Molecular and stable isotope composition of 7 gas bag samples

Applied Petroleum Technology AS
P. O. Box 123
2027 Kjeller
Norway

Address: Applied Petroleum Technology AS

P.O.Box 123

2027 Kjeller

Telephone: +47 63 80 60 00 Telefax: +47 63 80 11 38

assification		Report number
onfidential		APT05-895
ıbmitted		Report Title
ibilitica	osition of 7 gas bag samples	Molecular and stable isotope co
ervice Order		Client
313628		Norsk Hydro ASA
umber of pages		Client Reference
		Arne Steen

Distribution

Norsk Hydro ASA (digital)

IFE (2)

APT (digital)

Authors

Ingrid Anne Munz Sylviane Siegle Ingar Johansen

	Name	Date	Signature
Reviewed by	Bjørg Andresen	2005-11-11	
Approved by	Tore Haaland	2005-11-11	

CONTENTS

Table 1. Number of analyses performed	
Table 2. Gas Composition (volume-%)	
Table 3. Gas Isotopes (d13C, % PDB and dD, % VSMOW)	
Experimental Procedures 2)

Table 1. Number of analyses performed

Analysis	Gas	Total
Gas composition	7	7
Stable isotopes of gas	7	7

Table 2. Gas Composition (volume-%)

Sample type	Sample info	APT ID	C1%	C2%	%£O	iC4%	nC4%	iC5%	nC5%	CO2%	Sum C1-C5	Wetness	iC4/nC4	mdd
Gas bag	2A	27725	87.5	0.04	0.02	0.01	0.01	0.00	0.00	12.4	87.6	0.08	0.97	2261
Gas bag	2B	27726	91.7	0.02	0.01	0.00	0.00	0.00	0.00	8.3	91.7	0.03		3076
Gas bag	2C	27727	80.4	0.03	0.02	0.00	0.00	0.00	0.00	19.5	80.5	0.07		1959
Gas bag	2D	27728	83.7	0.02	0.01	0.00	0.01	0.00	0.00	16.3	83.7	0.05	0.00	1756
Gas bag	2E	27729	71.2	0.03	0.02	0.00	0.00	0.00	0.00	28.8	71.2	0.08		958
Gas bag	3A	27905	100.0	0.01	0.00	0.00	0.00	0.00	0.00	0.01	100.0	0.01		908436
Gas bag	3B	27906	100.0	0.01	0.00	0.00	0.00	0.00	0.00	0.01	100.0	0.01		948191

Table 3. Gas Isotopes (d13C, % PDB and dD, % VSMOW)

Sample type	Sample info	APT ID	CI 813C	C2 813C	C3 813 C	iC4 813C	nC4 813 C	CO2 813C	C1 8D
Gas bag	2A	27725	-74.8						*
Gas bag	2B	27726	-74.7						*
Gas bag	2C	27727	-73.8						*
Gas bag	2D	27728	-73.6						*
Gas bag	2E	27729	*						*
Gas bag	3A	27905	-72.7						-211
Gas bag	3B	27906	-72.6						-210

^{*} Not enough gas to measure isotopes

Experimental Procedures

All procedures follow NIGOGA, 4th Edition. Below are brief descriptions of procedures/analytical conditions.

GC analysis of gas components

Aliquots of the samples were transferred to exetainers. 0.1-1ml were sampled using a Gerstel MPS2 autosampler and injected into a Hewlett Packard 5890 Series II GC equipped with Porabond Q column, a flame ionisation detector (FID), a thermal conductivity detector (TCD) and a methylization unit. Hydrocarbons were measured by FID, CO_2 by metylization (to CH_4) and then FID and N_2 and O_2 by TCD.

Carbon isotope analysis of hydrocarbon compounds and CO2

The carbon isotopic composition of the hydrocarbon gas components was determined by a GC-C-IRMS system. Aliquots were sampled with a syringe and analysed on a Trace GC2000, equipped with a Poraplot Q column, connected to a Delta plus XP IRMS. The components were burnt to CO_2 and water in a 1000 °C furnace over Cu/Ni/Pt. The water was removed by Nafion membrane separation. Repeated analyses of standards indicate that the reproducibility of δ^{13} C values is better than 1 % PDB (2 sigma).

Hydrogen isotope analysis of methane

The hydrogen isotopic composition of methane was determined by a GC-C-IRMS system. Aliquots were sampled with a GCPal and analysed on a Trace GC2000, equipped with a Poraplot Q column, connected to a Delta plus XP IRMS. The components were decomposed to H₂ and coke in a 1400 °C furnace. The international standard NGS-2 and an in-house standard (Std A) were used for testing accuracy and precision. The "true" value of NGS-2 is given to –172.5 % V-SMOW (http://deuterium.nist.gov/standards.html). Repeated analyses of standards indicate that the reproducibility of δD values is better than 10 % PDB (2 sigma).