Doc. no. **EPDS-7131/4-1-025** Valid from

Rev. no.

30 of 104

Table 4-7 MDT pressure summary, Run 1A, pretests and water sampling.

Test No	1	Depth mTVD RKB	mMSL	Hydro pressure before (Bar)	pressure	Formation Pressure (Bar)	Mobility mD/cp	Temp (°C)	Gradient g/cm ³	Comments
1		880.5	855.5	118.29	118.32	91.96	142.1	17.1	1.06	Good
2		884.5	859.5	118.85	118.87	92.50	3.4	-	1.07	Good (slightly unstable)
3		889	864.0	119.39	119.53	92.89	248.8	21.8	1.07	Good
4		893	868.0	120.03	120.06	93.32	496.1	24.32	1.07	Good
5		913.5	888.5	122.72	122.80	95.54	277.8	25.4	1.07	Good
6		918	893	123.33	123.39	96.03	230.6	26.2	1.07	Good
7		923.5	898.5	124.05	124.08	96.61	777.1	27.0	1.07	Good
8		942.5	917.5	126.63	126.61	98.67	1461.0	27.6	1.07	Good
9		968.8	943.8	130.11	130.12	101.53	141.3	28.6	1.07	Good
10		975	950	130.92	130.94	102.20	24.0	29.4	1.07	Good
11		983.5	958.5	132.11	132.08	103.12	90.2	30.0	1.07	Good
12	1	1067.5	1043	143.29	142.52	-	0.5	-	-	Tight
13		1072.5	1048	143.98	143.96	-	0.1	-	-	Tight
14	[1082	1057	145.28	145.27	113.96	934.4	33.1	1.07	Good
15	,	1086.5	1062	145.85	145.87	114.47	431	-	1.07	Good
16		1098.2	1073	147.41	147.48	115.75	17	-	1.07	Good
17	,	1110	1085	148.98	148.99	117.01	350.9	-	1.07	Good
18		1159	1134	155.44	155.46	121.40	315.8	-	1.07	Good
19	-	1164	1139	156.15	156.11	121.96	259.3	-	1.07	Good
20		1170	1145	156.93	156.91	122.60	245.6	-	1.07	Good
21		1209.8	1185	162.23	162.26	127.13	2.7	-	1.07	Not stable
22		968.8	943.8	129.08	129.93	101.488	108.7	37.6	1.07	Good
23		942.4	917.4	126.40	126.42	98.619	263.1	36.2	1.07	Good
24		923.5	898.5	123.87	123.88	96.566	628.8	33.7	1.07	Good
25		918	893	123.15	123.14	95.977	352.7	34.1	1.07	Good
Samp	oling									
26		880.5	855.5	118.12	-	91.857	99	31.4	1.06	Sample with guard probe
27		1086.6	1061.6	145.46	-	114.309	180.5	38.3	1.07	Sample with guard probe
28	,	1082	1057	-	-	113.96	724	-	1.07	Pretest with large diameter probe
29	,	1082.5	1057.5	-	-	113.99	719.6	-	1.07	Pretest with large diameter probe
30		1083.0	1058	145.18	-	114.04	373	37.7	1.07	Sample with large diameter probe

Doc. no. **EPDS-7131/4-1-025** Valid from

Rev. no.

31 of 104

4.9 Reservoir fluid sampling

Table 4-8 Samples collected from Run 1A

Sample depth	Run	*Bottle	Chamber	Drawdown	Formation	Pump	Mobility	Opening pressure	Transferred to
(mMD)			volume	(bar)	Pressure	Volume*	(mD/CP)	(bar)	
					(bar)	(liters)			
880.5	1A	MRSR#036	420 cc	5	91.857	15.2/26.9	99	0	
880.5	1A	MPSR#190	420 cc	5	91.857	15.7/29.8	99	0	
880.5	1A	MPSC#162	1 Gal	3	91.857	70/156	99	100	TS-52002
880.5	1A	MRSR#770	420 cc	3	91.857	80.2/170	99	0	TS-28601
880.5	1A	MRSR#776	420 cc	3	91.857	83.6/175	99	0	TS-0609
880.5	1A	MRSR#779	420 cc	3	91.857	93.6/187	99	0	TS-4906
1086.5	1A	MRSR#782	420 cc	2	114.466	5.8/11.7	180.5	0	
1086.5	1A	MRSR#783	420 cc	2	114.466	10.5/17	180.5	0	
1086.5	1A	MRSC#166	1 Gal	2	114.466	63.2/117	180.5	170	TS-52101
1086.5	1A	MRSR#786	420 cc	2	114.466	65/146	180.5	0	TS-51602
1086.5	1A	MRSR#785	420 cc	2	167.75	70/160	180.5	0	TS-2316
1083	1A	MRSR#787	420 cc	1.5	114.040	11.7	373	0	
1083	1A	MRSR#852	420 cc	1.5	114.040	136.9	373	0	
1083	1A	MRSR#974	420 cc	1.5	114.040	153.8	373	0	TS-36003

^{*} Were two volumes is listed this is referred to sample probe/guard probe.

DRILLING FLUIDS DATA

Field: PL 233, Guovca

Well:

Rig:

7131/4-1

Eirik Raude

All depths refer to RKB

RKB-MSL Eirik Raude: 25 m.

HOLE		CASING		MUD TYPE	MW	Funnel Visc.	Fann 3 rpm	10 sec.	10 min.	PV	ΥP	API FL	pН	мвт	Ca ++	Kel	Glyc.	Sulphate	LGS	Usage Volume
SIZE	TYD MD	SIZE	TYD MD		[g/cm²]	[sec.]	•	[Pa]	[Pa]	[cP]	[Pa]	[ml]		[kg/m²]	[mg/l]	[kg/m²]	[×]	[mg/l]	[kg/m²]	[m³]
36"	403.5 403.5	30"	403.5 403.5	SW/ Bentonite/ Polymer	01.jan - 1,35	> 150														107
•				Section drilled by displaced to 1,35	•		-		_		-				s observed.			,		
17 1/2"	805.5 805.5	13 3/8"	799,5 799,5	SW/ Bentonite/ Polymer	1,03 - 1,35	>150														443
				A 9 7/8" pilot ho with high visc an The drilling fluid	d later displace	i to 1,35 sg B	entonite mu	d. After oper	ning up the h			_	-	_		-	I The pilot hol	l e was first filled	i	
8 1/2"	Dry well: 1 295 1 295	n/a	n/a	Giydril 99% KCI	1,33	na	5 - 7	3 - 4	3,5 - 5	15 - 18	7,5 - 13	2,6 - 3	8,3 9	7	120 - 240	150 - 169	4,2	95 - 143	7 - 61	28,5
				Displaced well to and 4 m into new After performing Ran three shake	oformation. Cle LOT the well w	aned the hok as displaced	e by pumping to 1,33 sg Gl	10 m3 high i ydril 99% KC	visc and ther I fluid. The G	spotted a 1 lydril 99% K0	0 m3 high vis Ol fluid was in	c on bottom exellent cor	n before perf idition throu	orming a LO ghout the se	T. ction. The Ki	Cl content was r	un at the hig	-		