725-3

FORTROULS ARKIVERT 33/9-7 Hat Bestyltelessing ARKIVERT 33/9-7

Exxon Production Research Company

84-79-1-1:

13 NÓV 1979 MEGISTRERY OLJEDIREK (OKAYE)

EPR.152ES.79

H-165

GEOCHEMICAL STUDIES OF ROCK AND OIL SAMPLES FROM 33/9-7, 33/12-6 AND 34/10-1, 2 AND 3, OFFSHORE NORWAY

Report by: R. E. Metter

Analyses by: R. R. Barrientos A. K. Everett H. M. Fry P. A. Gregory R. J. Pokluda

Reservoir Evaluation Division

September 1979

PROPERTY OF STATOIL

8. J9. J96 4		
18866 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	al a	

	OMBADE:33	19,4	<u>2 «</u>	34/10	
Nr.	Til	Dato	Nr.	Ţil	Dato
1	Und-arkiv	10-79			
2	Saaa	aa 33 aas			
3	Hudro				

EXXON PRODUCTION RESEARCH COMPANY

GEOCHEMICAL STUDIES OF ROCK AND OIL SAMPLES FROM 33/9-7, 33/12-6 AND 34/10-1, 2 AND 3, OFFSHORE NORWAY

R. E. Metter

Reservoir Evaluation Division

September 1979

EPR.152ES.79

Charges for this work for Statoll were specifically authorized by Esso Exploration and Production Norway Inc. and are not covered by production research agreements with Exxon Production Research Company.

GEOCHEMICAL STUDIES OF ROCK AND OIL SAMPLES FROM 33/9-7, 33/12-6 AND 34/10-1, 2 AND 3, OFFSHORE NORWAY

R. E. Metter

CONCLUSIONS

A. Hydrocarbon Source Patterns

1. The drilled sections in the five wells of this study all failed to reach a mature zone, as is indicated below:

Well	Deepest Sar	nple Studied
	Unit	Maturity
33/9-7	Statfjord	Immature
33/12-6	Triassic	Transitional
34/10-1	Statfjord	lmmature
34/10-2	Triassic	Transitional
34/10-3	Triassic	Immature

Of course, the equivalent intervals off-structure may be mature due to deeper burial and higher subsurface temperatures.

2. Shales from the Brent, Dunlin and Statfjord intervals, as well as Dogger shales overlying the Brent sand, include good to rich potential sources of gas and oil. No definite Malm shales were analyzed in this study, but we assume the Malm also includes good to rich potential source rocks that would generate considerable amounts of oil wherever they might be mature. All of the Jurassic units and some of the Cretaceous also contained shales that were rated as fair potential sources.

B. Correlations of Oils, Tars and Rock Extracts

- 1. Oils from the Brent sands in 34/10-1, 34/10-3 and 33/9-7, a condensate from the Brent in 34/10-2, an oil from the Statfjord unit in 34/10-2, and a tar from the Brent sand in 33/9-7 all come from a single genetically related oil family. The oils from 34/10-1 and 34/10-3 have been notably altered presumably by biodegradation and possibly by water washing. Perhaps the oil from 33/9-7 has been slightly altered by the same processes.
- 2. Three tars from the Triassic in well 33/12-6 are nearly identical to each other, but they represent a different family than the oils listed above.
- 3. Four cuttings samples from 34/10-3, representing Cretaceous, Brent and Dunlin shales, do not correlate with the oils and tars. The immaturity of the section in this well would not lead us to expect a good correlation in the first place.

- 4. Eight cuttings samples from the 34/10-2 well, representing the same three stratigraphic intervals as those from 34/10-3, include several whose hydrocarbon extracts by most of our correlation criteria resemble the oil sample from the Statfjord of 34/10-2. The Cretaceous samples, in particular, resemble the oil; but so do samples from the Brent and Dunlin intervals. This might indicate that the oil was generated by shales from the entire Jurassic and Cretaceous interval. However, we believe that the 34/10-2 cuttings have been contaminated by oil that was either introduced by adding Statfjord oil to the drilling mud, or by the natural upward migration of reservoired oil from the Statfjord sands through the younger strata. The apparent lack of mature beds in the section here supports the latter idea of migration.
- 5. We have not identified a specific source of the oils we analyzed. Perhaps the source was the Malm, which we did not sample. In any case, standard cores provide a much more reliable type of sample for this purpose than do cuttings, which are quite susceptible to contamination from mud additives or from mixing with oil-bearing reservoir sands within the mud stream.

BACKGROUND

Canned cuttings from the 34/10-2 and 34/10-3 wells, and dry unwashed (plus some washed) cuttings from 34/10-1, 33/9-7 and 33/12-6 wells were analyzed routinely for hydrocarbon source characteristics. The results were transmitted in four reports which are listed later at the end of the Discussion.

Five oil samples from wells 34/10-1, 34/10-2, 34/10-3 and 33/9-7, and four tars found in cuttings envelopes from 33/9-7 and 33/12-6, were analyzed for geochemical "fingerprint" characteristics, and these were compared with selected cuttings from wells 34/10-2 and 34/10-3. The purpose was to identify oil families among the samples and to identify possible sources of the reservoired hydrocarbons.

Standard core samples are best for providing rock extracts to compare with olls, but we did not have any suitable ones for this purpose. Also, we did not even have usable cuttings samples from the Malm, which is a prime candidate as the major source of oll in this area.

This work was authorized in the Technical Service Job Authorization No. 1119 of March 19, 1979 by J. Barrier of Esso Exploration and Production Norway, Inc. Work on the study has been assigned to Exxon Production Research Job No. 11392.

ANALYTICAL PROCEDURES

Source Analyses

Hydrocarbon source analysis procedures are discussed in the individual well reports listed at the end of the Discussion. Basically, they include a measure of total organic carbon in the samples, plus one or more analyses of hydrocarbons present. If canned cuttings were available, determinations were made of hydrocarbon gases (C_1-C_4) , light gasolines (C_4-C_7) and on selected samples, heavy hydrocarbons (C_{15+}) .

Although visual kerogen description is not a chemical technique, it is an integral part of source evaluation and was included as a part of the "geochemical" analysis. The visual kerogen in the 34/10 Block samples was studied by transmitted light and described according to the so-called "Staplin Method", whereby alterations of certain spores and pollen are rated on a 1 to 5 scale, with 1 being immature, 5 metamorphosed, and the 2+ to 3 range being mature. Types of kerogen are identified as amorphous and algal (oil-prone), coaly or woody (gas-prone) and herbaceous (oil and gas).

"Fingerprint" analyses

Samples of the crude oils were "topped" by heating at 45°C for 19 hours to drive off the gasoline-kerosine compounds. The remaining heavy fractions were then treated with pentane to remove asphaltenes, and the pentane-soluble portions were separated by liquid column chromatography into saturates, aromatics, eluted NSO compounds and "noneluted NSO's". These results are given in Table 3 under "Gross Composition". The four tars were similarly analyzed, but topping was not necessary. The heavy saturate fractions were analyzed by gas chromatography (Figs. 5 thru 13).

Both the heavy saturate and heavy aromatic fractions were analyzed by mass spectrometry for the molecular types of compounds in them (Table 3). They were also analyzed by a different type of mass spectrometer for their carbon isotope values, expressed as parts per thousand $(^{\circ}/_{oo})$ deviation from the Pee Dee belemnite standard (Table 3). The molecular data and isotope data were plotted graphically (Figs. 2 and 3).

The light gasolines (C_4-C_7) in the crude oils were analyzed by gas chromatography (Table 4).

The canned cuttings provided the only samples we had that were adequate for "fingerprint" comparisons with crude oils. The dry cuttings samples were too small. Eight samples from 34/10-2 and four from 34/10-3 were sent to GeoChem Laboratories of Houston for heavy (C_{15+}) soluble organic matter analysis (Table 2). This consists of extractions of organic matter with methanol-methylene chloride solution and analysis of the extracts (after deasphaltening) by means of liquid column chromatography. Gas chromatograms were run on the heavy saturate fractions (Reports EPR.132ES.79 and EPR.134ES.79).

The twelve heavy (C_{15+}) hydrocarbon extracts from the cuttings were then analyzed by the same techniques described above that were used on the five crude oil samples and the four tar samples. Results are given in Table 2, and in Figures 2 and 4.

DISCUSSION

The analytical program of this study was in two phases. First, cuttings samples from the five wells (Fig. 1) were analyzed routinely for hydrocarbon source characteristics. These results were transmitted in the four EPR service reports listed at the end of this section. In addition, "fingerprint analyses" were used to compare five crude oils and four tar samples from these same wells with heavy hydrocarbons that were extracted from a suite of twelve lithologic samples taken in the 34/10-3 and 34/10-2 wells. The results on those comparisons are presented in this report. Although most of the emphasis here is on the comparisons of the hydrocarbons, a brief discussion of both phases of the study is included below.

A. Source Analyses

Canned cuttings from 34/10-2 and 34/10-3 were analyzed and graphic summaries of the results are presented in Figs. 14 and 15. Details were given in reports EPR.132E5.79 and EPR.134E5.79. Dry unwashed cuttings from 33/9-7 and 33/12-6, and "wet" samples from 34/10-1 were also analyzed and results were given in reports EPR.135ES.79 and EPR.138E5.79. The latter three groups of samples were not suitable for gas (C_1-C_4) or light gasoline analyses, and they were also too small for heavy hydrocarbon (C_{15+}) analyses. A few core samples supplementated the cuttings studies.

The results may be summarized as follows:

Well	Approximate Depth of Immature Zone (meters)	Unit and Maturity of Deepest Sample	Potential Good to Rich Source Beds When Mature*
33/9-7	3052+	Statfjord-Immature	Shales in Dunlin
34/10-3	2802+	Triassic-Immature	Shales in Brent, Dunlin
34/10-1	2343+	Statfjord-Immature	Shales in Dogger & Dunlin
34/10-2	2889	Triassic-Transitional	Shales in Dogger, Dunlin, Statfjord
33/12-6	3450(?)	Triassic-Transitional	Shales in Dogger, Dunlin, Statfjord

*All of the Jurassic intervals and some of the Cretaceous include shales that are at least fair potential sources.

8. Comparisons by "Fingerprint" Analyses

Five oil samples, 4 tars and 12 rock samples were analyzed for comparisons (Table 1). The oils included four from the Brent sands and one from the Statfjord. Results of their analyses are listed in Tables 3 and 4 and they are shown graphically in Figures 2 thru 13. Below are listed our conclusions and the reasons for them:

- 1. The five oils are from the same family.
 - a: The three Brent oils from 34/10-1, 34/10-3 and 33/9-7 have nearly identical isotope values (Fig. 2). The saturate fraction of the Brent condensate from 34/10-2 has about the same isotope value as the first three oils, but the aromatic fraction is about 1.5 /oo less negative. The Statfjord oil from 34/10-2 has both saturate and aromatic values about 1.5 /oo less negative than the other three oils (Fig. 2). The less negative values at 34/10-2 are tentatively attributed to a more mature state of the hydrocarbons there due to

greater depth of burial. These data do not preclude the 34/10-2 samples from being genetically related to the other three oils or to each other.

- b. The aromatic molecular patterns and the patterns of 4-ring naphthenes in the samples are similar (Fig. 3). However, the saturate molecular patterns are different due to alterations attributed to biodegradation. The paraffins are depleted in oils from 34/10-1 and 34/10-3 and there may be a slight depletion in paraffins in the 33/9-7 oil (Fig. 3). This paraffin depletion is strikingly shown in the suite of gas chromatograms of the saturate fractions (Figs. 5-9).
- The three Triassic tars from 33/12-6 are nearly identical to each other, but they differ enough from the oils to be classed as a separate family.
 - a. Their isotope values (Fig. 2), their patterns of molecular types (Fig. 3), and the gas chromatograms of their heavy saturate fractions (Figs. 11-13) are essentially identical.
 - b. Their carbon isotope values and their aromatic molecular patterns definitely differ from those of the oils (Figs. 2, 3).
- 3. One of the rock extracts from 34/10-3 correlates with the oils (Fig. 3 vs. Fig. 4), but the other three do not. Isotopically the Cretaceous extract from 1751 meters is similar to the oil from 34/10-3, and the molecular patterns of the 4-ring naphthenes and heavy aromatics are also similar to those of that oil. The saturate molecular patterns are similar in that both show a depletion of paraffins, and their gas chromatograms both show a notable depletion of paraffins (Fig. 8 this report vs. Fig. 2 in EPR.132ES.79). However, there were no measurable gasolines in the 1751-meter sample and the sample was so lean in organic matter and hydrocarbons that it was rated as a poor source. It seems likely that this extract represents leakage upward from the Brent Reservoir rather than indigenous hydrocarbons.
- Several of the 34/10-2 hydrocarbon extracts had isotope values similar 4. to those of the 34/10-2 oils (Fig. 2), and they came from Upper Cretaceous, Brent and Dunlin intervals. The Cretaceous samples are closest to the oils in their values (Fig. 2). In molecular patterns there is also a resemblance between extracts and oils (Fig. 3 vs. Fig. 4). For example, the Brent extract from 3125 meters (Fig. 4) has molecular patterns that closely match patterns that would be produced by mixing the oil and condensate from 34/10-2. The isotope values would also be comparable. These two samples correlate chemically, but we are not confident that the extract is indigenous. The reason for suspecting it might not be indigenous is the fact that by these same criteria most of the extracts, from the Cretaceous sample at 2285 ft. down to the Dunlin sample at 3275 meters, can also be correlated with the oils (Fig. 3 vs. Fig. 4) and this suggests contamination. The contamination could be natural, due to migration upward through the section, or it could be due to possible use of Statfjord~ derived oil as a mud additive. Shale core samples would help in resolving this problem.

Van basi newing !

- 5. The three Triassic tars from 33/12-6 have carbon isotope values similar to those of the extracts of the Brent shales from 34/10-3, but their molecular patterns are different from those of the extracts (Figs. 2, 3 & 4). The Brent tar from 33/9-7 has isotope values nearly identical to those of the 34/10-2 oil, and the saturate and aromatic molecular patterns of the two are similar. We conclude that this tar is from the same family as the oils, and is different from the three Triassic tar samples.
- 6. Data on an oil sample from 25/11-6 was included in this report for purposes of general comparisons. This oil falls between the 34/10-2 oil and the other three oils in isotopic values, and in molecular patterns it resembles these oils, except for a lesser amount of steranes ($C_{27}-C_{29}$ in the 4-ring naphthenes). This oil is assigned to the same oil family as the 34-Block oils.
- 7. The gasoline data (Table 4) do not help clarify the correlations. None of the oils correlate well with the rock extracts (see previous reports). The oil and condensate from 34/10-2 are distinctly different from the 34/10-1, 34/10-3 and 33/9-7 oils in their gasoline compositions. Gasoline data are influenced to considerable extents by migration and maturation histories, and are not always useful in "fingerprinting" samples. The 34/10-1 and 34/10-3 oils, which have similar geologic and geographic positions, also have similar gasoline patterns.

RELATED EPR SERVICE REPORTS

- *EPR.132E5.79 "Hydrocarbon Source Analyses of Samples from STATOLL 34/10-3, Norway" by R. E. Metter, August 1979.
- <u>*EPR.134ES.79</u> "STATOIL 34/10-2, Norway: Hydrocarbon Source Patterns" by R. E. Metter, August 1979.
- EPR.135ES.79 "Source Analyses on Samples from Wells 33/9-7 and 34/10-1, Offshore Norway" by R. E. Metter, August 1979.
- EPR.138ES.79 "Hydrocarbon Source Profiles, Mobil 33/12-6, Offshore Norway" by R. E. Metter, August 1979.
 - * Samples were all canned cuttings which were analyzed for hydrocarbon gases (C_1-C_4) and light gasolines (C_4-C_7) as well as for total organic carbon (TOC) and visual kerogen. Samples from 33/9-7, 33/12-6 and 34/10-1 were dry cuttings; therefore C_1-C_7 analyses were not made on these.

Table 1	Samples Incl	uded in C	orrelation	n Study			
Well	Depth (meters)	EPR No.	<u>Sample</u>	<u>Unit</u>	• Remarks	°API (at 60°F)	<u>. Sulfur</u>
OIL SAMPLE	S						
34/10-1	1788-92*	69423	DST-3	Brent	Separator Oil	28.7	. 51
34/10-2	 .	70334	DST-2	Statfjord	Flow 2; Pour Point about 21°C	32.0	.02
U.	~	70335	DST-5	Brent	Condensate from ga	s 42.4	01, ۱0,
34/10-3	1935~60*	70089	DST-2	Brent	Flow 2	29.3	. 32
33/9-7	(2491-93)?	69786	?	<pre>Brent(?)</pre>	Sample not clearly identified	37.2	
25/11-6	 .	69605	?		O psi Flash	23.4	.55
TAR SAMPLE	<u>s</u>						
33/9-7	2497+98	70210-U	cttgs	Brent	Tar and sand mixtu	re	
33/12-6	4356+59	70211-В	1 1	Triassic	1 4 ¹		
	4383+86	70211-C	ЭŘ	<u>8</u> 1-	ίχ.		ž.
	4512	70211-D	D	U.	ņ		
<u>CUTTINGS E</u>	XTRACTS						
34/10-2	2275-85	69783~J	cttgs	Cret.	See Report EPR.134	ES.79	
	2345-75	69783-M	12	ŝį.	39 ⁻		
	2700	69784-D	<u>45</u>	р.	\$3 ;		
	2975-3005	69784-N	÷1.	Brent	н [°]		
	3035	69784-0	4.6	<u>89.</u>	SI,		
	3125	69784-R	4	n.	\$ <u>6</u>		
	<u></u> 3185	69784-T	Ø. **	Dunl in	Ŋ.	Э¢	
	3275	69785-C	ŝi"	ũ.	48		
34/10-3	1751	70081-A	90;	U. Cret.	See Report EPR.13	2ES.79	
	1906+	70083-A	core	Brent	ši -		
	1945+	70083-B	core	<u>B</u>	¥)		
	2348	70081-R	cttqs	Dun] in	Ŵ		

*Perforated Interval

TABLE 2 Heavy ($C_{13,4}$) Molecular Compositions and Carbon Isotope Values of Cuttings Extracts

rational principal principal and the produced of the second of the secon

and the second s

n

(M.S. by R. Barrientos, C^{13}/C^{12} by P. Gregory)

		موسعة المحالية المسلم	والمستحدين والمسترد والمسترد والمراجع	34/10	1. Ž.	and the state of the state	معتمدة كالمحتمد		والمراجع والمراجع	34/10	- 3		
Bepth (meters)	2275-85	2345-75	2700	2975-3005	SEOC	3125	3105	3275	1521	1906+	1945+	2348	
EPP. No.	6-5183-J	69783-M	0~03/69	69784-18	69784-0	69784-8	69784-1	69785-C	70083-4	70083-A	70083-8	10081-6	
1100	Cret.	Cret.	Cret.	Brent	Brent	Brent	Dun't (n	Dun) lin	8. Cret.	Brent	Brent	al Lund	
lota) Organic Carbon {?) Solutte Organic Latter (gru) Composition of Soluble O.M.(*)	. 36 645	50 322	60(2) 669	3.17 2264	3.04 1534	2 55 1746	1-96 1647	2.15 777 8	1 (b) 3 F	2.1 975	7.1 2588	67 431	
Saturates" Aronatics Aronatics Filuted NSO's Asphaltenes Sulfur	ల్లి దర్శుల్ల జాలా సంగ్రాజుల్ల	23.5 27.5 20.8 20.8 20.8 20.8 20.8 20.8 20.8 20.8	2008 2008 2008 2008 2008 2008 2008 2008	22.2 22.2 26.2 26.2 26.5 26.5	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ج 20 % % % % 20 % %		2	22.22 22.22 22.22	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	20 2 0 0 0 9 0 0 0 0 9 0 0 0 0 0	22.3 26.7 18.1 22.0 11.3	
Saturate Molecular Types (2) Paraffins 1-Ring Rephthenes 2- 3- 5- 6- 6-	25.4 25.4 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	5-5-55× 5-8-55 5-8-55	* C C C A A A N * C C A A A N * C C A A A N * C C A A A A N * C C A A A A A A A A A A A A A A A A A	52.0 9.7.4 9.7.2 9	500000000 500000000 5000000000	6.00 2.00 2.00 4.00 4.00 4.00 5.00 4.00 5.00 5.00 5	6.55 6.55 6.65 6.65 6.65 6.65 6.65 6.65	207528 77076 707678 707678	<u>ઌૻઌ</u> ૱ઌ૿૱ૻ૱ ઌ૾ૡૼૡૼઌૻઌૻઌ૽ઌ	8.09.65.00 4.09.67.00 4.09.67.00	222.46 222.46 222.46 25.7 25.7 25.7 25.7 25.7 25.7 25.7 25.7	
4-Ring Naphtheres 22 * * * 23 * * * 23 * * * 24 * * 25 * * * 26 * * 27 * * 29 * * 29 * * 29 * * 29 * *	20100000000000000000000000000000000000		, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	శాల అర్హాలా నిడిని గారి ఇం తిత్త రాజుగా రాగి జీరిందిం కారింగి		C	$\phi_{\chi\chi}$	ల ఈ రాజు ల ల ల ల ల ల ల ల సాదారాలు ల ల ల ల ల ల ల ల	, , , , , , , , , , , , , , , , , , ,		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	෮෫෪෪෪෪෫෫෫෫ඁ෯෫෪෪ ෪ඁ෫ඁ෯෫෫෫ඁ෯෪෪ඁ෯෫෯෫෯ඁ ෪ඁ෫෯෫෫෫ඁ෯෪෪෯ඁඁ෯ඁ෫෯ඁඁ	
Acomatic Molecular Types (3) Renezenes (2) Indanes (1) Indanes (1)	9000 + 6000 - 40 9000 + 6000 - 40 900 + 6000 - 700	8 22 22 22 22 20 20 20 20 20 20 20 20 20		×××±+××∞±====== ××××=≈×=========================	∾~≈~ ° ,5°,5°,0°,0°,0°,0°,0°,0°,0°,0°,0°,0°,0°,0°,0°	90000000000000000000000000000000000000	<u>⊼</u> ≈₹468%200000 0×-€0%600-00	సార్థ జిల్లంంంం శదిగుత్తారంంంం	90.94 .00 80.000 80.000 80.000 80.000 80.000 80.000 80.000 80.0000 80.0000 80.0000 80.00000 80.00000000	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		008-2,208 2,208-2,2000 2,208-2,0000	
Carteon Isotope Values (o/oo from PDB) Saturates Aromatics	-28.3 -21.1	-28.3	-28.5	-28.5	-24.2 -26.8	-28.8	-28. R -27.4	-78. <i>7</i> -26.8	-29.8 -28-3	-27. 2 -26. 8	-27 J -26 B	-27.5 	

, i.

ş . .

> for gas thromatograms of heavy saturates. *See Figs.

Table 3 Heavy ($C_{15,*}$) Molecular Compositions and Carbon Fsutope Values for Dils and Tark (Chromatography by Everett, M. S. by Barrientus, c^{13}/c^{12} by Gregory)

11 Mail	34/10-1	34/10	2-2	34/10-3	33/9-1	<u>5-11-5</u>	33/9-7	e A	3/12-6	
Depth (neters)	1783-92	ţ	ł	1935-60			2498	4359	4386	4512
EPR No.	69423	70334	70335	10089	69786	69605	70210-0	70211-8	70231-C	0-11202
Sample	DS1-3	2~120	057-5	DS1-2	(<i>i</i>)t~isa	t ~1	Jar*	tar*	Tar*	Jark
<u>unit</u>	Brent	Statfjord	Brent	Brent	Brent(?)	· 💊 .	Brent	Triassic	Triassic	Urlass lo
C ₁₅₊ in total Of (%)	11.1	80.7	49.7	72.4	65.1	86.9	ś,	t;	ŧ	ž.
Gross Composition (2)										
Saturates* Aromatics Eluted NSU's Muneluted NSO's Asphaltenes	87. 20 20 20 20 20 20 20 20 20 20 20 20 20	22 23 24 2 - 6	0.07 0.05 0.04 0.05 0.05 0.05 0.05 0.05 0.05	ج 8.6 9.6 2.6	49.0 22.3 8.7 2.5 2.5		8 0.5 6.5 2.9 2.9	4 4 5 5 4 5 5 4 5 5 4 5 6 6 6 6 6 6 6 6		14.7 17.4 19.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 2
Saturates (z)										
Paratfins 1-King Naphthenes 2-King Naphthenes 3-King Naphthenes 4-Ring Naphthenes 5-Ring Naphthenes 6-Ring Naphthenes	200777 200777 200777	56566666 5655666666 8655		20. 20. 20. 20. 20. 20. 20. 20. 20. 20.		400000000 20000000000000000000000000000			800000 800000 800000 800000	40.6 15.4 7.2 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2
4-Ring Naphthenes										
20 Carbon Atoms 21 Carbon Atoms 22 Carbon Atoms 23 Carbon Atoms 24 Carbon Atoms 25 Carbon Atoms 26 Carbon Atoms 27 Carbon Atoms 28 Carbon Atoms 29 Carbon Atoms 31 Carbon Atoms 32 Carbon Atoms 32 Carbon Atoms 32 Carbon Atoms	త~తందశందరనేదాలు లుగాలువజంగులువుగుత	1.5 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0	111100000 10110000 10000 10000	ది తగుత ఇశాత రాజిత తరాగ ది తగుత ఇశాత రాజిత తరాగు త		౿౸౷ౢౚ౷ౚౚౚ౽ౚ౽౽౽ ౚౢౢౢౢౢౢౢౢౢౢౢౢౢౢౢౢౢౢౢౢౢౢౢౢౢౢ	<u></u>	ాతాళ్ళింతరాతరాస్తుంది హౌరోజింగ తతరారంగారా హ	, , , , , , , , , , , , , , , , , , ,	నాలు దారాజుత్త త్రాదాద్ద తెల్లా దారాజుత్త తెరాదాద్ద తెల్లాని
Aromatics (1)						×				
Benzenes (B) Indenes (I) Indenes (I) Naphthalenes (N) Tetrahydrophenauthrenes (D) Phenanthrenes (P) Pyrenes (P) Chrysenes (P) Chrysenes (C) Benzuthiophenes (BB) Thiophenophenes (D8)	222 222 222 222 222 222 222 222 222 22	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	822502800000 075028000000 0750280000000000000000000000000000000000		90000000000000000000000000000000000000		<u></u>	√.4 √.4 √.4 √.4 √.4 √.4 √.4 √.6 0.6 <p0.6< p=""> <p0.6< p=""> <p0.6< p=""> 0.6 <p0.6< p=""> <p0.6< p=""> <p0.< td=""><td></td><td>య ఉండ ని సిదరం లాల్ల గు సంగాత సందరం చెల్ల</td></p0.<></p0.6<></p0.6<></p0.6<></p0.6<></p0.6<>		య ఉండ ని సిదరం లాల్ల గు సంగాత సందరం చెల్ల
Carbon Isotope Values (% from PD8)										
Saturates Aronatics	-29.4 -28.6	-28.3	-27.3	~29.4 - 28.6	-29.7 -29.0	-28.9 -28.2	-28.2 -27.5	-27.0	-27.2	27.22

3

.

¢

Table 4 Light Gasolines $(c_4 - c_7)$ of Oils

```
69423 34/10-1 DST-3 1788-1792 meters Brent
```

	TOTAL	NORM		TOTAL	NORM
a sector and a fight of the late	FERGENI	PERUENT	و پر مشوره در زمین	FERLENT	PERUENI
METHANE	0,000	2	CHEX	0.492	10.32
ETHANE	0.000		33-DMP	0.000	0, 00
PROPANE	0. 032		11-DMCP	0. 134	2.76
IBUTANE	0, 068	1.40	2-MHEX	0.000	0, 00
NBUTANE	0.087	1.80	23-BMP	0. 183	3. 79
IFENTANE	0. 224	4.63	3-MHEX	0.221	4.56
NPENTANE	0.116	2. 39	1C3-DMCP	0.131	2.70
22-DME	0. 022	0.46	1T3-DMCP	0.111	2.29
CPENTANE	0.071	1.47	1T2-DMCP	0.215	4, 44
23-DMB	0, 050	1.03	3-EPENT	0.000	Ŏ. 60
2-MP	0.179	4.12	224-TMP	0.000	0.00
3-MP	0.125	2.59	NHEPTANE	0.162	S. 39
NHEXANE	0.134	2.77	1C2-DMCP	0.031	Q. 63
MCP	0. 358	7,40	MCH	0, 994	20.54
22-DMP	0.000	0,00	ECP	0.024	0.49
24-DMP	0.047	0, 95	BENZENE	0.037	0.80
.223-TMB	0,000	0, 00	TOLUENE	0.596	12.31
	T	JTALS	SIG COMP RATIO	35	
ALL COM	IP 4	1. 870	C1/C2 1.9	3	
GASOLIN	ie 4	1, 839	A /02 1.34	4	
			D1/D2 2.8	7	
			C1/D2 7.3	7	
			PENT/IPENT	0. 52	
			CH/MCP 1.	39	

70334

ALL COMP GASOLINE

4.823 4.753

OFF. NORWAY 34/10-2 DST-2 STATEJORD

	TOTAL	NORM		TOTAL	NORM
METHANE	0.000	Sin Base 1 Striver Succe 2 - 9 - 9	CHEY	n 453	0 50
FTHANE	0 008		33-DMP	0 000	0.00
PROPANE	0.062			0 107	7.74
TRUTANE	0.037	0.77	2-MHEX	o ôôô	a aa
NEUTANE	0.132	2.77	23-DMP	0.000	0.00
IFENTANE	0.095	2.08	3-MHEX	0.093	7 07
NPENTANE	0. 160	3.36	1C3-DMCP	0. 026	0 SS
22-DMB	0,000	0.00	1T3-DMCP	0.026	0.55
CFENTANE	0, 033	0.69	IT2-DMCP	0.061	1. 27
23-DMB	0, 000	0.00	3-EPENT	0, 000	0.00
2-MP	0.101	2.13	224-TMP	0, 000	0.00
3-MP	0, 070	1.47	NHEPTANE	0. 388	8.16
NHEXANE	0.266	5.59	1C2-DMCP	0,000	0.00
MCF	0,183	3.85	MCH	1.062	22. 35
22-DMP	0, 000	0.00	ECP	0.000	0.00
24-011F	0, 000	0.00	BENZENE	0. 353	7.42
223-TMB	0.000	0, 00	TOLUENE	1.098	23, 10
	тс	TALS	SIG COMP RATI	03	

C1/C2	5.49	
A /D2	6.65	
D1/D2	14.75	
C1/D2	16.50	
FENT/IF	ENT 1.61	
CH/MCF	2.48	

70335	OFF.	NORWAY	34/10-2	DST-5	BRENT CONDE	NSATE	
METHA ETHAN PROPA IBUTA IBUTA NBUTA IFENT 22-DM 23-DM 23-DM 23-MP NHEXA MCP 22-DM 24-DM 24-DM	F NE NE NE NE ANE ANE ANE B NE P B MB	TOTAL ERCENT 0,000 0,002 0,011 0,008 0,035 0,035 0,054 0,110 0,000 0,027 0,018 0,138 0,073 0,073 0,073 0,277 0,000 0,024 0,024 0,000	NORM PERCENT 0.07 0.32 0.50 1.02 0.00 0.24 0.17 1.27 0.86 3.76 2.58 0.00 0.22 0.00		CHEX 33-DMP 11-DMCP 2-MHEX 23-DMP 3-MHEX 1C3-DMCP 1T3-DMCP 1T2-DMCP 3-EPENT 224-TMP NHEPTANE 1C2-DMCP MCH ECP BENZENE TOLUENE	TOTAL PERCENT 0.773 0.000 0.319 0.000 0.104 0.305 0.121 0.097 0.204 0.000 1.303 0.033 2.751 0.000 0.453 3.192	NORM PERCENT 7, 13 0, 00 2, 94 0, 00 0, 98 2, 92 1, 11 0, 99 1, 68 0, 00 1, 69 1, 68 0, 00 1, 01 0, 31 25, 35 0, 00 4, 18 29, 41
AL GA 70089	L COMP SOLINE	TC 1C 1C NORWAY)TALS). 865). 852 34/10-3	31 (/ / / / / / / / / / / / / / / / / /	IG COMP RATION 1/C2 5.2: 1/D2 5.5: 1/D2 11.9: 1/D2 12.5: PENT/IPENT CH/MCP 2.5: M. DST-2	03 3 7 2 7 2.03 77 Brent	
METHA ETHAN PROPA IBUTA NBUTA IPENT 22-DM CPENT 23-DM 3-MP 3-MP 3-MP 22-DM 22-DM 22-DM 22-DM	F INE INE INE INE INE ANE IB INE IF	TOTAL ERCENT 0,000 0,013 0,019 0,062 0,054 0,176 0,062 0,044 0,062 0,062 0,062 0,062 0,062 0,062 0,062 0,062 0,063 0,145 0,100 0,053 0,362 0,000 0,020	NORM PERCENT 1. 22 1. 05 3. 45 0. 87 0. 00 1. 21 0. 58 2. 86 1. 97 1. 03 7. 12 0. 00 0. 35		CHEX 33-DMP 11-DMCP 2-MHEX 23-DMP 3-MHEX 1C3-DMCP 1T2-DMCP 1T2-DMCP 3-EPENT 224-TMP NHEPTANE 1C2-DMCP MCH ECP BENZENE	TOTAL PERCEN1 0. 515 0. 000 0. 155 0. 000 0. 185 0. 135 0. 135 0. 135 0. 135 0. 237 0. 000 0. 000 0. 144 0. 000 1. 272 0. 031 0. 000	NORM PERCENT 10, 14 0, 00 3, 05 0, 00 3, 55 3, 33 2, 65 2, 32 4, 67 0, 00 2, 83 0, 00 25, 03 0, 61 0, 00

TOTALS

0.00

ALL COMP	5.114
GASOLINE	5.082

0. 000

24-DMP

223-TMB

SIG COMP RATIOS

TOLUENE

C1/C2	2. 28
A /D2	1. 16
D1/D2	3. 98
C1/D2	11. 47
PENT/IF	ENT 0.25
CH/MCP	1.42

19.94

1.013

	mp	m,	1
07	1	\mathbf{C}	<u> </u>

' 86	OFF.	NOF	WAY	NORTH	SEA	33/9-7	WELL	DOT-	-1 67)
×		TOT	TAL	N	JRM				TOT	AL
	ş	PERC	ENT	PFR	CENT			1	PERC	ENT
METHANE	2	O.	000				CHEX		75.	799
ETHANE		1.	582				33-DM	P	0.	000
PROPANE	2 - 2	20.	681				11-DM	ICP	32.	313
IBUTANE	<u>.</u>	11.	339	1.	12		2-MHE	X	16.	469
NEUTANE		49.	114	4	74		23-DM	F	Q.	000
IPENTAN	IE	36.	626	З.	53		3-MHE	X	34.	373
NPENTAN	IE.	85.	602	8.	26		103-0	IMCF	15	311
22-0MB		O .	000	Ο.	00		173-0	MCF	10.	867

10. 382

4. 552

38.815

23. 881

87.193

54. 135

0.000

3.678

0.000

	TOTAL	NORM
	PERCENT	PERCENT
CHEX	75. 799	7.31
33-DMP	0.000	0, 00
11-DMCP	32. 313	3.12
2-MHEX	16. 469	1. 59
23-DMF	0.000	0.00
3-MHEX	34. 373	3.32
1C3-DMCF	15 311	1.48
1T3-DMCP	10.869	1.05
1T2-DMCP	26. 217	2. 53
3-EPENT	0.000	0.00
224-TMP	0.000	0.00
NHEPTANE	112.361	10.84
1C2-DMCF	0.000	0.00
MCH	149.079	14.38
ECF	2.841	0.27
BENZENE	28. 351	2.73
TOLUENE	127.085	12.26

	TOTALS	SIG COMP	RATIOS
ALL COMP	1058 867	C1/C2	2. 57
GASOLINE	1036.605	A /D2	5.81
		D1/D2	4. 52
		C1/D2	7.96
		PENT/10	CRIT -

1.00

0. 44.

3.74

2.30

8. 41

5. 22

0.00

0.35

0.00

PENT/IPENT 2.34 CH/MCP 1.40

معديدة المداد		
the second second second		
69600	5	69605

CPEN FANE

23-DMP

NHEXANE

MCP

22-DMP 24-DMP

223-TME

2-MP

3-MP

25/11-6

	TOTAL	NORM		TOTAL	NORM
	PERCENT	PERCENT		PERCENT	PERCENT
METHANE	0.000		CHEX	0.443	15.97
ETHANE	0.009		33-DMP	0.000	0.00
PROPANE	0. 023		11-DMCP	0.03.	1.16
IBUTANE	0.045	1. 64	2-MHEX	0.000	0.00
NBUTANE	0.059	2.12	23-DMP	0. 122	4.42
IPENTANE	0.074	2.66	3-MHEX	0. 052	1.86
NPENTANE	0. 044	1. 60	1C3-DMCP	0, 068	2.47
22-DMB	0.011	0.39	1T3-DMCP	0. 260	2.15
CPENTANE	0,036	1. 29	1T2-DMCP	0. 10	3.97
23-DMB	0. 032	1, 17	3-EPENT	0, 000	0 00
2-MP	0.075	2.72	224-TMP	0, 000	0,00
3-MP	0.051	1.84	NHEPTANE	0. 024	0.85
NHEXANE	0.035	1 27	1C2-DMCP	0.015	0. 53
MCP	0.253	9.13	MCH	0.926	33, 43
22-DMP	0.000	0.00	ECP	0.014	0, 50
24-046	0 061	2 21	BENZENE	0 017	0.61
223-TMB	0,000	0.00	TOL UENE	0.111	4. 02

TOTALS

ALL COMP	2. 803
GASOLINE	2. 770

SIG COMP RATIOS

C1/C2	2. 77
A /D2	1.14
D1/D2	2.48
C1/D2	27.14
PENT/IF	PENT 0. 60
CH/MCP	1. 75

FIG. 1 - SAMPLE LOCATIONS.

FIG. 2 - CARBON ISOTOPE VALUES OF OILS, TARS AND CUTTINGS EXTRACTS.

.

FIG. 3 - OILS AND TARS: CARBON ISOTOPE VALUES AND MOLECULAR TYPES OF COMPOUNDS IN CIS+ FRACTIONS.

ŝ.

1.

Heavy Saturates, Brent Sand, 34/10-1, DST-3 Fig. 5

يتر من

Fig. 6

Heavy Saturates, Brent Sand, 34/10-3, DST-2

Fig. 8

g. 9 Heavy Saturates, Brent Sand, 33/9-7, DST-1(?)

Fig. 9

Fig. 10

Heavy Saturates, Brent Sand, $33/9\mathchar`-7,$ tar from cuttings, 2498 m.

F39- 3

Fig. 12 Heavy Saturates, Triassic, 33/12-6, tar from cuttings, 4386 m.

12

