوں جو ایک جو بات ایک ایک ایک ایک ایک ایک ایک ایک ایک بھی ہے۔	?Unconformity			
Late Triassic	Rhaetian	11740	(log)	
وی بین که برای برای که می وارد این که توریخ این این این بین این بین این این این این این این این این این ا	Unconformity	هی مرب دارد انتار قان بای خده ایند این <u>سر با</u> ن اند		
Devonian		11950 12680	(log) T.D.	to

Project No. RRPS/8182/B/2043

NORWAY II STUDY - PRELIMINARY REPORT B16 (30/4/81)

PRELIMINARY BIOSTRATIGRAPHIC BREAKDOWN OF UK 23/11-1 WELL

		Tops	(in feet)	
Late Cretaceous	Santonian	9500	(top not s	een)
و سو به وی بی وی بی وی سر می شر بی ور بی ور بی اور پی وی وی وی وی وی وی می بی وی بی وی وی وی وی وی وی وی وی وی	-Unconformity	هي هي هو پره اين ا		
Early Cretaceous	early Barremian - Neocomian	9612	(1og)	
	-Unconformity			
Triassic	,	9663 10087	(log) to T.D.	

٩

Project No. RRPS/8182/B/2043

NORWAY II STUDY - PRELIMINARY REPORT B17 (30/4/81)

PRELIMINARY BIOSTRATIGRAPHIC BREAKDOWN OF UK 23/21-2 WELL

		<u>Tops</u> (in feet)	
Late Cretaceous		11000 (top not seen)	
	Unconformity		
Early Cretaceous		11121	
Early Cretaceous	(early Aptian (Barremian - Valanginian (earliest Valanginian -	11205 11210	
	(latest Ryazanian	11240	
Early Cretaceous - Late Jurassic	Ryazanian - middle Volgian	11250	
Late Jurassic	(middle Volgian (Unconformity (middle Volgian - early	11310	
	(Volgian	11352	
الله الله الله الله الله الله الله الله	Unconformity		
Late Jurassic		11380	
	Unconformity		
Middle? Jurassic		11485 to 11634 T.D.	

Project No. RRPS/8182/B/2043

NORWAY II STUDY - PRELIMINARY REPORT B18 (30/4/81)

PRELIMINARY BIOSTRATIGRAPHIC BREAKDOWN OF UK 30/13-2 WELL

		Tops	(in feet	:)
Late Cretaceous		11900	(top no	ot seen)
Early Cretaceous		1 1995	(log)	
Early Cretaceous - Late Jurassic	Ryazanian - middle Volgian	12272	(log)	
Late Jurassic	(middle Volgian (Unconformity (Volgian/?Kimmeridgian (Kimmeridgian - Oxfordian	12550 13065 13210		
	Unconformity			
?Triassic		13797	(log)	
Late Permian	Zechstein	13910 14550	(log) t T.D.	:0

Project No. RRPS/8182/B/2043

NORWAY II STUDY - PRELIMINARY REPORT B19 (30/4/81)

PRELIMINARY BIOSTRATIGRAPHIC BREAKDOWN OF UK 30/18-2 WELL

		Tops	(in fe	et)	
Pleistocene		890	(top m	ot see	n)
Pliocene		1960			
Late Miocene - Middle Miocene		.3260			
Middle? Miocene - Early? Miocene		5370			
Early Miocene		5530			
Late Oligocene		6170			
Early Oligocene		8000			
Early Oligocene? - Middle Eocene?		8560			
Middle? Eocene - Early? Eocene		8840			
	?Unconformity				
Late Palaeocene		9308	(log)		
Early Palaeocene	Danian	9980			
Late Cretaceous	<pre>(late Maastrichtian (Maastrichtian - late (Campanian (early Campanian (Santonian - Coniacian (Coniacian - Turonian (Cenomanian</pre>	10450 10560 10920 11120 11760 12600	(log)		
Early Cretaceous	<pre>(Albian (early Albian - Aptian (Unconformity (Barremian - late Hauterivian (Hauterivian (early Hauterivian - (Valanginian (Valanginian - latest (Ryazanian</pre>	12950 13040 13425 13600 13760 14000	(log)		
Early Cretaceous - Late Jurassic	Ryazanian? - Volgian - ?Oxfordian	14238 15050	(log) T.D.	to	

ROBERTSON RESEARCH