utt for kontinentalsokkelunders ITINENTAL SHELF INSTITUTE, N	økelser ORWAY	
agnussons gt. 1 B • Postboks 1883 • 7001 Trondheim, Norway • lex 55434 IKU N • Telegram «NORSHELF» • Telefax (07) 9209:	Tlf. (07) 92 06 11 24 (Aut.)	IKU
	REG.NO. 84	4.127
	ACCESSIBILITY	onfident
REPORT TITLE/ TITTEL		
HYDROCARBON CHARACTERISATION OF WELL	31/5-2.	- inj
CLIENT/ OPPDRAGSGIVER	ی کی کو کی	

Schou and G. Haugen

перовт но дарровт, не: 42 05.1750.00/01/84 NO. OF PAGES

46

NO. OF ENCLOSURES/ ANT. BILAG

SUMMARY/SAMMENDRAG One oil and one gas sample from 31/5-2 were analysed. The oil (B-8116) is a mature biodegraded paraffinic oil. The gas (B-8971) associated with the oil is 80% methane and shows depletion of n-alkanes of carbon number above C₄ (relative to branched and cyclic compounds of similar molecular weight). KEY WORDS/STIKKORD 31/5-2 Hydrocarbon Characterisation

141/A/an1/1

Susannah Beti AUTHORS FORFATTERE

S.Betts,

DATE/ DATO

5.12.84

CONTENTS

INTRODUCTION	3
EXPERIMENTAL PROCEDURES	4
RESULTS API gravity Oil composition C ₂ -C ₈ hydrocarbons Gas analysis Isotopic analysis Gas chromatography results GC-MS analysis of saturated steranes and terpanes GC-MS analysis of aromatic hydrocarbons	7 7 7 7 7 8 10 11
CONCLUSION	12
TABLESTable 1:Fraction boiling below 210° C.Table 2:Weight of oil fractions.Table 3:% composition of the oil.Table 4: $C_1 - C_8$ hydrocarbons, µg and %.Table 5:Results of gas analysis.Table 6:Data from gas analysis.Table 7:Results of carbon isotopic analyses.Table 8:Sterane/triterpane molecular ratios (maturity).Table 9:Sterane/triterpane molecular ratios (source and maturity).	13 14 15 16 19 20 29 30 31
 FIGURES Figure 1: Gas chromatogram C₂-C₈ hydrocarbons. Figure 2: Gas chromatogram of gas sample. Figure 3: Saturated fraction gas chromatograms. Figure 4: Branched/cyclic fraction gas chromatogram. Figure 5: Aromatic fraction gas chromatogram. Figure 6: Mass chromatograms - terpanes. Figure 7: Mass chromatograms - steranes. Figure 8: Mass chromatograms - aromatic hydrocarbons. 	17 21 23 25 27 32 33 37

 \odot

IKU

Page

INTRODUCTION

IKU was supplied with one oil and one gas sample from this well, the two samples together make up a representative reservoir fluid.

- 3 -

The following information on collection of the oil and gas samples was supplied by GECO.

Flash of reservoir fluid to stock tank conditions

Flash conditions	:	250 barg, 67.6°C to atmosphere and 15°C.
Gas oil ratio	:	$60.5 \text{ sm}^3/\text{m}^3$.
Bo at 250 barg	:	$1.158 \text{ m}^3/\text{m}^3.$
Bo at bubble point	:	$1.170 \text{ m}^3/\text{m}^3.$
Density of oil at 15 ⁰ C	•	894.4 kg/m ³ .
Molecular weight of oil		251.
Standard conditions	:	for gas volumes = 15 ⁰ C and 1 atm.
		for oil volumes = 15 ⁰ C and atmospheric
		bressure.

Saga supplied information on reservoir temperature $(67.6^{\circ}C)$ and pressure 156 barg.

The following analyses were carried out on the oil sample:

Measurement of API gravity of the oil.

 C_2-C_8 hydrocarbon characterisation.

- Measurement of the fraction boiling under 210⁰C.
- Fractionation of the fraction boiling over 210^oC by MPLC (medium pressure liquid chromatography).
- Molecular sieving of the saturated fraction into normal and branched/cyclic alkanes.
- Gas chromatography of the saturated/branched and cyclic/aromatic fractions.
- GC-MS of saturated fraction (m/z 191, 217 and 218).
- GC-MS of aromatic fraction (m/z 231 and 253).
- δ^{13} C isotope analysis of saturated and aromatic hydrocarbon fractions.

EXPERIMENTAL PROCEDURES

$C_2 - C_8$ analysis

 C_4-C_{10} analysis was carried out on a HP 5880 A gas chromatograph equipped with a 50m x 0.2mm (I.D.) fused silica column coated with OV-101. Helium was used as carrier gas at 1ml/min. The inlet split ratio was 1:60. The temperature program was $35^{\circ}C$ (5 min) - $8^{\circ}C/min$. - $200^{\circ}C$ (2 min.) which gave good resolution from C_3 upwards. Quantitation was carried out using the same standard gas as for C_1-C_5+ analysis.

Total organic carbon

Bulk samples were crushed in a mortar. Aliquots of the samples were then weighed into Leco crucibles and treated three times with hot 10% HCl to remove carbonate, and washed 4 times with distilled water to remove traces of HCl. The crucibles were then placed on a hot plate and dried for 24 hours. The total organic carbon (TOC) content of the dried samples was determined using a Leco CR12 carbon analyser.

Evaporation of the light components in fluid samples

Prior to chromatographic separation of oil/condensate samples, the fractions boiling below 210° C were removed by heating the samples to constant weight at 210° C is obtained. The heating is performed at atmospheric pressure.

The fraction of light components is determined as the weight difference between the original sample and the amount that is left after the heating.

Chromatographic separation

The fraction of the oil boiling above 210[°]C was separated into saturated fraction, aromatic fraction and non hydrocarbon fraction using a MPLC system with hexane as eluant (Radke et al., Anal. Chem., 1980). The various fractions were evaporated on a Buchi Rotavapor and transferred to glass vials and dried in stream of nitrogen.

Molecular sieve adsorption

The sample containing 2mg of n-alkanes was dissolved in 35ml of cyclohexane and 1gs of Molecular Sieve pellets (5A) which had been activated at $300^{\circ}C$ in 24 hours, were added. This mixture was then refluzed for about 24 hours. While the solution was still hot, the sieve pellets were removed from the solution by filtering. The solvent was then removed on a Buchi Rotavapor. GC analysis were performed on the samples, using the same conditions as for the other GC analysis.

The normal alkanes were recovered from the Molecular Sieve pellets by destruction of the pellets with hydrofluoric acid. The solution was extracted with boric acid and hexan, and the solvent was then removed on a Buchi Rotavapor. GC analysis were performed on the samples, using the same conditions as for the other GC analysis.

Gas chromatographic analysis

The C_2-C_8 hydrocarbons of the oil were determined on a Carlo Erba Fractovap GC. The column used was a 30m fused silica capillary column coated with SE-54. The temperature program applied was 50°C (2min.) to $180^{\circ}C$ at $4^{\circ}C/min$.

The saturated, the branched/cyclic and the aromatic hydrocarbon fractions were each diluted with n-hexane and analysed on a HP 5730A. The GC is equipped with a 15m DB-1 fused silica column and hydrogen (ca. 2.5 ml/min.) is used as carrier gas. Injections are performed in split mode (split ratio 1:10). The temperature program applied is $80^{\circ}C$ (2 min.) to $280^{\circ}C$ at $4^{\circ}C/min$.

The data processing for all the GC analyses was performed on a VG Multichrom lab data system.

Gas chromatography - mass spectrometry (GC-MS)

GC-MS analyses were performed on a VG Micromass 70-70H GC-MS-DS system. The Varian Series 3700 GC was fitted with a fused silica OV-1 capillary column (30m x 0.3mm i.d.). Helium (0.7kg/cm²) was used as carrier gas and the injections were performed in split mode (1.5 μ l, split ratio 1:15). The GC oven was programmed from 70°C to 280°C at 4°C/min. after an ini-

141/A/an1/5

tial isothermal period of 2 minutes.

The saturated hydrocarbons were analysed in multiple ion mode (MID) at a scan cycle time of approximately 2 secs. Full data collection was applied for the aromatic hydrocarbons at a scan time of 1 sec/decade. The mass spectrometer operated at 70eV electron energy and an ion source temperature of 200⁰C. Data acquisition was done by VG data systems.

- 6 -

Peak identification was performed applying knowledge of elution patterns in certain mass chromatograms. Calculation of peak ratios was done from peak height in the appropriate mass chromatograms.

δ^{13} C isotope analysis

The δ^{13} C isotope analysis was performed by mass spectrometry at Institute for Energy Technology (IFE) in Oslo according to their method. Their reference value for the standard NBS-22 is -29.8.

Analyses carried out on the gas sample

Gas analysis

 C_1-C_{10} analysis was carried out on an HP 5880 gas chromatograph equipped with a 50m x 0.2mm (I.D.) column fused silica column coated with OV 101. Helium was used as a carrier gas at 1ml/min. The inlet split ratio was 1:50. The temperature program was $-10^{\circ}C$ for 2mins., $10^{\circ}C/min$ to $160^{\circ}C$, $160^{\circ}C$ for 5 mins.

Quantitation was carried out using a standard gas containing methane, ethane, propane, n-butane, n-pentane and n-hexane. In addition a natural gas standard obtained from Norsk Hydro was used.

141/A/an1/6

RESULTS

API gravity

The specific gravity of B-8116 at $60^{\circ}F = 0.8934$ API^o gravity = 26.8^o

This is a medium gravity oil. The gravity is probably higher now than it was originally due to biodegradation and consequent loss of lighter hydrocarbons.

- 7 -

Fraction boiling below 210°C (see table 1)

Oil composition (see tables 2 and 3)

A biodegraded paraffinic oil.

C2-C8 hydrocarbons

The distribution of C_2-C_8 hydrocarbons shows a similar trend to that seen in the nC_{15}^+ fraction. The n-alkanes have been depleted by biodegradation. Table 4 and figure 1 show the relative weights and percentage weights of C_2-C_8 compounds present in the sample. The light hydrocarbon ratios used by Thompson, 1979 to estimate type of source and maturity are probably not valid for this sample because it is biodegraded. In addition to this it has not been possible to determine some of the necessary compounds, e.g. heptane.

<u>Gas analysis</u>

The results have been tabulated (table 5). A similar trend of depletion of n-alkanes is also seen in the gas sample (above C_4). The iC_4/nC_4 ratio is approximately 6.5 and iC_5/nC_5 is 4.8. A similar predominance of branched pentanes over n-hexane, and branched hexanes over n-heptane is seen.

Isotopic analyses

The results (table 7) are rather unusual as it is normally the saturated fraction that is the more depleted of the two. The difference is fairly

large and hard to account for. The samples were analysed twice to check but with the same result.

Gas chromatography results

Saturated fraction

The low abundance of lower molecular weight alkanes (below C_{16}) and predominance of isoprenoid alkanes suggests that the oil is biodegraded. The total alkane range is C_{13} to C_{38} with nC_{16} to nC_{30} being present in the greatest abundance. The pristane/ nC_{17} ratio is high, 2.15 but this probably indicates biodegradation rather than low maturity. The abundance of higher i.e. over C_{20} alkanes is noteworthy. It is possible that the C_{30} plus alkanes are derived from the biodegrading microorganisms themselves. Another possibility is the presence of a high molecular weight additive although this seems unlikely and the absence of higher molecular weight compounds in the aromatic fraction chromatogram indicates that this is not the case. This range of alkanes is also seen in some of the immature source rock extracts from 31/5-2, e.g. from 1976m (B-226, p.68). Whether the abundance of high molecular weight alkanes persists to higher maturities in source rocks outside the area of the well is not known.

Branched and cyclic alkanes

The chromatogram is dominated by isoprenoid alkanes which are ubiquitous in extracts and oils and therefore give little specific information on source. The pristane/phytane ratio is fairly high 1.9 and is within the range to the ratio from the 31/5-2 rock extracts below 2000m (1.4-3.4).

Aromatic fraction

The chromatogram is dominated by methyl and dimethyl naphthalenes with relatively little higher molecular weight material. The distribution of the methyl naphthalenes (i.e. with 2 methyl naphthalene dominant) and the absence of high molecular weight material indicates that the oil is mature.

Molecular ratios from terpane and sterane mass chromatograms applied as maturity and source characteristic parameters

Geochemical fossils or biological marker components are characteristic of the type of organic matter present at the time the sediments were

141/A/an1/9

deposited. The biological isomers of these components undergo changes due to increased maturity in particular, but also to a certain degree caused by migration and weathering processes.

Source characteristic parameters

In the m/z 191 mass chromatograms, representing terpanes, the hopanes and moretanes are the major components in most extracts and oils. Of the hopanes the C_{27} and C_{29} - C_{35} homologs are ubiquitous, while the C_{28} bisnorhopane is believed to be typical of certain types of source rocks. This is also the case for the component, probably gammacerane, sometimes seen to coelute with the 22S isomer of the C_{31} 17 α (H)-hopanes (H). In the sterane mass chromatograms, m/z 217 and m/z 218, the molecular weight distribution of the C_{27} - C_{29} regular steranes is believed to be representative of the original input of organic matter. The highest molecular weight compounds, the C_{29} steranes, represent organic matter of terrestrial origin, while the lower molecular weight analogs originate from more marine type environments.

Maturity dependant parameters

The biological isomers of the hopanes, the $17\beta(H)$, $21\beta(H)$ -hopanes, undergo structural changes during the maturation process. The isomerisation reactions are thought to be produced via the $17\beta(H)$, $21\alpha(H)$ -hopanes (moretanes) to the most stable $17_{\alpha}(H)$, $21_{\beta}(H)$ -hopanes. At equilibrium 100% of the $17_{\alpha}(H)$ -hopanes are seen. The ratio $\alpha\beta/\alpha\beta+\beta\alpha$ is used to describe this reaction. In the extended hopanes $(\geq C_{31})$, the thermally stable S configurations at C-22 become increasingly more abundant as compared to the biological preferred R configurations at increased maturity level. The equilibrium ratio is approximately 60% of the 22S configuration. Another ratio that is known to change with maturity is the Tm/Ts (Seifert et al., 1978) of the C_{27} hopanes. The maturable $18_{\alpha}(H)$ -trisnorneohopane (Tm) is reduced in intensity relative to the more stable $17_{\alpha}(H)$ -trisnorhopane (Ts), causing the Tm/Ts to decrease at increased maturity. This ratio is also believed to be source dependant, and this should be born in mind when applying the ratio for maturity comparison. The amount of tricyclic terpanes is also to a certain extent seen to be maturity dependant.

Two isomerisation reactions taking place in the steranes are most commonly applied for maturity assignments from the m/z 217 mass chromatograms. The biologically preferred $14\alpha(H)$, $17\alpha(H)$ -isomers of the regular steranes is transformed to the thermally stable $14\beta(H)$, $17\beta(H)$ -steranes, the $\%\beta\beta$ approaching 75% at equilibrium. An equilibrium concentration of 50% is seen of the stable S configuration at C-20 as opposed to the 100% of the biological 20R epimer (Mackenzie et al., 1980). The abundance of rearranged steranes increased with increasingly maturity.

One of the reactions taking place at an early stage of diagenesis is the aromatisation of steranes, leading to the formation of mono- and tri-aromatic analogs. This process is measured as the abundance of triaromatic relative to mono-aromatic compounds (% tri/tri + mono) in the m/z 231 and 253 mass chromatograms, respectively. In addition the degree of side chain cracking, as $%C_{20}/C_{26}$, 27 and $%C_{21}/C_{28,29}$ respectively, is applied. These cracking processes are also taking place during early diagenesis, and are used for maturity assignment together with the previously mentioned ratios.

Migration and weathering

The effect on the geochemical fossils of migration and weathering, is less apparent than the maturity induced changes. Migration is believed to cause an increase in the relative amounts of rearranged and $14\beta(H)$, $17\beta(H)$ regular steranes (Seifert and Moldowan, 1978, 1981). Severe biological alteration leads to the formation of desmethyl-hopanes (Seifert and Moldowan, 1979).

GC-MS analysis of saturated steranes and terpanes

The oil sample was analysed for the relative distribution of steranes $(m/z \ 217, \ 218)$ and terpanes $(m/z \ 191)$. Mass chromatograms and tabulated data are presented in Figures 6 and 7 and Tables 8 and 9, respectively.

The oil is seen to contain biomarkers of high maturity, all the isomerisation reactions having reached equilibrium. A certain content of bisnorhopane (Z in m/z 191) is seen in the sample. This does not, however, necessarily mean that the source rock for this oil contains any bisnorhopane, since it is known that the relative abundance of this compound is also dependent on maturity. The relative molecular weight distribu-

141/A/an1/11

tion of regular steranes, indicates a high proportion of terrestrial input from the high abundance of C_{29} steranes.

- 11 -

GC-MS analysis of aromatic hydrocarbons

141/A/an1/12

Total ion and mass chromatograms representing aromatic hydrocarbons are presented in Figure 8, while maturity ratios from aromatic steranes are presented in Tables 8 and 9.

This oil sample contains a high proportion of low molecular weight naphthalenes compared to phenanthrenes. Front end biased distribution of alkylated mono-aromatic hydrocarbons is seen, and the relatively low abundance of aromatic steranes suggests mature hydrocarbons.

CONCLUSION

From the analyses carried out the sample provided appears to be a mature biodegraded paraffinic oil.

The associated gas sample is largely methane (80%) and is noticeably depleted in C_4 + n-alkanes also probably the effect of biodegradation. Some of the methane may be bacterial in origin but as isotopic study of the gas was not requested the relative proportions of biogenic v.s. thermogenic methane cannot be established.

Table 1.Fraction boiling below 210° C.0il 31/5-2Starting wt. (g)after evaporation (g)2.08011.8713% boiling under 210° C=4%

- 14 -TABLE : 2.

Relative weight of the main fractions in the oil sample

	IKU-No		DEPTH (m)	10 00 05 45 28 48	Crude Oil (mg)	11 12 12 12 12 12 12 12 12 12 12 12 12 12 1	>210 ⁰ (mg)		Sat. (mg)		Aro. (mg)		HC (mg)	Non HC (mg)		TQC (%)	
I I I I ====	B 8116 Oljeprom	976 1925		11 an an 11	2080.1		871.3	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	827.8	5 5 5	423.0	2 2 3	1252.8	618.5	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.00	

DATE : 1 - 11 - 84.

- 15 -TABLE : 3.

Percentage composition of the main fractions in the oil sample

12 # 12	********	====	*******	c,= =,	*****	a, s a sa s	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	20.02 52		z 12. a		2-52		: 22 :	*******	1.2
I		8		ц н	Sat		Aro	5	HC	17 17	SAT	20	Non HC	a R	HC	1
I	IKU-Na	*	DEPTH	9 11		8	and an instance and and	5		t t		ж. Я		있 박		I
I		8		te et	EOM	11 4	EOM	at V	EOM	,¥	Aro	H H	EOM	11	Non HC	1
I		ä	(m)	2		, ii		, f		4		2		11		1
] = =			******	===	*****	***		न्द्र व्यःक्ष	******	2 = 0		• == :	* = = = = = = = =			:1
1				a a		5		3		4				5		I
I	B 8116			41 12	44.3	a 3	22.6	r F	66.9	5	196.2	s.	33.1	ŧ.	202.6	1
I	Oljepros	və		7 U		4		2				R		a H		1
										سر سنر س						

DATE : 1 - 11 - 84.

.)

B-8116		
31/5-2 C ₂ to C ₈ hydroca	rbons	
$\rho = 0.8934$		
• • • • • • • • • • • • • • • • • • •		
	μg	<u>%</u>
C ₂		
C ₃		
MC ₃	0.48	0.18
nC ₄	0.30	0.11
MC ₄	0.88	0.33
NC ₅	0.32	0.12
$CyC_5 + 2.3DMC_4$	1.08	0.40
2MC5	1.16	0.43
3MC5	0.88	0.33
nC ₆	2.72	1.01
MCyC _E	3.94	1.47
benzene	~	
СуС _с	6.16	2.30
2MC _c	· · ·	
2.3DMC_	0.73	0.27
3MC _c	1.26	0.47
$DMCyC_{r}$ (1.3, 1.2)	3.23	1.20
nC ₇	-	
MCyC	12.45	4.65
toluene	0.44	0.16
2MC-	0.40	0.14
3MC-	0.79	0.29
$DMC_{VC_{c}}(1.2)$	2.47	0.92
nC ₂	1.55	0.58
8 M/P-xvlene	4.01	1.50
ny ny nana		

IKU

 \bigcirc

1/1///am1/16

Gas chromatogram, C_2-C_8 hydrocarbons

(23)

Table 5. Results of gas analysis 31/5-2

B-8971

Percentage composition

- 19 -

c ₁	80.7
C ₂	8.1
c ₃	1.5
iC4	1.5 $iC_{a}/nC_{a} = 6.5$
nC _A	0.23
iC ₅	0.22
	$iC_{5}/nC_{5} = 4.8$
nC ₅	0.046/
2.2DMeC ₄	0.024
2.3DMeC ₄	0.049
СуС ₅	0.039
2-MeC ₅	0.077
3-MeC ₅	0.041
nC ₆	0.009
MeCyC ₅	0.10
2.4-DMeC5	0.01
СуС ₆	0.10
nC ₇	0.0002
MeCyC	0.069
U	

Table 6. Data from gas analysis.

OV: STOP RUN

ELPI 5890A MANUAL INJECTION @ 11:31 NOV 22, 1984 AREA %

RT	AREA	TYPE	WIDTH	HEIGHT	BASELINE	AREA %
9.90	n se		895ELINE å	START RUN = 6	9.85	•
0.00			THRESHOLD	@ START RUN =	3	
0.00			PEAK WIDTH	I 9 START RUN -	- 0.04	
3.14	123777.00	5V	0.03	65140.60	69.93	70.600
3.28	24908.00	¥З	0.03	14330.80	70.23	14,297
3.74	7562.13	ēē	0.02	4493.47	10.23	4.5.5
4.54	9551.45	87	2.03	5279.93	70.02	5.448
5.19	1501.21	88	0.03	912.77	79.49	0.356
5.48	151.70	38	0.031	77.77	70.47	0.987
7.06	1922.87	84	0.03	909.20	70.13	1.097
7.82	397.66	Ee	0.031	201.75	70.36	0,227
3.36	216.95	68	0.033	101.88	70.28	0.124
9.69	435.15	8V	9.033	207.81	70.23	0.248
9.76	349.36	٧V	0.035	155.35	70.37	0.199
5.90	686.91	YB.	0.03	324.56	79.63	0.392
10.31	369.90	53	0.033	173.41	70.39	0.211
19.81	81.62	58	0.033	39.11	70.21	0.047
11.51	40.29	87	0.031	29.67	70.18	0.023
11.59	895.39	44	0.035	398.77	70.22	0.51:
11.68	39.60	YY	جه هد هد من بيد	36.45	70.25	0.051
11.83	61.91	ΥB	0.043	22.60	70.31	0.035
12.41	29.46	5 V	0.034	9.34	70.23	0.012
12.53	969.15	44	0.038	401.20	79.26	0.553
12.72	15.70	₩Ŷ	مية مده فيد جد.	7.50	70.30	0.909
12.79	34.66	4.4	0.035	38.11	79.31	0.048
:2.39	75.13	W ^t V	0.034	34.55	79.32	8.943
12,96	68.53	¥Ξ	0.94	29.77	70.34	0.939
13.17	83.46	84	0.034	38.83	79.24	0.948
13.25	91.91	Ψ¥		39.97	70.31	0.052
13,33	140.22	¥8	0.64	53.80	70.38	6.086
:4.23	518.41	88	0.049	239.62	70.29	0.353
14.50	34.41	ΥS	0,037	14.65	70.37	0.020
14.71	22.84	38	0.036	9.84	70.17	0.013
14.90	17.43	84	0.036	7.58	70.13	0.910
13.67	34.24	, ¹ 1, ¹ 1		14.40	70.17	0.020
15.72	17.63	٧S	-	7.46	70.17	0.910
16.13	15.92	ÞŸ	9.037	6.65	70.19	0.309
17.02	12.44	¥8	0.039	4,96	79.33	0.007

TOTAL AREA = 175322.00 MULTIPLIER = 1

- 21 -

Gas chromatogram of gas sample

 \bigcirc

RT: VALVE 2 + ON			·		
OVEN TEMP 1 FINAL TIME + :	30.00 MIN				
OV: START PRGM RATE 1					
	7 35				7 ta r .
3.74 nC3			, , , , , , , , , , , , , , , , , , ,		• • • • • • • • • • • • • • • • • • • •
4.54 jCa					₽., ¹ .
σ ⁵ /- ¹ ³ πC/	•				
5.48					
				•	
, 7.06 iC5		,			
RT= 97TTN → 217 nC5				•	1. *
8.36 2.2 DiMeC₄	. '				
0 @ro49			•		
10.31 3 MeC5					
. 10.81 nC6					,
11.59 MeCyC5					
12.41 12.53 CvCe					
				-	
173 - 1970 			· .		
14.23 MeCyC ₆					· · · · · · · · · · · · · · · · · · ·
17:90					
15.5Z					
17.02					
			a		· .
DV: START FINAL TIME 1					
n de la construcción de la constru La construcción de la construcción d	· ·				
Gas chromatogram ($C_1 - C_{10}$) 31/5 - 2 gas sample 8 8071					
01/0 — r Ras samhig n 02/1					

- 23 -

Saturated fraction gas chromatograms

0

141/A/an1/19

a	-	nC ₁₇
b	-	pristane
C		phytane
nC _x		n-alkane of that
		carbon number

Branched and cyclic alkanes gas chromatogram

Pr	-	pristane	
Ph		phytane	
iso	16	Isoprenoid alkanes with 16 and	18
iso	18	carbon atoms respectively	

- 27 -

Aromatic fraction gas chromatogram

N	de	naphthalene
MN	-	methyl naphthalenes
DMN		dimethyl naphthalenes
TMN		trimethyl naphthalenes

141/A/an1/21

<u>Table 7.</u> Results of δ^{13} C analyses on saturated and aromatic fractions of 31/5-2 oil (B-8116).

- 29 -

Sat. $({}^{13}\delta C {}^{0}/00)$

Arom. $(^{13}_{\delta}C^{\circ}/\circ o)$

-28.8

)

-31.1

_	Table 8. Molecular and stera Maturity	ratios me mass ratios.	calculated chromatogra	from terp ams.	ane	
1	 KU No. 	DEPTH (m)	1) αβ/αβ + βα 	2) %225 	3)) ۱ ۹۹%	4) %205
=	B8116	0	0.89	60.0	73.9	54.5

1) E/E+F in m/z 191.

2) % distribution between first and second elution isomers of doublet J (m/z 191)

- 3) 2(r+s)/(q+t+2(r+s)) in m/z 217.
- 4) q/q+t in m/z 217.

Table 9.

_	Mol and Sou	ecu st rce	lar era ct	ratios ane mass naracter	ca ch ist	lculat romato ic and	ed gran Ima	from te ns. turity	rp: ra	ane tios.			
	іки	No	. 1	DEPTH (m)	1	Q/E	1) 	2 Tm/Ts)	X/E	3) 	4) a/a+j 	5) Z/E
= :	B81	=== 16			= = = D	0.0	19	0.84		0.1	1	0.70	0.24

1) Relative abundance of tricyclic terpanes(Q/E in m/z 191). 2) B/A in m/z 191.

3) Relative abundance of unknown(X/E in m/z 191).
4) Relative abundance of C27 rearranged steranes(a/a+j).
5) Relative abundance of bisnorhopane(Z/E in m/z 191).

Figure 6.

Mass chromatograms representing terpanes (m/z 191)

A	T_s , $18\alpha(H)$ -trisnorneohopane	C ₂₇ H ₄₆	(111)
В	T_m , 17 α (H)-trisnorhopane	C ₂₇ H ₄₆	(I,R=H)
C	17α(H)-norhopane	C ₂₉ H ₅₀	(I,R=C ₂ H ₅)
D	17β(H)-normoretane	C ₂₉ H ₅₀	$(II, R=C_2H_5)$
Ε	17α(H)-hopane	C ₃₀ H ₅₂	$(I,R=C_3H_7)$
F	17β(H)-moretane	C ₃₀ H ₅₂	(II,R=C ₃ H ₇)
G	17α(H)-homohopane (22S)	C ₃₁ H ₅₄	(I,R=C ₄ H ₉)
H .	$17\alpha(H)$ -homohopane (22R)	C ₃₁ H ₅₄	$(I,R=C_4H_9)$
	+ unknown triterpane (gammacerane?)	UL U I	
I	17β(H)-homomoretane	C ₃₁ H ₅₄	$(II,R=C_4H_9)$
J	17α(H)-bishomohopane (22S,22R)	C ₃₂ H ₅₆	$(I,R=C_5H_{11})$
К	$17\alpha(H)$ -trishomohopane (22S,22R)	C ₃₃ H ₅₈	$(I, R=C_6H_{13})$
L	$17\alpha(H)$ -tetrakishomohopane (22S,22R)	$C_{34}H_{60}$	$(I,R,=C_7H_{15})$
Μ	$17\alpha(H)$ -pentakishomohopane (22S,22R)	C ₃₅ H ₆₂	$(I,R=C_8H_{17})$
Z	bisnorhopane	C ₂₈ H ₄₈	
Х	unknown triterpane	C ₃₀ H ₅₂	
Ρ	tricyclic terpane	C ₂₃ H ₄₂	$(IV, R=C_4H_9)$
Q	tricyclic terpane	$C_{24}H_{44}$	$(IV, R=C_5H_{11})$
R	tricyclic terpane (17R,17S)	C ₂₅ H ₄₆	$(IV, R=C_6H_{13})$
S	tetracyclic terpane	C ₂₄ H ₄₂	(V) ³ 15
Т	tricyclic terpane (17R,17S)	C ₂₆ H ₄₈	$(IV, R=C_7H_{15})$

II

Figure 7.

Mass chromatograms representing steranes (m/z 217 and 218)

a	$13\beta(H), 17\alpha(H)$ -diasterane (20S)	C27H48	(III,R=H)
b	$13B(H), 17\alpha(H)$ -diasterane (20R)	C ₂₇ H ₄₈	(III,R=H)
с	$13\alpha(H), 17\beta(H)$ -diasterane (20S)	C ₂₇ H ₄₈	(IV,R=H)
d	$13\alpha(H), 17\beta(H)$ -diasterane (20R)	C ₂₇ H ₄₈	(IV,R=H)
e	$13\beta(H), 17\alpha(H)$ -diasterane (20S)	$C_{28}H_{50}$	(III,R=CH ₃)
f	$13\beta(H), 17\alpha(H)$ -diasterane (20R)	C ₂₈ H ₅₀	(III,R=CH ₃)
Q	$13\alpha(H), 17\beta(H)$ -diasterane (20S)	$C_{28}H_{50}$	(IV,R=CH ₃)
	+ $14\alpha(H)$, $17\alpha(H)$ -sterane (20S)	C27HAU	(1,R=H)
h	$13B(H), 17\alpha(H)$ -diasterane (20S)	$C_{20}H_{52}$	(III,R=C ₂ H ₅)
	+ 14B(H).17B(H)-sterane (20R)	$C_{27}H_{AN}$	(II,R=H)
i	14B(H), 17B(H)-sterane (20S)	$C_{27}H_{AO}$	(II,R=H)
•	+ $13\alpha(H)$.17 $\beta(H)$ -diasterane (20R)	$C_{20}H_{E0}$	(IV,R=CH ₂)
i	$14\alpha(H)$, $17\alpha(H)$ -sterane (20R)	$C_{27}H_{AQ}$	(I,R=H)
k	$138(H), 17\alpha(H)$ -diasterane (20R)	$C_{20}H_{E2}$	(III,R=C ₂ H ₅)
1	$13_{\alpha}(H), 17_{\beta}(H)$ -diasterane (20S)	$C_{20}H_{52}$	(III,R=C ₂ H ₅)
m	$14_{\alpha}(H), 17_{\alpha}(H)$ -sterane (20S)	$C_{20}H_{E0}$	(I,R=CH ₂)
n	$13\alpha(H), 17\beta(H)$ -diasterane (20R)		(III,R=C ₂ H ₅)
	+ 148 (H).178 (H)-sterane (20R)	C29 52 C20H50	(II,R=CH ₂)
0	14B(H), 17B(H)-sterane (20S)		(II,R=CH ₃)
n	$14_{\mu}(H), 17_{\alpha}(H)$ -sterane (20R)	C20HE0	(I,R=CH ₂)
Р 0	$14_{\alpha}(H), 17_{\alpha}(H)$ -sterane (20S)		(I,R=C ₂ H ₅)
۹ r	$14_{B}(H)$, 17 $_{B}(H)$ -sterane (20 $_{R}$)	C30H52	(II,R=C ₂ H _r)
•	+ unknown sterane	29 52	2 3
c	14B(H), $17B(H)$ -sterane (20S)	C. Her	$(II, R=C_2H_E)$
1	14B(H), 17B(H)-sterane (20R)	29 52 C.,,H.,,	(I,R=C. ₂ H _E)
	$5_{\alpha}(H)$ -sterane	CHac	(V,R=C. ₂ H _c)
v	5a(H)-sterane	C	(IV,R=C ₂ H ₇)
×.	outily boer une	22 30	· · · · · · · · · · · ·

B8116SAT 191.1000 61 11 S1 5435 Nora: E 100, m/z 191 B 8116 Oil 89 Well 31/5 – 2 60 C G 49 Z Π 20 S K Q Ŕ T М 0 52:00 40:00 44:00 48:00 28:00 32:00 36:00 24:00

- 34 -

IKU

B8116SAT 217.1000 G1 I1 S1 Nora: 1434 h 100. a m/z 217 B 8116 Oil n k 89. Well 31/5 - 2 b u 60 48 20 8. 24:00 28:00 32:00 36:00 49:00 44:00

- 35 -

IKU

IKU

- 36 -

FIGURE 8

Mass chromatograms of aromatic hydrocarbons

TIC	 total ion chromatograms
m/z 92,106	- monoaromatic hydrocarbons
m/z 142,156,1	70 - alkylated naphthalenes
m/z 178,192,20	06 - alkylated phenanthrenes
m/z 184,198,2	12 - alkylated dibenzothiophenes
m/z 231	- triaromatic steranes
m/z 253	- monoaromatic steranes
m/z 166,180	- fluorens
m/z 202	- pyrene, fluoranthen

Q

- 38 -

IKU

- 42 -

- 43 -

IKU

- 45 -

IKU

- 46 -

IKU

Visual Kerogen Analysis

TABLE NO.: 9. WELL NO.: 31/5-2

Sample Depth Composition of residue		Particle size	Preservation palynomorphs	Thermal maturation index	Remarks	
B-580	2052	C,W,WR!,Cut,S,P/Am,Cy Algal	F-M	good	1/1+,2-,2/2,2+	Abundant pyritic, coaly fragments and sapropelised woody fragments <u>Botryococcus</u> . Variable colouring.
B-583	2079	W,Cut,C,S,P/Am	F-M-L	good	1/1+, 2/2+	Abundant structured woody material and variably coloured spores.
B-587	2115	Cut,P,S,W,WR!/Am	F-M-L	good	1/1+, 2-/2, 2	Screening enriches particularly woody structured material <u>Chasmatosporites</u> .
B-591	2151	Cut,W,P,S,WR!/Am,Cy	F-M-L	good	1/1+	<u>Tyttodiscus, Tasmanites,</u> <u>Nannoceratopsis</u> gracilis.

ABBREVATIONS

Am	Amorphous	Cy	Cysts, algae	Ŵ	Woody material	F	Fine
He	Herbaceous	P	Pollen grains	C	Coal	М	Medium
Cut	Cuticles	S	Spores	R!	Reworked	L	Large

IKU Visual Kerogen Analysis

TABLE NO.: 9. WELL NO.: 31/5-2

Sample	Depth (m)	Composition of residue	Particle size	Preservation palynomorphs	Thermal maturation index	Remarks
B-595	2187	C,W,Cut,P,S/Am,Cy	F-M-L	good	1/1+	<u>Callialasporites</u> present in the ass. described above.
B-598	2214	C,Cut,P,S,W/Am		good	1+/2-, 2-	Pyritic residue, coaly fragments. Large very well pre- served cuticles.

ABBREVATIONS

Am	Amorphous
He	Herbaceous
Cut	Cuticles

Cysts, algae Pollen grains Cy Ρ S

Spores

Woody material Fine W F Medium [•] C Coal Μ R! Reworked Large L

FIGURE 1

- 67 -

Saturated hydrocarbon gas chromatograms

a	=	nC ₁₇
b	=	pristane
с	Ξ	phytane
nC ₁₅ etc.	=	n-alkane of that number
X	=	contaminants
Sq	ġ.	squalane

a

J: 71

b

FIGURE 2

- 77 -

Aromatic hydrocarbon gas chromatograms

- 1 = naphthalene
- 2 = methyl naphthalenes
- 3 = dimethyl naphthalenes
- 4 = trimethyl naphthalenes
- 5 = phenanthrene
- 6 = methyl phenanthrenes

11:20 on 17/Feb/84

Created at

81

÷.

on 16/Feb/84 15:47

a t

Created

FIGURE 3

- 87 -

AF2 hydrocarbon chromatograms (FID and FPD)

x	÷	contaminant
Ρ	=	phenanthrene
MP	÷	methyl phenanthrene
DMP	=	dimethyl phenanthrene
DBT	÷	dibenzothiophene
MDBT	ŧ	methyldibenzothiophene
DMDBT	ŧ	dimethyldibenzothiophene

i 93 -

FIGURE 4

Pyrolysis-gc chromatograms

115/q/ah/7

, **.**.

B 580/81 2052/61m Ì. 95 I. Ρ C₁₃ 2 , C9 5 6 C₁P C₁₇ 3 C₂₁ Pr C₂₅

- 86

103 -

I

- 104 -

FIGURE 5

VITRINITE REFLECTANCE HISTOGRAMS

Key:-	A	=	Grey-black-brown claystone.
			Lower case letter is used when
			there is some uncertainty about whether
			the value is representative.
	PP	=	Primary population
			Y = Relevant population
			considered reasonably
			representative.
			N = Not representative (caving,
			reworked, contaminant, drilling
			effects).
	LOW+ HIGH	÷	Population limits
	VAL.	=	Number of measurements in that
			population.

Lithology cross-reference table

A = Clst. gyB = Clst. dk gyC = Clst.gnD = Clst. bnE = Clst. rdF = Clst. calc.G = Clst. carb.H = ShaleJ = Sandstone J = Limestone K = CoalL = LigniteM = Carbargillite N = Siltstone 0 = BitP = X

U = Severely liptinite stained

a,b etc. = same lithology as above but value not included in any population, possibly because suspected caving, reworking, contamination or other erroneous recordings.

115/q/ah/8

PP LOW HIGH LIT #VAL MEAN STOV Y D.43 D.44 ALL 1 D.43 D.DD OVERALI 3 0.66 0.23

ORDERED VALUES FOLLOW:

D.43A D.AAF D.88d

0.29d 0.32d 0.34d 0.34d 0.37D 0.44D 0.44D 0.45D

2

PP LOW HIGH LIT #VAL MEAN STDV Y 0.32 0.47 ALL 2 0.39 0.10 OVERALL 3 0.53 0.25

ORDERED VALUES FOLLOW:

0.32C 0.46D 0.81a

0.32D 0.36D 0.37D 0.39D

0.30C 0.48A 0.59D 0.59D

0.61D 0.82d 1.08d 1.15d

0.32D 0.41A 0.45A 0.45B 0.58D 0.59D 0.72a 0.80d 1.11a 1.12d

0.33d 0.48D 0.63b 0.63a 0.83d 0.89d

OVERALL 5 0.35 0.04

ORDERED VALUES FOLLOW:

٠

0.31K 0.32K 0.37I 0.37K 0.40A

PP LOW HIGH LIT #VAL MEAN STDV Y 0.38 0.57 ALL 6 0.46 0.06 OVERALL 10 0.51 0.22

ORDERED VALUES FOLLOW:

0.28c 0.32c 0.38D 0.41D 0.45D 0.46B 0.47C 0.56C 0.82c 0.97c

0.31d 0.40D 0.50A 0.50A 0.53A 0.85a

0.65A 0.67A 0.79a 1.16k 1.32a

PP LOW HIGH LIT #VAL MEAN STDV Y 0.36 0.49 ALL 5 0.41 0.05 OVERALL 10 0.61 0.29

ORDERED VALUES FOLLOW:

0.32d 0.36M 0.37A 0.41A 0.42D 0.48M 0.71m 0.92d 0.95a 1.11a

Y 0.47 0.50 ALL 1 0.49 0.00 OVERALL 6 0.92 0.31

ORDERED VALUES FOLLOW:

0.49N 0.77i 0.87i 0.90d 1.09c 1.41i

Y 0.36 0.59 ALL 5 0.44 0.09 OVERALL 6 0.54 0.27

ORDERED VALUES FOLLOW:

0.361 0.391 0.39A 0.48M 0.58I 1.06k

0.336 0.346 0.450 0.488 0.488 0.558 0.60D 0.60B 0.638

0.24b 0.26b 0.29b 0.34b 0.50I 0.52I 0.58I

OVERALL 2 1.05 0.08

ORDERED VALUES FOLLOW:

 $f^{(a)}$

0.99a 1.11a

· · ·

ORDERED VALUES FOLLOW:

0.44I