

Confidential

INSTITUTT FOR KONTINENTALSOKKELUNDERSØKELSER

CONTINENTAL SHELF INSTITUTE

Håkon Magnussons gt. 1B — N-7000 Trondheim — Telephone (075) 15660 — Telex 55548

REPORT TITLE/ TI	TTEL		
Source ro	ock analysis of	well 34/2-2,	part II
CLIENT/ OPPDRAG	GIVER		eet oo taan faasiin iyo ahaa saaraa ku
Amoco Noi	rway		
RESPONSIBLE SCIE	NTIST/ PROSJEKTANSVARLIG	en e	,
Hauk Soll	11		
AUTHORS/ FORFAT	TERE	<u></u>	
M.Bjorøy	, T.M. Rønnings	land, H.Soll	i, J.O.Vigra
DATE/ DATO	REPORT NO./RAPPORT NR.	NO. OF PAGES/ ANT.SIDER	NO. OF ENCLOSURES/ ANT. BILAG
	j -		1

EXPERIMENTAL

As described in report O-326/1/81.

RESULTS AND DISCUSSION

Light Hydrocarbons

Eight canned samples from 3220-3400 m were analysed for light hydrocarbons. Some irregularities were found in the various results. This is believed to be due mainly to the composition of the sample, e.g. contents of cement etc. rather than a change due to variation in the organic material. The analysed sequence is a natural extension of zone G in report O-326/1/81, with a good abundance of C_1-C_4 hydrocarbons and a fair abundance of the C_5 + hydrocarbons.

Total Organic Carbon

The claystone cuttings in the different samples were analysed for organic carbon and mainly found to have a fair abundance of organic carbon and show a slight increase with increasing depth. Two samples, 3300 and 3335 m show a rich abundance of organic carbon. This is in samples which contain some coal, and this has probably affected the results, especially for the sample from 3300 m. The coal could occur either as small coal particles and stringers in the cuttings, or the coal particles may be stuck to the claystone cuttings and thereby giving false organic carbon values.

Light Hydrocarbons by Hydrogen Stripping

Four samples were analysed by this method. All measured parameters are found to have a maximum at 3300 m. This could be due to the coal found in the sample from this level of the well. The methyl substituted alkanes show a large variation in concentration with increasing depth especially for the two last samples. It is difficult to interpret these results since the deeper part of the well is not analysed at this laboratory i.e. if this spread is significant for the deeper part of the well therefore represents a distinct change of hydrocarbon type. Apart from these results, the rest of the analyses are in good agreement with the results from zone G, report O-326/1/81.

031/B/2/jlh

Extraction and Chromatographic Separation

Two samples, 3235 m and 3290-3400 m were extracted and both found to have a good abundance of extractable hydrocarbons. The extractability is slightly reduced, especially for the sample from 3335 m when the results are normalized to organic carbon. The gas chromatograms of the saturated hydrocarbons of the two samples differ slightly. Both the samples have smooth, unimodal front-biased distributions with almost equal amounts of pristane and phytane. The sample from 3335 m shows a distinct peak between nC_{19} and nC_{20} which is not found in the sample from 3390-3400 m or higher up in the well. This sample also has a high CPI value, and nC_{27} and nC_{29} alkanes are particularly abundant. This, together with the large abundance of steranes and triterpanes indicate an input from a moderate mature terrestrial source. The steranes/triterpanes are also abundant in the sample from 3390-3400 m, while the nC_{27} and nC_{29} alkanes are less abundant.

Aromatic Hydrocarbons

The gas chromatograms of the aromatic fractions of the two analysed samples vary only slightly from each other, but they are significantly different from the analysed samples higher up in the well. These two samples have aromatic hydrocarbon distributions which are characteristic of well mature sequences and crude oils.

Examination in Reflected Light

Three samples from this section of the well were analysed in reflected light. Each sample is described below, and other information from these analyses is also given.

Sample, K7862, 3260 m: Shale and Carbonate, $R_0=0.34(2)$ and $R_2=0.80(2)$

The sample has a low to moderate organic content with small particles of inertinite and reworked material. No definite vitrinite. A couple of

doubtful, lowest reflectance particles were measured. UV light shows a yellow to orange fluorescence from spores and a low exinite content.

Sample, K7865, 3335 m: Shale, R₀=0.41(4)

The sample has a low organic content with small corroded particles of inertinite and reworked material. No good vitrinite was recorded. The four lowest reflectance particles were measured, and could probably be true. Occasional bitumen wisps were recorded. UV light shows a yellow/orange and light orange fluorescence from spores and a low exinite content.

Sample, K7867, 3400 m: Shale, R₀=0.40(4)

The sample has a low organic content with small particles of reworked material and inertinite. Lowest reflectance particles were measured, and are probably true. Occasional bitumen wisps were recorded. UV light shows a yellow/orange and light orange fluorescence from spores and a low exinite content.

Examination in Transmitted Light

Visual Kerogen Analysis

Three samples, picked lithologies from ditch cuttings were analysed from the deepest part of the well; 3260 m, 3335 m and 3400 m.

They were all composed of a dominant amorphous element. The terrestrial element is mostly of woody nature. The observed pollen of various origin support a colour index of 2 or 2/2+. The fossils seen indicate that the two lower samples are geologically slightly older than the one above.

K7862, 3260 m: Judged by the presence of Early Cretaceous cysts we assume that most of the amorphous material dominating this sample is also derived from material of this age.

Colour index: 2 (very rare pollen).

K7865, 3335 m and K7867, 3400 m: Jurassic/Cretaceous cysts are present in both samples. Pollen are fairly abundant together with some spores.

Colour index: 2 or 2/2+.

Rock-Eval Pyrolysis

Eight samples were pyrolysed on a Rock-Eval instrument and all found to have a low hydrogen index and high oxygen index typical for kerogen type III. The T_{max} temperatures varies from 424-442[°]C indicating the samples to be immature to moderate mature. The analysed sequence is a clear continuation of zone G, report O-326/1/81 and is given the same rating, i.e. a fair potential as a source rock for gas. A slightly higher potential around 3300 m due to the coal at this level.

IKU

TABLE I a.

CONCENTRATION (u) Gas / ks Rock) OF C1 - C7 HYDROCARBONS IN HEADSPACE.

I I I I	IKU No.	DEPTH (m)	C1	C2	С3	iC4	riC4	C5+	SUM C1-C4	SUM C2-C4	WET- NESS (%)	iC4 I I nC4 I
1 1 1 T	K7860	3220		anine monte verba, parte printe anine	ania anto mane anto pore ajor.	ayur anas ayut basa asar basa	andre deter genet deter viewe mit	26	nania, alaris nigat anya dhan, dashi dhan		98.69	
I I	K7861	3240	1075	181	244	126	94	190	1720	645	37.50	1.34 I I
I I	K 7 862	3260	5595	2068	2984	1624	1344	2670	13615	8020	58.91	1.21 I I
I I	K7863	3280	3438	1196	1381	667	469	663	7151	3713	51.93	1.42 J I
I I	K7864	3300	3920	612	955	426	291	398	6205	2285	36.82	1.47 I I
J. I.	K7865	3335	2854	444	671	295	179	249	4443	1589	35.76	1.64 I I
T I	K7866	3360	2560	877	958	372	254	370	5021	2462	49.02	1.46 J
I I	К7867	3400	6661	1024	858	194	124	116	8861	2200	24,83	1.56 l I

•

CONCENTRATION (u) Gas / ks Rock) OF C1 - C7 HYDROCARBONS IN CUTTINGS.

-	IKU No.	DEPTH (m)	C1	C2	C:3	iC4	nC4	C:5+	SUM C1-C4	SUM C2-C4	WET- NESS (%)	iC4 I I nC4 I
	K7860	3220	385	18	38	21	47	591	509	124	24.35	.44 I
•	K7861	3240	753	126	399	2			1279	526	41.13	I
	K7862	3260	122	18	69	35	82	495	326	204	62.60	.43 I
	K7863	3280	120	71	384	144	334	961	1054	934	88.64	.43 I
	K7864	3300	452	296	911	405	706	1793	2770	2317	83.67	.57 I
	K7865	3335	32	6	30	10	23	150	101	69	68 . 50°	.44 I
	K7866	3360	445	781	1836	435	810	1764	4308	3862	89.66	.54 I T
	K7867	3400	556	252	934	463	917	5498	3122	2566	82.20	.51 Î I
							•					

IKU

IKU

TABLE 1 c.

CONCENTRATION (u) Gas / ks Rock) OF C1 - C7 HYDROCARBONS (Ia + Ib).

I I I I	IKU No.	DEPTH (m)	C1			iC4	nC4		SUM C1-C4	SUM C2-C4	WET- NESS (%)	iC4 	
I I T	K7860	3220	385	18	38	21	47	617	510	124	24.38	. 44	I I T
ı I T	K7861	3240	1828	307	643	128	94	190	3000	1171	39.05	1.36	I I T
ı I T	K7862	3260	5717	2086	3053	1659	1426	3166	13940	8224	58.99	1.16	I I T
I T	K7863	3280	3557	1268	1766	811	803	1624	8205	4647	56.64	1.01	T T
Î	K7864	3300	4373	908	1866	831	997	2190	8975	4602	51.28	.83) T
Ì T	K7865	3335	2886	450	701	305	202	400	4544	1658	36.49	1.51	I T
Î	K7866	3360	3005	1659	2794	807	1065	2134	9329	6324	67.79	.76	Î T
I I	K7867	3400	7217	1276	1793	657	1041	5614	11984	4767	39.78	. 63	I I

LITHOLOGY AND TOTAL ORGANIC CARBON MEASUREMENTS

 TABLE NO.: 11

 WELL NO.: 3412-2

Sample	Depth	тос	Lithology
K-7860	3220	0.61	65% Cement 35% Claystone, grey, some greenish, some calcareous Sm.am. Limestone, grey, dark grey, brownish
K-7865	3335	2.53	100% Claystone, grey, subfissile
K-7866	3360	1.00	100% Claystone, as above
K-7861	3240	0.69	87% Claystone, grey, subfissile 8% Cement 5% Limestone/Siderite, grey to grey brown
K-7862	3260	0.72	87% Claystone, as above 8% Siderite, brownish 5% Cement
K-7863	3280	0.83	75% Claystone, grey15% Siderite10% Cement and Gypsum
K-7867	3400	1.05	 87% Claystone, grey, light greygreen 8% Claystone, redbrown 5% Siderite/Limestone, grey, yellowish, brown
K-7864	3300	5.37	95% Claystone, grey, some light 5% Additives (Coal) Sm.am. Siderite

12/U/3/mk

IKU No.	Depth	nc2	nC ₃	MC 3	nC ₄	MC4	nC5	Cy C ₅ + 2.3 DMC ₄ + 2 MC ₅	3MC ₅	nC ₆	MCVC5	cyc ₆ + mcyc ₆	3MC ₆	2.2.4TMC ₅	nC ₇	Benzene	MCyC ₆ + ECyC ₆	nC ₈	Toluene
K-7861	3240	17.0	73.3	61.1	174.9	63.6	166.6	50.6	39.2	100.4	89.6	95.2	85.4	14.9	74.3	33.6	164.3	64.4	118.1
K-7864	3300	75.9	367.5	263.0	605.8	145.5	310.2	79.2	60.1	133.9	69.7	161.2	138.3	28.7	114.9	101.5	319.8	149.8	203.2
К-7866	3360	64,5	291.8	201.9	470.1	104.3	192.8	45.3	33.9	93.6	38.6	99.6	71.3	12.7	40.6	75.2	184.7	41.6	111.6
K-7867	3400	269.7	590.2	360.3	618.4	105.7	172,7	32.8	22.7	61.9	67.3	74.1	45.0	8.2	34.7	100.1	129.5	37.7	101.7

4 2

4.1

×.

Table III

GASOLINE RANGE HYDROCARBONS (HYDROGEN STRIPPING) ppb W/W 100 ml H₂

TABLE: IV

WEIGHT OF EOM AND CHROMATOGRAPHIC FRACTIONS

I	TKU-No	:	пертн	8	Rock Extr	2 2 2	FOM	8	Sat	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Διο	8	нс	1	Non		тос	I T
I I I I	1100 110	8 8 8 8 8	(m)		(9)		(ms)		(m9)	8 8 8 8 8 8 8 8 8 8	(m9)		(mg)		(m9)	8	(%)	I I I I
]= T		==:			========	= == = e		• ===						===				I
1								(Cli		8		5		ē		ñ		T
I I I	K-7865	:	3335	8	51.7		37.2	0 20 20 20 20	14.6	2	8.5		23.1	8	14.1	20 20 20 20	2.5	I

TABLE: V

CONCENTRATION OF EOM AND CHROMATOGRAPHIC FRACTIONS

(Weisht ppm of rock)

====	========	: == :	= = = = = = = = = =	===			======	== == ==				===	= == == == == ==	==
I		8		5		. 4		E		â			Non	I
I	IKU-No		DEPTH	8	EOM	=	Sat.	1	Aro.	ŝ	HC		HC	I
I	i	82 19		Ë		8 8		8		8 . 8		22 10		I
I			(m)	8		1		8		8		8		I
I=		:==:				=== === ===		===			=====			=1
I		8				ġ		8				8		I
I I	K-7865	8 8 8 8	3335		720	8	282	8	164	8 8 9	447		273	I
I I I	K-7865	8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	3335		720		282		164	8 9 8 8 8 8	447	8 8 8 8 8	273	I I I
I I I I	к-7865 к-7867	68 24 25 25 25 25 25 25 25 25 25 25 25 25 25	3335 3400	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	720 673		282 358		164 126	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	447 484	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	273 190	I I I

IKU

TABLE: VI

CONCENTRATION OF EOM AND CHROMATOGRAPHIC FRACTIONS

(me/s TOC)

==	= = = = = = = =			====	=======	= == == =						===		
I		2				8	,	8 R		20		:	Non	I
I	IKU-No	2	DEPTH	27 28	EOM	8	Sat.	2	Aro.		HC	5	HC	I
I		-		18 19				4		82 53		# 8		I
I			(m)	ġ ġ		8 8		81 82		5				I
I=				= == ==	========		= == == == == == =			===		*==		: I
I		8		8		. 2		8 8		60 50				I
Ι	K-7865	42 -19	3335	, 8	28.8		11.3	22 19	6.6	80 10	17.9		10.9	I
I		a,		8		8 53		10 10		祭 四		19 13		I
I	K-7867	5	3400	87 10	61.2	2	32.5	ę	11.4	:	44.0	8 8	17.2	I

TABLE: VII

COMPOSITION IN % OF THE MATERIAL EXTRACTED FROM THE ROCK

==:		= == :		= == == ==	=====		=========	===	: == == == == == ==	= == ==		==:		= = =		=
I		# 8		8	Sat	8	Aro		HC	:	Sat		Non HC	Ē	HC	I
1	IKU-No	8	DEPTH	12 12		ā		8		ŧ		-14 -15				I
I				8 11	EOM	88 50	EOM	8	EOM	2	Ano	8	EOM	1	Non HC	I
I			(m)	8		2 2	•	.9 6		8		ŝ		10		I
- T																*
τ.	ے میں نئے نتائے اسے میں میں نے		يع مين يريد عده جده معاركة					===	بن بنا حد حن بن بن بن بن	- 22 - 23		= == :	= == == == == == == ==	====	= = = = = = = = = =	T
I		2		: :					- 23 25 25 25 26 26 26	:		2 == : 8	₩ 22 22 22 23 23 23 23 23 23 23 23 23 23	2 111 H 8		I
I I I	к-7865	2 2 1	3335	5 5	39.2		22.8		62.1	2 22 22 2 2	171.8	2 == : 9 8	37.9	2 == 1 8 5	163.8	I I I
I I I I	K-7865	8 8 8 8 8 8 8 8 9	3335	2	39.2	8 9 8 8	22.8		62.1		171.8		37.9	8 8 8 8 8 8	163.8	I I I I
I I I I	к-7865 к-7867	8 8 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9	3335 3400		39.2 53.2	2 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	22.8	11 20 21 20 20 20 20 20 20 20 20 20 20 20 20 20	62.1 71.8		171.8	2 41 1 9 9 8 9 8 8 8	37.9		163.8 255.1	

TABULATION OF DATAS FROM THE GASCHROMATOGRAMS

.

I		====	DEPTH	:	PRISTANE	:	PRISTANE	====		==: I
I I T=	IKU NO.	:	(m)		n-C17	:	PHYTANE	: : =====	CF1	1 I == T
I I	K7865	8	3335	88	.5	40 28	1.0		1.3	I I
I I I	K7867		3400	20 20 20 20	.6		1.1		1.0	I I I
==		===		:=:		===:		- 		-==

IKU

VITRINITE REFLECTANCE MEASUREMENTS

TABLE NO.: IX

WELL NO.: 34/2-2

Sample	Depth	Vitrinite reflectance	Fluorescence in UV light	Exinite content
K-7862	3260	0,34(2), 0,80(2)	yellow-orange	Low
K-7865	3335	0,41(4)	yellow-orange	Low
K-7867	3400	0,40(4)	yellow-orange	Low
,				
			• · · ·	
				с. Э
	•			
				<i>,</i>

IKU

VISUAL KEROGEN ANALYSIS

TABLE NO .: X

.

WELL NO .: 34/2-2

Sample	Depth	Composition of residue	Particle size	Preservation- palynomorphs	Thermal maturation index	Remarks					
K-7862	3260	Am, Cy/He, C, W	F ~ M .	fair to good	2	Early Cretaceous cysts em- bedded in amorphous aggre- gates. Pyrite framboides.					
K-7865	3335	Am, Cy/He, W, C, P	F-M	good to poor	2 2/2+	Rare pollen Jurassic/Cretaceous cysts.					
K-7867	3400	Am, Cy/He, W, P, S	F-M	good to poor	2 2/2+	As above					
	•										
				1							

ABBREVATIONS

Am amorphous He herbaceous Cut cuticles

> а . Т.

Cy cysts, algae P pollen grains

.

S spores

W woody material C coal RI reworked F fine M medium L large

TABLE XI

IKU

ROCK EVAL PYROLYSES

I I I I I	IKU No.	DEPTH		51 S1	s2	s3	TOC	HYDR. INDEX	OXYGEN INDEX	OIL OF GAS CONTENT	PROD. INDEX S1	TEMP.I ma× I I I
I		(m)	- 8 1				(%)			S1+S2	S1+S2	(C) I
I	K7860	3220	= == == : ; ; ;	.16	.16	.75	.61	26	123	.32	.50	=====1 I 424 I
IIII	K7861	3240	5 8 8	.19	.16	.68	.69	23	99	.35	.54	430 I
I	K7862	3260	1	. 19	.22	.57	.72	31	79	. 41	. 46	436 I
Î	K7863	3280	5 10 10 10	.23	.32	.62	.83	39	75	.55	.42	-440 I I
I I	K7864	3300	8 8 8	.65	5.26	4.79	5.37	98	89	5.91	. 11	434 I I
I I	K7865	3334	8 8 11	.31	1.89	2.63	2.53	75	104	2.20	.14	436 I I
I I	K7866	3360	57 53 54	.18	.53	1.31	1.00	53	131	.71	.25	442 I I
I I	K7867	3406	8 .9 8	.19	.60	.73	1.05	57	70	.79	.24	436 I I

C1 - C7 HYDROCARBONS

Presentation of Analytical Data

Well no: 34/2 - 2 Company: Amoco Fig. 1

C5 - C7 HYDROCARBONS

C1 - C4 HYDROCARBONS

Fig. 3

Fig. 4

, **~**

Fig. 5

TOTAL ORGANIC CARBON (TOC)

Presentation of Analytical Data

Well no: 34/2-2 Company: Amoco Fig. 6

۰. ۲

1 1

Toc

Zone

Organic Geochemistry Department

C₁₅ ⁺HYDROCARBONS

Presentation of Analytical Data Well no: 34/2 - 2

Well no: 34/2 - 2 Company: Amoco Fig. 7

1 1

Organic Geochemistry Department

. Э

C₁₅⁺ SATURATED HYDROCARBONS Presentation of Analytical Data

Well no: 34/2-2 Company: Amoco Fig. 8

ł, Fig. 9 K-7865 2-Me-Naphtalene C2-Naphtalene 1-Me-Naphtalene Phenantrene/Antracene C3-Naphtalene Me-Phenantrenes MANY "In

ROCK-EVAL PYROLYSIS

٩

Depth	Degree of oth evolution T ^O C				Hydrogen Index mg.HC/g. Org.Carbon			Oxygen Index mgCO ₂ /g. Org.Carbon			Oil and Gas Content (S ₁ + S ₂) Kg.HC ton of rock				Production Index $\frac{S_1}{S_1 + S_2}$			
		410	450	490	200	400	600	50	100 T	150	2	4 (6 8 I I	10 12 14	02	0.6	1.0 T	1.4 T
3200					•					.						•		
3300 -			:					· · · · · · · · · · · · · · · · · · ·				-				-		
3400 -			•		•		i		•		4			¥.		ي. بور بور	[°] 1	
3500 -																		

٩.

n

Organic Geochemistry Department

MATURATION

Well no: 34/2 - 2 Company: Amoco Fig. 12

VISUAL KEROGEN

COLORATION AND COMPOSITION OF ORGANIC RESIDUE

Organic Geochemistry Department

INTERPRETATION DIAGRAM

Well no: 34/2 - 2 Company: Amoco Fig. 13

SUMMARY OF SOURCE POTENTIAL

