Contents

	Summary	1	
1	Introduction	3	
2	Experimental	6	
3	Sample quality and mud contamination		
4	Screening of hydrocarbons in well 6507/11-7	7	
5	Evaluation of source rock properties of the Upper Lange formation	9	
	5.1 Source origin	9	
	5.2 Thermal maturity	10	
6	Vitrinite reflectance	12	
7	Characterisation of gas samples in well 6507/11-7	12	
8	Conclusions	13	
 Experimental			

List of figures

Figure 1.1: Well location map.

Figure 1.2: Gamma log of the Upper Lange formation in well 6705/11-7.

Figure 4.1: Rock-Eval screening data for well 6507/11-7.

Figure 4.2: Group type distribution of samples from well 6507/11-7.

Figure 5.1: Depositional environment from steranes – Lange Fm.

Figure 5.2: Biomarker source facies (Steranes & Diasteranes) - Lange Fm.

Figure 5.3: Aromatic hydrocarbon maturity (methyl phenanthrene index versus 4/1 methyl dibenzothiophenes) – Lange Fm.

Figure 5.4: Biomarker maturity (Terpanes) – Lange Fm.

Figure 5.5: Biomarker maturity (steranes) – Lange Fm.

Figure 5.6: Calculated vitrinite reflectance depth plot for well 6507/11-7.

List of tables

Table 1.1: Detailed analytical programme.

Appendices

Appendix I: Summary reports of analysed samples

Appendix II: Vitrinite reflectance

Appendix III: Molecular composition of head space gas

INTERNAL No.: NH-01786675 Rev.: 2007-06-17 Page: 5 of 14

	: Deta	lied analy	tical pro	gram	me.								
		End	End										
		Depth	Depth										
Well	Type	MD RKB	TVD	Ω.	EØ.	latro	Satto	SatMa	DiaMS.	AreMS	130	GVO	VIT.
6507/11-7	DC	1010	983,8										1
6507/11-7	DC	1110	1083,7										1
6507/11-7	DC	1200	1173,6										1
6507/11-7	DC	1290	1263,5										1
6507/11-7	DC	1400	1373,5										1
6507/11-7	DC	1500	1473,5										1
6507/11-7	GASM	1540	1513,5								1		
6507/11-7	DC	1600	1573,5								•		1
6507/11-7	DC	1700	1673,5										1
6507/11-7	DC	1740	1713,5										1
6507/11-7	DC	1800	1773,4										1
6507/11-7	DC	1900	1873,4										1
6507/11-7	GASM	1900	1873,4								1		
											1		
6507/11-7	DC	2000	1973,3										1
6507/11-7	DC	2040	2013,3										1
6507/11-7	GASM	2040	2013,3								1		
6507/11-7	DC	2060	2033,3										1
6507/11-7	DC	2100	2073,2										1
6507/11-7	GASM	2160	2133,2								1		
6507/11-7	GASM	2180	2153,2								1		
6507/11-7	DC	2200	2173,2										1
6507/11-7	DC	2230	2203,1										1
6507/11-7	DC	2250	2223,1										1
6507/11-7	DC	2300	2273,1										1
6507/11-7	DC	2400	2373,0										1
6507/11-7	DC	2500	2472,9										1
6507/11-7	DC	2510	2482,9										1
6507/11-7	DC	2520	2492,9										1
6507/11-7	DC	2600	2572,9										1
6507/11-7	DC	2698	2670,8										1
6507/11-7	DC	2752	2724,8	1									
6507/11-7	GASM	2752	2724,8								1		
6507/11-7	GASM	2758	2724,8								1		
6507/11-7	DC	2730	2730,8										1
6507/11-7	DC	2776	2742,8	1	1	1							- 1
6507/11-7		2778	2746,6	1	1	1							
6507/11-7	DCG	2782	2754,8	- 1	- 1	- 1						- 1	
				4								1	
6507/11-7	DC	2788	2760,8	1									
6507/11-7	DCG	2788	2760,8									1	
6507/11-7	DC	2791	2763,8										1
6507/11-7	DC	2794	2766,8	1	1	1							
6507/11-7	DCG	2794	2766,8									1	
6507/11-7	SWC	2796	2768,8	1									
6507/11-7	DC	2800	2772,8	1									
6507/11-7	DCG	2800	2772,8									1	
6507/11-7	MUD	2800	2772,8		1	1							
6507/11-7	SWC	2803	2775,8	1									
6507/11-7	DC	2806	2778,8	1									
6507/11-7	DCG	2806	2778,8									1	
6507/11-7	SWC	2812	2784,8	1									
6507/11-7	DC	2812	2784,8	1									
6507/11-7	DCG	2812	2784,8	· ·								1	
6507/11-7	GASM	2812	2784,8								1	· ·	
6507/11-7		2812	2790,8	1						L	-		
6507/11-7	DCG	2818	2790,8									1	
6507/11-7		2824	2796,8	1	1	1						<u> </u>	
6507/11-7		2830	2790,8	1		<u> </u>							
6507/11-7	DC		2802,8	1	1								
6507/11-7	DC	2833 2836	2805,8	1	1	1							
			,										
6507/11-7	DC	2839	2811,8	1	4	4	4	4	4	4			
6507/11-7	DC	2842	2814,8	1	1	1	1	1	1	1			

Table 1.1: Detailed analytical programme.

1 4010 111	001101				a. p	· g. a							
		End Depth	End Depth										
Well	Туре	MORKE	TVD	RE	ΕD	latro	SatHC	SatMs	DiaMS	AroMS	130	Gvo	VIT
6507/11-7	DC	2845	2817,8	1	1	1							
6507/11-7	DC	2848	2820,8	1	1	1							
6507/11-7	GASM	2848	2820,8								1		
6507/11-7	DC	2851	2823,8										1
6507/11-7	SWC	2851,5	2824,3	1	1	1	1	1	1	1			
6507/11-7	DC	2854	2826,8	1	1	1							
6507/11-7	GASM	2854	2826,8								1		
6507/11-7	DC	2857	2829,8	1									
6507/11-7	DC	2860	2832,8	1	1	1							
6507/11-7	DC	2863	2835,8	1									
6507/11-7	DC	2866	2838,8	1	1	1	1	1	1	1			
6507/11-7	MUD	2900	2872,8		1	1	1	1	1	1			
6507/11-7	DC	2905	2877,8										1
6507/11-7	DC	2908	2880,8	1									
6507/11-7	DC	2914	2886,8	1									
6507/11-7	DC	2944	2916,8										1
6507/11-7	GASM	2944	2916,8								1		
6507/11-7	DC	2950	2922,8	1									

Table 1.1 continues: Detailed analytical programme.

2 Experimental

The analytical and preparative methods employed in this study, comprise geochemical characterisation of sediment extracts and fluids. All chromatographic data are based on quantitative measurements.

The analytical methods are based on the guidelines in the Norwegian Industry Guide to Organic Geochemical Analyses – NIGOGA (Weiss et al., 2000). Major deviations from this guide are:

- Extract and asphaltene workup by centrifugation.
- Internal standard mixture added for quality control and quantitative measurements.
- GC analysis of SAT and ARO fractions by 5% phenyl methyl-silicone stationary phase.
- GC-MSD detection of the aromatic hydrocarbons (not FID).
- Report of a restricted number of compounds relative to the NIGOGA guide, due to known co-elusions or disputable identities.

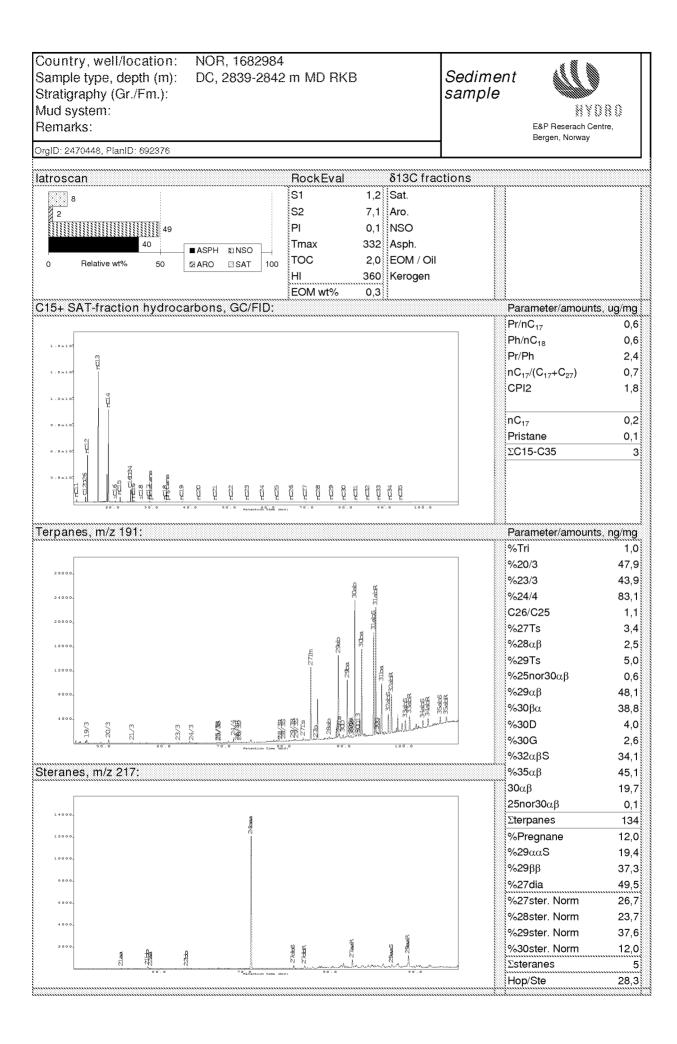
The data quality control is according to NIGOGA and defined internal laboratory procedures, available on request. Samples annotated "Reference" represent North Sea reference oil (NGS-NSO1) and reflect the analytical repeatability.

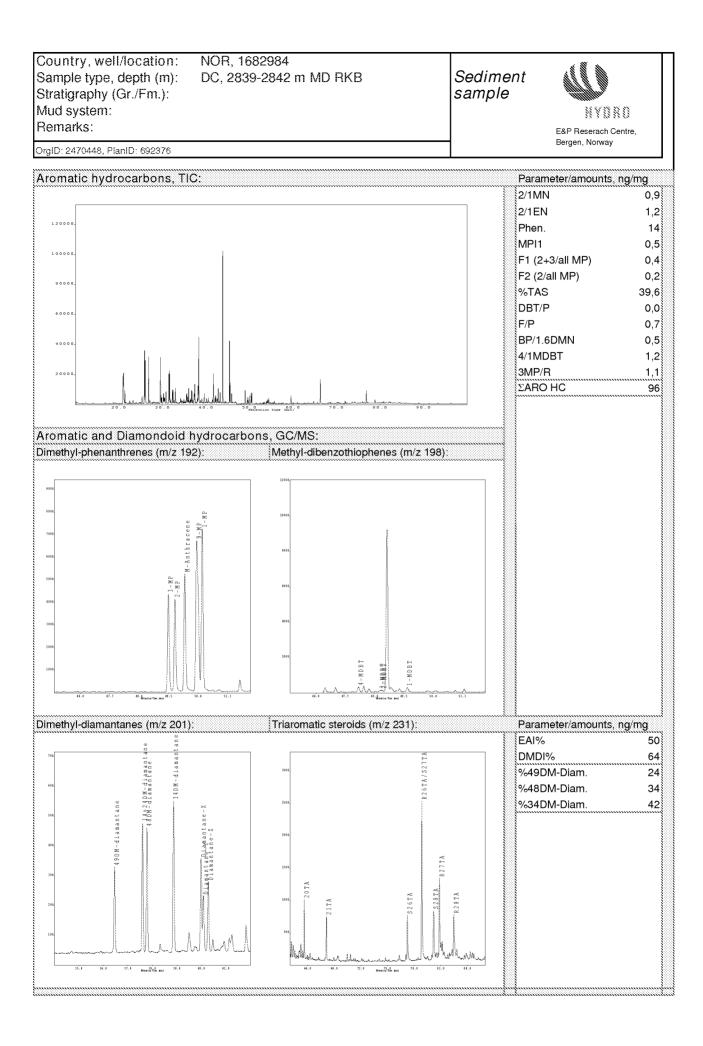
All depths are quoted as measured depths in m RKB MD.

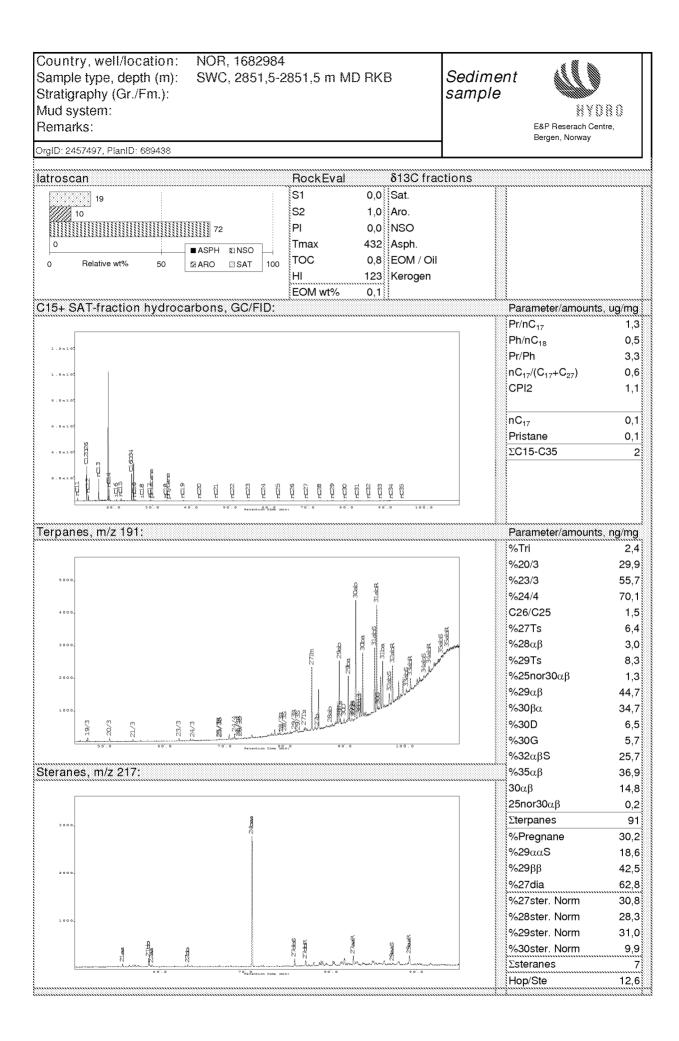
Analytical results are given in Appendix I.

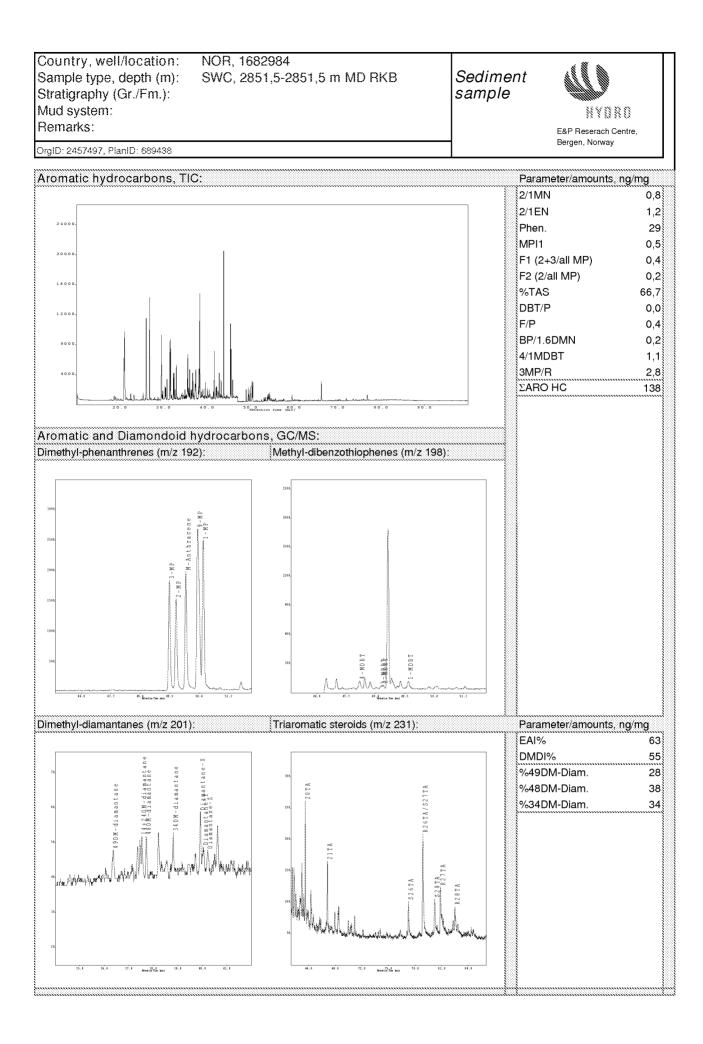
Original reports from Institute of Energy Technology (IFE) on vitrinite reflectance and molecular composition of head space gas are given in Appendices II and III.

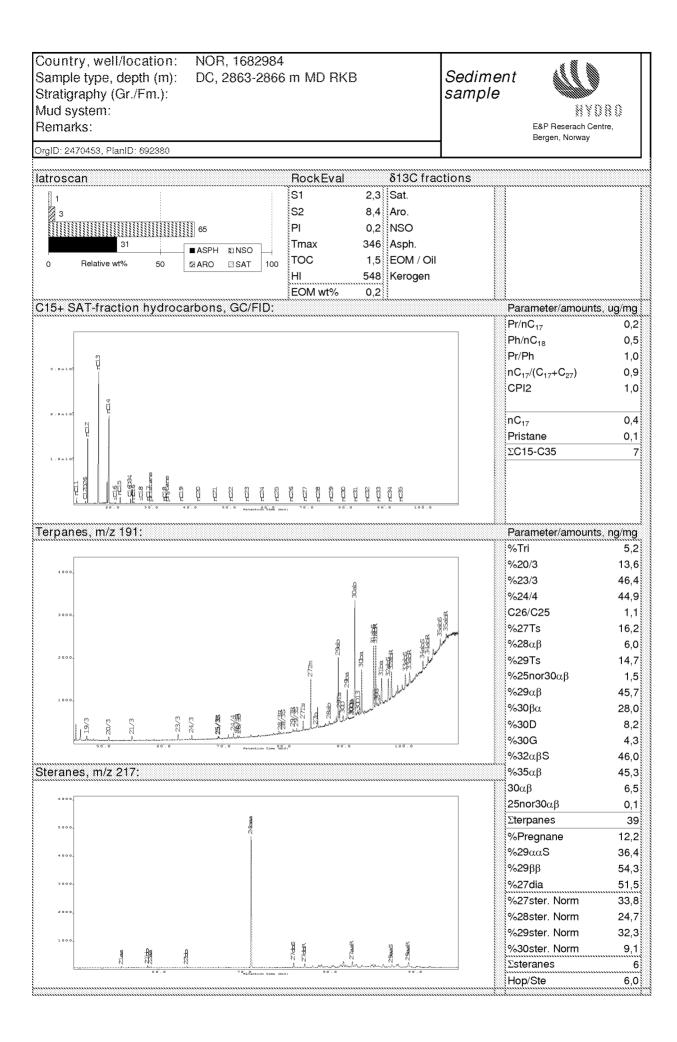
3 Sample quality and mud contamination

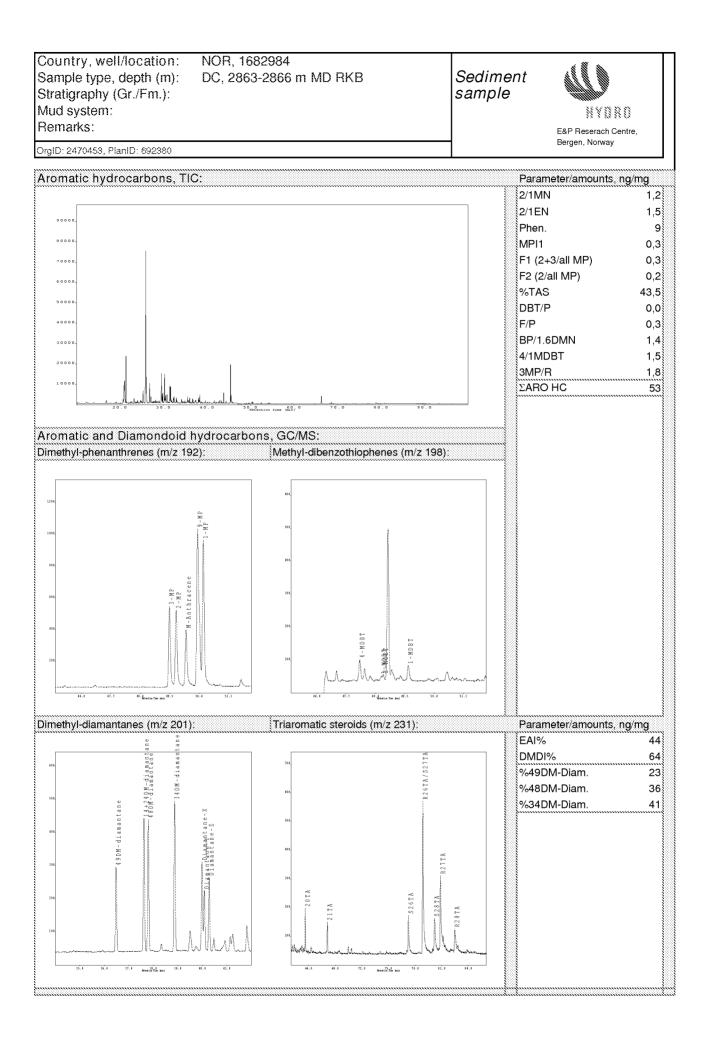

Sample material from well 6507/11-7 consisted of five side wall cores, drill cuttings and mud gas bags. After sample material was taken for biostratigraphic analysis, only small amounts of four side wall cores remained. The content of hydrocarbons in the mud gas bags was also low. A total of 11 mud gas samples taken throughout the well were analysed, but none of them contained sufficient hydrocarbon gas for stabile carbon isotope measurements.

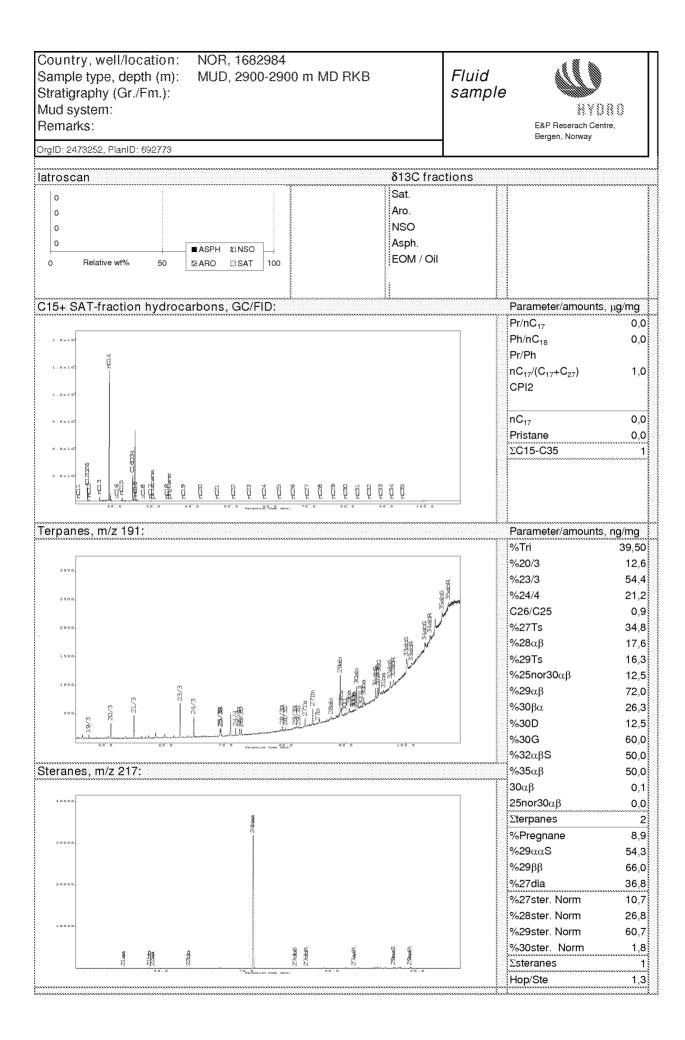

Well 6507/11-7 was drilled using a water based mud system, containing organic polymers and Ultrafree NS with hydrocarbon components in the range of C_{14} - C_{16} (Friestad A. M., oral communication). Both side wall cores and drill cuttings are found to be heavily contaminated by this mud.

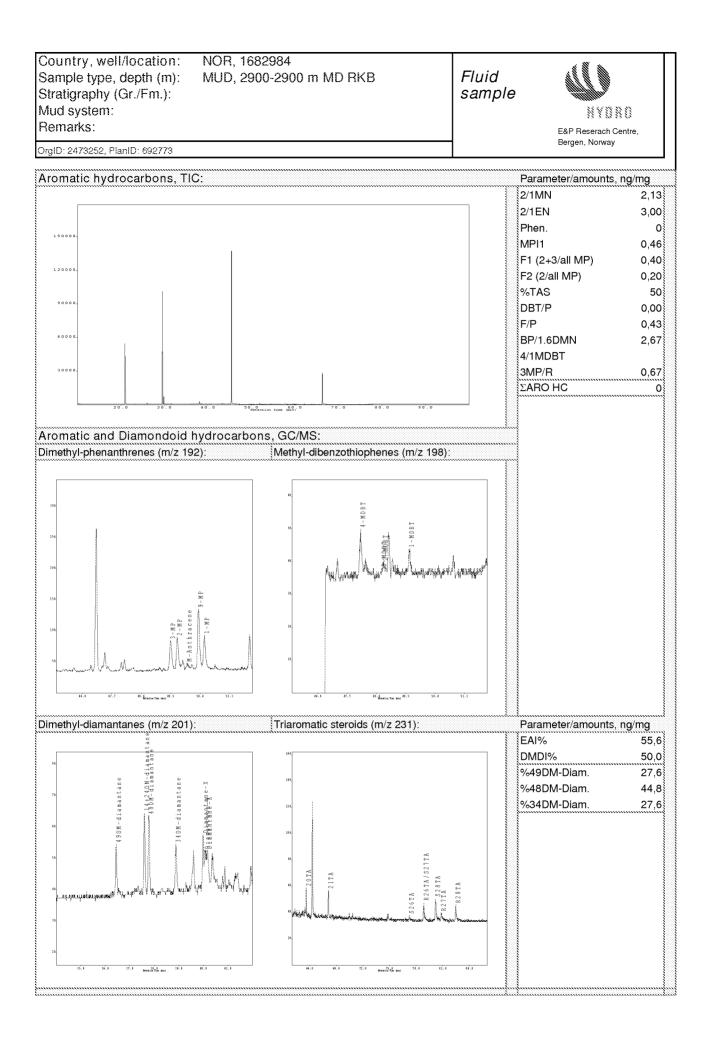

For reference, a mud sample taken at 2900 m RKB MD was extracted, group type separated and analysed by GC-MS. The chromatogram of the saturate fraction of the mud contains large amounts of light molecular weight components up to nC_{18} (Appendix I). Aromatic compounds and biomarkers are on the other hand only present in minute amounts. Parameters based on aromatics and biomarkers can therefore be used to characterise in-situ organic material in the samples.

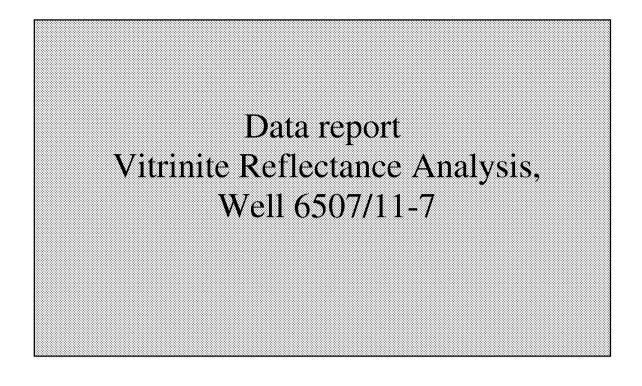

APPENDIX I


Summary reports of analysed samples









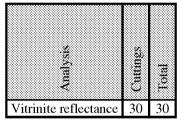
APPENDIX II

Vitrinite reflectance

Applied Petroleum Technology AS P. O. Box 123 2027 Kjeller Norway

Address:	Applied Petroleum Technology AS								
	P.O.Box 123								
	2027 Kjeller								
Telephone:	+47 63 80 60 00								
1	+47 63 80 11 38								
Report number	r	Classification							
APT07-1282		Confidential							
Report Title		Submitted							
Data report -	Vitrinite Reflectance Analysis, Well 6507/11-7	15.06.2007							
Client		Service Order							
Norsk Hydro	ASA	5399253							
Client Referen	ce	Number of pages							
Vibeke Hatlø		35							
Distribution									
Norsk Hydro	ASA (digital)								
APT (digital)	-								

Author Per Erling Johansen


	Name	Date	Signature
Reviewed by	Geir Hansen	2007-06-14	J. Matheway
Approved by	Tore Haaland	2007-06-14	Con Merrel

CONTENTS

Table 1. Number of analyses performed	1
Table 2. Vitrinite Reflectance	
Figure 1. Vitrinite reflectance versus depth	3
Vitrinite Reflectance Sample Data Sheets	
Experimental Procedures.	
1	

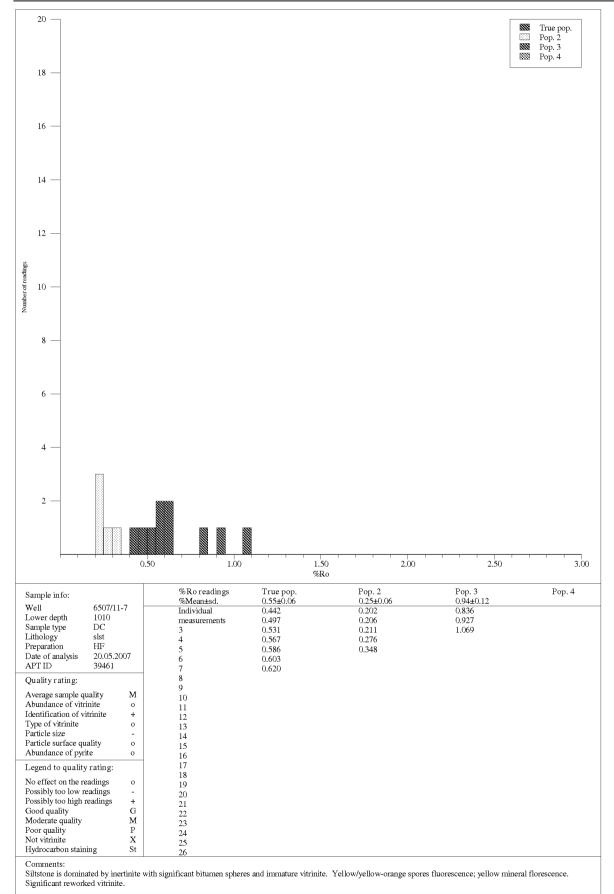
Table 1. Number of analyses performed

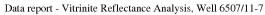
Well	Sample type	Upper Depth (m)	Lower Depth (m)	(II LdV	Sample prep	(%1 ithology	%Ro	Std. dev	No. of measurements	Quality rating	Overall anality	Comment
6507/11-7	DC	1000	1010	39461	HF	slst	0.55	0.06	7	0+0-00	Μ	See data sheet
6507/11-7	DC	1100	1110	39462	HF	slst	0.39	0.05	7	-000-+	Μ	See data sheet
6507/11-7	DC	1190	1200	39463	HF	lst	0.31	0.00	1	0-00	Р	See data sheet
6507/11-7	DC	1280	1290	39464	HF	lst	0.52	0.02	7	0000	Μ	See data sheet
6507/11-7	DC	1390	1400	39465	HF	lst	0.67	0.04	7	0+0-00	Μ	See data sheet
6507/11-7	DC	1490	1500	39466	HF	sh	barren					See data sheet
6507/11-7	DC	1590	1600	39467	HF	sh	0.55	0.10	8	0000-+	Μ	See data sheet
6507/11-7	DC	1690	1700	39468	HF	lst	0.48	0.07	8	000-00	Μ	See data sheet
6507/11-7	DC	1730	1740	39469	HF	sh	0.47	0.05	17	000+	Μ	See data sheet
6507/11-7	DC	1790	1800	39470	HF	sh	0.44	0.03	13	0-0-0+	Μ	See data sheet
6507/11-7	DC	1890	1900	39471	HF	clyst	0.53	0.01	2	++0000	Р	See data sheet
6507/11-7	DC	1990	2000	39472	HF	slst	0.53	0.03	4	-00-00	Μ	See data sheet
6507/11-7	DC	2030	2040	39473	HF	slst	0.51	0.12	2	000+	Р	See data sheet
6507/11-7	DC	2050	2060	39474	HF	Sh	0.39	0.03	11	00+	Р	See data sheet
6507/11-7	DC	2090	2100	39475	HF	lst	0.78	0.05	6	++0-00	Μ	See data sheet
6507/11-7	DC	2190	2200	39476	HF	sh	0.58	0.01	5	++0000	Μ	See data sheet
6507/11-7	DC	2220	2230	39477	HF	sh	0.85	0.08	14	0+0+00	Μ	See data sheet
6507/11-7	DC	2240	2250	39478	HF	sh	0.81	0.08	9	0++-00	Μ	See data sheet
6507/11-7	DC	2290	2300	39479	HF	sh	0.70	0.05	13	0+0-0+	Μ	See data sheet
6507/11-7	DC	2390	2400	39480	HF	sh	0.78	0.06	9	0+000+	G	See data sheet
6507/11-7	DC	2490	2500	39481	HF	lst	0.54	0.08	16	0000	Μ	See data sheet
6507/11-7	DC	2500	2510	39482	HF	lst	0.69	0.07	12	0000	Μ	See data sheet
6507/11-7	DC	2510	2520	39483	HF	sh	0.57	0.05	11	000-0+	G	See data sheet
6507/11-7	DC	2590	2600	39484	HF	sh	0.61	0.08	10	000-0+	G	See data sheet
6507/11-7	DC	2695	2698	39485	HF	sh	0.56	0.05	7	0-000+	Μ	See data sheet
6507/11-7	DC	2760	2770	39486	HF	sh	0.70	0.05	6	000-0+	Μ	See data sheet
6507/11-7	DC	2788	2791	39487	HF	sh	0.76	0.01	2	+0000+	Μ	See data sheet
6507/11-7	DC	2848	2851	39488	HF	sh	0.63	0.11	10	0-000+	Μ	See data sheet
6507/11-7	DC	2902	2905	39489	HF	sh	0.74	0.01	4	-00000	Μ	See data sheet
6507/11-7	DC	2941	2944	39490	HF	slst	0.79	0.08	8	0-0-0+	Μ	See data sheet

Table 2. Vitrinite Reflectance

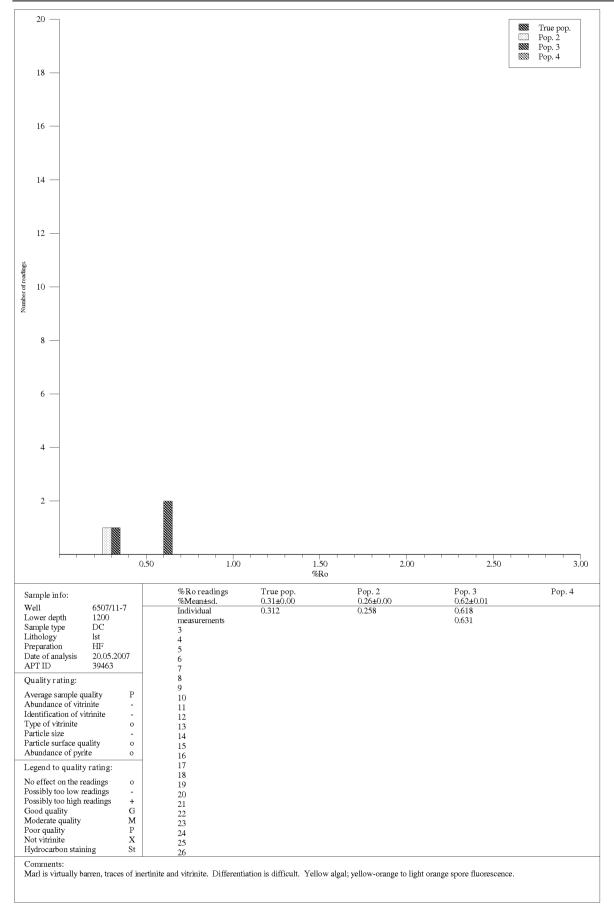
Legend to Vitrinite reflectance data

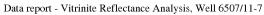
Lithology code		Samp	ole quality	Sample preparation			
sst slst clyst sh lst	Sandstone Siltstone Claystone Shale Limestone	G M P st	Good Moderate Poor Hydrocarbon staining	HF Bulk	Sample treatment with hydrofluoric acid prior to analysis Sample treated as bulk rock		
coal	Coal						

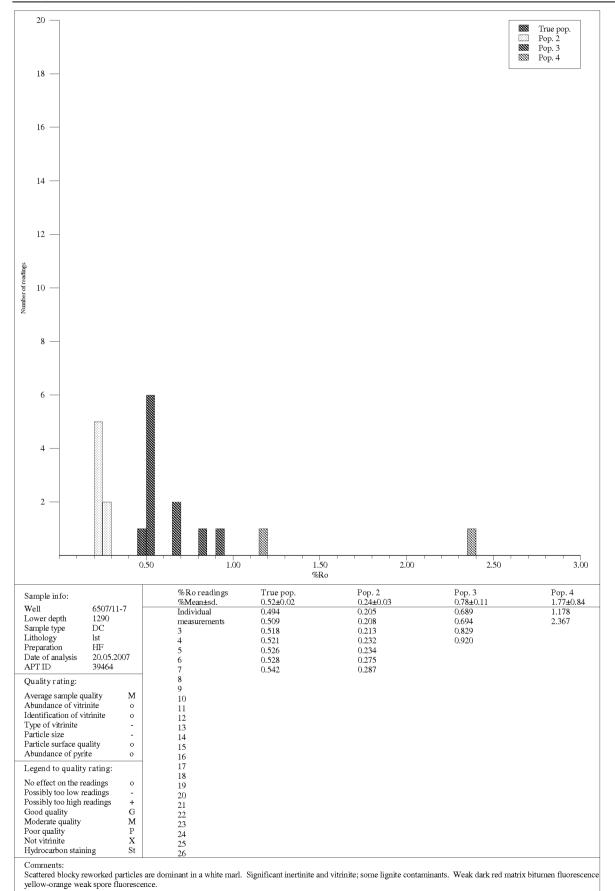

Sample description and measurement evaluation (perfect sample characterised as: 000000)

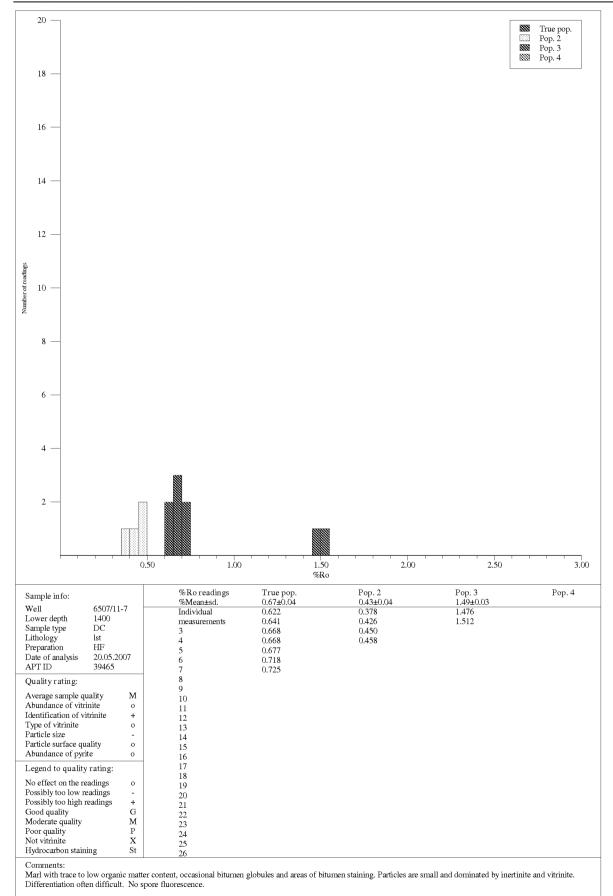

Sign order	Parameter	Sign	Sign legend:	
1	Abundance of vitrinite	-0	- May give too low vitrinite reflectance sample value	
2	Identification of vitrinite	-0+	o Reliable vitrinite reflectance sample value	
3	Type of vitrinite	-0+	+ May give too high vitrinite reflectance sample value	e
4	Vitrinite fragment size	-0		
5	Vitrinite surface quality	-0		
6	Abundance of pyrite	0+		

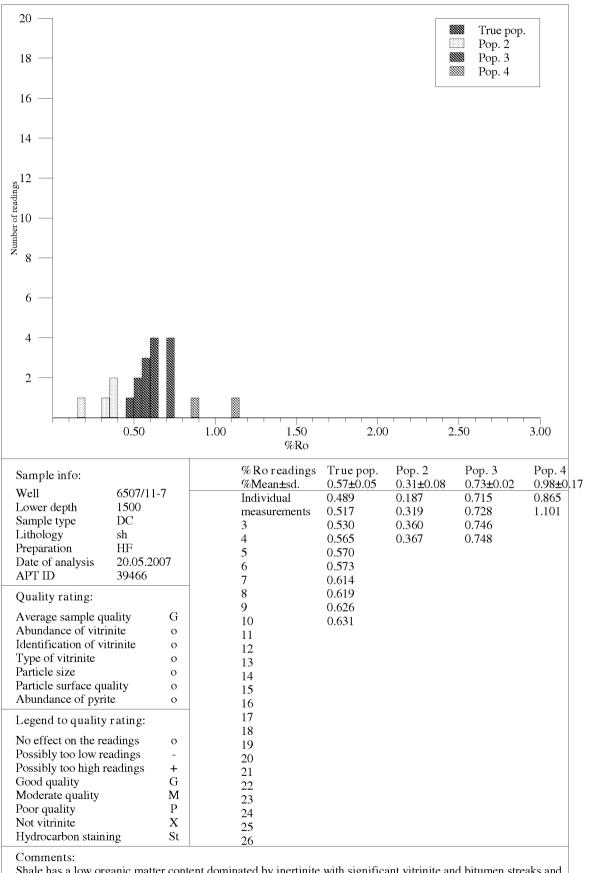
Vitrinite Reflectance Sample Data Sheets

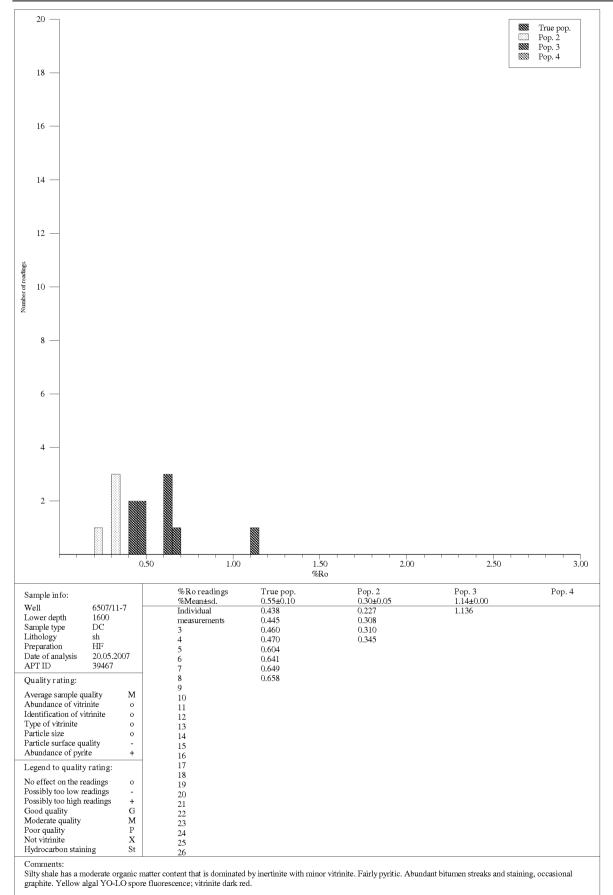


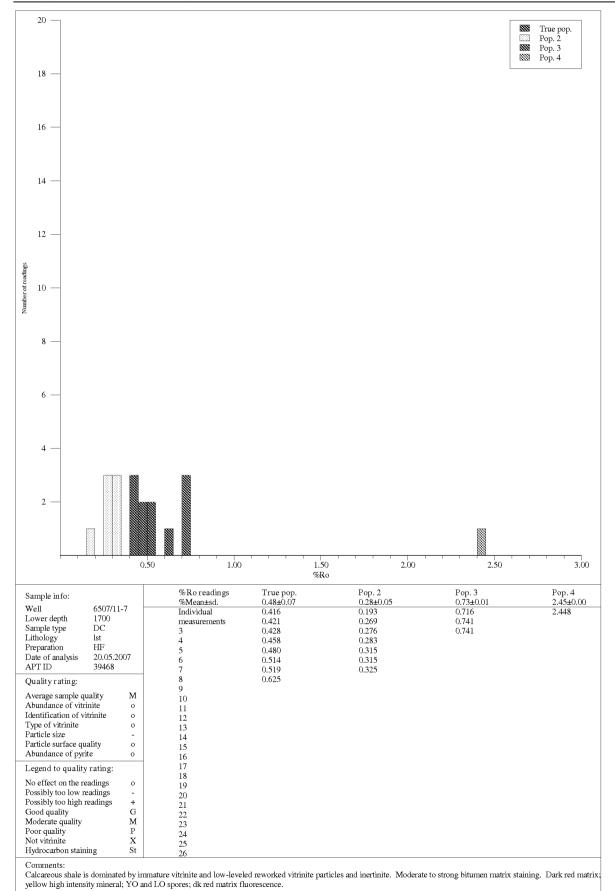



20 True pop. Pop. 2 Pop. 3 Pop. 4 18 16 14 12 Number of readings 10 8 6 4 2 2.50 0.50 1.00 1.50 2.00 3.00 %Ro %Ro readings %Mean±sd. True pop. 0.39±0.05 0.322 0.361 Pop. 2 0.23±0.04 0.192 0.199 Pop. 3 0.72±0.00 0.716 Pop.4 Sample info: 6507/11-7 1110 DC slst HF Well Individual measurements Lower depth Sample type 0.369 0.398 0.211 0.219 3 4 5 6 7 Lithology Preparation 0.398 0.403 0.447 0.219 0.246 0.295 20.05.2007 39462 Date of analysis APT ID 0.457 8 9 Quality rating: Average sample quality М 10 Abundance of vitrinite Identification of vitrinite 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 0 Type of vitrinite 0 Particle size Particle surface quality 0 -Abundance of pyrite + Legend to quality rating: No effect on the readings Possibly too low readings Possibly too high readings Good quality 0 -+ G M P X St Moderate quality Poor quality Not vitrinite Hydrocarbon staining 26 Comments: Sillstone has a low organic matter content that is dominated by inertinite and vitrinite with significant bitumen streaks but trace bitumen staining. Significant pyrite. Very weak yellow spore fluorescence.

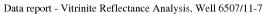


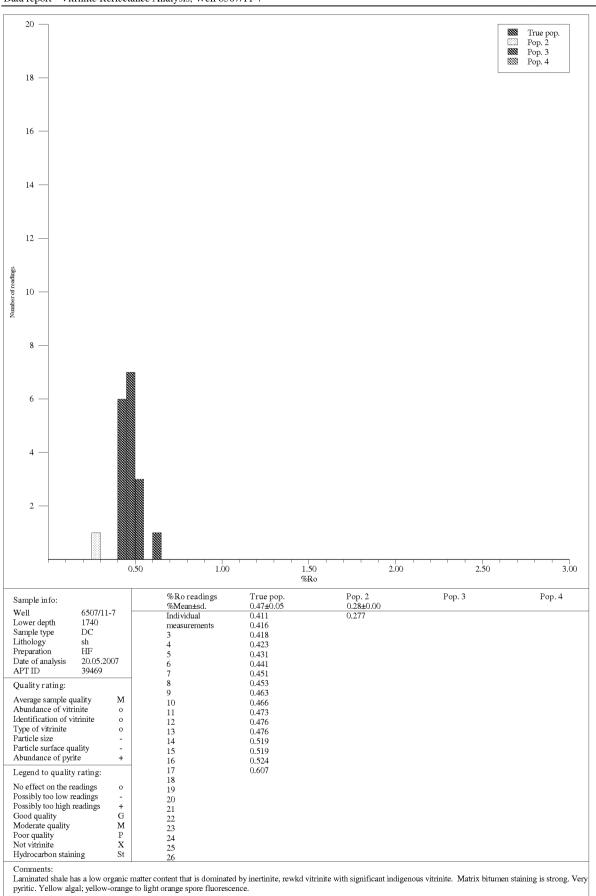


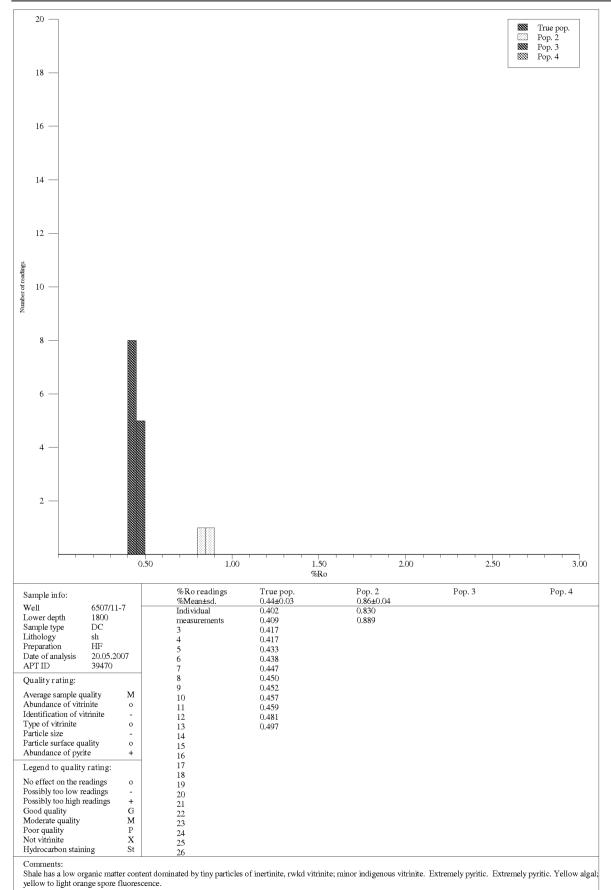


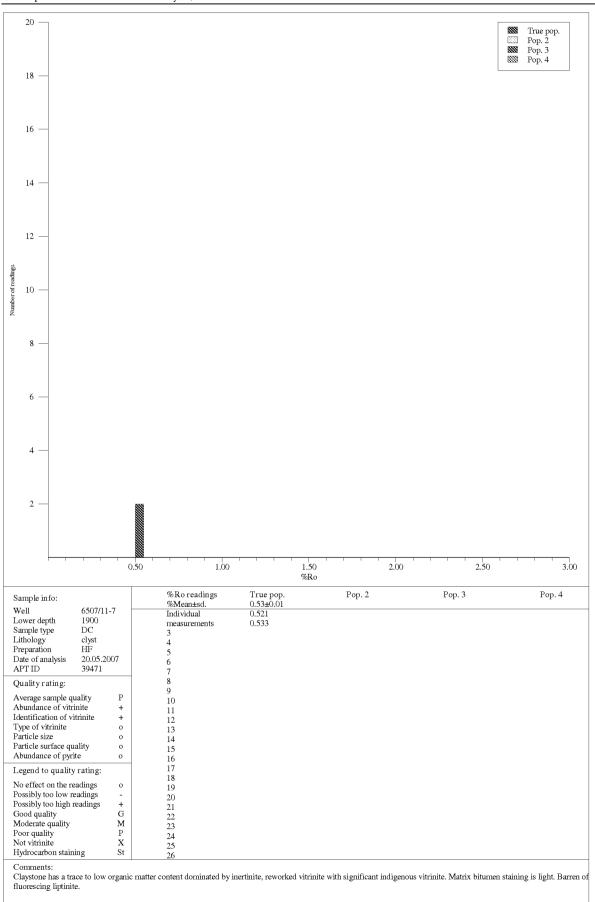


Shale has a low organic matter content dominated by inertinite with significant vitrinite and bitumen streaks and moderately strong hydrocarbon staining. Weak yellow algal and yellow-orange to light orange spore fluorescence.






Data report - Vitrinite Reflectance Analysis, Well 6507/11-7

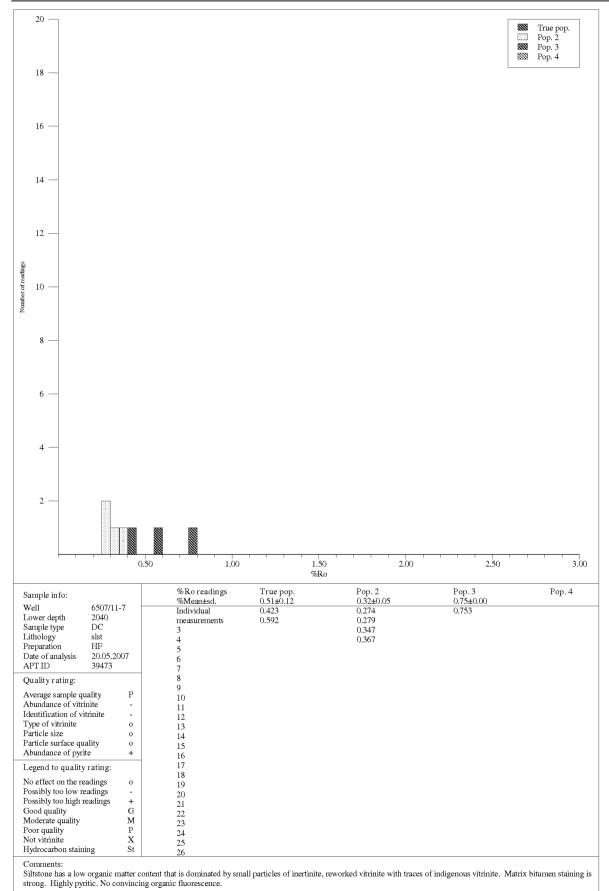


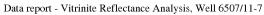
3.00

20 True pop. Pop. 2 Pop. 3 Pop. 4 18 16 14 12 Number of readings 10 8 6 4 2 0.50 1.00 1.50 2.00 2.50 %Ro True pop. 0.53±0.03 0.492 0.542 %Ro readings %Mean±sd. Pop. 2 0.92±0.00 0.919 Pop. 3 Pop.4 Sample info: 6507/11-7 2000 DC slst HF Well Individual measurements Lower depth Sample type 0.542 0.554 3 4 5 6 7 Lithology Preparation 20.05.2007 39472 Date of analysis APT ID 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Quality rating: Average sample quality М Abundance of vitrinite Identification of vitrinite 0 Type of vitrinite 0 Particle size Particle surface quality _ 0 Abundance of pyrite 0 Legend to quality rating: No effect on the readings Possibly too low readings Possibly too high readings Good quality 0

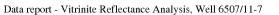
Data report - Vitrinite Reflectance Analysis, Well 6507/11-7

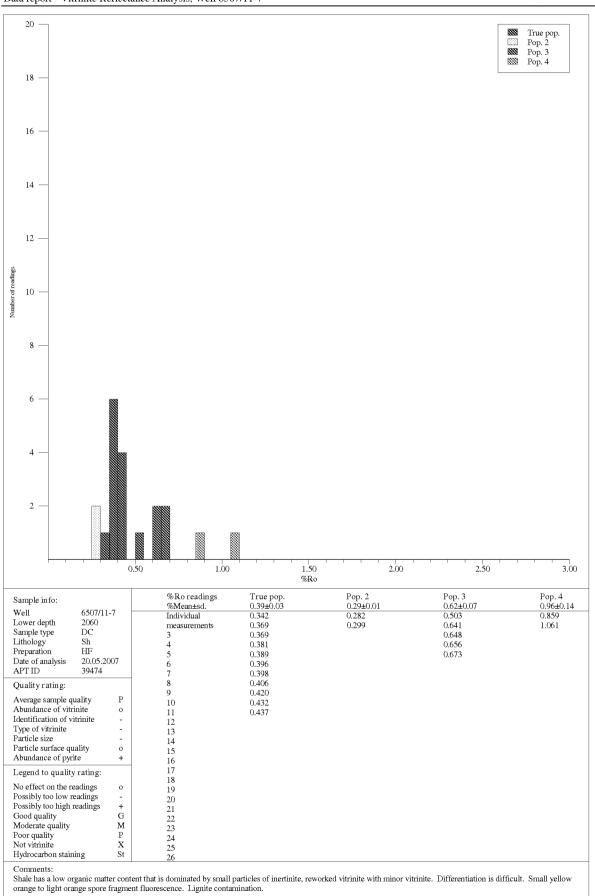
Moderate quality Poor quality Not vitrinite Hydrocarbon staining -

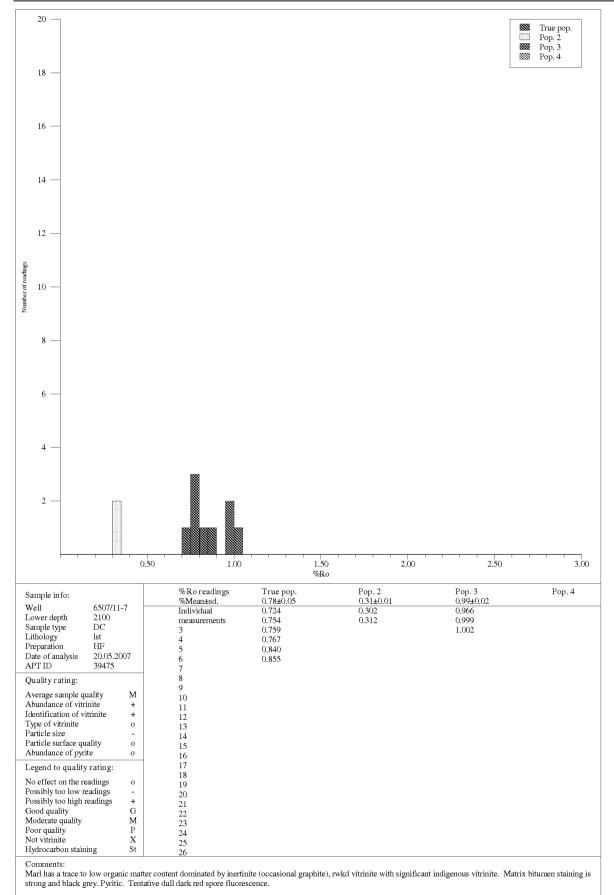

+ G M P X St

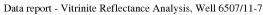

26

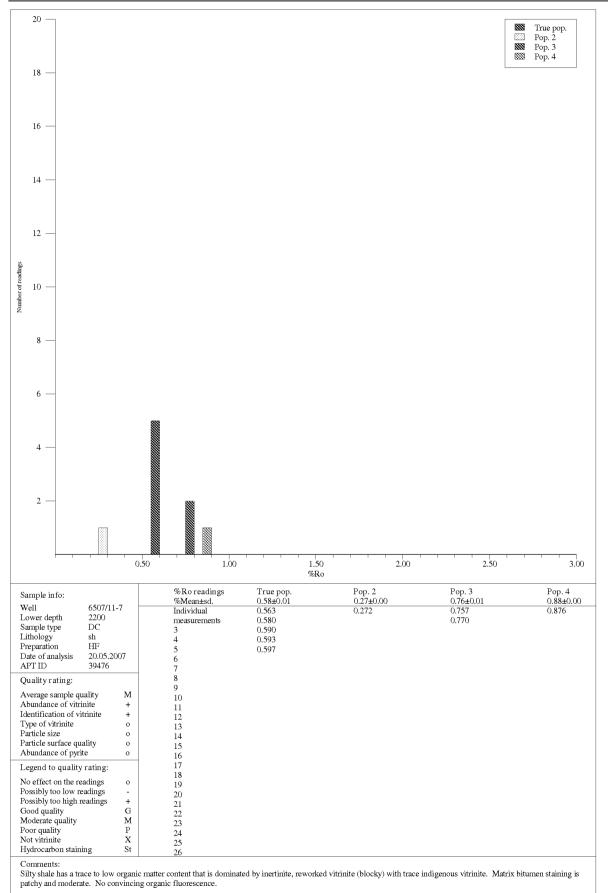
Comments:

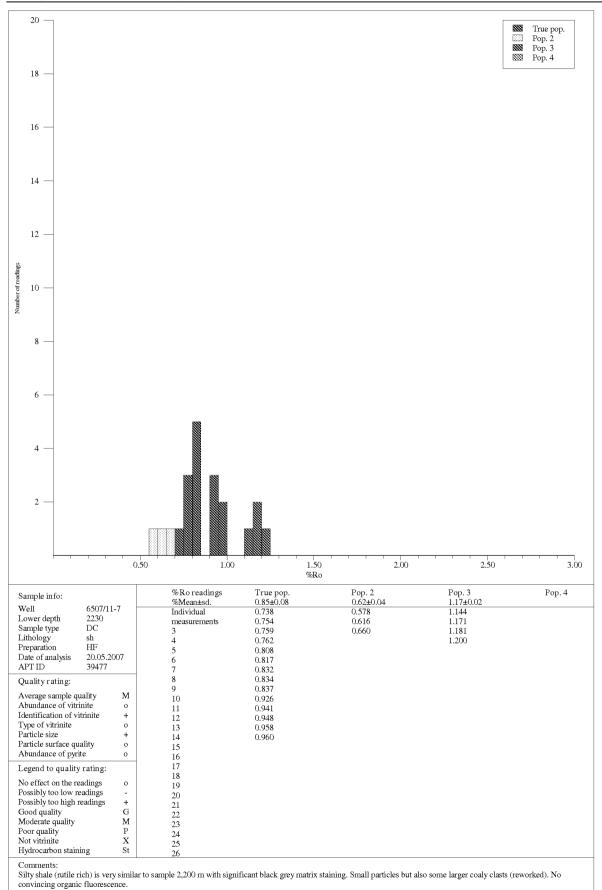

Siltstone has a low organic matter content that is dominated by inertinite, reworked vitrinite with minor indigenous vitrinite and liptinite streaks. Matrix bitumen staining is strong. Yellow algal; light orange spore and dull red matrix fluorescence.

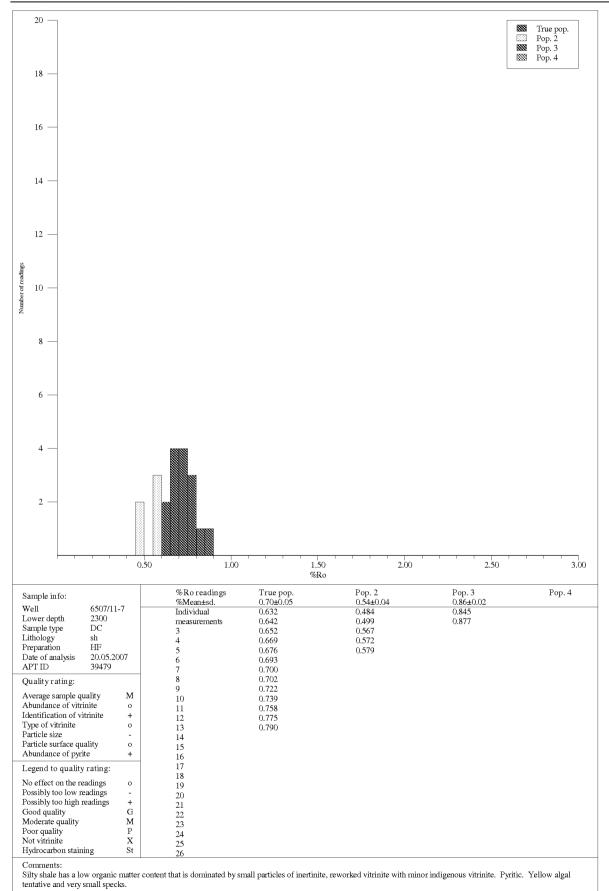




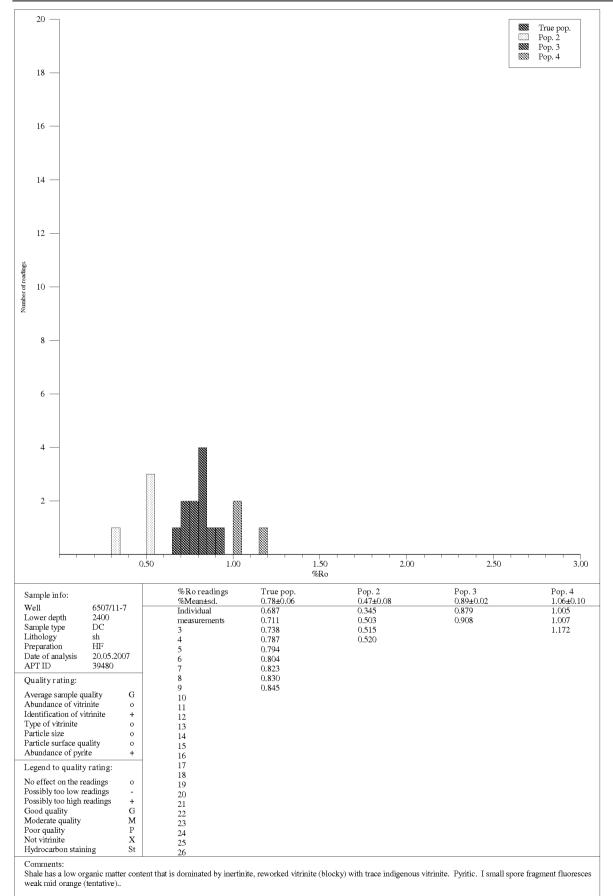




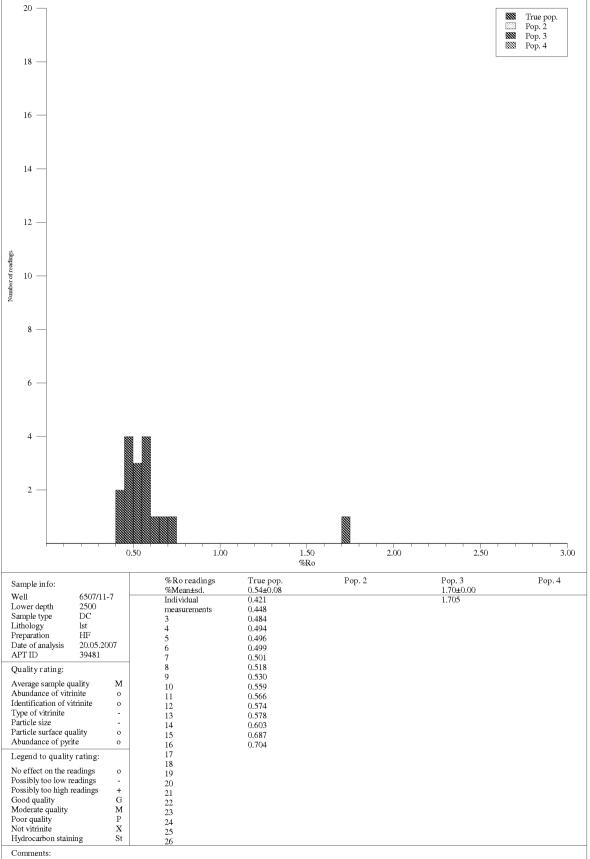


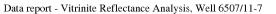


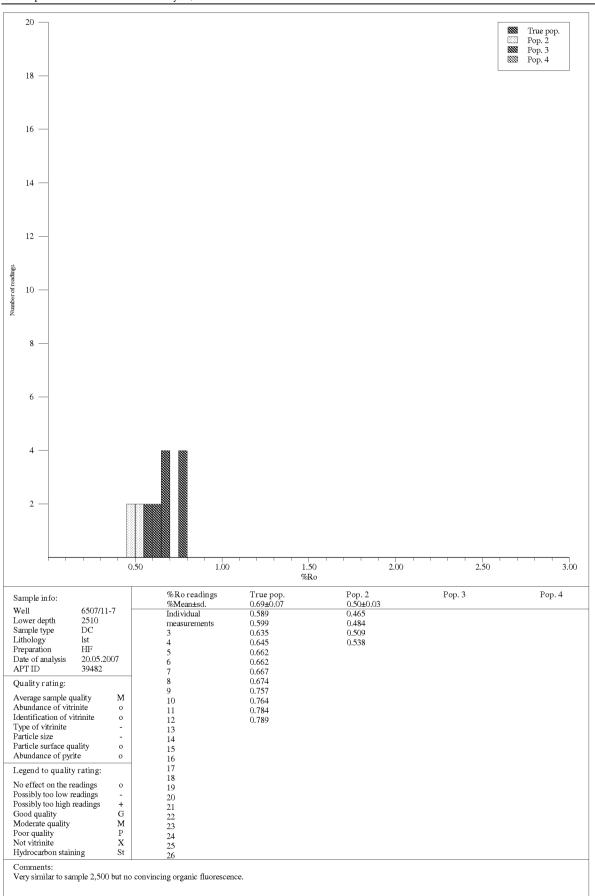
Page 21



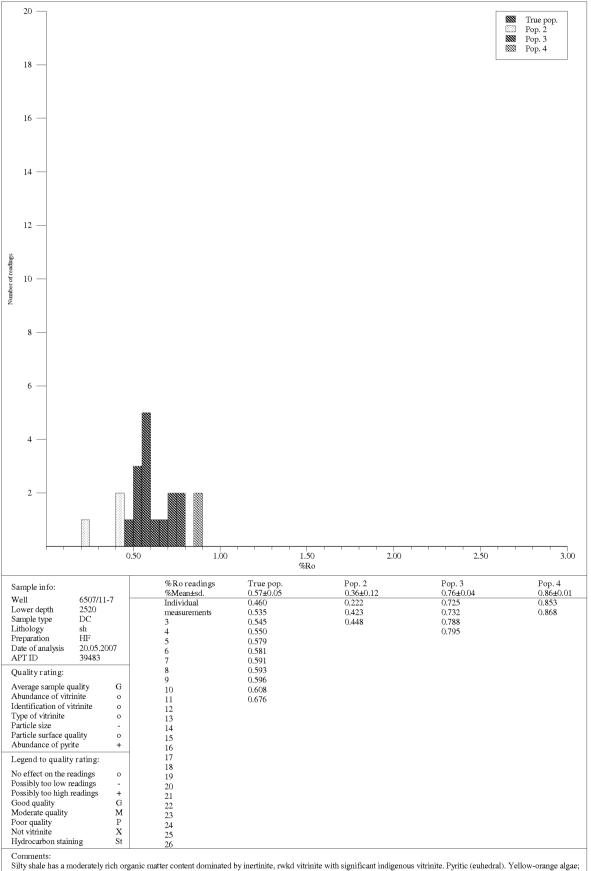
20 True pop. Pop. 2 Pop. 3 Pop. 4 18 16 14 12 Number of readings 10 8 6 4 2 2.50 0.50 1.00 1.50 2.00 3.00 %Ro %Ro readings %Mean±sd. True pop. 0.81±0.08 0.735 0.739 Pop. 2 0.50±0.01 0.493 0.512 Pop. 3 1.05±0.05 0.998 1.003 Pop.4 Sample info: 6507/11-7 2250 DC Well Individual measurements Lower depth Sample type 0.739 0.749 $\begin{array}{c} 1.088 \\ 1.100 \end{array}$ 3 4 5 6 7 Lithology Preparation sh HF 0.756 0.894 20.05.2007 39478 Date of analysis APT ID 0.899 8 9 0.902 0.921 Quality rating: Average sample quality М 10 Abundance of vitrinite Identification of vitrinite 0 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 + + Type of vitrinite Particle size Particle surface quality _ 0 Abundance of pyrite 0 Legend to quality rating: No effect on the readings Possibly too low readings Possibly too high readings Good quality 0 -+ G M P X St Moderate quality Poor quality Not vitrinite Hydrocarbon staining 26 Comments: Silty shale is rich in rutile and has a trace to low organic matter content, dominated by small particles of inertinite, rwkd vitrinite and trace indigenous vitrinite. Differentiation is difficult. No convincing fluorescence.

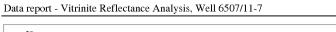


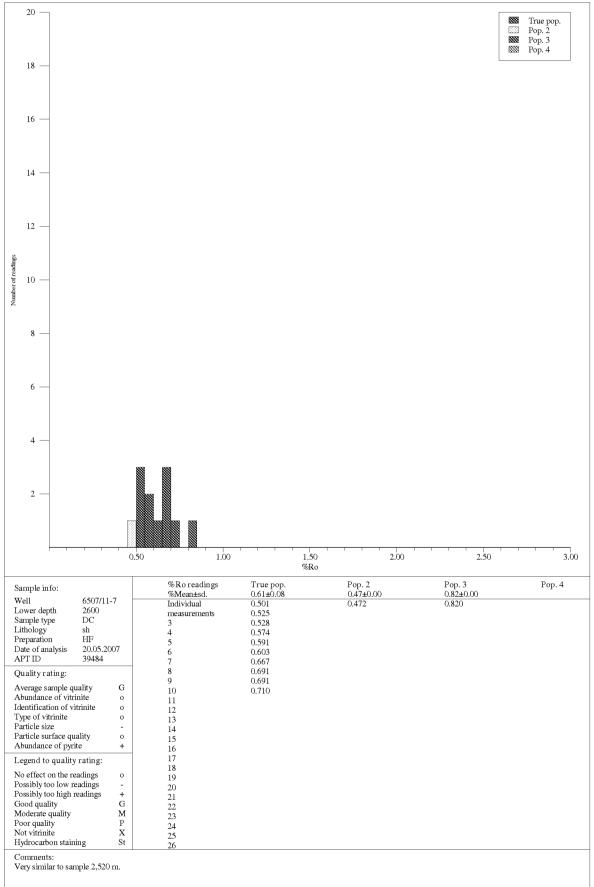


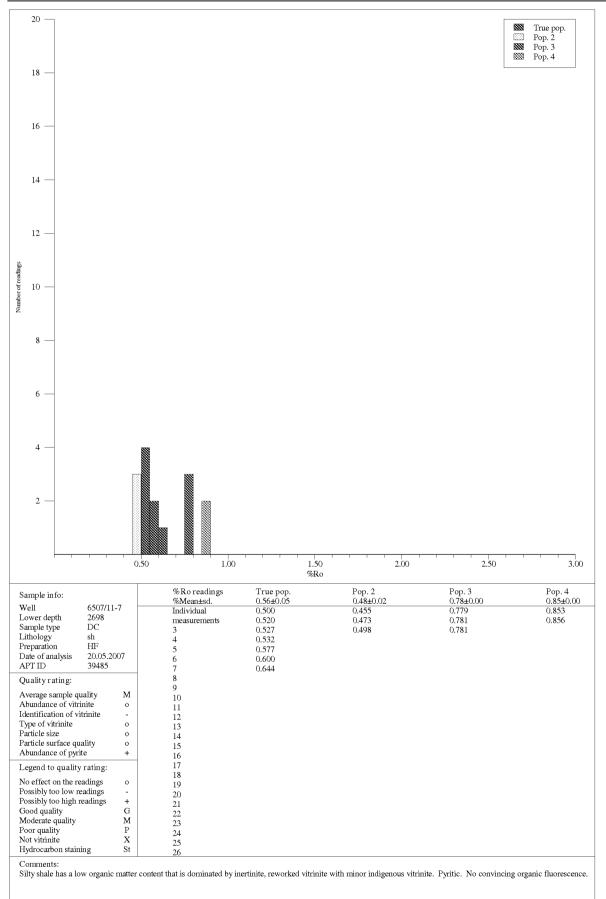


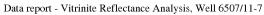
Marl has a low organic matter content that is dominated by inertinite, reworked vitrinite with minor indigenous vitrinite. Occasional bitumen streaks Tentative mid orange spore fragment; Yellow mineral and weak red matrix fluorescence.

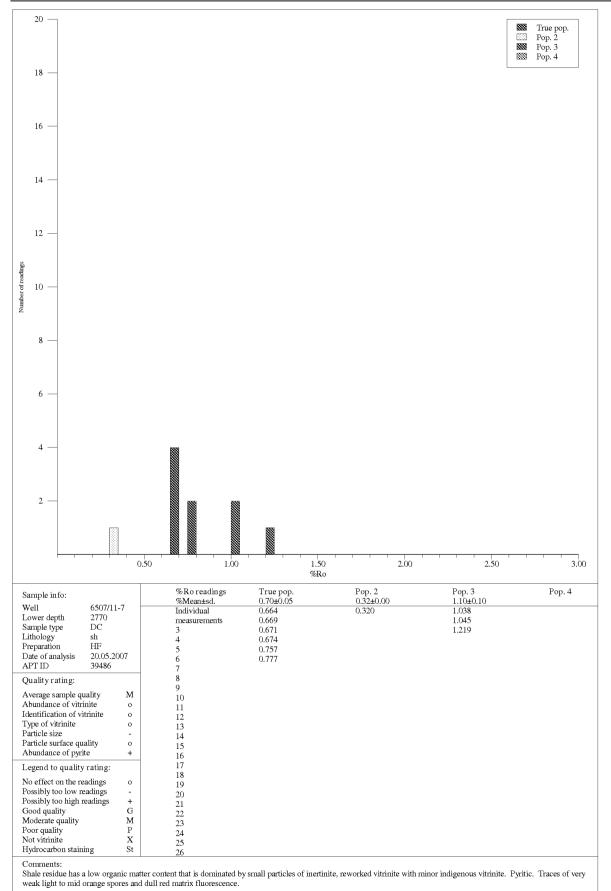


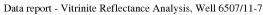


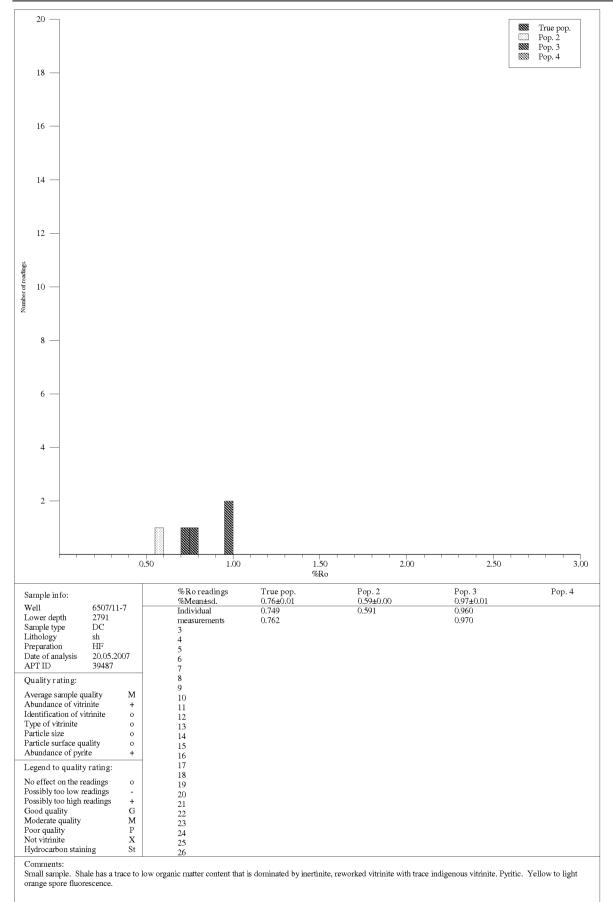


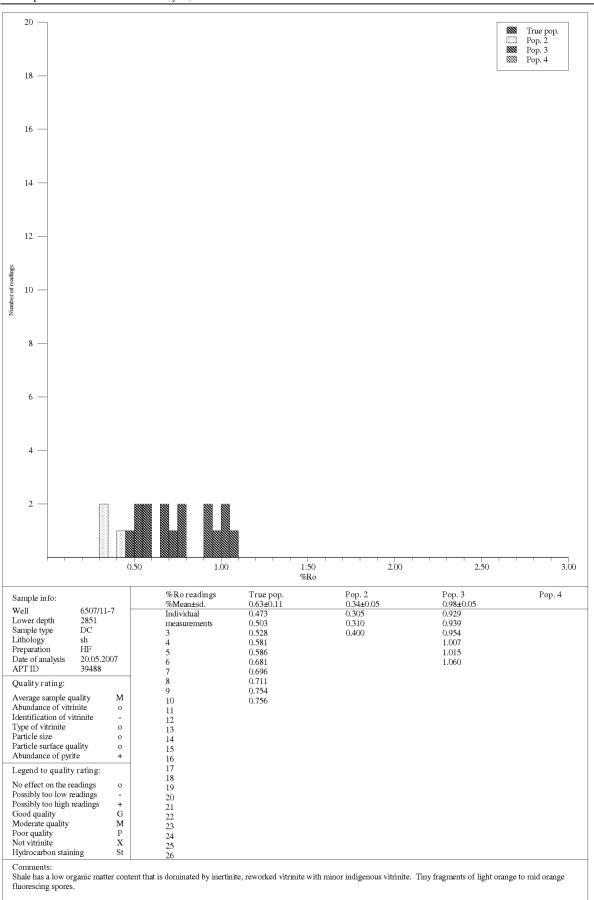

dark orange spore and dark orange spores (tentative). Lignite contamination?.

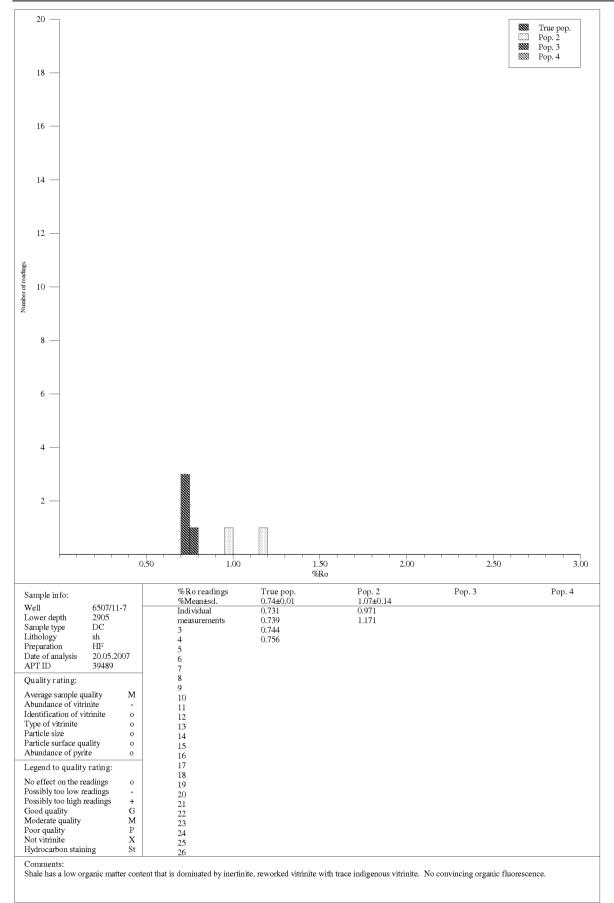


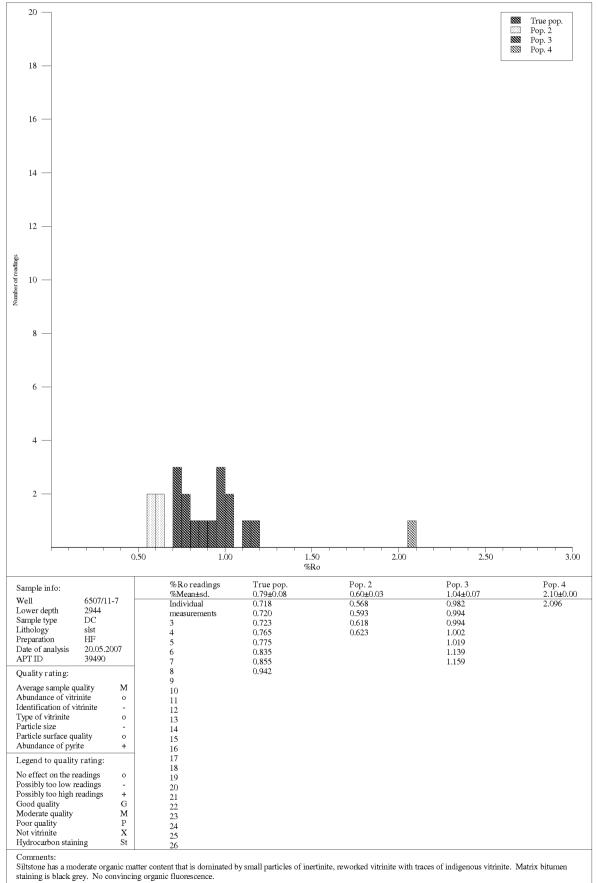












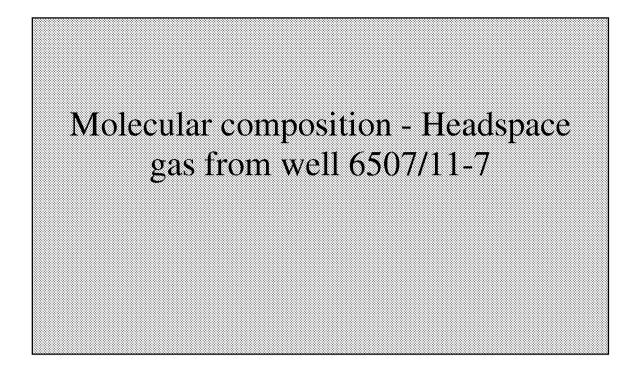
Experimental Procedures

All procedures follow NIGOGA, 4th Edition. Below are brief descriptions of procedures/analytical conditions.

Sample preparation

Cuttings samples are washed in water to remove mud. When oil based mud is used, soap (Zalo) is added to the sample and the sample is washed thoroughly in warm water to remove mud and soap.

Vitrinite reflectance analysis


The samples are prepared either as "whole rock" or are treated with hydrochloric and hydrofluoric acid prior to further preparation. The aim of the acid treatment is to avoid soft and expanding mineral phases in order to ensure good polishing quality. The whole rock or the kerogen resulting from the acid treatment is embedded in an epoxy resin to make briquettes, ground flat and polished using 0.25 micron diamond paste and magnesium oxide as the two final steps.

The analytical equipment used is a Zeiss MPM 03 photometer microscope equipped with an Epiplan-Neofluar 40/0.90 oil objective. The sensitive measuring spot is kept constant for all measurements at about 2.5 micron in diameter. The measurements are made through a green band pass filter (546 nm) and in oil immersion (refractive index 1.515 at 18 °C). The readings are made without a polarizer and using a stationary stage. This procedure is called measurement of random reflectance (%Rm). The photometer is calibrated daily against a standard of known reflectance (%Rm = 0.588) and routinely (daily) checked against two other standards of significant different reflectances (%Rm = 0.879 and 1.696). A deviation from these values of less than \pm 0.01 and \pm 0.02 respectively is considered acceptable. The calibration is routinely checked during the course of measurements at least every hour, and a deviation of less than \pm 0.005 is considered acceptable.

For each sample at least 20 points are measured if possible, and quality ratings are given to various important aspects, which may affect the measurements. These aspects are abundance of vitrinite, uncertainties in the identification of indigenous vitrinite, type of vitrinite, particle size, particle surface quality and abundance of pyrite.

APPENDIX III

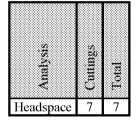
Molecular composition of head space gas

Applied Petroleum Technology AS P. O. Box 123 2027 Kjeller Norway

Address:	Applied Petroleum Technology AS									
1 iddi 0 55.	P.O.Box 123									
	2027 Kjeller									
Telephone	+47 63 80 60 00									
	+47 63 80 11 38									
Report numbe	r	Classification								
APT07-1280		Confidential								
Report Title		Submitted								
Molecular co	2007-05-22									
Client		Service Order								
Norsk Hydro	5399258									
Client Referen	ce	Number of pages								
Vibeke Hatlø	4									
Distribution										
	ASA (digital)									
IFE (2)										
APT (digital))									

Authors Ingar Johansen

	Name	Date	Signature
Reviewed by	Ingrid Anne Munz	2007-05-21	J. A. Hunz
Approved by	Tore Haaland	2007-05-21	Con Magarla


CONTENTS

Introduction	1
Table 1. Number of analyses performed	1
Figure 1. Gas composition (volume based)	
Table 2. Gas Composition (volume-%)	
Experimental Procedures	

Introduction

Composition and isotopes of the headspace gas were ordered, but the amount of gas were too low in all the samples to measure isotopes.

Table 1. Number of analyses performed

Table 2. Gas Composition (volume-%)

Well	Sample type	Sample info	Upper Depth (m)	Lower Depth (m)	APT ID	C1%	C2%	C3%	iC4%	nC4%	10.5%	нС5%	002%	Sum CL-C5	Wetness	iC4/nC4	bpm
6507/11-7	DCG		2776	2782	39454	6.1	1.1	1.3	1.4	0.97	0.00	0.00	89.1	10.9	43.8	1.5	270
6507/11-7	DCG		2782	2788	39455	11.6	1.7	2.0	3.2	1.9	2.6	1.7	75.4	24.6	43.0	1.7	322
6507/11-7	DCG		2788	2794	39456	10.8	1.8	2.9	3.3	1.7	1.9	1.2	76.4	23.6	47.3	1.9	896
6507/11-7	DCG		2794	2800	39457	10.5	1.6	1.5	1.9	1.3	1.6	0.99	80.6	19.4	37.6	1.4	408
6507/11-7	DCG		2800	2806	39458	11.7	1.3	0.91	0.88	0.63	0.62	0.47	83.6	16.4	24.1	1.4	398
6507/11-7	DCG		2806	2812	39459	9.7	1.3	0.82	1.1	0.78	1.0	0.59	84.7	15.3	29.2	1.4	502
6507/11-7	DCG		2812	2818	39460	17.4	2.7	3.2	3.8	2.2	2.3	1.6	66.8	33.2	40.6	1.8	494

Experimental Procedures

All procedures follow NIGOGA, 4th Edition. Below are brief descriptions of procedures/analytical conditions.

GC analysis of gas components

Aliquots of the samples were transferred to exetainers. 0.1-1ml were sampled using a Gerstel MPS2 autosampler and injected into a Hewlett Packard 5890 Series II GC equipped with Porabond Q column, a flame ionisation detector (FID), a thermal conductivity detector (TCD) and a methylization unit. Hydrocarbons were measured by FID, CO_2 by metylization (to CH₄) and then FID and N₂ and O₂ by TCD.