WELL TEST EVALUATION REPORT Chapter 8

TABLE OF CONTENTS

LIST OF FIGURES

LIST OF TABLES

LIST OF APPENDICES

8.1	SUMMARY
8.2	INTRODUCTION
8.2.1	Background
8.2.2	Objectives
8.3	OPERATIONS
8.3.1	RFT Survey
8.3.2	Oil Zone Test
8.4	EVALUATIONS
8.4.1	RFT Survey
8.4.2	Oil Zone Test

8.5 RESULTS AND CONCLUSIONS 8.5.1 RFT Survey 8.5.2 Oil Zone Test

FIGURES **TABLES APPENDICES**

LIST OF FIGURES

Figure Number <u>Title</u>

8.2.1	Draugen Top Reservoir Depth Map
8.2.2	Well Results 6407/9-5
8.3.1	Tubing Conveyed Perforating String
8.3.2	Production Test String
8.3.3	Oil Zone Test Performance
8.4.1	RFT Plot of Measured Reservoir Pressure
8.4.2	RFT Datum Reservoir Pressure
8.4.3	Drawdown Test Superposed Log-Time Plot (PT-1D)
8.4.4	Build up Test Superposed Log-Time Plot
	HP/Valstar 17/711/125 (PT-1D)
8.4.5	Build up Test Superposed Log-Time Plot
	HP/Valstar 30/784/098 (PT-1D)
8.4.6	Bottom Hole Pressure During the Production
	Test Period PT-1D
8.4.7	Build up Test Superposed Log-Time Plot
	Strain Gauge (Raw Data) PT-1D.
8.4.8	Build up Test Superposed Log-Time Plot
•	Strain Gauge (Tide Corrected Data) PT-1D

LIST OF TABLES

Table Number Title

8.3.1	Gauge Summary Oil Zone Test PT-1
8.3.2	PT-1 Samples Collected
8.4.1	RFT Survey Data

LIST OF APPENDICES

Appendix	Title
A	Sequence of Events
В	Summary of Separator Data
С	Evaluation of Oil Zone Test PBU Survey (PT-1D)

8.1 SUMMARY

Well 6407/9-5 is the fourth appraisal well on the Draugen structure.

Well 6407/9-5 is drilled on the southern culmination to evaluate the development, quality and lateral continuity of the reservoir Frøya sands, to quantify the crestal oil production potential and to acquire reservoir fluid samples.

Prior to testing several runs were made with the RFT tool; confirming the reservoir pressure seen in earlier wells, 2392 psia at a datum of 1630 m.s.s. The OWC was established at 1639 m.s.s in line with the field average.

The oil zone was perforated from 1622 to 1629 m.s.s. and subsequently grayel packed. Post stimulation rates of up to 7600 stb/d of 40° API oil was achieved. Pressure build-up survey evaluation indicated a permeability of 5514 md and a skin of 51. Damage skin was observed to be 30. The calculated productivity index after gravel packing was 140 stb/d/psi with an ideal PI of 639 stb/d/psi. Reservoir pressure from the build-up survey was 2394 psia at datum.

Tidal effects were superimposed on the build up as in earlier wells. Filtered build up data was characterised by a rising slope for which no consistent explanation is available. A more in depth study using a numerical simulator is planned.

8.2 INTRODUCTION

8.2.1 Background

Well 6407/9-5 is the fourth appraisal well on the Draugen structure in block 6407/9 (See Fig. 8.2.1). Wells 6407/9-1, 6407/9-2 and 6407/9-3 delineated an areally extensive oil accumulation in a relatively thin Upper Jurassic Frøya sandstone formation. Net oil sand thicknesses in these wells were 39, 12 and 34 m respectively. The oil gravity was 40° API.

Well 6407/9-4, located on the west flank of the northern accumulation (Fig 8.2.1) confirmed pinch out of the Frøya formation and encountered similar oil in the underlying Haltenbanken formation. The initial conditions of pressure and oil water contact (1638.5 m.s.s.) were similar to those in the Frøya formation accumulation.

All four appraisal wells were tested at rates of up to 15,700 b/d (Well 6407/-3). The optimally completed well 6407/9-3 exhibited 674 D-ft permeability thickness product.

The objectives of this well, 6407/9-5, were to delineate top structure and rock qualities in the southern culmination (Frøya south). The well was drilled during September/October 1985 and encountered an 18 m oil column between 1621 and 1639 m.s.s in excellent quality Frøya Unit I sands (Fig. 8.2.2).

This report describes the operational details and evaluation of the test carried out on this well.

8.2.2 Test Objectives

The objectives of testing the well were:

- to quantify the crestal oil production potential and rock properties on the southern culmination
- 2 collect representative reservoir oil samples.

8.3 OPERATIONS

8.3.1 RFT Survey

The objectives of the RFT (Repeat Formation Tester) survey were: to define oil and water gradients, measure initial formation pressures in the Frøya and Haltenbanken formations, and to collect a fluid sample from the hydrocarbon bearing Frøya formation.

The RFT tool of Schlumberger was equipped with a 10 000 psi strain gauge and a 10 000 psi quartz crystal gauge.

A total of 14 pretests were carried out successfully. Attempts to obtain a segregated oil sample were eventually abandoned after probe plugging (twice) and seal failure in the unconsolidated formation.

8.3.2 Oil Zone Test

8.3.2.1 Sequence of Events

Prior to testing the interval 1635-41 m.s.s at the oil water contact was squeezed with cement to remedy an interpreted poor primary cement bond. Significant bond improvement was found in a subsequently run CBL/VDL/GR. The well was perforated under 325 psi drawdown from 1622 - 1629 m.s.s using a 6" tubing conveyed gun (12 shots per foot) (Fig. 8.3.1).

The well was backsurged over a fully open adjustable choke for 10 bbls and then cleaned up on a 28/64" choke at rates of between 200 and 400 stb/d of oil. The final FTHP was 484 psig, BSW 0%, H_2S Oppm and CO_2 0.35%. The well was then shut in downhole for a 2 hour pressure build-up. A summary of the sequence of events and the separator data in the flow period and the ensuing periods is given in Appendices A and B.

The well was killed and the string recovered. The perforated interval was gravel packed using 10/20 mesh gravel and the work string recovered. The tie back packer and tail pipe were run, however it was not possible to smash the flapper valve and seal off the string in the gravel pack FAB-1 packer. The flapper valve was smashed with drillpipe and 100 bbls of brine were lost before a viscous chalk laden pill was placed. The tie back packer assembly and production test string were then run (Fig. 8.3.2).

The well was flowed at rates of 1000 stb/d to 2000 stb/d to stabilise the gravel pack (PT-1B). The well was then stimulated with 100 bbls of 15% HCL. Well clean up proceeded by increasing the rate at steps of 2000 b/d to achieve a maximum rate. A maximum rate of 7600 stb/d was achieved on a 1" choke.

Fig 8.3.3 shows the test performance for this and ensuing flow periods. The producing separator GOR was 102 scf/stb at a separator temperature of 70°F and at a separator pressure of 130 psi, BSW was 0%, the oil gravity 40°API and the gas gravity 0.814 (air=1).

3 gauges (2 Hewlett-Packard crystal gauges and 1 Flopetrol SDP strain gauge) were run and hung off downhole.

A single rate drawdown test (PT-1D) was carried out. During the drawdown period, the well was flowed at a rate of 7000 stb/d on a 56/64" choke for 24 hours. Eleven sets of separator samples were taken during this flow period. Over the period, the FTHP was 310 psig, the separator GOR 55 scf/stb, BSW 0%, oil gravity 40° API and gas gravity 0.784 (air=1). The well was then shut-in for a 24 hour build up.

Gauges were recovered and 3 bottom hole samples taken whilst flowing the well at 330 stb/d. Agreeing bubble points (225 psig at 40° F) were measured on these samples.

On completion of the testing the well was suspended as a possible future oil producer.

8.3.2.2 Pressure Gauges

Pressure gauges were run during the initial flow period (back surge) PT-1A, the main flow period and shut-in period of PT-1D, and the bottom hole sampling period PT-1E. Two types of gauges: Hewlett Packard crystal gauges and a Flopetrol strain gauge were run in the production test. One Hewlett-Packard crystal gauge and 2 Valstar gauges were run in PT-1A. Two Hewlett-Packard crystal gauges and 1 Flopetrol strain gauge were run in the main flow period and build up (PT-1D). A GRC strain gauge was run during the bottom hole sampling (PT-1E).

The Hewlett-Packard crystal gauges run in PT-1D were unsatisfactory as both gave pressure data that were highly unreliable. Analysis of the pressure data obtained during PT-1D could only be done using the Flopetrol strain gauge data. A summary of the gauges run during the various tests is listed in Table 8.3.1.

8.3.2.3 Fluid Sampling

Details of the samples collected during the oil zone test are given in Table 8.3.2.

A total of 3 oil BHS and 4 sets of recombined oil and gas surface samples were recovered. A full PVT analysis has been carried out on a duplicate bottom hole sample taken during PT-1E. Key results are as follows:

Bubble point Pressure: 486 psig at 160°F Initial Oil FVF 1.19 rb/stb GOR (Differential) 234 scf/stb 40°API Oil viscosity 0.68 cps

This result confirms the trend of declining bubble point and GOR from north - north east to south - south west across the Draugen structure.

8.4 EVALUATIONS

8.4.1 RFT Survey

A common water gradient of 0.443 psi/ft was obtained throughout Frøya and Haltenbanken formations and is identical to the gradient observed in previous wells (6407/9-1, 2, 3, 4) (See Table 8.4.1, Fig. 8.4.1 and 8.4.2). An oil gradient of 0.325 psi/ft is also identical to the gradient observed in other wells. Calculated datum pressure (at 1630 m.s.s) was 2391 psia using HP gauge data, very much in line with the previously established datum pressure of 2392 psia.

8.4.2 Oil Zone Test

During the back surge and pressure buildup (PBU) after perforation of the oil zone, two of the three gauges successfully recorded pressure data. No strain gauge was used in this period as it had been shown in previous production tests on wells 6407/9-2, 3, and 4 that no useful information could be gathered by the strain gauge because large pressure fluctuations made any analysis impossible. The kh and skin

cannot be evaluated independently from the backsurge. The average PI observed was 433 stb/d/psi, using a final build-up pressure of 2393 psia, an average flowing pressure of 2392.1 psia and an oil flowrate of 380 stb/d.

Transient state drawdown analysis of the main flow period was as usual impossible in this very high permeable rock due to slight, continuous cleaning up. (See Fig. 8.4.3).

After the single rate drawdown period, a 24 hour build survey was recorded successfully by the Flopetrol SDP strain gauge whereas the two Hewlett-Packard gauges failed to record useable pressure data (See Fig 8.4.4 and 8.4.5).

No wellbore storage effects were present as a downhole shut-off tool successfully eliminated wellbore storage. Fig. 8.4.6 shows the pressure response of the reservoir over the length of the test period.

Fig. 8.4.7 shows the superposed log time plot of the PBU as recorded by the Flopetrol strain gauge. Tidal effects were clearly seen towards the end of the build up period. These effects were filtered out using a cosine function with an amplitude of 0.25 psi and high tide time of 0030 hours. The amplitude was estimated from the peaks and the trough of the tidal effect at the end of the build-up. A superposed log time plot of the filtered data is shown in Fig. 8.4.8.

A detailed analysis of the filtered data from the PBU is given in Appendix C. For analysis the total Frøya formation drained is 161 ft. From Fig 8.4.8 it is clear that two straight lines can be drawn through the early and late pressure data respectively. The first straight line (points 32 to 60) yielded a kh of 887 D-ft which corresponds to an average permeability of 5514 md. The second straight line (points 65 to 130) yielded a kh of 411 D-ft which corresponds to an average permeability of 2559 md.

A change in slope between these two lines is quite apparent. The slope of line 2 is approximately twice that of line 1. This change in slope was detected at about 4.68 hours into the build up test. If the change in slope is due to a reservoir feature, i.e. a fault, the distance of the event from the wellbore can be estimated from:

$$L = \left(\frac{0.0002637 \text{ ktp}_2}{4 \text{ Ø } \mu \text{ C}_t \left(\text{t}_D / (2L/r_w)^2 \right)} \right)^{0.5}$$

where

k = permeability, md : 5514 tp = producing time, hours: 24.03 ø = porosity fraction: 0.3 μ = viscosity, cp.: 0.67 C_t = Total compressibility, $\frac{1}{psi}$: 20 X 10⁻⁶

 $t_{\rm D}$ (2L/rw) 2 : 2.5 (value from Fig. C.2 pg. 194 "Advances in Well Test Analysis" R.C. Earlougher, Jr. Monograph 5, SPE-AIME 1977.)

From the above equation a linear discontinuity was detected at 932 feet from the wellbore.

The cause of the slope change could be due to many factors, the most obvious being a large change in the thickness of the interval drained, the presence of a sealing fault or an abrupt change in permeability. These factors are not supported by geological evidence. From seismic data, the fault closest to the well (Fig 8.2.1) is too small to cause a large thickness change or be sealing.

Layering could also be a possible reason for the change in slope. For the sake of analysis, the total interval drained included both Frøya units (Units I and II). Data from cores in all wells have indicated that Unit I has much higher permeability than Unit II. As the well was completed in Unit I, some element of crossflow between Unit I and Unit II is to be expected. This however, is not expected to be an important effect as the permeability-thickness product of Unit II is rather small compared to that of Unit I.

Residual tidal effects may also contribute to the slope change. These effects are qualitative and are assumed, for the sake of analysis, to have been filtered out by the cosine function.

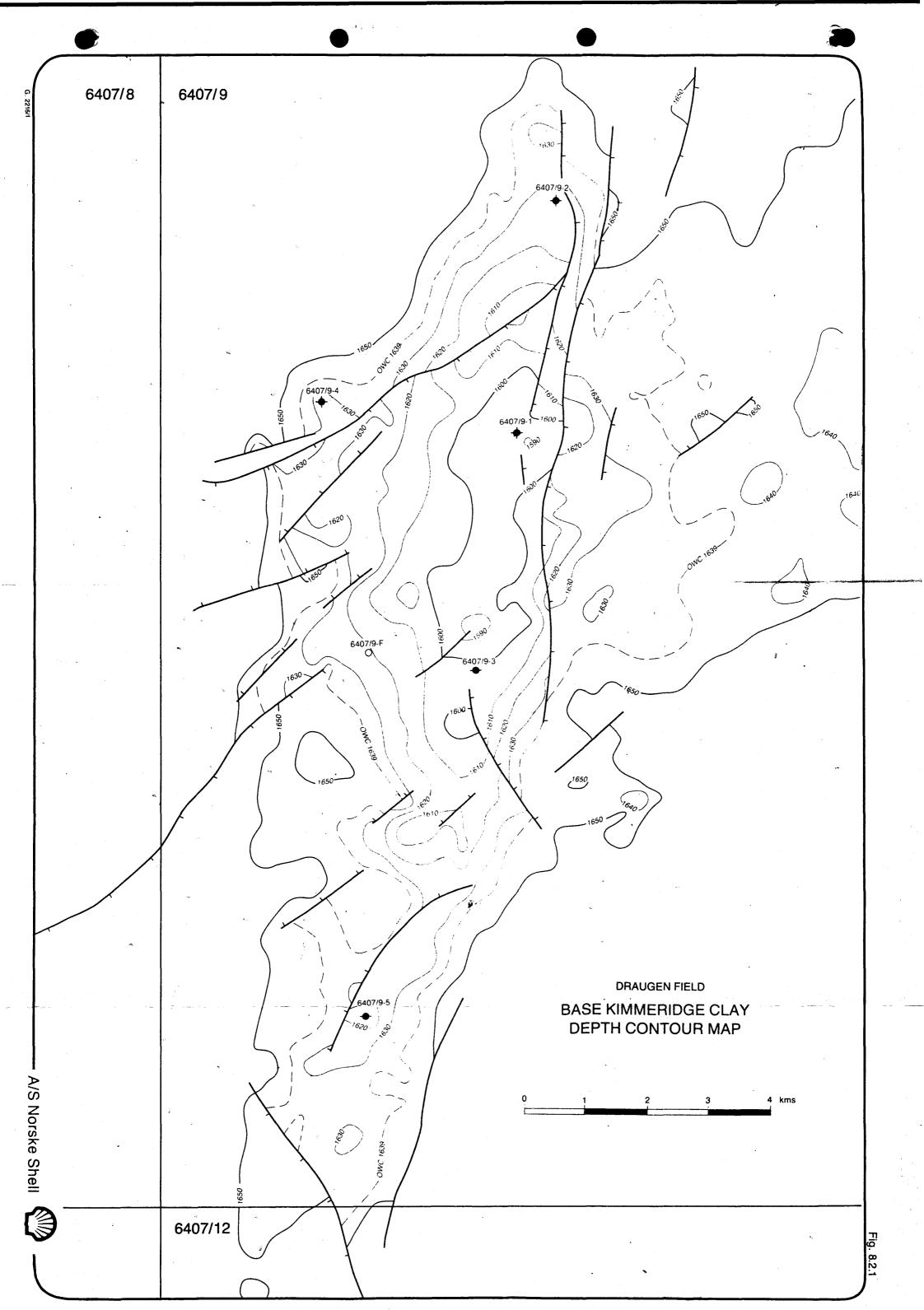
Multifluid situations could also be a contributing factor. This could come about due to cone development during the flow periods of the production test. Cone development and its effect on the build-up period of this production test could be studied with the aid of a single well numerical simulation model.

In this report the most obvious case, reservoir heterogeneity, is the basis of the analysis. As this well is outside the main development area, a detailed study of all the possible contributing factors contributing to the change in slope will be carried out in due time.

Total skin for the flow period of PT-1D using the first straight line in Fig 8.4.8 was 51. A partial penetration skin of 21 was calculated, thus damage or mechanical skin was 30. The flowing bottom hole pressure was approximately 2345 psia over the last 7 hours of the flow period. A PI of 140 stb/d/psi was calculated, with an ideal PI (skin = 0) of 639 stb/d/psi.

Reservoir pressure established during the RFT survey was 2391 psia at datum see Table 8.4.1. Extrapolation of the second straight line and correcting to datum gives a datum presure of 2394 psia. This is within the accuracy of the tools.

8.5 RESULTS AND CONCLUSIONS


8.5.1 RFT Survey

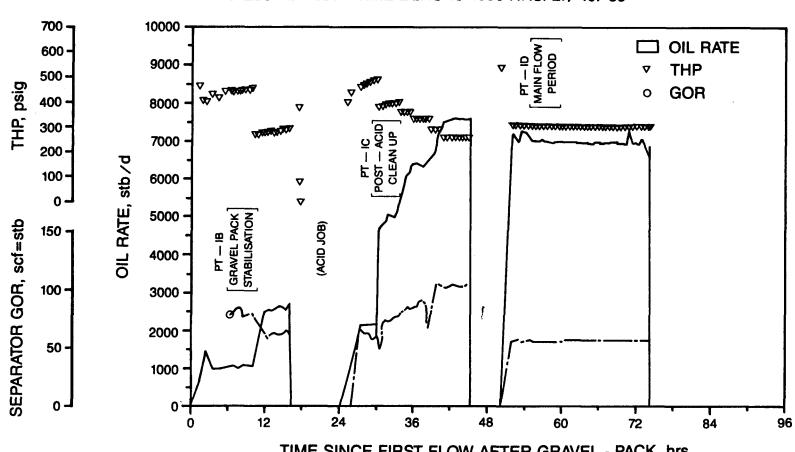
The oil and water gradient of 0.325 and 0.443 psi/ft respectively, were identical to the previous values obtained in wells 6407/9-1, 2, 3 and 4.

- The Frøya and Haltenbanken Formations belong to the same hydrostatic pressure regime.
- The average reservoir was 2391 psia at datum of 1630 m.s.s and is within measurement accuracy of the previously established initial reservoir pressure of 2392 psia at datum.

8.5.2 Oil Zone Test

- The well produced up to a maximum of 7600 stb/d of 40^{0} API oil from the interval 1622 to 1629 m.s.s. Separator GOR was measured at 102 scf/stb.
- The evaluated kh product was 887 D-ft. This is equivalent to an average permeability of 5514 md for the drained interval of 161 ft.
- The build up plot exhibits a change in slope (doubling) after some 4 5 hours. One explanation is the presence of a sealing fault some 932 from the well. However this is not supported by seismic/geological data.
- Average post gravel pack PI was 140 stb/d/psi. Total skin was 51 and the partial penetration skin was 21. The ideal PI (skin = 0) was calculated as 639 stb/d/psi.
- Initial reservoir pressure was calculated as 2394 psia at datum (1630 m.s.s). The previously established value of 2392 psia (at datum) is within the accuracy of the gauges.
- It is recommended that a single well reservoir simulation model study be carried out to study the effects of coning and layering on a build up test in well 6407/9-5.

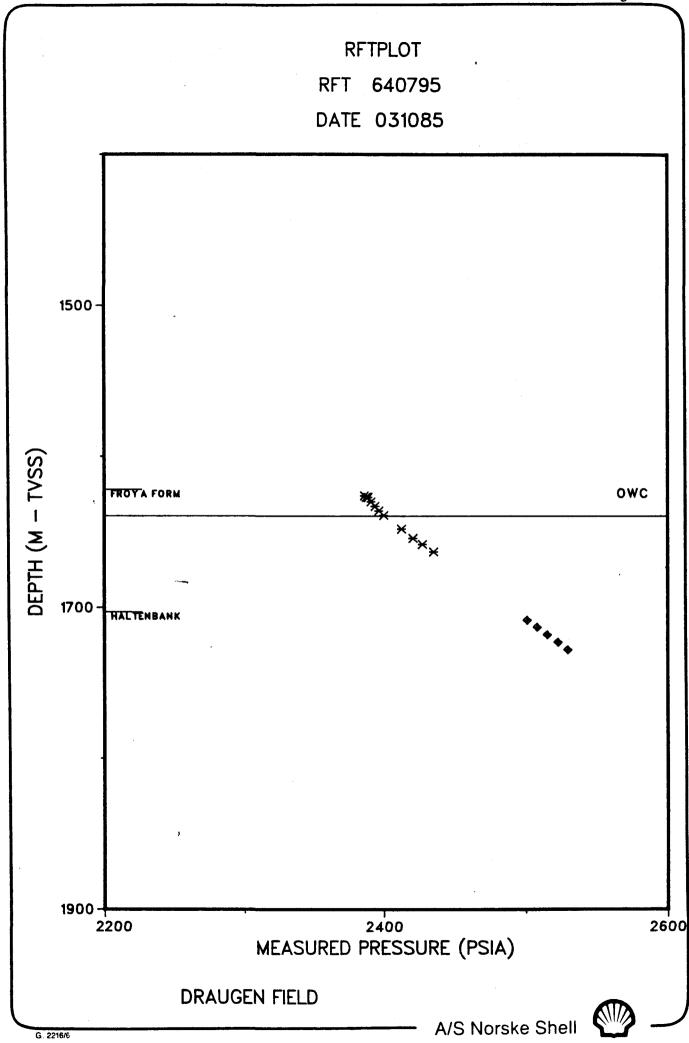
6407/9-5 **TUBING CONVEYED** PERFORATING STRING

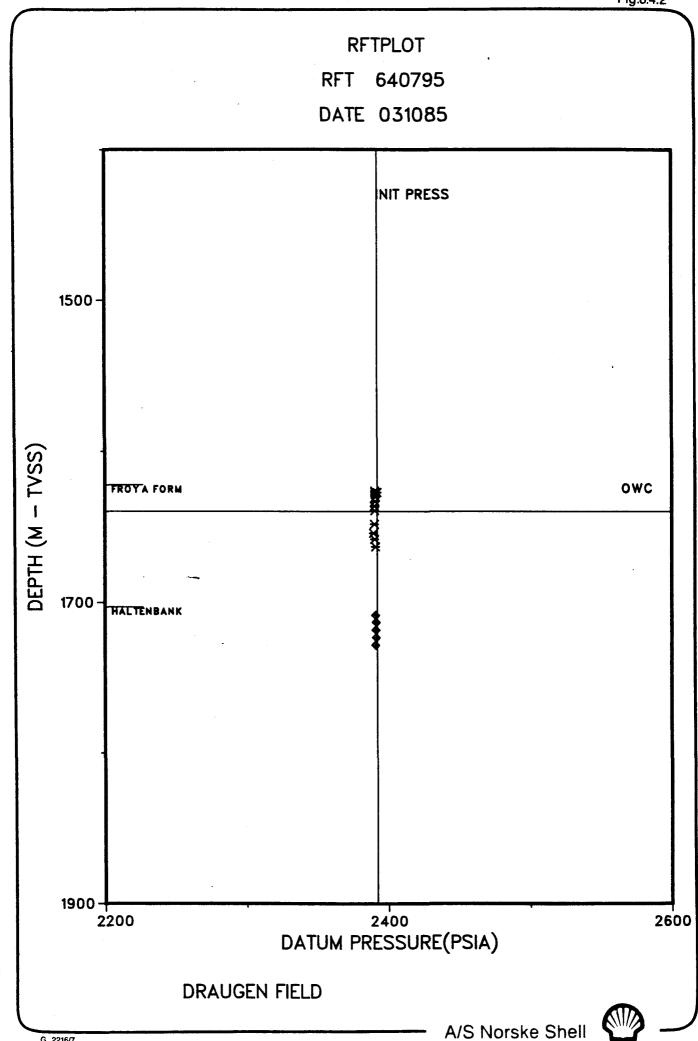

PERFORATING STRING		
P	MIN ID.	MAX O.D.
3½" L80 VAM 10-2ppf TUBING	2.797	3.885
PUP JOINT 3½ VAM (B×P) KBUG S.P.M. 3½ VAM(B×P)	2.797	5.220
PUP JOINT 3½ VAM (B×P) X-OVER: 3½ VAM(B)×3½ CS(P) PUP JOINT 3½ CS (B×P)		
3½ × A S.S.D. 3½ CS(B×P) PUP JOINT 3½ CS(B×P) X-OVER 3½ CS(B)×3½ IF(P) RADIOACTIVE TRACER SUB 3½ IF(B×P) M.O.R.V. 3½ IF(B×P)	2.75 2.797 2.25 2.25 2.25	5.000 5.000 5.000
P.C.T. 3½ IF(B×P)	2.25	5.000
X-OVER 3½ IF(B) × 2½ VAM(P) PUP JOINT +2½ VAM(B × P) HF TOP NO GO NIPPLE 2½ VAM (B × P) PUP JOINT 2½ VAM(B × P)	2.25 2.260 2.125 2.260	5.000 3.330 3.690 3.335
X-OVER 2% VAM(B) × 3½ EU(P)	2.250	3.730
PUP JOINT 3½ EU(B) x 3½ EU(P) BAKER FH PACKER 51 A4	2.992	4.495 8.437
PUP JOINT 3½ EU(B) x 3½ EU(P) X - OVER 3½ EU(B) x 3½ IF(P) DRAG BLOCK 3½ IF(B) x 3½ IF(P)	2.992 2.235 2.25	4.520 5.155
BUNDLE CARRIER 3½ IF(B) x 3½ IF(P)	2.25	
DRAG BLOCK 3½ IF(B) x 3½ IF(P)	2.25	
X-OVER 3½ IF(B) × 2½ VAM(P) PUP JOINT 2½ VAM(B × P) AF TOP NO GO NIPPLE 2½ VAM(B × P) PUP JOINT 2½ VAM (B× P) PERFORATED PUP JOINTS 2½ VAM(B) × 2½ EU(P) CIRCULATING SUB 2½ SU(B × P) SHOCK ABSORBER 2½ EU(B × P) PUP JOINT 2½ EU(B) × (P) FILL SUB FIRING HEAD BLANK SUB 6" 12 SPF GUN	5.005 2.220 1.87 2.220 2.441	2.441 3.330 3.645 3.345 3.680
X - OVER 2'/6 EU PIN DOWN BAKER F1 SUMP PACKER 192-60 PUP JOINTS 2'/6 EU BxP BAKER. 190-60 INDICATING COLLET		

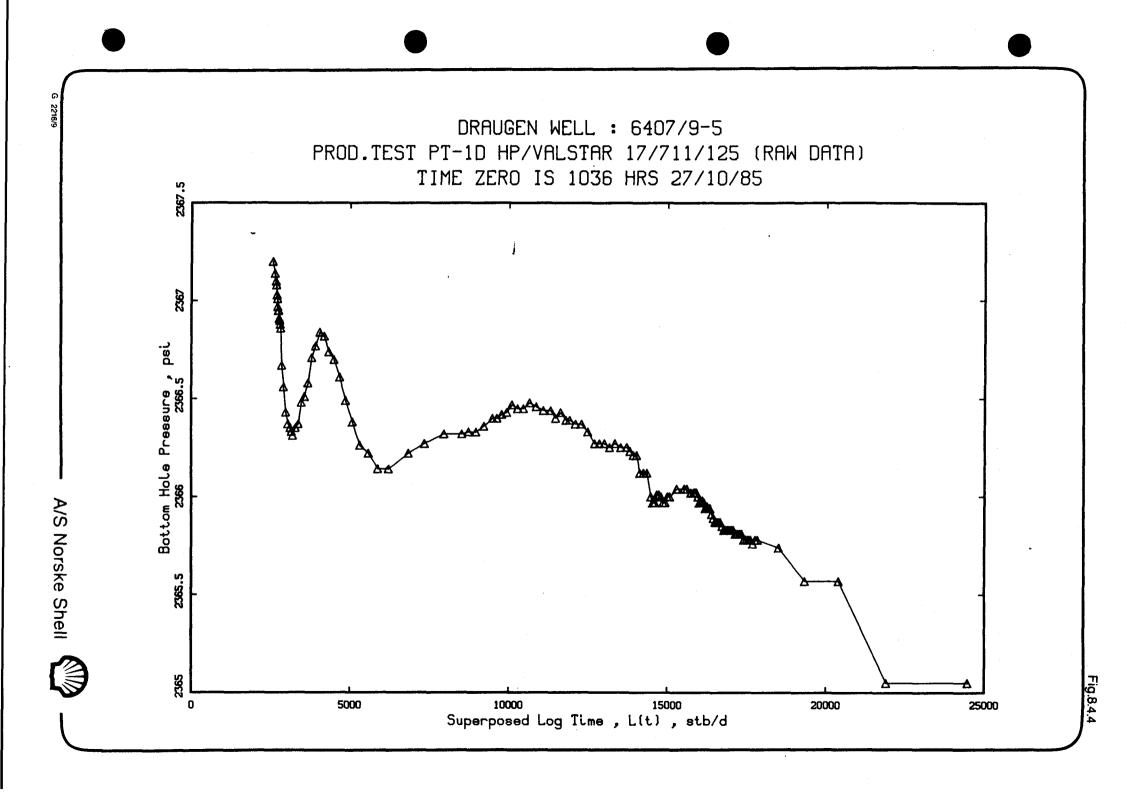
6407/9-5 PRODUCTION TEST STRING

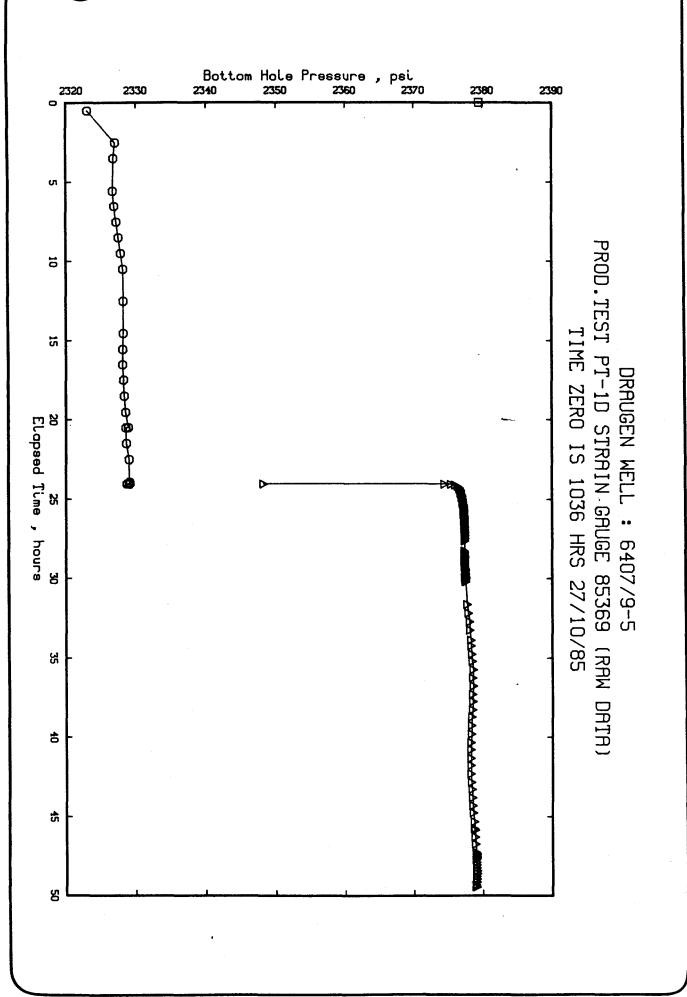
M	MIN ID	MAX O.D.
3½" L80 VAM 10-2ppf TUBING	2.797	3.885
DUD JOINT 21/ MAM (D) vi 21/ MAM (D)	0.000	2 895
PUP JOINT 3½ VAM (B) x 3½ VAM (P)	2.992	3.885
KBUG S.P.M. 3½ VAM (B) × 3½ VAM (P)	2.797	5.220
PUP JOINT 3½ VAM (B)x(P)	2.992	3.885
X - OVER 3½ VAM (B) x 3½ CS (P) PUP JOINT 3½ C.S (B) x 3½ CS (P)	2.900	3.920
3½ XA. SSD 3½ CS (B) x 3½ CS (P) PUP JOINT 3½ CS (B) x 3½ CS (P)	2.75	
X - OVER 3½ CS (B) x 3½ IF (P)	2.25	5.000
FLOPETROL MORV 3½ IF (B) x 3½ IF(P)	2.25	5.000
FLOPETROL PCT 3½ IF(B) x 3½ IF(P)	2.25	5.000
X - OVER 3½ IF (B) x 3½ CS (P)	2.25	5.000
G-22 LOCATOR 3½ CS BOX UP	4.875	6.250
SEAL ASSEMBLY 190-60 20FT STANDARD SEALS	4.875	6.000
BAKER SC1L PACKER 96 A4-60	6.00	8.450
20FT MILL OUT EXTENSION 7'/- S.T.C.(P) × LTC(P)		7.705
BOTTOM SUB × 27, VAM (P) DOWN	2.220	5.960
PUP JOINT 276 VAM (B) x 276 VAM (P) BAKER H.F. TOP NO GO NIPPLE 27 VAM (B × P)	2.220	3.3350 3.690
WIRELINE ENTRY GUIDE 27/- VAM (B) UP	2.220	3.905
X-OVER 77- LTC (B) × 5" VAM (P)		8.240
2 × 5" VAM PUP JOINT (B × P)	4.283	5.598
G22 LOCATOR 5" VAM(B) UP SEAL ASSEMBLY 190-60 10FT PREMIUM SEALS	4.875	6.250
BAKER FAB1 PACKER 194-75 × 60	6.00	0.000
BAKER I.G.P. BOTTOM SUB 3½ VAM (P) DOWN		5.970
TUBING 3½ VAM (B×P)		4.870
×-OVER 3½ VAM (B) × 2 / VAM (P)	2.125	3.880
PUP JOINT 2'/6 VAM (B) x 2'/6 VAM (P)	2.220	3.340
BAKER A.F. TOP NO GO NIPPLE 2'/8 VAM (B×P)	1.87	
PUP JOINT 2'/6 VAM (B)x(P) PERFORATED PUP JOINTS 2'/6 VAM (PxB)	2.350	3.685
×-OVER 2'/ ₆ VAM (B) × 2'/ ₆ EU(P)	2.210	3.330
PUP JOINT 2'/6 EU (B×P)	2.350	3.670
BAKER F TOP NO GO NIPPLE 21/6 EU (B×P)	1.81	3.090 3.670
PUP JOINT 27/8 GU (B × P) FLAPPER KNOCKOUT SUB/WIRELINE	2.35 2.425	4.450
' ENTRY GUIDE		
BAKER F1 SUMP PACKER 192-60	6.00	8.220

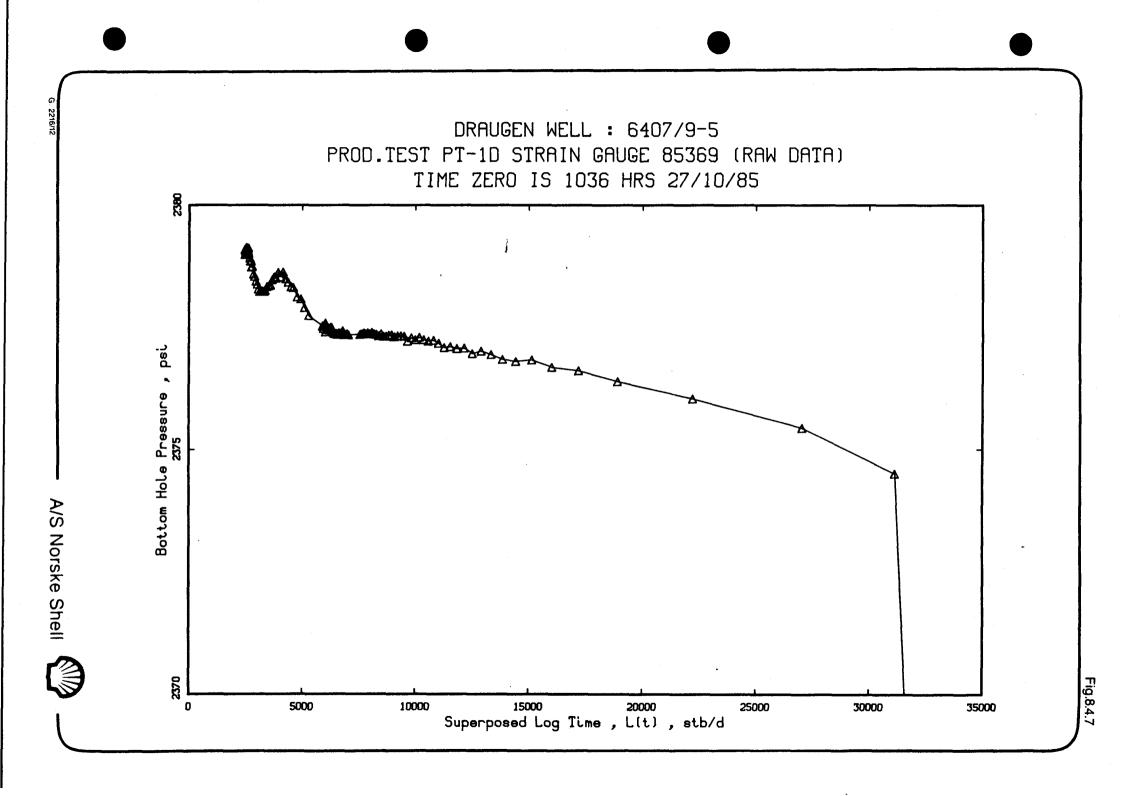
DRAUGEN 6407/9-5


OILZONE TEST - TIME ZERO IS 1036 HRS. 27/10/85








G. 2216/7

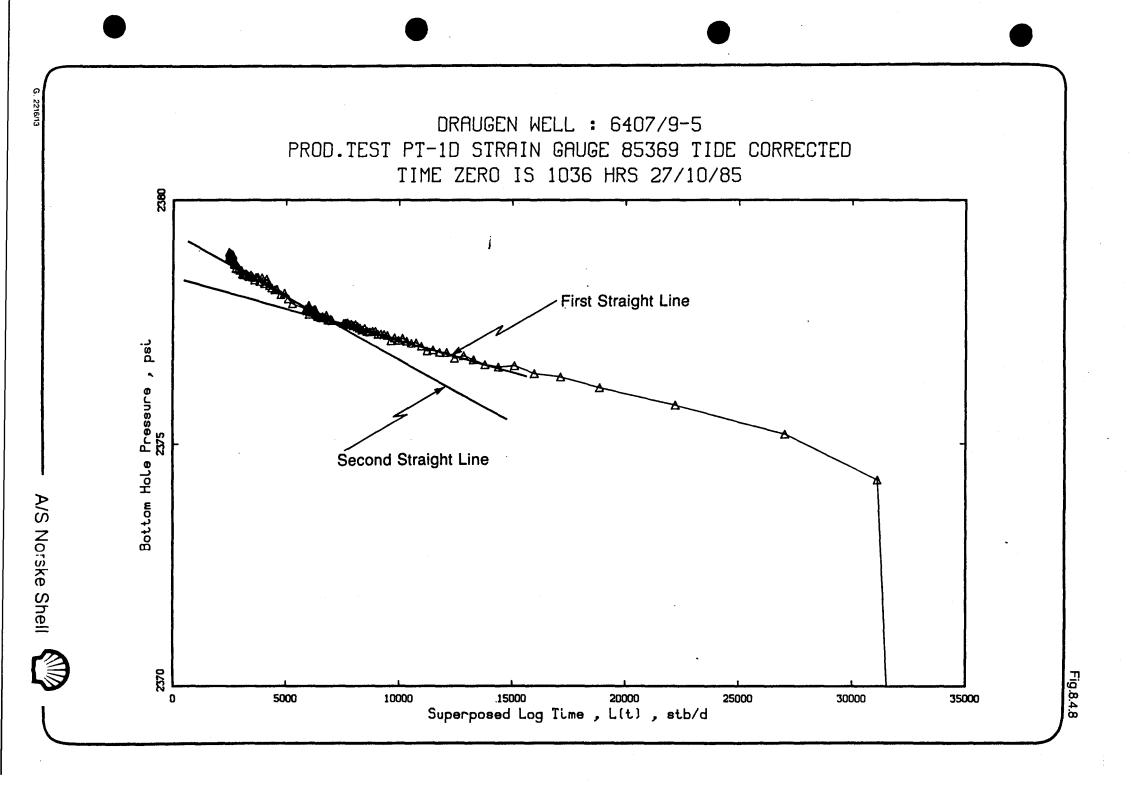


Table 8.3.1

Well: 6407/9-5

Gauge Summary Oil Zone Test: PT-1

Perforated Interval 1622-1629 m.s.s.

Test	PT-1A	PT-1A	PT-1A	PT-1D	PT-1D	PT-1D	PT-1E
Gauge Type	VALSTAR	VALSTAR	HP/VALSTAR	HP/VALSTAR	HP/VALSTAR	SDP STRAIN GAUGE	GRC/EMR
Serial No.	017/711/125	003/100/100	030/504/116	17/117/125	30/784/098	SG85369	635A7/1141/58455
Gauge Depth (m BDF)	1627.79	1627.79	1627.79	1639.1	1643.77	1647.4	/625
No of Data points	7920	7920	7920	7890	7890		2000
Scan Interval/Duration	30S/33 hrs	30S/33 hrs	30S/33 hrs			10	.01 hrs/20 hrs
Date/time on	20-10/0400	20-10/0400	20-10/0400	29-10/0900	29-10/0900	29-10/0835	31-10/1730
Date/time off	21-10/1300	21-10/1300	21-10/1300	02-11/0200	02-11/0200		01-11/1330
Performance		Failed		Poor	Poor	Excellent	
Comments		Temperature		Decreasing	Decreasing		
		recorded		pressure during build up	pressure during build up		

Well 6407/9-5

PT-1 Samples Collected

No.	Test	Time	Date	Fluid	S.G	Sampling Point	Container (Description / Volume)	Serial Number	Remarks
1	PT-1D	0130 0345	30.10.85	0i1	.817	Separator	Bb1-drum /45 gal	,	Bulk sample
2	PT-1D	0347 0445	30.10.85	0i1	.817	Separator	. 5		Bulk sample
3	PT-1D	0447 0715	30.10.85	0i1	.818	Separator			Bulk sample
4	PT-1D	0718 0740	u	011	.818	Separator		811420	
5	PT-1D	0722 0745	II	Gas	(Air=1) .785	Separator		A13409	Gas Sample
6	PT-1D	0846 0922	II .	0i1	.818	Separator		811511	Oil Sample declared void sample dumped
7	PT-1D	0916 0935		Gas	(Air-1) .785	Separator		N/A	Sample declared void and aborted due to oil carry over in gas line

Table 8.3.2 Page 2 of 2

No.	Test	Time	Date	Fluid	S.G	Sampling Point	Container (Description / Volume)	Serial Number	Remarks
8	PT-1D	0954 1025	II	011	.818	Separator	PVT-oil 800 c.c	810816	
9	PT-1D	1011 1032	11	Gas	(Air-1) .826	Separator		A4588	
10	PT-1D	1110 1138	н	0i1	.818	Separator		811450	•
11	PT-1D	1117 1140	tt	Gas	(Air=1) .833	Separator		5051036	
12	PT-1.E	0845	31.10.85	BHS	-	1614m BDF		810697	Bottom sampler of a 3 sampler run. 100 psia at 150°F shipping conditions
13	PT-1E	0845	II	BHS	-	1614m BDF	Leutert 800 c.c	8115113	150 psia at 150°F shipping conditions
14	PT-1E	0845	п	BHS	-	1614m BDf		811511	200 psig at 160°F shipping conditions

WELL 640795 SURVEY DATE 001065

HP BAUGE DATA

REEERVOIR DATA:-

. .

FLUID CONTACTS (K-TVES)

FLUID ERADIENTS (FSI/H)

DATUM DEFTH = 1830.0

6AS = .000 OIL = 1.066

6. = 500 0#0

= 1839.5

WATER = 1.452

BEBLOGICAL DATA:-

FORMATION TOP

DEFTH (H-TYSS)

FROYA FORM

1622.0

HALTENBANK

1703.B

PRESSURE	DATA:-

GEOLOGICAL	DEPT	H (II) ·	PRI	ESSURE (PS	1A)	COKKENT
ZONE	AHBDF	TYSS	KEASURED	DATUH HUD	(PRE-SETTING)	
	1658.0	1626.0	2386.1	2390.4	2888.0	
FR :	1659.0	1627.0	2387.3	2390.5	2898.2	
FR :	1662.8	1638.9	2390.9	2390.9	2895.9	•
FR	1465.8	1533.8	2393.8	2398.6	2901.0	
FR	1668.8	1636.0	2396.5	2398.1	2906.4	
FR	1671.0	1639.8	2400.8	2390.4	2911.7	
FR :	1680.0	1648.0	2412.6	2390.1	2926.4	
FR	1686.0	1654.0	2420.7	2389.5	2936.7	
FR	1690.0	1658.0	2427.3	2370.3	2943.0	
FR	1695.0	1663.9	2435.2	2391.0	2953.8	
HA :	1740.0	1708.4	2501.0	2390.8	3028.0	
HA	1745.0	1713.0	2508.1	2391.3	3941.8	•
HA 1	758.8	1718.9	2515.2	2391.1	3849.2	
HA :	1755.6	1723.8	2522.7	2391.3	3057.9	
HA I	1760.0	1726.8	2529.5	2390.9	3066.1	
FR	1659.8	1627.0	2388.9	2392.1	2891.5	ATTEMPTED TO SAMPLE
FR 1	1659.0	1627.0	2388.7	2391.9	2890.5	ATTEMPTED TO SAMPLE
FR	1659.0	1827.0	2387.4	2398.4	2892.0	RUN 2: NO SAMPLE
FR	1659.0	1627.0	2388.3	2391.5	2891.0	RUN 3: NO SAMPLE

11: 6407/9-5

PT-1: Sequence of events.

Fow Period	Start Time	End Time	Duration (hours)	Cum Prod	Final oi STB/D	l rate Comments
PT-1A	20-10-85 1040	Perforate	d intervals	1622-1629 m.s	.s with a	400 psi drawdown.
1Dd	1040	1045	.083	19.2	5530	, and the second
2Dd	1040	1050	.067	33.2	4781	Beaned down to 40/64 bean
3Dd	1050	1145	0.083	39.1	1609	Beaned down to 18/64 bean
4Dd	1145	1400	1.25	71.20	24	Beaned up to 26/64 bean
5Dd	1400	1507	.75	79.45	336	Beaned up to 28/64 bean
6Dd	1507	1645	1.63	110.85	384	Beaned down to 26/64 bean
7Bu	1645	1836	1.85	-	-	Buildup survey

Killed well - Pulled String - Gravel packed - ran completion string.

Appendix A Page 2 of 3

Fow Period	Start Time	End Time	Duration (hours)	Cum Prod	Final oil rate	Comments
PT-1B	27-10-85	<u> </u>		Late to a second and a second and a second a se		
1Dd 2Dd	1036 1430	1430 2030	4.06 6.00	235.5 495.0	1031	Clean up period 1st gravel pack stabilistation
3Dd	2030	0230	6.00	1106	2634	flow period 2nd gravel pack stablilistation flow period
	0230 Wel	ll shut-in				viow per rod
Acidise	d with 60	bbls 15%	HCL			
Fow Period	Start Time	End Time	Duration (hours)	Cum Prod	Final oil ra STB/D	te Comments
PT-1C	28-10-85 29-10-85					
1Dd	0401	0612	2.2	-	-	Unloaded well
2Bu	0401 0612	0701	0.65	- - -	-	Open up SSD
2Bu 3Dd	0401 0612 0701	0701 0727	0.65 0.43	- - 53	-	
2Bu 3Dd 4Bu	0401 0612 0701 0732	0701 0727 1051	0.65 0.43 3.47	- - 53 - 415.7	- - - - 1728	Open up SSD Reverse circulate
2Bu 3Dd	0401 0612 0701	0701 0727	0.65 0.43	-	- - - - 1728 5026	Open up SSD Reverse circulate 38/64" choke 44/64" choke
2Bu 3Dd 4Bu 5Dd	0401 0612 0701 0732 1051	0701 0727 1051 1645	0.65 0.43 3.47 5.9	415.7		Open up SSD Reverse circulate 38/64" choke

Appendix A Page 3 of 3

Flow Period	Start Time	End Time	Duration (hours)	Cum Prod	Final oil rate STB/D	Comments
PT-1D	29-10-85	30-10-85				
1Dd	1245	1245	24	7064	6875	Opened well on 16/64" choke progressively beaning up to 56/64" choke. Oil and gas samples takes form the separator during the flowing period
2Bu	30-10-85 1249	31-10-85 1245	23.93			Well shut-in for main build up test
Flow Period	Start Time	End Time	Duration (hours)	Cum Prod	Final oilrate STB/D	Comments
PT-1E	01-11-85					
1Dd	0230	2330	1.00	336	64.53	Running in hole with 3 BHS. Well flowing on a 19/64" choke. BHS not obtained due to malfunction. Redressed the samplers.
2Dd	2330	0845				3 BHS returned

Well 6407/9-5 Summary of Separator data

Date Time	THP/THT psig/ ⁰ F	Oil Rate stb/d	GOR scf/stb	Psep/Tsep psig/ ^O F	BHP Psia	Comments
18-10-85 1100 1400 1430 1500 1530 1600	354/49 470/48 472/48 472/48 484/48 484/48	- 288 768 278 298	- 212 67 139 130	50/48 65/46 55/45 40/45 40/44	2350 2353 2353 2351 2353 2353	PT-1A 18/64 bean 28/64" bean 28/64" bean 30/64" bean 26/64" bean 26/64" bean
27-10-85 1300 1345 1445 1545 1745	405/46 427/45 430/- 431/- 440/-	1440 1009 1070 1008 1228	70.8 79.8 83 70	58/44 61/43 58/43 60/53	- - -	Pt-1A 26/64" bean 26/64" bean 30/64" bean 30/64" bean 30/64" bean 0.1% H ₂ 0 38/64" ² bean
2300	281/-	2545	61.1	98/45	-	0.1% H ₂ 0 38/64" ² bean 0% BSW
28-10-85 0230	293/55	26334	62.2	106/48	-	38/64" bean 0% BSW
28-10-85 1345 1500 1700 1830 2115	447/50 470/51 382/58 392/65 342/71	2126 1895 4609 5021 6064	66.4 69.9 49 72.5 88.5	80/46 75/46 130/49 100/44	- - -	PT-1C 38/64" bean 38/64" bean 42/64" bean 42/64" bean 0% BSW 52/64" bean
29-10-85 0200 0630 0745	290/72 264/68 264/70	6671 7600 7604	98 103 104	117/71 130/64 132/68	- - -	56/64" bean 64/64" bean 64/64" bean
29-10-85 1400 1430	306/62 309/63	7263 7179	55.3 55.4	150/56 150/54	2317 2317	PT-1D 56/64" bean 0.6% CO ₂ Eleven samples
 1730 2115	309/66 309/66	7016 6998	55.6 55.2	145/57 140/56	2316 2317	taken over flowing period. Two samples declared void.

Date Time	THP/THT psig/ ^O F	Oil Rate stb/d	GOR scf/stb	Psep/Tsep psig/ ^O F	BHP Psia	Comments
30-10-85 1145	308/68	6944	77	155/60·	2318	
31-10-85 2030	539/43	-	-	-	2348	PT-1E BHS 19/64" bean 3 BHS obtained
2130	539/44	437	-	15/38	2348	bubble points measured.
01-11-85						
0330	530/42	336	-	-	_	
0500	531/44	345	-	-	-	

DRAUGEN WELL: 6407/9-5
PRODITED PT-1D STRAIN GAUGE 65367 (RAW DATA)
TIME ZERO IS 1034 HRS 27/10/85

WELL AND RESERVOIR DATA

Forastion net thickness : 151.00 ft
Reservoir fluid : cil
Fra-test reservoir pressure : 2379.5 psi
Ferforated interval : 5321.0-5344.0 ft
Wellbore radius : .510 ft
Absolute ponosity : .360

€.

.1500-004

OIL PUT PROFERTIES

1.1600

FORMATION DIL VISC TOTAL COMPRES VOL FACTOR AT RESV SIBILITY BO CONDITIONS Ct bb1/bb1 CP psi-1

.670

BEAUSER WELL : 6407/3-5 FROD. TEST FT-10 STRAIN GAUSE SSTAF (XPW DATA) TIME ZERC IS 1836 HRS 27/18/85

BEDUENCE OF EVENTS -----

111	FER	FROCUETION	COMPLATIVE	FIME BINCE	FREBEURE
		RATE	TIME SINCE	BTART GF	DBBERVER
			INITIAL	PERIOD	
			COMEITIONS		
		stb/d	haurs	ponta	psi
i	g	.8	.02896	.02000	2377.5
	10d	7698.6	.51944	,51944	2323.1
3	19đ	7000.0	2.53056	2.53854	2327.1
4	10d	7000.0	3.50278	3.58278	2326.8
5	150	7000.0	5.58111	5.56111	2326.7
á	106	7000.0	6. 52778	6.52778	2326.9
7	1 D d	7000.0	7.52500	7.52500	2327.3
8	Md	7000.0	8.51667	8.51667	2327.5
9	10d	7000.0	9.51111	9.51111	2327.7
10	196	7000.8	10.50000	10.50000	2328.2
11	106	7300.0	12.50833	12.53833	2328.2
12	1Dd	7000.0	14.54444	14.54444	2328.2
13	153	7030.8	15,55278	15.55278	2322.1

				C **3	
14	10d	7086.0	18.52530	16.52500	2328.1
15	12a 12d	7000.0 7000.0	17.49722	15.32300	2328.3
16	10d	7000.0	18.51389	18.51389	2328.4
17	iDd	7003.0	17.53669	19.53889	2328.å
13	i ūd	78 86.8	28.47444	20.49444	2328.9
17	10d	7000.0	20.51667	20.51667	2328.6
26	104	7996.0	21.49167	21.49167	2328.5
21	194	7888.8	22.49167	22.49167	2329.0
22	10d	7000.0	23.91389	23.91389	2329.1
23	1 D d	7006.0	24.00278	24.00278	2329.2
24	194	7030.0	24.02500	24.02500	2329.1
25	196	7880.0	24.63856	24.03256	2329.3
25	104	7000.0	24.83333	24.83333	2328.7
27	25u	. 2	24,83511	.88278	2348.3
13	234	. 8	24.03889	.23556	2074.5
25	280	€,	-24.35088	.81667	2375.5
33	184	.8	14.89444	.35111	2376.3
31	2Eu	. 0	24.18333	.15880	2376.4
32	28e	. 3	24, 27, 22, 22, 22, 22, 22, 22, 22, 22, 22	.23889	2376.5
23	230	. 3	24.35111	.32778	2772.7
34	284	. 3	14.45000	.41:67	1374.8
35	22u	. 2	24,83889	.50558	2375.2
Jo		.0	14,61778	.55444	2376.F
37	290	. ថ្	24.71557	.68377	2377.3
7.8	:: <u>:</u> :	.3	14,87556	.77222	
- =	250		24,39442	. 2::::	
43	250	.8	14.92333	.95000	2777.1

CAAUSEN WELL : 8407/9-3 FROD.TEBT FT-ID STAAIN 34035 BE365 (RAW DATA) TIME SEFO IS 1038 HRS 27/12/85

BECKENCE OF EVENTS

FNT		PRODUCTION RATE	COMPLATIVE TIME SINCE INITIAL COMPLITIONS	TIME BINCE START OF FERIOD	FREEBURE OBSERVED
		etb/d	hours	hours	psi
41	28u	. 8	25.07222	1.03889	2377.1
42	2Bu	.0	25.16111	1.12778	2377.1
43	284	.3	25.25888	1.21667	2377.1
44	28u	.0	25.33887	1,30556	2377.2
45	2Bu	.8	25.42778	1.39444	2377.2
46	23u	.6	35.51667	1.48333	2377.2
47	2Bu	.8	25.66556	1.57222	2377.3
48	28u	.0	25.67444	1.66111	2377.3
49	2Bu	. 9	25.79333	1.75980	2377.3
58	29u	. 8	25,87222	1.83899	2377.3
51	28u	. 8	25.96111	1.92778	2377.2
52	29a	.8	26.05000	2.31667	2377.3
53	254	. 3	26.13889	2.10556	2377.3
54	28u	. 2	26.22778	2.19444	2377.3
55	2Bu	.3	26.31667	2.28333	2377.3
56	28 u	.0	25.40555	2.37222	2377.4
57	28u	.8	26.49444	2.46111	2377.3
58	IBu	. შ	26.56333	2.55590	2377.3
59	280	. 3	26.67222	2.43889	2377.3

£0	29:2	. 3	28.78111	2.72778	2377.4
61	280	. 3	24.85000	2.81667	2377.3
62	23u	.3	25.73889	2.98556	2377.4
63	28u	. 8	27.82778	2.99444	2377.4
64	28u	. 8	27.11667	3.08333	2377.4
65	288	ø.	27.28555	3.17222	2377.4
66	29e	. 9	27.29444	3.26111	2377.4
57	28u	3.	27.38333	3.35000	2377.4
68	18u	.8	17.47222	3,43889	2377.4
57	250	. ફ	17.56111	3.52778	2377.4
7 0	234	. 8	27.25200	3.61667	2377.4
71	18u	. 8	29.27222	4.23889	2377.4
72	232	. 6	25.3±111	4.32778	2377.4
73	250	. 9	29.45888	4,41557	2377.4
74	256	. 3	08.53289	4.53556	1377.4
75	250	. 8	23.62778	4,5924	2377.4
76	22.	. 3	18.71647	4.68333	2577.4
77	136	. 9	18,80555	4.77232	2377.4
78	194	. ð	25.39444	4.86111	1377.4
-:	11:	. ?	18. FETT3	4,95000	2377.4
30	11:	. i		E.07888	

DR413EN WELL : 6407/3-5 FRIOLTEST FI-10 STRAIN GAUSE 85369 (RAW DATA) TIPE DERG IS 1036 HRS 27/10/85

BESTEROE OF EVERTS

FNT	PER	PRODUCTION RATE	CUMULATIVE TIME SINCE INITIAL COMDITIONS	TIME SINCE START OF PERIOD	FREBRURE GBBERVED
		stb/d	hours	hours	psi
8:	2Bu	. 🕏	29.16111	5.12778	2377.4
£2	25u	. 3	27.25888	5.21667	2377.4
8 5	7Bu	.9	29.33889	5.38556	2377.4
84	23u	.0	29.42778	5.39444	2377.5
85 86	28u 28u	.8 .3	29.51567 29.68556	5.48333	2377.5 2377.5
87	25u 25u	. v . 8	27.60336 29.69444	5.57222 5.66111	2377.5 2377.5
95	28u	.e	29.78333	5.75000	2377.5
89	28u	.8	29,87222	5.83839	2377.5
53	284	.3	29.91667	5.88333	2377.5
91	29u	.a	27,93889	5.98556	2377.5
55	28a	. 3	29,95000	5.71667	2377.4
93	28u	. 9	29.95278	5.91944	2377.6
ćŢ	29u	.0	30.04167	6.88833	2377.5
95	28u	.8	30.13056	5.09722	2377.5
7:	28u	. 8	30.21744	6.18611	2377.5
77	239	.6	31.64157	7.68833	2377.7
98	2Bu	. 9	32,17500	B.14167	2377.9
5 7	28u	.0	32.70833	8.67500	2378.1
102	28u	.9	33.24167	9.20833	2378.1
101	2Bu	.0	33.86389	9.83056	2378.3
182 183	22u 28u	. 3 . 0	34.21944 34.75278	10.13511 10.71944	2378.3 2378.4
164	28u	.8	35.19722	11.16389	2378.5
105	25u	.8	35.73056	11.69722	2378.5
136	28u	.3	36.26389	12.23856	2378.5
187	28 u	5.	34.7753 0	12.74157 13.27520	2378.6 2376.5
188 188	29u 29u	.8 .8	37.38E33 - 37.75278	13.27560	2378.5 2378.5
113	25u 25u	 5.	38.28611	14.25278	2378.5
111	280	.0	38.7385á	14.69722	2378.4
117	29u	.3	37.26337	15.23856	2378.4
117	25u	. 0	39.79722	15.76389	2378.3
1:4	150	.3	40,33056	16.29722	2372.3
115	liu	. 2	48.77500	16.74167	2378.2
11:	18u	.3	41.30833	17.27500	2378.2
117	189	.3	41.75278	17.71944	2078.2
::=	13v	.3	42,58811	15.25278	1378.1
::=	190	. 8	-1.5;344	18.79611	1575.5
:	15-8	. 3	40.20087	15.13056	1076.4

DRAUGEN WELL : 6407/9-5

FROD.TEST FT-10 STRAIN BAUGE 25089 (RAW DATA)

TIME ZERO IS 1036 HRS 27/10/85

SEOL	JENCE	OF EVENTS			PAGE-
PHT	FER	PRODUCTION RATE	CUMULATIVE TIME SINCE INITIAL CONDITIONS	TIME SINCE START OF PERIOD	PRESBURE OBSERVED
		stb/d	hours	hours	psi
121	2Bu	. 8	43,78712	19.76389	2378.4
122	28u	. 9	44.3055a	28.27222	2378.5
123	2Pu	. 3	44.75000	20.71667	2378.6
124	2Bu	.0	45.31944	21.28611	2373.7
125	25u	.e	45.76389	21.73954	2378.7
126	25u	.0	45.85278	21.81544	2370.9
127	25u	. 8	46.29722	22.25389	2373.9
128	28u	. 8	46.74167	22.70833	2378.9
129	29a	, <u>3</u>	47.27598	23.24167	2379.0
138	2Bu	. 8	47.36389	23.33056	2379.1
131	2Bu	. 9	47.45278	23.41944	2379.0
132	23u	. 9	47.54167	23.50833	2379.1
133	29u	.0	47.53856	23.59722	2379.1
134	28u	. 0	47.71944	23.68611	2379.3
135	250	. e	47.69722	23.86387	2379.0
135	28u	. 9	48.07580	24.04157	2379.1
137	2Bu	. 8	48.25278	24.21944	2379.1
138	28u	. 3	48.43856	24.39722	2379.1
139	28u	. 9	48.60833	24.57500	2379.1
140	2Bu	. 3	48.78511	24.75276	2379.1
141	2Bu	. 9	49.96387	24.93056	2379.1
142	254	. 3	47.14167	25.19833	2375.1
143	28u	. 8	49.31944	JE.23611	2379.8
144	28u	. 3	49,45173	15,41944	2375.3
145	280	. 8	49.45389	25.4395á	2379.1

DRAUBEN HELL: 5407/9-5 PROD.TEST PT-ID STRAIN GAUSE EESES TIDE CORRECTED TIME ZERO IS 1035 HRS 27/10/95

SEQUENCE OF EVENTS

PNT	PER	PRODUCTION	CUMULATIVE	TIME SINCE	PRESSURE
		RATE	TIME SINCE	START OF	DESERVED
			initial	PERIOD	
			CONDITIONS		
		stb/d	hours	hours	psi
1	Û	.0	.00000	.00000	2379.5
2	1 D d	7000.0	.51944	.51944	2322.8
3	1Dd	7000.0	2.53056	2.53056	2327.0
4	100	7000.0	3.50278	3.50278	2326.9
5	1Dd	7000.0	5.56111	5.56111	2327.0
6	1Dd	7000.0	6.52778	6.52778	2327.1
7	194	7000.0	7.52500	7.52500	2327.4
8	1 D d	7000.0	8.51557	8.51667	2327.6
9	1Dd	7000.0	9.51111	9.51111	2327.8
10	1Dd	7000.0	10.30000	10.50000	2328.0
- 11	104	7000.0	12.50833	12.50833	2328.0
12	1Dd	7000.0	14.54444	14.54444	2328.2
13	1Dd		15.55278	15.55278	2328.3
14	IDd	7000.0	16.52500	14.52500	2328.3
. 15	1Dd	7000. 0	17.49722	S 49722	2328.5
15	1 D d	7000.0	18.51389	18.51389	2328.6
17	1 D d	7000 .0	19.53889	19.53889	2328.7
18	IDd	7000.0	20.49444	20.49444	2329.0
19	100	700 0.0	20.51567	20.51567	2328.6
20	1 D d	7000.0	21,49157	21.49157	2328.6
21	10d	7000.0	22.49167	22.49157	2328.8
22	10d	7000.0	23.91389	23.91389	2328.9
23	100	7000.0	24.00278	24.00278	2328.9
24	104	7000.0	24.02500	24.02500	2328.9
25	10d	7000.0	24.03056	24.03056	2328.8
25	1Dd	7000.0	24.03333	24.03333	2328.5
27	2Bu	.0	24.03611	.00278	2348.0
28	29u	.0	24.03889	.00554	2374.3
29	280	.0	24.05000	.01567	2375.2
30	254	.0	24.09444	.04111	2375.8
31	254	.0	24.18333	.15000	2378.2
32	223	.0	24.27202	.23889	2376.4
33	25u	.0	24.35111	.32778	2376.5
34	220	.0	24.45000	.41667	2376.5
35	258	.0	24.53889	.50555	2378.5
36	294	.0	24.52778	.59444	2375.5
37	258	.0	24.71567	. 48333	2378.7
38	250	.0	24.90556	.77222	2378.8
37	250	.0	24,87444	.84111	2375.8
40	29 u	.0	24.75000	.95000	2374.9
				* *	

DRAUGEN RELL : 6407/9-E PRODITEST FT-10 STRAIN GAUGE 95369 TIDE CORRECTED TIME ZERG IE 1036 HAS 27/10/85

BEQUENCE OF EVENTS

PNI	PER	PRODUCTION RATE	CUMULATIVE TIME SINCE	TIME SINCE START OF	PAESSURE Ceserved
			INITIAL	PERIOD	
		stb/d	CONDITIONS hours	hours	
		3 (87 8	nuur s	nua. 3	psi
41	2Bu	.0	25.07222	1.03889	2378.9
42	28u	.0	25.16111	1.12778	2376.9
43	2Bu	.0	25.25000	1.21657	2376.9
44	2Bu	.0	25.33889	1.30556	2377.0
4 5	2Bu	.0	25.42778	1.39444	2377.1
46	29 u	.0	25.51567	1.48333	2377.1
47	2Bu	.0	25.60556	1.57222	2377.1
48	28u	.0	25. £9444	1.66111	2377.2
49 50	29a	.0	25.78333	1.75000 1.83889	2377.1 2377.2
5 <i>1</i>	28u 28u	.0	25.87222 25.951 11	1.83889	2377.2
52	25u 28u	.0 .0	26.05000	2.01667	2377.2
53	28u	.0	25.03000 25.13889	2.1055 <i>6</i>	2377.3
54	2Bu	.0	25.13687	2.1C /4	2377.3
55	2Bu	.0	25.31557	2.28333	2377.3
5á	2Bu	.0	26.40556	2.37222	2377.3
57	2Bu	.0	25.49444	2.46111	2377.3
58	2Bu	.0	26.58333	2.55000	2377.3
59	2Bu	.0	28.67222	2.63889	2377.3
50	25 a	.0	26.76111	2.72778	2377.4
61	2Bu	.0	25.85000	2.81657	2377.3
62	2Bu	.0	25.93889	2.90556	2377.4
63	2Eu	.0	27.02778	2.99444	2377.4
64	2Bu	.0	27.11667	3.08333	2377.5
65	2Bu	.0	27.20556	3.17222	2377.4
66	2Bu	.0	27.29444	3.26111	2377.5
67	2Bu	.0	27.39333	3.35000	2377.5
გგ	2Bu	. v	21.47222	3.43884	2377.5
69	254	.0	27.55111	3.52778	2377.5
7 0	2Bu	.0	27.63000	3.61667	2377.5
71	254	.0	28,27222	4.23889	2577.5
72	254	.0	28,38111	4.32778	2077.6
73	25 y	.0	28.45000	4.41557	2377.5
74	282	.0	18.53889	4.50555 4.59444	2377.5 2377.5
75 77	2Bu	.0	25.62778	4.59444 4.68333	
75 77	25u 25u	.0 .0	28.71557 28.80555	4.88333 4.77222	2377.6 2377.6
77 73	250 250	.0	28.89515 28.89444	4.88111	2377.8 2377.8
73 73	250 250	.0	18.95333	4.95000 4.95000	2377.5
50	354	.0	29.07222	5.03889	2377.6
υŲ	- 2 9	. U	27.0,222	5.03557	. a. 7 . D

DRAUSEN RELL : 6467/9-5
PROBLIEST PT-18 STRAIN SAUGE 85369 TIBE CORRECTED
TIME ZERG IS 1036 HES 27/16/95

SEQUENCE OF EVENTS

					0.0001105
PHT	FER	PRODUCTION	CUMULATIVE	TIME SINCE	38055384
		RATE	TIME SINCE	START OF	DEVREEGO
			INITIAL	PERISD	
			CONDITIONS	_	
		stb∕d	hours	hours	psi
81	2Bu	.0	29.16111	5.12778	2377.6
82	2Bu	.0	29.25000	5.21667	2377.6
83	2Bu	.0	29.33889	5.30555	2377.5
84	284	.0	29.42778	5.39444	2377.8
25	2Bu	.0	29.51667	5.48333	2377.8
85	2Bu	.0	29.60556	5.57222	2377.7
87	2Bu	.0	29.69444	5.66111	2377.7
88	25u	.0	29.78333	5.75000	2377 .7
89	2Bu	.0	29.87222	5.83889	2377.7
90	2Bu	.0	29.91667	5,88333	2377.8
91	2Bu	.0	29.93889	5.90556	2377.8
92	2Bu	.0	29.95000	5.91667	2377.7
93	2Bu	.0	29.95278	5.91944	2377.8
94	2Bu	.0	30.04167	6.00833	2377.8
95	2Bu	.0	30.13054	6.09722	2377.7
96	2Bu	.0	30.21944	6.18611	2377.8
97	2Bu	.0	31.64167	7.60833	2377.9
98	2Bu	.0	32,17500	8.14147	2378.0
çq	29u	.0	32.70833	8.57500	2378.1
100		.0	33,24167	9.20833	2378.1
101		.0	33.85389	9.83054	2378.2
102		.0	34.21944	10.18611	2378.2
103		.0	34.75278	10.71944	2378.2
104			35.19722	11.16389	2378.3
105			35.73056	11.69722	2378.4
106			35.26389	12.23056	2378.3
107			35.77500	12.74167	2378.4
108			37.30933	13.27500	2378.3
109			37.75278	13.71944	2378.4
110			38.28411	14.25278	2378.4
111			38.73056	14.59722	2378.4
111			39.28399	15.23056	2379.4
113			39.79722	15.75389	2378.5
114			40.33056	15.29722	2378.4
115			40.77500	15.74157	2379.5
111			41.30833	17.27500	2379.5
117			41.75078	17.71944	2378.5
11			42.28611	18.2E278	2078.5
1.1			42.31944	18.79411	2075.5
12			40.26089	43000.91	1375.6

DRAUSEN HELL: 6407/9-5 PARD.TEST PT-1D STRAIN SAUGE 85369 TIDE CORRECTED TIME TERD IS 1036 HRS 27/10/85

SEQUENCE OF EVENTS

PNT	PER	PRODUCTION	CUMULATIVE	TIME SINCE	PRESSURE
		RATE	TIME BINCE	START OF	OBSERVED
			INITIAL	PERIOD	
			CONDITIONS		
		stb/d	hours	hours	psi
121	2Bu	.0	43.79722	19.75399	2378.6
122	2Bu	.0	44.30556	20.27222	2378.6
123	2Bu	.0	44.75000	20.71557	2378.5
124	2Bu	.0	45.31944	21.28811	2378.7
125	2Bu	.0	45.7 <i>6</i> 389	21.73056	2378.6
126	2Bu	.0	45.85278	21.81544	2378.7
127	2Bu	.0	45.29722	<i>22:26</i> 389	2378.7
128	2Bu	.0	46.74167	22.70833	2379.7
129	2Bu	.0	47.27500	23.24157	2378.8
130	2Bu	.0	47.36389	23.33056	2378.9
131	. 2Bu	.0	47.45278	23.41944	2378.8
132	2Bu	.0	47.54167	23.50833	2378.9
133	2Bu	.0	47.63056	23.59722	2378.8
134	2Bu	.0	47.71944	23.68511	2378.8
135	2Bu	.0	47.89722	23.86389	2378.8
136		.0	48.07500	24.04157	2378.8
137		.0	48.25278	24.21944	2378.8
138		.0	48.43056	24.39722	2378.9
139	2Bu	.0	48.60833	24.57500	2378.9
140		.0	48.78611	24.75278	2378.9
141	2Bu	.0	48.94389	24.93056	2378.9
142	220	.0	49.14167	25.10333	2378.9
143			49.31944	25.29111	2378.8
144		û	49.45278	25,41744	2378.8
145			49.46389	25.47(56	2378.9
• • •			•		

HORNER ANALYSIS PERHEABILITY ANALYSIS

Total skin

No. of points fitted

Feriod (8 if no more) (1) ? > >2	
Feriod range = 27 145	
Horner begin point (27) ? >>32	
Horner end point (145) ? >>60	
CALCULATED FORMATION AND WELLBORE FARAMETERS	
Period	2
Selected semi log straight line segment	32 to 68
Fitted semi-log slope (psil/(stb/d)	12574-003
Flow Capacity , mD.ft	887B24.
Permeability , mD	5514.437
Extrapolated (pseudo) pressure psi	.2378+604
No. of points fitted	29
Correlation coefficient	988
Period (0 if no more) (3) ? > >2	
Period range = 27 145	
Horner begin point (27) ? >>65	
Horner end point (145) ? >>130	
CALCULATED FORMATION AND WELLBORE PARAMETERS	
Period	2
Selected semi log straight line segment	65 to 138
Fitted semi-log slope (psi)/(stb/d)	27101-003
Flow Capacity , aD.ft	411936.
Peraeability , aD	2558.613
Extrapolated (pseudo) pressure psi	.2379+884
No. of points fitted	åó
Correlation coefficient	987
Feriod (B if no more) (3) ? > >0	
rerion to 11 no more! (3) : / 70	
SKIN ANALYSIS FOR DRAWDOWN PERIODS	
Permeability, mD (2559.) ? > >5514	
Period (C if no more) (1) ? > >	
Feriod range = 2 26	
Horner begin point (2) ? >>3	
, , , , , , , , , , , , , , , , , , ,	
Horner end point (26) ? >>7	
Brawdown period	1
Selected semi log straight line segment	3 to 7
Initial (pseudo) pressure psi	.2379+004
Extrapolated (pseudo) pressure psi. Intal skip	.2328÷004 51.129

51.129

Total skin fitted for period 1 51.129

Average skin 51.

No. of coints fitted 1

RADIUS OF INVESTIGATION TABLE, Riny (feet)

n\j¦	1	2		
1 ;		**********	 	
2	8714.	6248.		

Riny (n,j) is the radius of investigation, at the end of period n, of the pressure transient induced by the rate change which took place at the start of period j.

Base Peraeability , mD Hydraulic Diffusivity , mD.psi/cP 5514.000 .183+910

C:

MULTI-RATE PRESSURE TRANSIENT DURATION TABLE, DT (hours)

n\j¦			
1 ! 2 !	24.0		••

DT (n.j) is the duration, at the end of period n, of the of the pressure transient induced by the rate change which took place at the start of period j. Note that the duration of the last period may have been extended so as to reach beyond the start of semi-steady state (if finite reservoir).

SATE CHANGE HISTORY (INDUCING PRESSURE TRANSJENTS)

Rate change at start of period 1, stb/d 7000.003
Rate change at start of period 2, stb/d -7000.003