

KERNFORSCHUNGSANLAGE JÜLICH GmbH

ORGANIC GEOCHEMISTRY OF WELL STATOIL 6407/1-2 AND CHARACTE-RISATION OF RESERVOIR HYDRO-CARBONS

ORGANIC GEOCHEMISTRY OF WELL STATOIL 6407/1-2 AND CHARACTE-RISATION OF RESERVOIR HYDRO-CARBONS

D. Leythaeuser, U. Mann, H.W. Hagemann, P.K. Mukhopadhyay,M. Radke, R.G. Schaefer and B. Spiro

KFA/ICH-5 Report No. 502383

||: |:...

Institute for Petroleum and Organic Geochemistry (ICH-5), KFA-Juelich, P.O. Box 1913, D-5170 Juelich, Fed. Rep. of Germany CONTENTS

I

1.00

. . .

÷ •

.

		Page
1.0	SUMMARY	1
2.0	INTRODUCTION	4
3.0	SAMPLES AND METHODS	6
4.0	ORGANIC RICHNESS	9
5.0	MATURATION	10
	5.1 MATURATION BASED ON MEAN VITRINITE	
	REFLECTANCE	10
	5.2 MATURATION BASED ON T FROM ROCK-EVAL	11
6.0	HYDROCARBON GENERATION AS A FUNCTION OF	
	SOURCE ROCK QUALITY	14
	6.1 QUALITY OF SOURCE ROCKS	14
	6.2 GENERATION OF PETROLEUM-RANGE HYDROCARBONS	16
	6.3 GENERATION OF GAS AND GAS CONDENSATES	21
7 0		24
7.0	REDISTRIBUTION OF HIDROCARBONS	24
8.0	CHARACTERISATION OF RESERVOIR HYDROCARBONS	25
	8.1 GROSS COMPOSITION	25
	8.2 COMPOSITION OF C ₁₅₊ -SATURATED HYDROCARBONS	25
	8.3 COMPOSITION OF C ₁₁₊ -AROMATIC HYDROCARBONS	26
9.0	GEOCHEMICAL CORRELATION	27
10.0	REFERENCES	29

		Page
11.0	ACKNOWLEDGEMENT	32
12.0	LIST OF TABLES	33
13.0	LIST OF FIGURES	35

2

-

1.0 SUMMARY

I.

Based on detailed geochemical analysis including measurement of yield and composition of light and heavy hydrocarbons and pyrolysis products as well as vitrinite reflectance measurements for canned cutting and sidewall core samples and one oil sample from well Statoil 6407/1-2 the following principal geochemical conclusions have been reached:

- 1.) <u>MATURITY:</u> Based on vitrinite reflectance data any potential source beds bearing predominantly hydrogen-rich amorphous organic matter have experienced adequate temperatures to initiate effective hydrocarbon generation below a depth of about 2800m (0.5% R_m). The corresponding depth level for source beds bearing hydrogen-lean, terrestrial-derived or-ganic matter is around 4300m (0.7m % R_m).
- 2.) <u>ORGANIC RICHNESS</u>: The entire section penetrated by this well from the Miocene and below reveals organic carbon contents, which are above the threshold for hydrocarbon source rocks. The Kimmeridge Clay Fm. has TOC contents between 1.4 and 4.3%.
- 3.) <u>QUALITY OF SOURCE ROCKS</u>: Based on pyrolysis yield data obtained from Rock-Eval measurements all of the organic carbon containing intervals of this well bear a gas-prone kerogen of a hydrogen-lean type III nature, which is predominantly derived from terrestrial vegetation. No oil-prone type II kerogen bearing samples were encountered in this section.

- 4.) <u>GENERATION OF PETROLEUM HYDROCARBONS</u>: Based on elevated yields and favorable composition of C₁₅₊-soluble organic matter (around 100 mg extract/g TOC and 50 mg hydrocarbons/ g TOC) the Kimmeridge shales can be classified as good quality petroleum source rocks, which have entered the liquid window and have actively generated hydrocarbons.
- 5.) <u>GENERATION OF GASOLINE-RANGE HYDROCARBONS</u>: Considerable amounts of gasoline-range hydrocarbons have been generated by source beds in the Kimmeridge, the Heather and the Coal Unit. Organic-rich strata of the Miocene have a too low maturity to initiate gasoline-range hydrocarbon generation to a significant degree.
- 6.) <u>RE-DISTRIBUTION OF HYDROCARBONS</u>: There is ample evidence that extensive re-distribution of hydrocarbons has occurred in the section penetrated by this well. Based on migration-sensitive light hydrocarbon compound ratios the following intervals are enriched by migrated gas: 500-800m, 1000-1100m, 1435m, 1900-2200m, 3580-3595m, 3625-3655m, 3700-3715m and 3775m. Indications for migration of petroleum-bearing formation waters were obtained for most of the Tertiary section (down to 2300m), the lowermost Cretaceous, the Heather and the upper part of the Middle Jurassic sandstone interval.
- 7.) <u>CHARACTERISATION OF RESERVOIR HYDROCARBONS</u>: The oil from interval 3659-3669m has a high proportion of volatiles (45.5%) and is of a paraffinic nature (in excess of 60% saturated hydrocarbons) and a rather low content of NSO-compounds (8%).

Based on the composition of the C_{15+} -saturated hydrocarbon and the C_{11+} -aromatic hydrocarbon fractions this oil is rated as a mature crude oil which, according to the MPI-index was expelled from a source rock of a maturity at around 0.80% vitrinite reflectance.

8.) <u>GEOCHEMICAL CORRELATION:</u> Based on a screening-type correlation utilising a statistical evaluation of selected light hydrocarbon compound ratios the oil from 3669m reveals a high degree of compositional similarity with potential source rocks at 3535m, 3610m and 3625m.

2.0 INTRODUCTION

A suite of canned cuttings, core and sidewall core samples covering the depth interval from 400 to 4560 m of well Statoil 6407/1-2 along with a reservoir hydrocarbon sample from this well were subjected to geochemical analysis. The objectives of this study were to collect information which would answer the following questions concerning:

- a.) CHARACTERISATION OF HYDROCARBON SOURCE ROCKS
 - Which intervals of well Statoil 6407/1-2 exhibit the best hydrocarbon source potential?
 - Which type of hydrocarbons (oil versus gas) did these source strata generate?
- b.) DETERMINATION OF THEIR TEMPERATURE AND MATURATION HISTORY
 Which diagenetic/catagenetic stage did the organic matter of any potential source bed in this well reach during its geologic history?
- c.) INDICATIONS FOR RE-DISTRIBUTION OF HYDROCARBONS
 - Which intervals exhibit evidence for hydrocarbon migration?
 - Is there evidence for proximity of reservoired hydrocarbon accumulations (past or present)?
- d.) CHARACTERISATION OF RESERVOIR HYDROCARBONS
 - What is the composition and the maturity of the recovered oil?

e.) GEOCHEMICAL CORRELATION

- Which rock unit encountered in this well can be correlated to the oil as possible source rock?

For interpretation of the analytical data copies of the "CSU Field Log", 1:500, and information about formation tops were available to the authors of this report. The study of this well was performed in cooperation with the geochemistry group of STATOIL, Stavanger. Dr. Hilary Irwin participated in the early stages of this project during her stay at KFA laboratories in April 1983. The main conclusions from this study were transmitted to STATOIL by telex on July 12th, 1983.

e.) GEOCHEMICAL CORRELATION

- Which rock unit encountered in this well can be correlated to the oil as possible source rock?

For interpretation of the analytical data copies of the "CSU Field Log", 1:500, and information about formation tops were available to the authors of this report. The study of this well was performed in cooperation with the geochemistry group of STATOIL, Stavanger. Dr. Hilary Irwin participated in the early stages of this project during her stay at KFA laboratories in April 1983. The main conclusions from this study were transmitted to STATOIL by telex on July 12th, 1983.

3.0 SAMPLES AND METHODS

A total of 295 different samples from exploration well Statoil 6407/1-2 were submitted for geochemical analysis. In detail one oil sample (DST - 1, 3659-3669 m), two core samples (3661.4 m and 3688.1 m), 14 sidewall core samples (1889-3551.5 m) and 278 cuttings samples (400-4560 m) have been available for the study.

6

The following numbers of samples from this well were analysed by the geochemical techniques listed below:

Type of geochemical analysis/number of samples analysed

ROCK SAMPLES

Organic carbon	119	
Rock-Eval pyrolysis	119	
Light hydrocarbons (C ₂ -C ₈)	71	
Heavy hydrocarbons (C ₁₅₊)		
Yield measurement	15	
Liquid chromatography (MPLC)	45	
GC of saturated hydrocarbons	15	
Organic petrology		
Vitrinite reflectance	16	

OIL SAMPLE

Whole oil analysis	(C ₆ -C ₃₅)	1
Light hydrocarbons	(c ₂ -c ₈)	1

Heavy hydrocarbons (C_{15+})

Liquid chromatogra	phy (MPLC)	1
GC of saturated hy	drocarbons	1
GC of aromatic hyd	rocarbons	1

The stratigraphic sequence covers an interval from Tertiary to Triassic. Individual formation tops are given in table I.

Most procedures listed above represent well-established routine analytical techniques and hence are not described here in detail. The ROCK-EVAL pyrolysis procedure is carried out according to Espitalié et al. (1977). Several analytical techniques developed at our institute were employed in this study. Light hydrocarbon analysis was performed by hydrogen stripping and capillary GC analysis (Schaefer et al., 1978a,b). This method combines a gas-phase (hydrogen) stripping of hydrocarbons from wet cuttings and their subsequent capillary gas chromatographic analysis. The standard procedure recovers only a fraction of the hydrocarbons present in the rock. Absolute concentrations can be obtained by a combined thermovapourization technique. This technique however, was not applied in the present study. The hydrogen stripping technique does not include the measurement of methane due to sampling procedures and analytical limitations. A slightly modified method is also applicable to the analysis of oil samples. Methylene chloride extraction was carried out by a modified flowblending" method (Radke et al., 1978) and chromatographic separation of the hexane soluble portion of the extracts by mediumpressure liquid chroma-

tography (Radke et al., 1980). The experimental conditions for the gas chromatographic analysis of the saturated hydrocarbon fractions were the following: glass capillary, 23 m length, 0.3 mm i.d., coated with SE-54 silicone gum, temperature programmed from 80° C (hold for 2 min) to 254° C, heating rate 3[°]C/min; carrier gas helium. For determination of the maturity of the oil the Methylphenanthrene Index (MPI) was used (Radke et al., 1982a,b; Radke and Welte, 1983). Total aromatics were dissolved in xylene and analysed using a Hewlett-Packard 5731A gas chromatograph equipped with Gerstel inlet and outlet splitters, flame ionization detector (FID) and Tracor flame photometric detector (FPD; 394 nm filter), which was modified to minimize dead volume. Conditions: fused silica capillary column, 50 m length, 0.22 mm i.d., coated with CP Sil 8 silicone gum; temperature programmed from 100°C (hold for 2 min) to 280°C, heating rate 3°C/min; carrier gas helium. Vitrinite reflectance values were determined on kerogen density concentrates (HCl treated, ground samples separated with 1.95 g/ml KI-CdI, solution and embedded in transoptic powder and polished according to a technique described by Benders et al., 1979).

4.0 ORGANIC RICHNESS

The total organic carbon (TOC) values are listed in tables IIa,b and plotted versus depth in figure 1. Analysis was performed on the cuttings samples selected for light hydrocarbon analysis and on total cuttings samples. For samples where both analyses are reported in table IIa only the measurement of the selected cuttings are given in figure 1. TOC of the sidewall cores, cores and of a single hand picked cuttings sample are given in table IIb.

Above the Miocene the TOC values are low (lowerthan 0.78%). In the Miocene TOC values are higher, mostly around 1.0% (up to 3.8%). The Paleocene and Cretaceous have TOC mostly in the range 0.9-1.2 with a few richer exceptions (up to 8.6%). The two Kimmeridge cutting samples have values of 1.4-4.30% (different sample types) and the SWC in this interval has 8.9%. The Heather is rich in organic carbon mostly above 2%. Somewhat lower values characterise the Middle Jurassic Sandstone (0.9-2.4%). The Drake and Cook have up to 6.7%. The coal from the Coal Unit is well represented in the cuttings (13-50% TOC). In summary, the whole section from the Miocene and below has a high TOC content, which is mostly above the TOC-threshold for hydrocarbon source rocks.

5.0 MATURATION

,

5.1 MATURATION BASED ON MEAN VITRINITE REFLECTANCE

Assessment of the maturation level of the organic matter in potential source beds from well Statoil 6407/1-2 has been made by measurement of mean vitrinite reflectance on 16 polished kerogen density concentrates covering a depth range of 415 m to 4510 m. The results of the vitrinite reflectance measurements are given as frequency distributions for each sample (Fig. 2a to 2p). In table III the mean vitrinite reflectance values (% R_m) are listed and plotted versus depth in Fig. 3.

As obvious from this figure, there is a drastic scatter of mean vitrinite reflectance with depth, which makes it hard to define a trend. This data scatter is believed to be due to a combination of factors: Turbo-drilling in several intervals (which may have enhanced R_m values locally), organic mud additives (especially lignite and lignosulphonate was observed as predominant constituents in the kerogen concentrates of all samples between 2000 and 4200 m) and cavings. In Fig. 3 the samples, which are believed to have unreliable vitrinite reflectance values due to the above listed reasons, are indicated by question marks. For the remaining samples a depth-trend can then be defined which runs from about 0.37% R_m to about 0.73% R_m at T.D..

It is well documented that the onset of hydrocarbon generation by thermal degradation of organic matter occurs for different kero-

gen types at different vitrinite reflectance levels (Leythaeuser 1974; Powell et al. 1978; Rogers 1979) which are indicated by broken lines in Fig. 3. Hydrogen-rich type II kerogens, which are of amorphous and sapropelic nature, reach maturity around 0.5% R_m, whereas the hydrogen-lean type III kerogens do not attain maturity before about 0.7% R_m. Therefore, according to Fig. 3 the onset of maturity and significant hydrocarbon generation is in this well at the following approx. depth levels:

2800 m - for hydrogen-rich, type II kerogen-

bearing petroleum source rocks 4300 m - for hydrogen-lean, type III kerogenbearing source rocks.

5.2 MATURATION BASED ON T FROM ROCK-EVAL

The temperature of maximum pyrolytic degradation of kerogen (T_{max}) is commonly used as a maturity parameter. It may, however, be sensitive to other thermal effects. It is, therefore, important to clarify whether the turbodrilling technique has a significant effect on T_{max} and other Rock-Eval parameters. This can be checked best in the turbodrilled intervals, down to 3580 m, 3970-4195 and 4285-TD in comparison with the corresponding non-turbodrilled intervals 3580-3970 and 4195-4285. As shown in Fig. 4 an expected shift of T_{max} to higher temperatures was not observed. The trend of increasing T_{max} in Heather continues. On the other hand the trend of decreasing T_{max} in Drake continues where turbodrilling is resumed. Also the trends of the other Rock-Eval parameters do not seem to be affected. The T_{max} increases with increasing maturity for a given type of organic matter. Therefore

the interpretation of the variation in T_{max} has to take into account also variations in type of kerogen, proportion of bitumen, impregnation by migrated oil and contamination.

.

The T_{max} values fluctuate in the Tertiary, Miocene, Paleocene, increase steadily only in Cretaceous reaching 430° (Tables IIa,b). The increase continues through Kimmeridge and Heather. These T_{max} values of 435-440° are probably true indicators of maturity and point to an early stage of oil generation in this interval. T_{max} is quite stable in Middle Jurassic Sandstone with only a few fluctuations. These high T_{max} values around 445° at 3820 m (Fig. 4) seem to be a reliable indicator of the maturity level, indicating a level well within the oil window. In Drake there is a marked decrease from about 435° to about 425° which continues well into the Cook, where it increases drastically from 432° to 457° over a short interval of only 300 m. This increase is paralleled by that of vitrinite reflectance.

The fluctuations of T_{max} are almost a mirror of the trend of the production index (PI) pointing to the presence of a more volatile component, possibly impregnation by migrated hydrocarbons. This component is thermally mobilised at temperatures lower than that of the associated kerogen and usually is recorded in the S_1 -signal of the Rock-Eval procedure, but in some samples enters also into the S_2 -signal resulting in a reduction of the T_{max} (see Figure 5). This effect is observed in the core samples at 3661.4 and 3688.1 m, Middle Jurassic Sandstone (figure 5d), where T_{max} is much lower than in the overlying Heather. The interval 3895-4060 which shows the increase in PI in conjunction with a decrease of T_{max} contains an increasing proportion of liquid hydrocarbons. This interpretation is confirmed by the occurrence of very high extract yields. Based on the T_{max} -trend the onset of oil generation (T_{max} 435-440°C) is located within the Heather interval.

6.0 HYDROCARBON GENERATION AS A FUNCTION OF SOURCE ROCK QUALITY

Provided sufficient organic richness and an adequate subsurface temperature history, amount and type of hydrocarbons generated are controlled by the quality of the organic matter, which is finely disseminated in the source beds. Conclusions with respect to this point are based here on the following types of data:

- hydrogen content of kerogens as measured by ROCK-EVAL pyrolysis procedure
- content and composition of extractable light and heavy
 hydrocarbons (C₂-C₈ and C₁₅₊, respectively).

6.1 QUALITY OF SOURCE ROCKS

The "hydrogen-" and "oxygen-index" values (HI and OI) obtained by the ROCK-EVAL pyrolysis procedure are known to correspond to the H/C and O/C atomic ratios from elemental analysis of kerogen (Espitalié et al. 1977). Tables IIa and IIb give analytical data for the samples from well Statoil 6407/1-2 and for selected samples the pyrograms (FID responses) are shown in Fig. 5. Selected parameters are plotted versus depth in Fig. 4.

In the section down to the Kimmeridge low HI and high OI values are the rule. However, several samples have HI values greater than 100 mg HC/g TOC. In the Kimmeridge and Heather HI values are in the range 100-200 mg HC/g TOC. In Middle Jurassic Sandstone, Drake, Cook and Coal Unit HI values exceed 200 mg HC/g

TOC. The OI values are high (some abnormally high) in the Tertiary, Miocene and Paleocene which raises a question as to the quality of these samples. Low OI values are recorded in the Jurassic (and Triassic) section. The main reasons for high OI are:

) ::---

- a.) <u>Carbonate minerals</u>. The OI value depends on the composition and properties of the carbonate minerals. This is probably not the main reason for abnormally high OI values of these samples.
- b.) <u>Mud additives</u>. The mud additive Resinex used in this well has an OI of about 530 and a low HI about 30. The effect of the mud additive is more pronounced where the amount of the indigenous organic matter is low. The section in which Resinex was added to the drilling mud (as indicated in the logs) is, however, below the section which has high OI values. Indications for contamination by mud additives are detected also in the composition of the C_{15+} -fraction. Detailed information on the type and depth distribution of mud additives utilised would help in providing more reliable interpretation of the geochemical data.
- c.) <u>Nature of the organic matter</u>. Humic acids which are not separated and identified by the routine analysis have OI values higher than 250. The occurrence of humic acids in larger amounts is probably restricted to the immature part of the section penetrated by this well. This effect does therefore, not provide an explanation for the high OI values (above 400).

In this study the exact interpretation of OI is not crucial since the section of interest with respect to identification of source and reservoir rocks does not show the extremely high values. However, the characterization of organic matter in the Miocene and Paleocene section is hampered.

The opposite variation with depth for HI and OI in the section below the Cretaceous is caused by variations in the type of organic matter. This antithetic behaviour can be even followed in the different types of samples for the same interval. Based on HI the best quality source rock intervals are in the Kimmeridge and upper Heather, Middle Jurassic Sandstone, Drake, upper Cook and the whole Coal Unit. However, all samples analysed in this well have on the basis of HI to be classified as type III organic matter (Fig. 4).

6.2 GENERATION OF PETROLEUM-RANGE HYDROCARBONS

1

1

A total of 12 cuttings samples, 2 core samples and 1 sidewall core sample were analysed for yield and gross composition of the C_{15+} -soluble organic matter. The analytical data are listed in Table IV. Depth plots of the C_{15+} -soluble organic matter yields and of the carbon-normalized yields of C_{15+} -soluble organic matter ter and C_{15+} -hydrocarbons are presented in Fig. 6. The following is a discussion of the variation of these data with depth and stratigraphic age.

Kimmeridge (samples from 3535.0-3551.5 metres)

177 - 5

4.5

The three samples analysed from the Kimmeridge show high C_{15+}^{-} -soluble organic matter yields ranging from 1442 ppm at the top of the interval to 9047 ppm at the bottom. The carbon-normalized yields of C_{15+} -soluble organic matter and of C_{15+} -hydrocarbons which are reasonably high at the top of the interval increase somewhat towards the bottom, where they reach high values, such as 101.8 mg/g C_{org} C₁₅₊-soluble organic matter and 54.1 mg/g Corg C15+-hydrocarbons. Based on these elevated yields the samples can be considered good quality source rocks for oil which have reached oil-window maturity. Furthermore, elevated relative abundances of C_{15+} -hydrocarbons in total extract in excess of 50% indicate that the peak of oil generation is approached but not yet reached. However, on the basis of these yield and gross composition data above, it cannot be ruled out that the samples are enriched by migrated hydrocarbons and/or that organic mud additives have contaminated these C_{15+} -soluble organic matter yields.

Heather formation (samples from 3595 and 3640 metres)

The two samples analysed from the Heather formation exhibit high C_{15+} -soluble organic matter yields of 2500 ppm at the top and of 1250 ppm at the bottom of the interval. The carbon-normalized yields of C_{15+} -soluble organic matter and of C_{15+} -hydrocarbons are moderate at the top of the interval. The yields increase slightly towards the bottom. However, the values are still only moderate at the bottom of the interval, such as 71.8 mg/g $C_{org} C_{15+}$ -soluble organic matter and 36.1 mg/g C_{org}

 C_{15+} -hydrocarbons. Provided that the yield values were not influenced by redistribution phenomena and/or a contamination of the samples with mud additives, it is concluded that the Heather formation has only a marginal oil potential, which is significantly lower than that of the Kimmeridge. The relative abundance of C_{15+} -hydrocarbons in total extract is also somewhat lower for the samples from the Heather formation than for the samples from the Kimmeridge.

Middle Jurassic (samples from 3661.4-3820.0 metres)

1000 1

As expected, the C_{15+} -soluble organic matter yields of the core samples at 3661.40 and 3688.16 metres depth, i.e. from the reservoir zone, are very high and the gross composition of the extracts resembles that of the crude-oil sample from 3659-3669 metres depth. The two cuttings samples at 3730 and 3820 metres depth show high C_{15+} -soluble organic matter yields of 1852 and 885 ppm, respectively. The carbon-normalized yields, such as 50 mg/g C_{org} C_{15+} -soluble organic matter and 30 mg/g C_{org} C_{15+} -hydrocarbons, are only moderate and rate these rock samples as poor source rocks for oil. However, they may have some gas generation potential. The sample at 3820 metres depth shows a high relative abundance of C_{15+} -hydrocarbons in total extract of about 60%, which is indicative of a maturity level close to the peak of oil generation.

Drake equivalent and Cook formations (samples from 3929-4210 metres)

The C_{15+} -soluble organic matter yield which is as high as 2880 ppm at the top of the interval reaches a maximum value of

18

a seconda de la companya de la comp

11540 ppm near the middle of the interval. The carbon-normalized yields of C_{15+} -soluble organic matter and of C_{15+} -hydrocarbons show a parallel increase from 102.5 to 364.0 mg/g C_{org} and from 63.2 to 176.6 mg/g C_{org} , respectively. Values this high are indicative of an oil impregnation and/or a contamination by organic mud additives. Evaluation of the source rock potential is impossible in this case.

The sample at 4210 metres depth exhibits a high C_{15+} -soluble organic matter yield of 1190 ppm. However, the moderate carbonnormalized yields of 54.8 mg/g $C_{org} C_{15+}$ -soluble organic matter and 32.1 mg/g $C_{org} C_{15+}$ -hydrocarbons rate this sample as a poor source rock for oil which possibly has some gas potential. The high relative abundance of C_{15+} -hydrocarbons in total extract of nearly 60% is indicative of a maturity level close to the peak of oil generation.

Coal unit (samples from 4285 and 4510 metres)

.

Both samples show very high C_{15+} -soluble organic matter yields in excess of 10 000 ppm. The carbon-normalized C_{15+} -soluble organic matter yield of the sample at 4285 metres depth is as high as 186.7 mg/g C_{org} , whereas the carbon-normalized C_{15+} -hydrocarbon yield of 38.8 mg/g C_{org} is only moderate, which is a consequence of the low relative abundance of C_{15+} -hydrocarbons in total extract of about 20%. Probably this sample is contaminated by organic mud additives. The evaluation of its oil potential hence is impossible. The sample at 4510 metres depth contains coaly organic matter, which follows not only from its high organic carbon content but also from the moderate carbon-normalized C_{15+} -soluble organic matter yield of 33.5 mg/g C_{org} and par-

19

معادر بحكك والمصارعات

ticularly from the very low carbon-normalized C_{15+} -hydrocarbon yield of 1.0 mg/g C_{org} . Further evidence for coaly organic matter is obtained from the very low relative abundance of C_{15+} hydrocarbons in total extract. This sample is expected to have no oil potential but possibly some gas potential.

Most of the above observations and conclusions can be confirmed from a detailed evaluation of the C₁₅₊-saturated hydrocarbon gas chromatograms (depicted in Fig. 7a-o, listing of geochemically significant compound ratios in table V). The three samples analysed from the Kimmeridge shales (one SWC, two cuttings samples) reveal a typical distribution pattern of a mature petroleum source rock: A smooth, front-end biased hydrocarbon distribution. A compositional feature, which is unique among all samples analysed, concerns the low value for the pristane/ phytane ratio. Whereas most samples have values significantly above unity for this ratio, the Kimmeridge samples have low values (0.86-0.96, see Table V). It is noteworthy that the oil from 3669 m and the two core samples from the reservoir interval itself have low pristane/phytane ratios as well (T.06-1.14).

The distribution of the C_{15+} -saturated hydrocarbons of the shale/siltstone samples analysed between 3595 m and 3820 m depth reveals compositional features, which are in agreement with the kerogen quality and the maturity level of these samples. From the interval 3925-4285 m five samples were analysed, which exhibit very peculiar and unusual compositional features: The C_{15+} -saturated hydrocarbon distribution is strongly bimodal with a pronounced background hump in the C_{27+} molecular region and high

relative concentrations of biological markers (suspected steranes and triterpanes). These compositional features are not in agreement with the maturity level of these samples and are unusual in general. It is, therefore, suspected that the saturated hydrocarbon fraction of these samples was contaminated by organic mud additives.

6.3 GENERATION OF GAS AND GAS CONDENSATES

Light hydrocarbons (C_2-C_8) are not synthesized by living organisms and hence are not found in recent sediments. They are generated from kerogen at increasing rates with increasing maturation. Therefore, they are considered as good indicators for the advancement of subsurface hydrocarbon generation processes, and they are well suited to study hydrocarbon migration phenomena.

In this study 82 rock samples, covering the depth interval from 415 m to 4560 m and the oil sample from 3669 m depth have been analysed for light hydrocarbons. Selected hydrocarbon concentrations are listed in Table VI.

Total and saturated C_2 - C_8 hydrocarbon stripping yields are plotted against depth in Figs. 9,10 (rock-weight normalized, ng/g of rock) and Figs. 11,12 (organic carbon normalized, ng/g C_{org}). As obvious from these figures considerable amounts of gas and gasoline-range hydrocarbons have been generated in parts of the section penetrated by this well. Total yields exceeding 10^4 ng/g are reached in the Kimmeridge and Heather formations

and in the Coal Unit. Values in the Cretaceous, Drake and Cook formations vary generally between 500 and 4000 ng/g. The Miocene has values between 100 and 800 ng/g in spite of elevated organic carbon contents. These low values are in accordance with the low maturity in the uppermost 2000 m of the well (R_m less than 0.5%). The organic-carbon normalized values (Figs. 11, 12 are highest in the Kimmeridge (10⁶ ng/g C_{org}), Heather, Middle Jurassic Sandstone (close to the oil accumulation) in part of the Cretaceous (at about 2450 m and at 3000 m depth) and in one sample of the Coal Unit (4366 m). In these samples (or intervals) more than $3x10^5$ ng/g C_{org} are observed. However, not in all cases the light hydrocarbons are indigenous to these samples. Parts of these intervals appear to be enriched by migrated hydrocarbons (see chapter 7.0).

Yields of individual hydrocarbon compounds n-butane (representative for the gas compounds) and n-heptane (representing a typical compound of the gasoline-range fraction) are plotted against depth in Figs. 13 to 16. They show more or less the same trend as for the total C_2 - C_8 fraction. The increase of the organic-carbon normalized n-heptane yield by two orders of magnitude between 2100 and 2400 m depth, however, can in view of this short depth interval not be explained by maturity progress. Instead, it indicates redistribution processes which have occurred in this depth range. The relative gas content M (proportion of C_2 - C_5 of total light hydrocarbon extract), plotted in Fig. 17 reveals strong variations with depth ranging from about 10 to nearly 100%. High relative gas contents are found from 600 m - 700 m (Pliocene), 2000 m - 2200 m (Miocene),

3650 m (Middle Jurassic Sandstone), and 4300 m - 4500 m (Coal Unit).

The light hydrocarbon maturity parameters G ("heptane-value" according to Thompson (1979), slightly modified) and E (n-hexane/ methylcyclopentane + 2.2-dimethylpentane slightly modified acc. to Jonathan et al. 1975), shown in Figs. 18 and 19 (including the values for the crude oil), reveal an extreme variation with depth. It is not yet clear if these variations are due to natural processes (e.g. redistribution) or artificial changes of the maturity, introduced e.g., by turbo-drilling. There is, however, no agreement between the turbo-drilled sections and high light hydrocarbon maturity on the basis of the two parameters shown. The change in composition of the C_5 , C_6 and C_7 hydrocarbons with depth are shown in Figs. 20 - 22. Also shown are the corresponding values for the crude oil sample. Extremely toluene-rich rock samples are found from 800 m - 1900 m and from 2200 m - 2300 m depth whereas high benzene contents are observed in most of the Miocene, the Heather, the upper part of the Middle Jurassic Sandstone and the Coal Unit. The values in the Kimmeridge are low as expected for a typical petroleum source rock. The crude oil discovered in this well is also relatively rich in toluene (19%), whereas its benzene content is low (9%).

7.0 REDISTRIBUTION OF HYDROCARBONS

As shown in Figs. 23 and 24, which are depth-plots of our gas-migration (A,B) and gasoline-range hydrocarbon-migration sensitive (C,D) parameters, several intervals contain redistributed hydrocarbons. Enriched by migrated gases (Fig. 23) appear to be the following intervals: 500m-800m,1000m-1100m,1435m, 1900m-2200m (all Tertiary); 3580m-3595m,3625m-3655m (all Heather); 3700m-3715m,3775m (all Middle Jurassic Sandstone). The high A,B values below 4300m depth are attributed to coal seams interbedded in this interval.

Parameters C,D (Fig. 24) indicate relative enrichment by gasoline-range hydrocarbons, possibly due to the movement of hydrocarbon-bearing formation waters, in most of the Tertiary (down to 2300 m, with only some exceptions). Enrichment in the lowermost samples of the Cretaceous, the Heather and the upper part of the Middle Jurassic Sandstone is lower yet still significant. The relatively low values may be due to the movement of a hydrocarbon rather than a water phase. More systematic research will be necessary to clarify this problem. The hydrocarbon yields in these depth intervals, including the Kimmeridge, discussed in Chapter 6.3, are higher than expected for the measured maturity stage. A general enrichment by migrated petroleum-range hydrocarbons is very likely.

8.0 CHARACTERISATION OF RESERVOIR HYDROCARBONS

8.1 GROSS COMPOSITION

The gross composition of the crude-oil sample from 3659-3669 metres depth is presented in Table VII and Figure 25. The content of volatiles is 45.5%, which is rather high and indicative of a mature oil. The stripped crude-oil sample exhibits a high content of saturates in excess of 60%, which rates it as paraffinic. The content of benzene-insolubles, asphaltenes, and residue is negligible. This together with the rather low content of 8% NSO-components points towards a maturity level beyond onset of intense oil generation.

8.2 COMPOSITION OF C₁₅₊-SATURATED HYDROCARBONS

The capillary gas chromatogram of the saturated hydrocarbon fraction and the normalized n-alkane distribution of the oil are shown in Figs. 26a and 26b, respectively. Carbon preference indices and isoprenoid hydrocarbon concentration ratios are included in Table V. Based on these data the sample appears to be a mature crude oil:

- CPI close to unity; only a very minor, yet significant, predominance of C₂₀, C₂₂, C₂₄, C₂₆ n-alkanes over their odd-numbered homologues can be observed,
- n-alkane envelope maximum below C₁₅,
- very low abundance of sterane and triterpane compounds in the C₂₇₊ range,
- $n-C_{17}/n-C_{27}$ ratio around 4.

On the other hand the pristane/n- C_{17} ratio is somewhat high (0.76) and could indicate a lower maturity.

A fairly similar composition as the oil sample is indicated for the saturated hydrocarbon fractions from the sandstone at 3661.4 m (core) and 3688.10-3688.16 m (core) in the Middle Jurassic Sandstone reservoir zone. The pristane/ $n-C_{17}$, phytane/ $n-C_{18}$, and pristane/phytane concentration ratios are nearly identical to those of the oil. The sample from 3715-3730 m (cuttings), however, which is 1 m below the reservoir zone is quite different from the other two samples. It reveals a significant CPI value of about 1.3 in the high molecular range.

8.3 COMPOSITION OF C₁₁₊-AROMATIC HYDROCARBONS

. ...

The capillary gas chromatograms of the C_{11+} -aromatic hydrocarbon fraction of the stripped crude-oil sample are presented in Fig. 27. The carbon-normalized concentrations and relative abundances of naphthalenes and phenanthrenes are listed in Tables VIII and IX. The latter are presented also as a normalized diagram in Fig. 28. Maturity parameters based on aromatic hydrocarbons are listed in Table X.

From the Methylphenanthrene Index MPI1 the maturity of the oil was determined to be equivalent to 0.80% vitrinite reflectance $(R_{\rm C})$, indicating that the oil most likely was derived from a source rock that has reached a maturity level close to peak oil generation. However, the oil was probably expelled from the source rock before the peak of oil generation, which is confirmed by the various maturity parameters listed in Table X.

9.0 GEOCHEMICAL CORRELATION

A geochemical correlation between the oil sample from 3669 m and any potential source rocks penetrated by this well was attempted only based on light hydrocarbon compositional patterns. The result of a computerized cluster analysis including the oil sample from 3669 m and 71 rock samples of this well, utilizing 14 selected light hydrocarbon concentration ratios as correlation parameters, is shown as a dendrogram in Fig. 29. According to this statistical analysis the oil reveals a high degree of compositional similarity, i.e. it correlates well with the rock samples of 3610 m, 3745 m, 3805 m, 3835 m, 3895 m, 3910 m and 3925 m. This is also obvious from Fig. 30 where the correlation coefficient between the oil and the light hydrocarbon composition of each rock sample is plotted against depth. A correlation coefficient in excess of 0.9 which, according to our experience, indicates a significant compositional similarity is observed at 2395m, 2455m, 3010m, 3535m, 3610m, 3625m, 3700m, 3775m, 3805m, 3835m, 3850m, 3865m, 3895m, 3910m and 3925m. With very few exceptions the whole interval from 3535 m to 3925 m (i.e., from Kimmeridge to the upper part of the Drake equivalent) correlates fairly well with the oil. On the basis of this statistical analysis alone it is not possible to distinguish clearly between those intervals which are the actual source rocks for the oil and other intervals which are impregnated by migrated oil. However, considering intervals of impregnated reservoir rocks and caving effects, the most likely candidates of genuine source rocks among the above listed samples with high correlation are the samples at 3535m, 3610m and 3625m. It is emplasized that

more detailed geochemical analyses (e.g. distributions of steranes and triterpanes by GC/MS) are required in order to reach more definite conclusions about source rock/crude oil correlation in this well.

10.0 REFERENCES

Benders, W., Flekken, P., Jacobs, I. (1979)

Anleitung zur Herstellung von Präparaten für die organischpetrologische Untersuchung, KFA/ICH-5-Bericht Nr. 500874.

Espitalié, J., Laporte, J.L., Madex, M., Marquis, P., Leplat, P., Paulet, J. and Boutefeu, A. (1977) Méthode rapide de caractérisation des roches-mères, de leur potentiel pétrolier et de leur degré d'évolution. <u>Rev. Inst.</u> <u>Français du Pétrole 32</u>, 23-42.

Jonathan, D., L'Hote, G. and du Rouchet, J. (1975) Analyse géochimique des hydrocarbures légers par thermovaporisation. Rev. Inst. Fr. Petr. <u>30</u>, 65-88.

Leythaeuser, D. (1974)

Erdölgenese in Abhängigkeit von der Art des organischen Materials im Muttergestein: Tagungskompendium der 24. Haupttagung der Deutschen Gesellschaft für Mineralölwissenschaft und Kohlechemie, Hamburg.

Powell, T.U., Foscolos, A.E., Gunther, P.R. and Snowdon, L.R., (1978)

Diagenesis of organic matter and fine clay minerals - a comparative study. Geochim. Cosmochim. Acta <u>41</u>, 1181-1197.

Radke, M. and Welte, D.H. (1983)

The Methylphenanthrene Index (MPI): a maturity parameter based on aromatic hydrocarbons. In: Advances in Organic Geochemistry 1981 (M. Bjorøy et al., editors), John Wiley & Sons, Chichester, in press.

Radke, M., Welte, D.H. and Willsch, H. (1982a)

Geochemical study on a well in the Western Canada Basin: relation of the aromatic distribution pattern to maturity of organic matter. Geochim. Cosmochim. Acta 46, 1-10.

Radke, M., Willsch, H., Leythaeuser, D. and Teichmüller, M.

(1982Ь)

Aromatic components of coal: relation of distribution pattern to rank. Geochim. Cosmochim. Acta 46, 1831-1848.

Radke, M., Willsch, H. and Welte, D.H. (1980) Preparative hydrocarbon group type determination by automated medium pressure liquid chromatography. Anal. Chem. <u>52</u>, 406-411.

Radke, M., Sittardt, H.G. and Welte, D.H. (1978)⁷ Removal of soluble organic matter from rock samples with a flow-through extraction cell. Anal. Chem. 50, 663-665.

Rogers, M.A. (1980)

Application of organic facies concepts to hydrocarbon source rock evaluation. Proc. 10th World Petroleum Congress, Bucarest, vol. 2, pp. 23-30.

Schaefer, R.G., Weiner, B. and Leythaeuser, D. (1978a) Determination of Sub-nanogram per Gram Quantities of Light Hydrocarbons (C_2-C_9) in Rock Samples by Hydrogen Stripping

in the Flow System of a Capillary Gas Chromatograph. Anal. Chem. <u>50</u>, 1848-1854.

Schaefer, R.G., Leythaeuser, D. and Weiner B. (1978b) Single-step capillary column gas chromatographic method for extraction and analysis of sub-ppb (10^9) amounts of hydrocarbons (C_2-C_8) from rock and crude oil sample and its application in petroleum geochemistry. J. Chromatog. <u>167</u>, 355-363.

Teichmüller, M. and Durand, B. (1983)

Fluorescence microscopical rank studies on liptinites and vitrinites in peat and coals, and comparison with results on the Rock-Eval pyrolysis. Int. J. Coal Geol., <u>2</u>, 197-230.

Thompson, K.F.M. (1979)

Light hydrocarbon in subsurface sediments. Geochim. Cosmochim. Acta, <u>43</u>, 657-672.
11.0 ACKNOWLEDGEMENT

•

For extensive technical assistance we are indebted to the following members of KFA/ICH-5: Mrs. Derichs, Fischer, Kammer, Köntges, Sellinghoff, Winden; Mr. Benders, Disko, Höltkemeier, Laumer, Pooch, Schnitzler, Sittardt, Willsch.

12.0 LIST OF TABLES

- Table I: Stratigraphy well Statoil 6407/1-2 (abbreviations used in figures and tables in parenthesis).
- Table IIa: Total organic carbon content and ROCK-EVAL pyrolysis data of cuttings samples from well Statoil 6407/1-2.
- Table IIb: Total organic carbon content and ROCK-EVAL pyrolysis data of sidewall core, core and handpicked samples from well Statoil 6407/1-2.
- Table III: Mean vitrinite reflectance values for selected samples from well Statoil 6407/1-2.
- Table IV: Yield and gross composition of C₁₅₊-soluble organic matter and organic carbon contents for selected rock samples from well Statoil 6407/1-2.
- Table V: Carbon preference indices and isoprenoid hydrocarbon concentration ratios of saturated hydrocarbon fractions for selected rock samples and crude oil from well Statoil 6407/1-2.
- Table VI: Light hydrocarbon yield data for rock samples and crude oil (3669) from well Statoil 6407/1-2.

Table VII: Gross composition of the crude oil sample from 3659-3669 metres depth from well Statoil 6407/1-2.

Table VIII: Carbon-normalized concentrations (mg/g C_{org}; first row) and normalized abundance (wt %; second row) of alkylnaphthalene homologs for the stripped crude oil sample from well Statoil 6407/1-2.

Table IX: Carbon-normalized concentrations (mg/g C_{org}; first row) of phenanthrene and its methylhomologs for the stripped crude oil sample from well Statoil 6407/1-2.

Table X: Maturity parameters based on aromatic hydrocarbons for the crude oil sample from well Statoil 6407/1-2.

13.0 LIST OF FIGURES

- Figure 1: Total organic carbon contents versus depth of rock samples from well Statoil 6407/1-2.
- Figure 2: Frequency distributions of the vitrinite reflectance analyses of selected rock samples from well Statoil 6407/1-2.

a)	415	m	Quaterr	nary				
b)	1345	m	TER					
c)	1615	m	MIO					
d)	1740	m	MIO					
e)	2035	m	MIO					
f)	2320	m	PAL	(two	populations,	compare	table	III)
g)	2455	m	CRE	(two	populations,	compare	table	III)
h)	2995	m	CRE		,			
i)	3085	m	CRE					
j)	3550	m	KIM					
k)	3595	m	HEA					
1)	3640	m	MJS					
m)	3925	m	DRE					
n)	4210	m	COK			-		
0)	4285	m	CUN	(two	populations,	compare	table	III)
p)	4510	m	CUN					

Figure 3: Mean vitrinite reflectance values versus depth of selected rock samples from well Statoil 6407/1-2.

Figure 4: Selected parameters of Rock-Eval pyrolysis versus depth for rock samples from well Statoil 6407/1-2 for the interval Kimmeridge Clay Formation to terminal depth.

Figure 5:

Rock-Eval pyrograms (FID trace) of selected samples from well Statoil 6407/1-2:

- a) <u>2995 m CRE</u>: HI-85,OI-19,PI 0.05, T_{max} 431^OC; S₁ is delayed, S₂ very broad indicating a heterogenous composition.
- b) <u>3790 m MJS</u>: HI-178,0I-38,PI-0.20, T_{max} 435^oC; S₁ starts immediately, S₂ has a shoulder, impregnation.
- c) <u>3820 m MJS</u>: HI-218,OI-47,PI-0.08, T_{max} 446^oC; narrow S₂ of residual kerogen.
- d) <u>3688.1 m MJS</u>: HI-416,OI-12,PI-0.71, T_{max} 414^oC; bimodal S₂ indication for reservoir.
- e) <u>3880 m MJS</u>: HI-130,0I-92,PI-0.30, T_{max} 433^OC; (similar to b)). Impregnation detected by extraction.
- f) 4060 m COK: HI-323,0I-123,PI-0.22, T_{max} 423^oC; broad S₂ signifying heterogenous organic matter. Impregnation detected by extraction.
- g) <u>4510 m CUN</u>: HI-192,OI-4,PI-0.12, T_{max} 457^oC;
 S₂ bimodal, despite low PI value impregnation is suspected.
- Figure 6: Organic carbon content, content of C_{15+} -soluble organic matter (SOM), and carbon-normalized content of C_{15+} -hydrocarbons (HC) vs. depth for selected rock samples from well Statoil 6407/1-2.

Figure 7a-o: Capillary gas chromatograms of C₁₅₊-saturated hydrocarbons for selected rock samples from well Statoil 6407/1-2. Selected n-alkanes indicated by their carbon number; Pri = Pristane, Phy = Phytane.

- Figure 8a-o: N-alkane distribution of same samples as displayed in figure 7. X-axis = carbon number per n-alkane; Y-axis = relative proportion.
- Figure 9: Total C_2-C_8 hydrocarbon yield (ng/g of rock = ppb) versus depth for rock samples from well Statoil 6407/1-2.
- Figure 10: Saturated C_2-C_8 hydrocarbon yield (ng/g of rock = ppb) versus depth for rock samples from well Statoil 6407/1-2.
- Figure 11: Organic-carbon normalized total C_2-C_8 hydrocarbon yield (ng/g C_{org}) versus depth for rock samples from well Statoil 6407/1-2.

R

- Figure 12: Organic-carbon normalized saturated C_2-C_8 hydrocarbon yield (ng/g C_{org}) versus depth for rock samples from well Statoil 6407/1-2.
- Figure 13: n-Butane yield (ng/g of rock) versus depth for rock samples from well Statoil 6407/1-2.

- Figure 14: Organic-carbon normalized n-butane yield (ng/g C_{org}) versus depth for rock samples from well Statoil 6407/1-2.
- Figure 15: n-Heptane yield (ng/g of rock) versus depth for rock samples from well Statoil 6407/1-2.
- Figure 16: Organic-carbon normalized n-heptane yield (ng/g C_{org}) versus depth for rock samples from well Statoil 6407/1-2.
- Figure 17: Relative gas content $M=100 \cdot (C_2 C_5) / (C_2 C_8)$ versus depth for rock samples from well Statoil 6407/1-2.
- Figure 18: Maturity parameter G ("heptane-value", according to Thompson (1979), slightly modified) versus depth for rock samples of well Statoil 6407/1-2. Oil sample marked by black triangle.

- Figure 19: Maturity parameter E (according to Jonathan et al. (1975), slightly modified, see text for details) versus depth for rock samples from well Statoil 6407/1-2. Oil sample marked by black triangle.
- Figure 20: Composition of C₅-hydrocarbons (sum of n-pentane, branched pentanes and cyclopentane normalized to 100%, plotted from left to right) versus depth for rock samples and crude oil (indicated by triangles) from well Statoil 6407/1-2.

Figure 21: Composition of C₆-hydrocarbons (sum of n-hexane, branched hexanes, cyclic C₆-hydrocarbons and benzene normalized to 100%, plotted from left to right) versus depth for rock samples and crude oil (indicated by triangles) from well Statoil 6407/1-2.

Figure 22: Composition of C₇-hydrocarbons (sum of n-heptane, branched heptanes, cyclic C₇-hydrocarbons, and toluene normalized to 100%, plotted from left to right) versus depth for rock samples and crude oil (indicated by triangles) from well Statoil 6407/1-2.

- Figure 23: Gas-migration-sensitive light hydrocarbon parameters "A" (plotted from zero to the right) and "B" (plotted to the left) versus depth for rock samples from well Statoil 6407/1-2.
- Figure 24: Non-gaseous light hydrocarbon parameters "C" (plotted from zero to the right) and "D" (plotted to the left), sensitive for migration and type of organic matter, versus depth for rock samples from well Statoil 6407/1-2.

Figure 25: Capillary gas chromatogram of the C_6-C_{35} -fraction of the crude oil sample from well Statoil 6407/1-2.

Figure 26a,b: Capillary gas chromatogram of the C₁₅₊-saturated hydrocarbons and normalized n-alkane distribution of the crude oil from well Statoil 6407/1-2. Figure 27: Capillary gas chromatograms of the C₁₁₊-aromatic hydrocarbon fraction of the stripped crude oil sample from well Statoil 6407/1-2 obtained from simultaneous flame ionization detection (FID) and sulfur-selective flame photometric detection (FPD).

Figure 28: Relative intensities (%) of naphthalene and phenanthrene components for the stripped crude oil sample from well Statoil 6407/1-2.

Figure 29: Dendrogram showing similarity of light hydrocarbon composition of rock samples and crude oil sample from well Statoil 6407/1-2.

Figure 30: Correlation coefficient between crude oil sample and rock samples plotted versus depth for well Statoil 6407/1-2.

÷

Table I: Stratigraphy Well Statoil 6407/1-2

Tertiary (TER)	500 m	
- Miocene (MIO)	· 1419 m	
- Paleocene (PAL)	2188 m	
Cretaceous (CRE)	2319 m	
Jurassic	3526 m	
- Kimmeridge Clay (KIM)	3526 m	
- Heather (HEA)	3557 m	
- Middle Jurassic Sandstone (MJS)	3658.5 m	→ 3659 HC
- Drake Equivalent (DRE)	3896 m	17716
- Cook (COK)	4050 m	
- Coal unit (CON)	4261 m	
Triassic (TRI)	4550 m	
· T.D.:	4560 m	

Hydrocarbon Reservoir Interval: 3659 - 3716 m.

...

Table	IIa:
-------	------

L	HC samp	les				to	otal cu	uttings	s sample	es			
Depth	TOC	HI	OI	T max	PI	TOC ¹⁾	HI	OI	T _{max}	PI	UNITIE	S 	
415	0.15	286	139	488	0.20						Depth:	m	
520	0.77	21	261	424	0.08						TOC:	90 0	
625	0.15	14	261	392	0.17						HI:	mg HC	/g TOC
730	0.15	8	213	n.d.	0.31						01:	mg CC	₂ /g TOC
805	0.21	36	831	424	0.15						T _{max} :	°c	-
895	0.12	23	381	n.d.	0.24						PI:		
985	0.14	42	825	425	0.10								
1075	0.09	18	n.d.	394	0.19								
1165	0.11	49	424	431	0.07								
1255	0.09	13	336	n.d.	0.44								
1345	0.78	100	109	425	0.02								
1435	0.40	56	188	427	0.13								
1525	0.66	38	246	415	0.08								
1600	1.33						100	141	420	0.08			
1615	1.26	51	145	426	0.06								
1630							119	119	423	0.07			
1645	1.80	88	118	419	0.11								
1665	1.82	101	170	420	0.07								
1695	3.81						161	90	414	Q.05			
1710	2.86	113	120	409	0.10						l		

¹⁾TOC of total cuttings is reported in this column for samples which were analysed both for LHC (selected cuttings) and total cuttings.

LI	LHC samples					t	otal	cutti	ngs sar	nples
Depth	TOC	нI	01	T _{max}	PI	тос ¹⁾	ні	OI	T _{max}	PI
1740	2.16	165	75	413	0.06					
1755	3.01	116	110	407	0.10					
1785	1.92	138	114	408	0.09					
1840	1.68	117	358	421	0.09					
1855	1.18						117	246	416	0.08
1870	1.46	48	244	418	0.08					
1900	1.68	96	170	423	0.09					
1915	1.44						92	227	429	0.06
1945	1.59	64	234	421	0.11					
1975	1.32	45	353	417	0.10					
2005	0.51						71	482	416	0.11
2035	0.79						66	470	412	0.12
2080	0.97	69	395	415	0.10					
2170	0.94	48	590	420	0.23					
2245	0.46	31	765	414	0.20					
2320	1.10	40	172	414	0.23					
2395	0.68	28	450	416	0.12					
2455	1.03	36	124	419	0.14					
2545	1.12	115	124	424	0.13					
2620	1.35	134	125	419	0.14					

TOC of total cuttings is reported in this column for samples which were analysed both for LHC (selected cuttings) and total cuttings.

\mathbf{L}	HC samp	les				t	otal cu	ttings	sample	es
Depth	TOC	HI	OI	T _{max}	PI	TOC ¹⁾	HI	01	T _{max}	PI
2695	1.24	193	211	417	0.12					
2770	1.19	59	193	416	0.14					
2845	1.19	129	129	424	0.13	•				
2920	1.22	103	143	430	0.06					
2965	0.92	40	131	422	0.06					
2995	14.10					•	85	191	431	0.05
3010	1.22	63	77	428	0.11					
3055	0.87	7	152	409	0.11					
3085	8.63						97	189	431	0.07
3100	1.05	49	128	428	0.12					
3130	0.98	13	82	428	0.08					
3160	1.09	41	120	419	0.07					
3175	1.44						45	126	429	0.08
3205	0.94	29	112	427	0.17					
3235	0.92	23	102	426	0.07					
3250	1.96						68	148	429	0.07
3280	0.93	25	170	428	Q.11					
3310	1.82				•		59	153	430	0.08
3325	0.93	18	69	426	0.12					
3355	0.91	25	124	428	0.11					
3385	0.87	18	71	429	0.12					

¹⁾ TOC of total cuttings is reported in this column for samples which were analysed both for LHC (selected cuttings) and total cuttings.

LI	HC samp	les				t	total cuttings samples				
Depth	TOC	HI	OI	T max	PI	тос ¹⁾	HI	OI	T max	PI	
3400	1.25						54	116	432	0.09	
3430	0.88	23	175	425	0.19						
3460	2.05						49	138	436	0.09	
3475	0.92	26	82	428	0.12						
3505	1.03	12	88	430	0.29						
3520	0.88	12	216	433	0.45	0.62	22	137	428	0.25	
3535	1.39	50	65	435	0.09	1.77	122	32	433	0.14	
3550	1.74	45	54	431	0.13	4.30	145	20	433	0.20	
3565	2.01	45	49	434	0.11						
3580	4.02	181	59	436	0.09						
3595	2.80	172	48	437	0.10	3.20	180	39	435	0.14	
3610	1.92	211	62	434	0.08	2.16	148	91	439	0.10	
3625	2.01	127	110	437	0.06						
3640	2.2	155	40	434	0.10	1.7	99	68	439	0.11	
3655	2.5	114	41	433	0.10	2.9	104	50	438	0.12	
3700	1.56	113	85	437	0.05						
3715	2.22	190	42	440	9.08						
3730	3.38				T		220	6	437	0.21	
3745	2.40	107	30	435	0.11						
3775	1.84	131	39	437	0.07					·	
3790	2.50						178	38	435	0.20	

1) TOC of total cuttings is reported in this column for samples which were analysed both for LHC (selected cuttings) and total cuttings.

L	HC samp	les				t	otal cu	ittings	sample	es
Depth	TOC	HI	OI	T _{max}	PI	TOC ¹⁾	HI	OI	T _{max}	PI
3805	2.30	137	30	436	0.10					
3820	1.83	223	14	444	0.26	1.65	218	47	446	0.08
3835	0.94	113	80	437	0.14					
3850	1.33	119	55	437	0.07					
3865	1.27	110	51	437	0.10					
3880	1.7						130	92	433	0.30
3895	0.80	114	65	437						
3910	0.73	56	167	434	0.13					
3925	1.38	103	47	437	0.09	2.8	157	132	431	0.21
4000	3.56	310	90	421	0.24	5.4	194	153	427	0.26
4060	6.76	447	80	420	0.23	3.2	323	123	423	0.22
4135	4.53	298	122	420	0.24					
4210	2.04	90	204	433	0.15	4.4	104	200	430	0.23
4285	13.05	211	33	437	0.11	7.7	244	58	434	0.20
4360	8.25	233	12	445	0.10					
4366	28.49	227	7	448	0.16					
4435	39.00	177	3	454	0.10					
4510	50.16	169	4	457	0.09	30.0	192	4	459	0.12
4560	19.79	165	5	457	0.09					

1) TOC of total cuttings is reported in this column for samples which were analysed both for LHC (selected cuttings) and total cuttings.

Table IIb:

.....

.

Depth	TOC	HI	OI	T _{max}	PI
		SWC			-
1889	1.15	48	108	409	0.11
1906	1.50	45	67	413	0.10
2113	0.20	32	-	412	0.17
2254	0.14	59	414	· _	0.21
2260	0.52	24	188	421	0.24
2474.1	0,90	63	125	425	0.11
2480.9	0.80	47	73	420	0.11
2831	1.24	50	70	428	0.07
3000.4	0.96	38	61	420	0.11
3446	0.76	25	50	433	0.12
3481.9	0.32	20	143	407	0.27
3495.0	1.02	19	90	432	0.21
3506.1	1.11	22	111	434	0.21
3551.5	8.89	206	3	435	0.21
		core	-		
3661.4	0.34	262	25	423	0.73
3688.1	0.43	416	12	414	0.7
		hand	pick	ed samp	ole

3595 3.86 263 8 438 O.13

u.

Table III				
Sample Depth (m)	R _m a)	s ^{b)}	n ^{c)}	Remarks
v 460	0.37	0.06	43	
ν 1345	0.37	0.05	42	Predominantly lignite particles
ν 1615	0.38	0.05	32	Relatively high percentages of figured liptinites,
V 1740	0.41	0.09	35	pollens, dinoflagellates etc.; presumably type II kerogen
2035	0.48	0.09	10	abundant unfigured liptinites and bituminous liptinitic
			••	groundmasses; presumably type I kerogen
2320	0.34	0.05	27	
•	0.51	0.02	4	
2455	0.33	0.03	26	
1	0.56	0.02	8	Predominantly lignite particles and cavings
2995	0.28	0.03	30	
3085	0.39	0.05	25	
3550	0.34	0.05	50	
3595	0.59	0.10	39	abundant unfigured liptinites + coaly particles;
v 3640	0.65	0.06	30	assumed type II kerogen
÷ 3925	0.31	0.03	*38	
÷ 4210	0.31	0.03	44	Predominantly lignite particles
✓ 4285	0.66	0.06	¹ 34	Orange fluorescent vitrinite particle & mineral rich
<i>V</i> .	0.69	0.06	25	bituminous groundmasses
<u>,</u> 4510	1.07	0.03	50	Coal seam with orange fluorescent vitrinites and orange
				fluorescent bitumen in the cell lumens of the inertinites

a) R_m = mean vitrinite reflectance; b) S = standard deviation; c) n = number of grains measured

i	1	!	2		3	!	4	ļ	5	!	6	!	7	į	8	!
!	3535.00	 !	1.	77	1442.	!	81.5	!	42.6	! !	22.0	 !	30.3	 !	47.7	!
ļ	3550.00	!	4.	30	4135.	ł	96.2	ļ	50.2	ł	21.6	i	30.6	!	47.8	ļ
i	3551.50	ļ	8.	89	9047.	i	101.8	!	54.1	!	19.3	ł	33.9	!	46+8	İ
i	3595.00	!	3.	86	2500.	ļ	64+8	i	30+3	!	19.2	ļ	27.6	!	53.2	ļ
ļ	3640.00	i	1.	74	1250.	!	71.8	ļ	36.1	!	24.5	i	25.8	i	49.7	ļ
i	3661.40	ļ	0.	34	3204.	!	942.4	į	792.5	ļ	58.0	ļ	26.1	!	15.9	ļ
ļ	3688,16	ļ	٥.	43	6554.	i	1524.2	!	1297.1	!	57.6	ł	27.5	1	14.9	!
i	3730.00	i	3.	38	1852.	i	54.8	l	28.9	i	23.0	i	29.8	1	47.2	!
ļ	3820.00	!	1.	83	885.	ļ	48+4	!	28.7	!	30.8	!	28.5	1	40.7	i
!	3929.00	ł	2.	81	2880.	ŀ	102.5	ļ	63.2	!	32.0	!	29.7	!	38.3	!
1	4000.00	ļ	5.	39	9387.	ł	174.2	!	109.9	1	32.8	1	30.3	!	36.9	1
i	4060.00	i	3.	17	11540.	1	364+0	į	176.6	1	23.8	ļ	24.7	!	51.5	ļ
i	4210.00	i	2.	17	1190.	Į	54.8	ł	32.1	!	34.3	i	24.2	i	41.5	!
!	4285.00	Ì.	7.	66	14302.	!	186.7	i	38.8	!	10.4	1	10.4	!	79.2	ļ
!	4510,00	!:	29+	98	10050.	1	33.5	i	1.0	!	1.2	i	1.9	i	96.9	ļ

.

LEGEND: _____

1- DEPTH (M)

2- CORG (%)

3- C15+ SOLUBLE ORGANIC MATTER (PPM)
4- C15+ SOLUBLE ORGANIC MATTER (MG/G C-ORG)

5- C15+ HYDROCARBONS (MG/G C-ORG)

6- C15+ SATURATED HYDROCARBONS (% OF NR.3)

7- C11+ AROMATIC HYDROCARBONS (% OF NR.3)

8- N,S,O- COMPOUNDS, RESIDUE (% OF NR.3)

TABLE IV: YIELD AND GROSS COMPOSITION OF ORGANIC MATTER FOR _____

STATOIL 6407/1-2

CPI (19-2	25))		::::	CPI	. I.
CPI (25-3	51.))		:22	CPI	2
CP1 (29)				::::	CFI	3
CPI (27-2	29))		::::	CPI	4
LHCPI (17	· 2	21/27	-31) ==	LHCF	• I
PRISTANE	7	N-C	17	===	150	1
PHYTANE	1	N-C	18	::::	ISO	2
PRISTANE	1	РНҮТ	ANE	::::	ISO	3
PRI +PHY	1	17 +	18	::::	150	4

•

SAMPLE NUM	BER		CPI 1	CPI 2	CPI 3	CPI 4	LHCPI	ISO 1	150 2	ISO 3	ISO 4
E17079 -1 E17080 -1	3520M - 3535M 3535M - 3550M		0+94 0+94	0,97 0,96	0.97 0.99	0+93 0+96	4+30 3+64	0+80 0+74	0+94 0+93	0+93 0+86	0+87 0+83
E17199 -1 E17147 -1 E17150 -1	3551.5M 3580M - 3595M 3625M - 3640M	CORE	0.94 1.00 1.04	0.96 1.13 1.18	0.98 1.18 1.24	0.93 1.15 1.22	3.52 2.07 1.83	$0.80 \\ 1.21 \\ 1.35$	0+93 0+64 0+56	0.96 2.03 2.70	0.86 0.94 0.98
E17804 -1 E17805 -1 E17156 -1	3661.4M 3688.1M-3688.16M 3715M - 3730M	CORE CORE	0.96 0.96 1.05	1.00 1.01 1.26	1.02 1.04 1.34	0.98 1.00 1.32	2.65 2.93 3.55	0.75 0.72 0.65	0.71 0.71 0.41	1,06 1,10 1,79	0.73 0.72 0.53
E17162 -1 E17169 -1 E17711 -1	3805M - 3820M 3910M - 3925M 3985M - 4000M		$1.15 \\ 1.03 \\ 1.02$	1 • 15 1 • 19 1 • 03	1.17 1.25 1.07	1.14 1.22 1.05	4+01 5+71 4+60	0.57 0.59 0.57	0.21 0.44 0.43	2.76 1.52 1.58	0.39 0.52 0.51
E17715 -1 E17725 -1 E17730 -1	4045M - 4060M 4195M - 4210M 4270M - 4285M		1.01 1.08 1.01	0,99 1,11 1,01	0.91 1.16 1.00	0.97 1.14 1.00	2.68 10.87 3.31	0+61 0+60 0+85	0+49 0+41 0+56	1,35 1,67 1,61	0,55 0,51 0,71
E17758 -1 E17877 -1	4495M - 4510M 3659M - 3669M	OIL.	ካ • 05 0 • 98	1+03 1+04	1+00 1+08	1.00 1.02	4+61 4+36	0.52 0.76	0+19 0+73	3.17 1.14	0,36 0,74

÷

4.

Table V

Table VI: LIGHT HYDROCARBON YIELD DATA FOR ROCK SAMPLES FROM WELL STATOIL 6407/1-2

and a second A second secon

ABBREVIATIONS

.

.

	PROBE	:	SAMPLE NUMBER
	TF	:	DEPTH (M)
•	00	:	ORGANIC CARBON CONTENT (WEIGHT-%)
-	SE	:	SATURATED C2-C8 HYDROCARBON YIELD (NG/G OF ROCK)
***	SEA	:	TOTAL C2-C8 HYDROCARBON YTELD (NG/G DE ROCK)
	901. 90	+	SAME AS 'SE', BUT ORGANIC CARBON NORMALIZED
	36	•	(NC/C C_OPC)
•••	SLA	÷	SAME AS 'SEA', BUT URBANIC CARBUN NURMALIZED
	ETHAN	Ŧ	ETHANE (NG/G C-URG)
	(ETHAN)	:	ETHANE (NG/G OF ROCK)
	PROPAN	*	PROPANE (NG/G C-ORG)
	(PROPAN)	:	PROPANE (NG/G OF ROCK)
	MC3	:	METHYLPROPANE (NG/G C-ORG)
`	(MC3)	;	METHYLPROPANE (NG/G OF ROCK)
	N-C4	:	N-BUTANE (NG/G C-ORG)
•	(N-C4)	:	N-BUTANE (NG/G OF ROCK)
	2,2DMC3	:	2,2-DIMETHYLPROPANE (NG/G C-ORG)
	(2,2DMC3)	:	2,2-DIMETHYLPROPANE (NG/G OF ROCK)
	MC4	:	METHYLBUTANE (NG/G C-ORG)
	(ME4)	:	METHYLBUTANE (NG/G DE ROCK)
	N-C5	• •	N-PENTANE (NG/G C-OPG)
		• •	N PENTANE (NO/O C ONO/
•		•	
		÷	UTLLUFENTANE (NG/G U-URG)
*		•	LTLLUPENTANE (NG/G UF RUCK)
	2-MC5	•	2-METHYLPENTANE (NG/G C-ORG)
	(2-MC5)	-	2-METHYLPENTANE (NG/G OF ROCK)
	N-C6	•	N-HEXANE (NG/G C-ORG)
	(N-C6)	:	N-HEXANE (NG/G OF ROCK)
	MCYC5	:	METHYLCYCLOPENTANE (NG/G C-ORG)
	(MCYC5)	:	METHYLCYCLOPENTANE (NG/G OF ROCK)
:	BENZOL	:	BENZENE (NG/G C-ORG)
	(BENZOL)	:	BENZENE [®] (NG/G OF ROCK)
-	CYC6	:	CYCLOHEXANE (NG/G C-ORG)
~:	(CYC6)	:	CYCLOHEXANE (NG/G OF ROCK) -
	2-MC6	:	2-METHYLHEXANE (NG/G C-ORG)
	(2-MC6)	:	2-METHYLHEXANE (NG/G OF ROCK)
	N-C7	:	N-HEPTANE (NG/G C-ORG)
	(N-C7)	:	N-HEPTANE (NG/G OF ROCK)
	MCYC6	:	METHYLCYCLOHEXANE (NG/G C-ORG)
	(MCYCA)	:	METHYLCYCLOHEXANE (NG/G DE ROCK)
	FCYC5	•	ETHYLCYCLOPENTANE (NG/G C-ORG)
	(ECYCS)	:	ETHYLCYCLOPENTANE (NG/G OF ROCK)
		:	
		•	TOLUENE (NG/G OF ROCK)
	2-MC7	•	2-METHYLHERTANE (NG/G C-ORG)
	2 1107 (9-807)	•	2 METHYLHERTANE (NG/C OF POCK)
	N N	* *	2 ΠΕΤΠΤΕΠΕΡΙΜΚΕ (ΝΟΛΟ ΟΓ ΚΟΟΚΛ ΝΕΩΟΤΑΝΕ (ΝΟΛΟ ΡΕΩΡΟ)
	13-00 (N_CQ)	* *	N-001914E (18070 0-0807 N-0076NE (18070 0E 0008)
	(14-00)	•	REQUIRING (NOVO OF ROOM)

	· · · · ·	104.2	- 						e Aliman an a	
PROBE	TF	00	SE		SEA		SC		SCA	
E 16286	415.	0.71	0,279E	02	0.301E	02	0,393E	04	0.424E	04
E 16293	520.	0.13	0.661E	00	0.733E	00	0.509E	03	0.564E	03
E 16300	625.	0.15	0.104E	01	0.105E	01	0.695E	03	0.700E	03
E 16307	730+	0.15	0.100E	01	0.100E	01	0.668E	03	0.670E	03
E 16312	805.	0.21	0.117E	01	0.477E	01	0.559E	03	0.227E	04
E 16318	895.	0.12	0.185E	01	0.204E	01	0.154E	04	0.170E	04
E 16324	783+ 1075	0+14	0+104E	02	0.190E	02	0.743E	04	0+136E	05
E 16330	1145	0+09	0+206E	01	0.704E	01	0+280E	04	0.1005	00
E 16330	1255.	0.09	0.115E	01	0.277E	01	0.128E	04	0.307E	04
E 16348	1345.	0.78	0.211E	01	0.321E	01	0.271E	03	0.412E	03
E 16354	1435.	0.40	0.288E	01	0.122E	02	0.720E	03	0.304E	04
E 16360	1525.	0.66	0.341E	02	0.130E	03	0.517E	04	0.197E	05
E 16366	1615.	1.26	0.108E	03	0.154E	03	0.853E	04	0.122E	05
E 16368	1645.	1.80	0.108E	03	0.177E	03	0.601E	04	0,983E	04
E 16370	1665.	1.82	0.126E	03	0.207E	03	0.692E	04	0.114E	05
E 163/3	1/10+	2+86	0+1/0E	03	0+457E	03	0.5956	04	0,160E	05
E 103/0 E 14379	1795.	3+VI 1 07	0.077E	03	0+3/4E	03	0,088E	04	0+124E	03
E 16370	1840.	1.68	0.141F	03	0.251E	03	0.957E	04	0.149F	05
E 16382	1870.	1.46	0.101E	03	0.187E	03	0.691E	04	0.128E	05
E 16384	1900.	1.82	0.251E	03	0.301E	03	0.138E	05	0.165E	05
E 16387	1945.	1.59	0.140E	03	0.247E	03	0.883E	04	0.155E	05
E 16389	1975.	1.32	0.896E	02	0.971E	02	0.679E	04	0.736E	04
E 16396	2080.	0.97	0.364E	03	0.369E	03	0.376E	05	0.381E	05
E 16402	2170.	0+94	0.623E	03	0.634E	03	0.662E	05	0.675E	05
E 1/616	2245+	0+46	0.325E	03	0,401E	03	0,/06E	05	0+8/2E	05
E 17041 E 17494	202V+ 9705	T+TA	0.0145	04	0 070E	04	0.717E	00	0 7415	04
E 17020	2373+	1.03	0.4115	04	0.477E	04	0+314E	00	0.443E	06
E 17636	2545.	1.12	0.117E	04	0.127E	04	0.104E	06	0.114E	06
E 17641	2620.	1,35	0.237E	04	0.257E	04	0.175E	06	0.190E	06
E 17646	2695.	1.24	0.151E	04	0.158E	04	0.122E	06	0.127E	06
E 17651	2770.	1.19	0.717E	03	0.792E	03	0.603E	05	0.666E	05
E 17656	2845.	1.19	0.175E	04	0.180E	04	0.147E	06	0.151E	06
E 17038	2920.	1,22	0,486E	03	0.530E	03	0.398E	05	0.434E	05
E 17041	2700+	- U+7∠ + つつ	V+204E	04	0.4005	04	0+2046	00	0 74AE	00
E 17044 E 17047	3010+	1+22	0.141F	04	0.171E	04	0.185F	06	0.197E	06
E 17050	3100.	1.05	0,146E	04	0.156E	04	0.139E	03	0.149E	06
E 17052	3130.	0.98	0.652E	03	0.699E	03	0.665E	05	0.713E	05
E 17054	3160,	1.09	0.773E	03	0.816E	03	0.710E	05	0,749E	05
E 17057	3205.	0+94	0.323E	03	0.353E	03	0.344E	05	0.376E	05
E 17059	3235.	0,92	0.782E	03	0.825E	03	0.850E	05	0.897E	05
E 17062	3280.	0.93	0.192E	04	0.204E	04	0.206E	06	0.219E	06
E 17065	3325+	0.96	0.560E	02	0.611E	02	0.583E	04	0.636E	04
E 17067	3300+ 7705	0+91	0.140E	03	0+65/E	03	0.4505	00	0.722E	03
E 17037	3430.	0.88	0.851E	03	0.957E	03	0.967E	05	0.109E	06
E 17075	3475.	0.92	0.635E	03	0.720E	03	0.690E	05	0.783E	05
E 17077	3505.	1.03	0.300E	03	0.460E	03	0.291E	05	0.447E	05
E 17078	3520.	0,83	0.383E	03	0.517E	03	0.435E	05	0.587E	05
E 17079	3535.	1,39	0+837E	04	0,956E	04	0.602E	06	0.688E	06
E 17080	3550.	1.74	0.146E	05	0.168E	05	0.837E	06	0.965E	06
E 17081	3565.	2.01	0.564E	04	0.729E	04	0.280E	06	0+363E	V6 04
E 1/146	3380+ 7505	4+02	V+680E	04	V+83/E	04	0+1/0E	06	0+213E	05
E 1/14/ F 171AQ	3J7Ü+ XA10.	1.00	0.949E	04	V+047E 0.110E	05	V+242E 0.504E	04	0.582F	06
E 17149	3625.	2.01	0.544F	0.A	0.474F	04	0,281F	0.4	0.334F	06
E 17150	3640.	2,16	0.627E	04	0.734E	04	0.290E	06	0,340E	06

.....

•

PF	ROBE	TF	00	SE		SEA		SC		SCA	
Ε	17151	3655.	2.48	0.841E	04	0.960E	04	0.339E	06	0,387E	06
Ε	17154	3700.	1.56	0.431E	04	0.520E	04	0.277E	06	0.333E	06
Ε	17155	3715.	2,22	0.617E	04	0.770E	04	0.278E	06	0.347E	06
Ε	17157	3745.	2.39	0.461E	04	0.539E	04	0.193E	06	0.225E	06
Ε	17159	3775.	1.84	0.275E	04	0.337E	04	0.149E	06	0.183E	06
Е	17161	3805.	2,30	0.436E	04	0.511E	04	0.190E	06	0.222E	06
Ε	17163	3835.	0.94	0.166E	04	0.197E	04	0.177E	06	0.210E	06
Ε	17164	3850.	1.33	0.165E	04	0.195E	04	0.124E	06	0.146E	06
Ε	17165	3865.	1.27	0.213E	04	0.256E	04	0.168E	06	0.202E	06
Ε	17167	3895.	0.75	0.150E	04	0.175E	04	0,200E	06	0.233E	06
Ε	17168	3910.	0.73	0.844E	03	0.949E	03	0.116E	06	0.130E	06
Ε	17169	3925.	1,38	0.188E	04	0.217E	04	0.136E	06	0.157E	06
Е	17711	4000.	3.56	0.186E	04	0.197E	04	0.523E	05	0.552E	05
Ē	17715	4060.	6.76	0.160E	04	0.179E	04	0,236E	05	0.265E	05
Ε	17720	4135.	4.53	0.139E	04	0.148E	04	0.308E	05	0.327E	05
Ε	17725	4210.	2.04	0.527E	03	0.564E	03	0.258E	05	0.276E	05
Ε	17730	4285.	13.05	0.448E	04	0.460E	0.4	0.344E	05	0.353E	05
Ε	17748	4360+	8.25	0.155E	04	0.162E	04	0.188E	05	0.196E	05
Ε	17763	4366+	28.49	0.743E	05	0.789E	05	0.261E	06	0.277E	06
Ε	17753	4435.	39,00	0.131E	05	0.134E	05	0.337E	05	0.344E	05
Ε	17758	4510.	50.16	0.112E	05	0.115E	05	0.224E	05	0.229E	05
Ε	17762	4560.	19,79	0.524E	04	0.541E	04	0.265E	05	0.274E	05
E	17877A	3669.	0.00	0.181E	05	0.202E	05	0.0	000	0.0	000
Ε	17877B	3669.	0.00	0.204E	05	0.229E	05	0.0	000	0.0	000

÷

;

.

,

	PRO	BE	TF	ETHAN	1	(ETHA)	4)	PROP	AN	(PROP)	4N)	MC3		(MC3)
		 4704	 /15	0 700E					 ^-	0 477E	~~~	0 1575	~~~~	A 1195	
	E 1	6200 4797	520.	0.840E	02	0.109F	ňň	0.122E	03	0.158E	00	0.722E	02	0.979E	-01
	E 1	6300	625.	0.114E	03	0.171E	õõ	0.164E	03	0.246E	00	0.961E	02	0.144E	õõ
•	E 1	6307	730.	0.159E	03	0.238E	00	0.181E	03	0.271E	00	0.490E	02	0.736E	-01
- -	E 1	6312	805.	0.656E	02	0.138E	00	0.893E	02	0.187E	00	0.388E	02	0.816E	-01
	E 1	6318	895.	0.140E	03	0.167E	00	0.262E	03	0.315E	00	0.730E	02	0.876E	-01
···	Ε 1	6324	985.	0.112E	03	0.156E	00	0.178E	03	0.249E	00	0.715E	02	0.100E	00
- 	E 1	6330	1075.	0,139E	03	0.125E	00	0.808E	03	0.727E	00	0.241E	03	0.217E	00
_	Ε1	6336	1165.	0.160E	03	0.176E	00	0.253E	03	0,278E	00	0.115E	03	0.126E	00
	E 1.	6342	1255.	0.171E	03	0.154E	00	0.323E	03	0.291E	00	0.948E	02	0.854E	-01
H	E 1	6348	1345.	0.655E	02	0.511E	00	0.892E	02	0.696E	00	0.229E	02	0.179E	00
• 2	E 1	6354	1435.	0.805E	02	0.322E	00	0.182E	03	0.728E	00	0.671E	02	0.268E	00
	E 1	6360	1525.	0.194E	03	0.128E	01	0.856E	03	0.565E	01	0.668E	03	0.441E	01
	E 1	6366	1615.	0,153E	03	0.193E	01	0,115E	04	0.145E	02	0.152E	04	0.191E	02
		0308 /770	1040+	0+130E	03	0+233E	01	0+835E	03	0.130E	02	0.90/E	03	0.183E	02
	E 1	03/V 4777	1710	0 7495	03	0+868E	OT OT	0 104E	04	0+2/0E	02 ∧⊃	0.770E	03	0+1/9E	02
	F 1	6373 6376	1755.	0.445E	03	0.2005	02	0.1255	04	0.375E	02	0.845E	03	0.254E	07
1	F 1	4378	1785.	0.568E	03	0.109F	02	0.909F	03	0.175E	02	0.483E	03	0.131E	02
-	E 1	6380	1840.	0,785E	03	0.132E	02	0.104E	04	0.174E	02	0.110E	04	0.184E	02
17	Ē Ī	6382	1870.	0.113E	04	0.166E	02	0.110E	04	0.161E	02	0.108E	04	0.157E	02
Π,	E 1	6384	1900.	0.416E	04	0.758E	02	0.237E	04	0.431E	02	0.148E	04	0.269E	02
_	E 1	6387	1945.	0.169E	04	0.268E	02	0.173E	04	0.275E	02	0.977E	03	0.155E	02
1 (N	E 1	6389	1975.	0.117E	04	0.154E	02	0.158E	04	0.209E	02	0.879E	03	0.116E	02
	E 1	6396	2080.	0.693E	04	0.672E	02	0.120E	05	0.117E	03	0.701E	04	0.680E	02
	E 1	6402	2170.	0.433E	04	0.407E	02	0.112E	05	0.105E	03	0.126E	05	0.118E	03
	E 1	7616	2245.	0,588E	04	0.271E	02	0.413E	04	0.190E	02	0.457E	04	0.210E	02
	Ε 1	7621	2320.	0.428E	04	0.470E	02	0.985E	04	0,108E	03	0.623E	04	0.686E	02
— . .	E 1	7626	2395.	0.679E	04	0.462E	02	0+215E	05	0.146E	03	0.122E	05	0.829E	02
	E 1	7630	2455.	0+119E	05	0.123E	03	0.451E	05	0+465E	03	0.189E	05	0,194E	03
	E 1	7636	2545.	0.189E	02	0.212E	00	0.621E	04	0.696E	02	0.447E	04	0.500E	02
the second s	E 1	/641 7646	2620+	0+21/E	04	0+293E	02	0.925E	04	0+125E	03	0+56/E	04	0+/66E	02
- 1 -2	E 1	7040 7451	207J+ 7770	0.0155	04	0.2545	02	0 4/05	04	0+703E	02	0.4145	04	0.4975	02
i L	E 1	7651 7454	2945.	0.177E	Δ Δ	0.210E	02	0.949E	04	0.1015	02	0.721E	Δ <u>4</u>	0.8585	02
	E 1	7038	2920.	0.162E	04	0.198E	02	0.590E	04	0.720E	02	0.301E	04	0.368E	02
	E 1	7041	2965.	0.177E	05	0.163E	03	0.539E	05	0.496E	03	0.165E	05	0.152E	03
	Ε 1	7044	3010.	0.114E	04	0.140E	02	0.905E	04	0.110E	03	0.612E	04	0.747E	02
i	E 1	7047	3055.	0.616E	04	0.536E	02	0.220E	05	0.191É	03	0.925E	04	0.805E	02
	E 1	7050	3100.	0.127E	04	0.133E	02	0.610E	04	0.641E	02	0→474E	04	0.497E	02
	E 1	7052	3130.	0.381E	02	0,373E	00	0.889E	04	0.871E	02	0.448E	04	0,439E	02
a	E 1	7054	3160.	0.314E	04	0.342E	02	0.103E	05	0.112E	03	0.453E	04	0,493E	02
	E 1	7057	3205.	0.411E	04	0.386E	02	0.686E	04	0.645E	02	0.185E	04	0.174E	02
	E 1	7059	3235.	0.498E	04	0.458E	02	0.759E	04	0.699E	02	0.480E	04	0.442E	02
• •	E 1	7062	3280.	0.500E	04	0,465E	02	0.150E	05	0.139E	03	0.793E	04	0.738E	02
	E 1	/065	- 3320+ 7755	0.19/E	03	0+189E	01	0+549E	03	0+52/E	01	0.220E	03	0.212E	01
	E 1	7040	3300+ 7705	0+981E	03	0.4575		0+351E	07	0+320E	02	0.2016	04	0.238E	02
ه. کا	E 1	7007	3363+	0.5405	03	0 4945	02	0.1375			07		03	0.4475	07
	E 1	7075	3475.	0.4995	Δ Λ	0.642E	02	0.1255	05	0.115E	03	0.320E	$\Lambda \Delta$	0.294E	02
	Ε 1	7077	3505.	0.123E	04	0.126E	02	0.536E	04	0.552E	02	0.802E	03	0.826E	ŏī
	E 1	7078	3520.	0.390E	04	0.343E	02	0.109E	05	0.956E	02	0.120E	04	0.105E	02
	EI	7079	3535.	0.694E	04	0.965E	02	0.329E	05	0.458E	03	0.132E	05	0.184E	03
	Ē 1	7080	3550,	0.239E	05	0.416E	03	0.805E	05	0.140E	04	0.215E	05	0.374E	03
	E 1	7081	3565.	0.191E	05	0,384E	03	0,335E	05	0.674E	03	0+846E	04	0.170E	03
	E 1	7146	3580.	0.120E	05	0,481E	03	0.401E	05	0.161E	04	0.665E	04	0.237E	03
:	E 1	7147	3595.	0,134E	05	0.374E	03	0.555E	05	0.156E	04	0,104E	05	0.290E	03
	Ε1	7148	3610.	0.1 <u>65</u> E	05	0,316E	03	0,765E	05	0.147E	04	0.194E	05	0.372E	03
	E 1	7149	3625.	0.304E	05	0.611E	03	0.744E	05	0.150E	04	0.113E	05	0.228E	03
- Aller - Alle	E 1	/150	3640+	0.213E	05	0.459E	03	0.755E	05	0.163E	04	0.147E	05	0.317E	03

.

	FROBE	TF	ETHAN	(ETHAN)	FROFAN	(PROPAN)	MC3	(MC3)
	E 17151 E 17154	3655. 3700.	0.417E 05 0.252E 05	0.103E 04 0.393E 03	0.103E 06 0.801E 05	0.256E 04 0.125E 04	0.192E 05 0.132E 05	0.477E 03 0.207E 03
	E 17155 E 17157	3715. 3745.	0.238E 05 0.317E 05	0.529E 03 0.758E 03	0.317E 05 0.422E 05	0.703E 03 0.101E 04	0.148E 05 0.726E 04	0.329E 03 0.174E 03
5775	E 17159 E 17161	3775. 3805.	0.155E 05 0.175E 05	0.286E 03 0.402E 03	0.384E 05 0.411E 05	0.703E 03 0.945E 03	0.670E 04 0.750E 04	0.123E 03 0.173E 03
	E 17163 E 17164	3835.	0.140E 05 0.839E 04	0.131E 03 0.112E 03	0.369E 05 0.250E 05	0.347E 03 0.333E 03	0.732E 04 0.552E 04	0.688E 02 0.735E 02
	E 17165 E 17167 E 17168	3895.	0.112E 05 0.600E 04	0+142E 03 0+450E 02	0.118E 05	0+428E 03 0+200E 03	0.730E 04	0.898E 02 0.547E 02
y	E 17169 E 17711 E 17711	3925. 4000.	0.778E 04 0.150E 03	0.107E 03 0.533E 01	0.242E 05 0.946E 03	0.334E 03 0.337E 02	0.494E 04 0.616E 03	0.682E 02 0.219E 02
	E 17720 E 17725	4030.	0,132E 03 0,108E 04 0,434E 04	0.490E 02 0.885E 02	0.179E 04 0.363E 04	0.809E 02 0.740E 02	0.311E 03 0.820E 03	0.121E 02 0.141E 02 0.167E 02
	E 17730 E 17748	4285. 4360.	0.178E 05 0.124E 05	0.233E 04 0.102E 04	0.642E 04 0.323E 04	0.838E 03 0.266E 03	0.508E 03 0.170E 03	0.663E 02 0.140E 02
	E 17763 E 17753 E 17758	4366+ 4435+ 4510-	0.287E 05 0.226E 05	0.817E 04 0.881E 04	0.258E 05 0.718E 04	0.735E 04 0.280E 04	0.146E 05 0.336E 03	0.415E 04 0.131E 03
	E 17762 E 17877A E 17877B	4560+ 3669+ 3669+	0.156E 05 0.000 0.000	0.310E 04 0.190E 02 0.642E 01	0.192E 04 0.000 0.000	0.380E 03 0.331E 03 0.215E 03	0.114E 03 0.000 0.000	0.226E 02 0.361E 03 0.347E 03

_'

i 1

1.12

3- а

.

	PROBE	TF	N-C4	(N-C4)	2,20MC3	(2,2DMC3)	MC4	(MC4)
-	E 16286	415.	0.197E	02 0.140E 00	0.234E 01	0.166E-01	0.595E 0	2 0.422E 00
	E 16293	520.	0+416E ()2 0.541E-01	0.353E 02	0.459E-01	0.440E 0	2 0.571E-01
	E 16300	625.	0.842E	02 0.126E 00	0.894E 01	0.134E-01	0.143E 0	03 0.215E 00
·	E 16307	730+	0.832E	D2 0.125E 00	0.516E 01	0.774E-02	0.968E 0	02 0.145E 00
	E 16312	805.	0.228E	02 0+479E-01	0.613E 01	0.129E-01	0.181E 0	03 0.381E 00
2	E 16318	895.	0./82E	02 0.914E-01	0+302E 02	0.362E-01	0+430E 0	03 0.516E 00
	E 16324	985+	0.659E	0.922E 01	0.358E 02	0.502E-01	0.654E 0	02 0.913E-01
	E 16330	10/5+	0./95E ($02 0 \cdot / 16 \pm 01$	0.568E 02	0.511E-01	0.5/0E 0	03 0.513E 00
	E 16336	1100+	0,935E (02 0+105E 00	0.320E 02	0.352E-01	0.318E 0	03 0.350E 00
	E 10342	1200+	0,693E)2 0.828E-01	0+543E 02	0+489E-01	0+182E 0	03 0+163E 00
•	E 10348	1040+	0 10/E (12 0+830E-01	0+064E UI	0.7095-01	0+2/1E 0	2 0.212E 00
	E 16360	1525.	0.327E	0.215E 01	0.461E 01	0.304F-01	0.104F 0	4 0.489F 01
	E 16366	1615.	0.653E	03 0.823E 01	0.168E 02	0.212F 00	0.207E 0	4 0.261E 02
	E 16368	1645.	0.891E	03 0.160E 02	0.200E 01	0.359E-01	0.137E 0	4 0.247E 02
	E 16370	1665.	0.755E	03 0.137E 02	0.481E 01	0.875E-01	0.130E 0	4 0.236E 02
	E 16373	1710.	0.699E	03 0.200E 02	0.334E 01	0.956E-01	0.103E 0	4 0.293E 02
•••	E 16376	1755.	0.632E (03 0.190E 02	0.534E 01	0.161E 00	0.753E 0	3 0.227E 02
	E 16378	1785.	0.473E	03 0.909E 01	0,123E 02	0.236E 00	0.611E 0	3 0.117E 02
	E 16380	1840.	0.559E (03 0.940E 01	0.117E 02	0.196E 00	0.141E 0	4 0.237E 02
~	E 16382	1870.	0.475E (03 0.693E 01	0.150E 02	0.219E 00	0.100E 0	4 0.146E 02
	E 16384	1900.	0,886E ()3 0.161E 02	0.352E 02	0.640E 00	0.117E 0	4 0.213E 02
	E 16387	1945.	0.706E)3 0.112E 02	0.350E 02	0.557E 00	0.626E 0	3 0,995E 01
Υ.	E 16389	1975.	0.684E	03 0.903E 01	0.218E 02	0.288E 00	0.540E 0	3 0.713E 01
	E 15396	2080+	0.5635 0	04 0.54/E 02	0+149E 03	0.145E 01	0.2/3E 0	4 0.264E 02
	E 16402	21/0.	0.104E	05 0,982E 02	0.488E 03	0.459E 01	0.146E 0	5 0.137E 03
	E 1/616	2245+	0.630E	04 0,290E 02 NE 0 17/E 07	0.258E 03	0.119E 01	0,144E 0	5 0.664E 02
	E 17021	∠ಎ∠∨+ ೧೫೦೯	0 344E)U V+1/0E V3 NE A D40E A7	0+133E 03	0 + 14/E 01	0,1210 0	5 0+133E 03
1	E 17628	2070+	0.529E	05 0,545E 03	0.247E 03	0.2545 01	0.2985 0	5 0.307E 03
	E 17636	2545.	0.134F	05 0.151E 03	0.703E 02	0.788F 00	0.884F 0	4 0,990F 02
1	E 17641	2620.	0,137E (05 0,185E 03	0.117E 03	0.158E 01	0.123E 0	5 0.166E 03
	E 17646	2695.	0.786E	04 0.974E 02	0.917E 02	0.114E 01	0.761E 0	4 0.943E 02
	E 17651	2770.	0+493E	04 0.586E 02	0.136E 03	0.162E 01	0.642E 0	4 0.764E 02
•-	E 17656	2845.	0.108E	05 0.129E 03	0.197E 03	0.234E 01	0.106E 0	5 0.126E 03
	E 17038	2920,	0.488E	04 0.595E 02	0.243E 02	0.296E 00	0.346E 0	4 0.422E 02
	E 17041	2965.	0.427E	05 0.393E 03	0.165E 03	0.152E 01	0.187E 0	5 0.172E 03
•	E 17044	3010.	0.151E (05 0.184E 03	0.161E 03	0.197E 01	0.227E 0	5 0.276E 03
	E 17047	3055.	0.177E	0.154E 03	0.150E 03	0.131E 01	0.125E 0	5 0.109E 03
	E 17050	3100.	0+833E (04 0,875E 02	0,903E 02	0,948E 00	0.613E 0	4 0.644E 02
-	E 17052	3130.	0.819E	04 0.803E 02	0.973E 02	0.954E 00	0→511E 0	4 0.501E 02
	E 1/054	3160.	0+696E 0	04 0.759E 02	0+491E 02	0.535E 00	0.38/E 0	4 0.422E 02
ند	E 17057	2025	0+32VE (14 0+301E 02	0+22/6 02	0.10EE 01	0+130E 0	4 V+122E V2
-	E 17037	3230+	0.131E	24 0.678E 02 NE 0.122E 07	0.2075 03	0.1978 01	0.1195 0	4 V+887E V2
	E 17065	3325.	0.387F	0.371F 01	0.471F 01	0.452E-01	0.255E 0	3 0.245E 01
	E 17067	3355.	0.456E	0.415E 02	0.777E 02	0.707E 00	0.350E 0	4 0.319E 02
	E 17069	3385.	0.694E	03 0,645E 01	0,708E 01	0.658E-01	0.453E 0	3 0.421E 01
	E 17072	3430.	0.102E	05 0,898E 02	0.976E 02	0.859E 00	0.641E 0	4 0.564E 02
-	E 17075	3475.	0.482E	04 0.443E 02	0.576E 02	0.530E 00	0.239E 0	4 0.220E 02
	E 17077	3505,	0,452E	04 0.466E 02	0.477E 03	0.491E 01	0,116E 0	4 0.119E 02
	E 17078	3520.	0+495E (04 0.436E 02	0.392E 03	0.345E 01	0.988E 0	3 0.869E 01
	E 17079	3535.	0.815E (05 0.113E 04	0.192E 02	0.268E 00	0.461E 0	5 0.640E 03
	E 17080	3550,	0.118E (06 0.206E 04	0.675E 01	0.118E 00	0.619E 0	5 0.108E 04
	E 17081	3565.	0.486E (05 0.976E 03	0.457E 03	0.919E 01	0.181E 0	5 0.364E 03
••••	E 17146	3580.	0.338E (05 0.136E 04	0,916E 01	0.348E 00	0.933E 0	4 0.375E 03
	E 17147	3595.	0.497E	0.139E 04	0.150E 02	0+419E 00	0.144E 0	5 0.404E 03
	E 17148	3010+	0,703E ($V \bullet 185E 04$	V+606E 02	V+116E 01	0+321E 0	0 V + 61/E 03
	E 17150	3020+ 72740	0 2018E (23 V+1V4E 04	0+184E 02	0+367E 00	0.130E 0	\bigcirc V+ZOIE V3 E A 744E A7
	r $r r r r r r r r r r r r r r r r r r$	004V+	A+OATE (JU V+IUVE V4	V+4/0E V2	A+TA9E AT	ATONE 0	0 0+040E V3

,

	PROBE		TF	N-C4		(N-C4))	2,20MC	3	(2,2DM	3)	MC4	-	(MC4	1)
	E 1719 E 1719	51 54	3655. 3700.	0.649E 0.582E	05 05	0.161E 0.908E	04 03	0.894E 0.225E	02 02	0.222E 0.351E	01 00	0.175E 0.127E	05 05	0.434E 0.199E	03
	E 171	55	3715.	0.649E	05	0.144E	04	0.293E	02	0.651E	00	0.184E	05	0.409E	03
	E 171	57	3745.	0.313E	05	0.749E	03	0.200E	02	0.478E	00	0.864E	04	0.207E	03
	E 171	59	3775.	0.302E	05	0.555E	03	0.148E	02	0.271E	00	0.728E	04	0.134E	03
	E 171	61	3805.	0+336E	05	0,773E	03	0.249E	02	0.572E	00	0,985E	04	0.227E	03
	E 171	63	3835.	0.343E	05	0.322E	03	0.203E	02	0.190E	00	0.975E	04	0.916E	02
	E 171	64	3850.	0+249E	05	0.331E	03	0.222E	02	0.295E	00	0.728E	04	0.968E	02
	E 1/1	60 	3800+	0.330E	05	0.4195	03	0.1/0E	02	0.216E	00	0.980E	04	0.124E	03
····	E 171	67	3895+	0+367E	05	0.275E	03	0.238E	02	0+178E	00	0.127E	05	0.950E	02
	E 1/1	68 (9	3910.	0.169E	05	0.123E	03	0+185E	02	0.135E	00	0.6/5E	04	0.492E	02
	E 1/1	67 · ·	3720+	0+228E	05	0.310E	03	0.15/E	02	0.216E	00	0+/83E	04	0.108E	03
~~	E 177	11	4000+	0.319E	04	0,113E	03	0+382E	01	0.136E	00	0.234E	04	0.835E	02
	E 177	15	4060+	0.945E	03	0+639E	02	0+404E	02	0.273E	01	0.672E	03	0+454E	02
i	E 1//	20	4135+	0.158E	04	0./16E	02	0.258E	01	0.11/E	00	0+/35E	03	0.333E	02
	E 1772	25	4210+	0+202E	04	0.412E	02	0+518E	01	0.106E	00	0.895E	03	0.183E	02
	E 1//.	30	4285+	0.206E	04	0+269E	03	0.146E	01	0.191E	00	0.486E	03	0.634E	02
	E 1774	48	4350+	0./62E	03	0.629E	02	0.595E	01	0+491E	00	0.161E	03	0.133E	02
	E 1//(53 57	4300+	0.2/4E	00	0+/80E	04	0.85/E	02	0+244E	02	0.195E	05	0.556E	04
•••	E 1773	03 50	4430+	0+1606	04	0+544E	03	0+387E	00	0+229E	00	0+222E	03	0.868E	02
	E 1//-	10 27	4540	0.5575	03	0+3/3E	03	0.302E	00 A4	0+1316	00	0.11/2	03	0.170E	02
-	E 170	つぶ フフヘ	7220	0+00/m 0 /	100	$0 + 1 \pm 0 \pm 0$	03	V+443E	7 7 7	0+03/E	00	V+ 241E	03	0 1475	04
	E 178	77B	3669+	0.0	>00	0.161E	04	0.0	000	0.505E	01	0.0	000	0.159E	04

٠

.

.

PROBE	TF	N-C5	(N-C5)	CYC5	(CYC5)	2-MC5	(2-MC5)
E 16286	415.	0,116E 0	0,822E 00	0.000	0.000	0.155E 02	0.110E 00
E 16293	520.	0.581E 02	0.755E-01	0.000	0.000	0.000	0.000
·E 16300	625.	0.708E 02	2 0.106E 00	0.000	0.000	0.745E 00	0.112E-02
E 16307	730.	0.600E 03	2 0.900E-01	0.000	0.000	0.645E 00	0.968E-03
E 16312	805.	0.326E 02	2 0,684E-01	0.000	0.000	0.273E 02	0.573E-01
E 16318	895.	0.121E 03	3 0.145E 00	0.000	0.000	0.695E 02	0.833E-01
E 16324	985.	0.773E 01	2 0.109E 00	0.620E 01	0.868E-02	0.234E 02	0.327E-01
E 16330	1075.	0.159E 03	5 0.144E 00	0.000	0.000	0.259E 03	0.233E 00
E 16336	1165.	0.151E 00	3 0.166E 00	0.392E 01	0.431E-02	0.104E 03	0.115E 00
E 16342	1255.	0.129E 03	3 0.116E 00	0.529E 01	0.476E-02	0.385E 02	0.347E-01
E 16348	1345.	0.106E 02	2 0.830E-01	0,000	0.000	0.628E 01	0,490E-01
E 16354	1435+	0.456E 01	2 0.182E 00	0,130E 01	0,519E-02	0.440E 02	0.176E 00
· E 14744	1243+	0+2/4E 03	0 + 181E 01	0+312E 02	0+2086 00	0+318E 03	0.210E 01
· E 10300	1610+	0.794E 03	5 0.533E 01	0.070E 02	0.1475 01	0,40/E 03	0.4445 01
E 16370	1645	0.290E 03	0.527E 01	0.940E 02	0,175E 01	0.253E 03	0.460F 01
E 16373	1710.	0.329E 03	0.940F 01	0.837E 02	0.239E 01	0.298E 03	0.853E 01
E 16376	1755.	0.301E 03	0.905E 01	0.539E 02	0.162E 01	0.242E 03	0.727E 01
E 16378	1785.	0.307E 03	0.589E 01	0.446E 02	0.857E 00	0.209E 03	0.400E 01
E 16380	1840.	0.410E 03	0.689E 01	0.877E 02	0.147E 01	0.439E 03	0.737E 01
E 16382	1870.	0.279E 03	5 0.407E 01	0.545E 02	0.796E 00	0.196E 03	0.287E 01
E 16384	1900.	0.582E 03	5 0.106E 02	0.879E 02	0.160E 01	0.418E 03	0.761E 01
E 16387	1945.	0.568E 03	0.903E 01	0.470E 02	0.747E 00	0.323E 03	0.513E 01
E 16389	1975.	0.364E 03	0.481E 01	0.380E 02	0.502E 00	0.194E 03	0.256E 01
E 16396	2080.	0.991E 03	5 0.961E 01	0,836E 02	0.811E 00	0.271E 03	0.263E 01
E 16402	2170.	0.389E 04	0.366E 02	0.224E 03	0.211E 01	0.137E 04	0.128E 02
E 17616	2245.	0.649E 04	0.298E 02	0.595E 03	0.274E 01	0.360E 04	0.166E 02
r E 1/621	2320+	0.143E 05	0.157E 03	0.119E 04	0.131E 02	0.410E 04	0.451E 02
E 1/626	2373+	0+414E 00	0.0.282E 03	0.249E 04	0+169E 02	0.18/E 05	0.12/E 03
E 17630 F 17636	2400+	0,376E 03	5 0.408E 03 5 0.124E 03	0.111E 04	0.125E 02	0.4755 04	0.532E 02
E 17630	2670.	0.141E 00	5 0.217E 03	0.119F 04	0.140E 02	0.103E 05	0.139E 03
E 17644	26201	0.8095 04	0.100F 03	0.487E 03	0.852E 01	0.403E 04	0.748E 02
E 17651	2770.	0,529E 04	0.630E 02	0.416E 03	0.495E 01	0.303E 04	0.361E 02
E 17656	2845.	0,115E 05	0.137E 03	0.771E 03	0.918E 01	0.955E 04	0.114E 03
E 17038	2920.	0.346E 04	0.422E 02	0.350E 03	0.426E 01	0.177E 04	0.215E 02
E 17041	2965.	0.232E 05	5 0.213E 03	0.228E 04	0.210E 02	0.783E 04	0.720E 02
E 17044	3010.	0.375E 05	0.457E 03	0.220E 04	0.269E 02	0.225E 05	0.275E 03
E 17047	3055.	0.150E 05	70.130E 03	0.127E 04	0.110E 02	0.907E 04	0.789E 02
■ ~E 17050	3100.	0.776E 04	0.815E 02	0,586E 03	0.615E 01	0.766E 04	0.804E 02
E 17052	3130.	0.577E 04	0.565E 02	0.417E 03	0.409E 01	0.319E 04	0.312E 02
E 17054	3160+	0+463E 04	0,505E 02	0.336E 03	0.366E 01	0.313E 04	0.341E 02
E 17057	3203+	0.207E 04	H V+196E V2	0+118E 03		0+102E 04	0.70E 01
E 17037	3230+	0.157E 0*	0.144E 07	0.1075 04	0.9975 01	0.1225 05	0.437E 02
E 17065	3325.	0.413E 03	0.397F 01	0,198F 02	0.190F 00	0.307E 03	0.295E 01
E 17067	3355.	0.460F 04	0.419E 02	0.273E 03	0.249E 01	0.378E 04	0.344E 02
-E 17069	3385.	0.626E 03	0.583E 01	0.301E 02	0.280E 00	0.683E 03	0.635E 01
E 17072	3430.	0.800E 04	0.704E 02	0.428E 03	0.377E 01	0.461E 04	0.405E 02
E 17075	3475.	0.296E 04	0.272E 02	0.166E 03	0.153E 01	0.251E 04	0.231E 02
E 17077	3505.	0,300E 04	0.310E 02	0.278E 03	0.287E 01	0.761E 03	0.784E 01
E 17078	3520.	0.261E 04	0,230E 02	0.169E 03	0.149E 01	0.886E 03	0.779E 01
E 17079	3535.	0.910E 05	0.126E 04	0.117E 05	0.163E 03	0.332E 05	0.461E 03
E 17080	3550.	0.110E 08	0.192E 04	0.147E 05	0.257E 03	0.417E 05	0.725E 03
E 17081	3565,	0.331E 05	0.666E 03	0.648E 04	0.130E 03	0.104E 05	0.208E 03
E 17146	3580.	0.171E 05	0.686E 03	0.310E 04	0.124E 03	0.397E 04	0.159E 03
E 17147	3595.	0.256E 05	0,716E 03	0.459E 04	0.129E 03	0.592E 04	0.166E 03
E 1/148	3610+	0.632E 05	0.0.121E 04	U+814E 04	V+156E 03	0+144E 05	U+2//E 03
⊑ 1/147	ఎఐజఎ+	V+430E VC	1 V+4/4E V3	U+401E 04	V+8V/E 02	V.JUJE V4	V+II/E Vá

.

PROBE	TF	N-C5	(N-C5)	CYCS	; (C)	(C5)	2-MC5	(2-MC5)
E 17151	3655.	0.227E 05	0.563E 0	03 0.389E	04 0.965	E 02	0.561E 04	0.139E 03
E 17154	3700.	0.229E 05	0.358E 0	03 0.410E	04 0.639	E 02	0.436E 04	0.681E 02
E 17155	3715.	0.312E 05	0.692E 0	03 0.585E	04 0.130	E 03	0.726E 04	0.161E 03
E 17157	3745.	0.152E 05	0.362E 0	03 0.254E	04 0.608	E 02	0.370E 04	0.884E 02
E 17159	3775.	0.128E 05	0.235E 0	03 0.229E	04 0.422	E 02	0.266E 04	0.490E 02
E 17161	3805.	0.176E 05	0.406E 0	03 0.255E	04 0.587	'E 02	0.446E 04	0.103E 03
E 17163	3835.	0.180E 05	0.169E C	03 0.259E	04 0.244	E 02	0.419E 04	0.394E 02
E 17164	3850.	0.131E 05	0.175E C	03 0,179E	04 0.238	E 02	0.289E 04	0.384E 02
E 17165	3865.	0.174E 05	0.221E C	03 0,271E	04 0.344	E 02	0.426E 04	0.541E 02
E 17167	3895.	0.234E 05	0.176E C	03 0.321E	04 0.240	E 02	0.673E 04	0.504E 02
E 17168	3910.	0.137E 05	0.997E 0	02 0.157E	04 0.115	E 02	0.453E 04	0.330E 02
E 17169	3925,	0.136E 05	0.187E C	03 0.184E	04 0.253	E 02	0.428E 04	0.590E 02
E 17711	4000+	0.486E 04	0.173E 0	03 0.386E	03 0.137	'E 02	0.214E 04	0.761E 02
E 17715	4060.	0.174E 04	0.118E 0	03 0.220E	03 0.149	E 02	0.745E 03	0.504E 02
E 17720	4135.	0.159E 04	0.721E 0	02 0.195E	03 0.884	E 01	0.853E 03	0.386E 02
E 17725	4210.	0.106E 04	0,217E 0	02 0.132E	03 0.270	E 01	0.700E 03	0.143E 02
E 17730	4285.	0.716E 03	0.934E 0	02 0.114E	03 0.149	E 02	0.257E 03	0.335E 02
E 17748	4360+	0.244E 03	0,201E 0	02 0.257E	02 0.212	E 01	0.100E 03	0.825E 01
E 17763	4366.	0.207E 05	0.589E 0	04 0.164E	04 0.466	E 03	0.949E 04	0.270E 04
E 17753	4435.	0.396E 03	0.154E 0	03 0.217E	02 0+847	E 01	0.120E 03	0.469E 02
E 17758	4510.	0.214E 03	0.108E 0	03 0.115E	02 0.575	E 01	0.210E 03	0.105E 03
E 17762	4560.	0.324E 03	0.641E 0	02 0.193E	02 0.383	E 01	0.467E 03	0.924E 02
E 17877A	3669.	0.000	0.237E 0	04 0.0	00 0.273	E 03	0.000	0.124E 04
E 17877B	3669.	0.000	0.262E 0	04 0.0	00 0.302	E 03	0.000	0.139E 04

الارام محمد المحمد
+

Table VI (continued)

÷

-

.

· ·

· · ·

	PROBE	TF	N-C6		(N-C6)	MCYCS	(MCYC5)	BENZOL	(BENZOL)
,	E 16286	415.	0.761E	02	0.540E 00	0,00	0.000	0,000	0.000
	E 16293	520.	0.471E	02	0.612E-01	0.000		0.549E 02	0.714E-01
	E 16300 E 16307	- 625+ 730+	0.329E	00	0.112E-02 0.494E-01	0+224E 0	1 0+335E-02	0.129F 01	0.671E-02
	E 16312	805.	0.242E	02	0.509E-01	0.169E 0	2 0.356E-01	0.283E 02	0.595E-01
	E 16318	895.	0.704E	02	0.845E-01	0.278E 0	2 0.333E-01	0.320E 02	0.384E-01
	E 16324	985.	0.671E	02	0.939E-01	0.429E 02	2 0.600E-01	0.646E 02	0.904E-01
.	E 16330 E 16336	1145.	0.105E	03	0.115E 00	0.809E 0	2 0.377E-01 2 0.889E-01	0.719E 02	0.460E-01
	E 16342	1255.	0.618E	02	0.556E-01	0.350E 0	2 0.315E-01	0.541E 02	0.487E-01
5 A.	E 16348	1345.	0.708E	01	0.553E-01	0+479E 0	1 0.373E-01	0.135E 02	0.105E 00
	E 16354	1435.	0.254E	02	0.101E 00	0,359E 0	2 0.144E 00 3 0 123E 01	0.332E 02	0.133E 00
	E 16366	1615.	0.254E	03	0.319E 01	0.345E 0	3 0.435E 01	0.127E 03	0.160E 01
177	E 16368	1645.	0.167E	03	0.301E 01	0.245E 0	3 0.440E 01	0.376E 03	0.676E 01
3	E 16370	1665.	0.154E	03	0.280E 01	0.271E 0	3 0.493E 01	0.724E 03	0.132E 02
.	E 16373	1710.	0.185E	03	0.530E 01	0.256E 0	3 0.732E 01	0.943E 03	0.270E 02
	E 16378	1785.	0+134E	03	0.286E 01	0.242E 0	3 0.464E 01	0.104E 04	0.200E 02
۰.	E 16380	1840.	0.225E	03	0.378E 01	0.956E 0	3 0.151E 02	0.155E 04	0.261E 02
1	E 16382	1870.	0.110E	03	0.161E 01	0.531E 0	3 0.776E 01	0.127E 04	0.186E 02
	E 16384	1900+	0.240E	03	0.437E 01	0.675E 0	3 0.123E 02	0.214E 04	0.390E 02
_	E 16387	1975.	0.147E	03	0.194E 01	0.365E 0	3 0.840E 01 3 0.482E 01	0.569E 03	0.751E 01
	E 16396	2080,	0.194E	03	0.188E 01	0.460E 0	3 0.447E 01	0.511E 03	0.496E 01
	E 16402	2170,	0,992E	03	0.933E 01	0.854E 03	3 0.802E 01	0.172E 03	0.162E 01
	E 17616	2245+	0.331E	04	0.152E 02	0.228E 04	4 0.105E 02 4 0.480E 02	0.197E 04	0.241E 01 0.217E 02
	E 17626	2395.	0.280E	05	0.190E 03	0.141E 05	5 0.957E 02	0.321E 04	0.218E 02
	E 17630	2455.	0.235E	05	0,242E 03	0.185E 05	5 0.190E 03	0.108E 05	0.111E 03
57	E 17636	2545.	0.641E	04	0.718E 02	0.646E 04	4 0,724E 02	0.139E 04	0.155E 02
	E 1/641 E 17646	2620+	0.153E	05	0.109E 03	0.438E 04	4 0,122E 03 4 0.791E 02	0.120E 04	0.132E 02
	E 17651	2770.	0.305E	04	0.363E 02	0.333E 04	4 0.396E 02	0,377E 03	0.449E 01
	E 17656	2845.	0.138E	05	0.164E 03	0.569E 04	4 0.677E 02	0.522E 03	0.621E 01
	E 17038	2920+	0,191E	04	0.233E 02	0.197E 04	4 0.241E 02	0.564E 03	0,688E 01
	E 17041	3010.	0.376E	05	0.459E 03	0.205E 05	5 0.250E 03	0,298E 04	0.364E 02
	E 17047	3055.	0,118E	0 5	0.103E 03	0.945E 04	4 0.822E 02	0.226E 04	0.196E 02
	E 17050	3100.	0.129E	05	0.136E 03	0.598E 04	4 0.627E 02	0.162E 04	0.170E 02
	E 17052 E 17054	3130+	0.400E	04	0.392E 02	0.241E 04	4 0.236E 02 4 0.228E 02	0-992E 03	0.9/2E 01
	E 17057	3205.	0.179E	04	0.168E 02	0.201E 04	4 0.189E 02	0.103E 04	0,972E 01
	E 17059	3235.	0.646E	04	0.594E 02	0.292E 04	4 0.268E 02	0.116E 04	0.107E 02
	E 17062	3280.	0,174E	05	0.162E 03	0.980E 04	4 0.911E 02	0.215E 04	0,200E 02
1	E 17065	3320+ 7755	0.570E	03	0.490E 02	0.247E 0.	1 0.220E 01	0.2125 04	0.197E 02
_; •	E 17069	3385.	0.140E	04	0.130E 02	0.363E 03	3 0.337E 01	0,150E 03	0.140E 01
	E 17072	3430,	0.673E	04	0.592E 02	0,296E 04	4 0.261E 02	0.240E 04	0.211E 02
	E 17075	3475.	0.350E	04	0,322E 02	0.123E 04	4 0.113E 02	0.646E 04	0.595E 02
	E 17078	3520.	0,207E	04	0.182E 02	0,561E 0	3 0,494E 01	0,989E 04	0.870E 02
	E 17079	3535.	0.542E	05	0.754E 03	0.390E 05	5 0.542E 03	0.321E 05	0.446E 03
-	E 17080	3550.	0.655E	05	0.114E 04	0.488E 05	5 0.850E 03	0.542E 05	0.942E 03
	E 17081 F 17144	3580.	0.ASSE	04	0.262E 03	0.487F 04	9 0+277E 03 4 0.276E 03	0.212E 05	0.851F 03
	E 17147	3595.	0,955E	04	0.267E 03	0.993E 04	4 0.278E 03	0.292E 05	0.816E 03
	E 17148	3610.	0,283E	05	0.543E 03	0.227E 05	5 0.437E 03	0.344E 05	0.661E 03
	E 17149	3625,	0.100E	05	0.202E 03	0.901E 04	4 0.181E 03	0.285E 05	0.573E 03
	E 1/10V	384V+	く・イントに	V4	APTADE 03	A+ATAF A	+ V+17/E V3	V+ZOOL VO	V+J/4E V3

and a start of the s Start of the start of

Ţ

,

								 		·	.* •	
PROBE	TF	N-C6	(N-C6))	MCYC	5	(MCYC	5)	BENZOL	-	(BENZ	DL)
 E 17151 E 17154	3655. 3700.	0.676E 04 0.813E 04	0.168E	03	0.788E 0.800E	04	0.195E 0.125E	03	0.259E 0.295E	05 05	0.643E 0.461E	03
E 17157 E 17157 E 17159	3745.	0.667E 04 0.472E 04	0.160E	03	0.616E 0.471E	03 04 04	0.147E 0.866E	03 02	0.144E 0.155E	03 05 05	0.345E 0.285E	03
E 17161 E 17163 E 17164	3805. 3835. 3850.	0.822E 04 0.808E 04 0.592E 04	0.189E 0.759E 0.788E	03 02 02	0.632E 0.614E 0.423E	04 04 04	0.145E 0.578E 0.563E	03 02 02	0.131E 0.136E 0.879E	05 05 04	0.302E 0.128E 0.117E	03 03 03
E 17165 E 17167 E 17168	3865. 3895. 3910.	0.737E 04 0.122E 05 0.861E 04	0.936E 0.914E	02 02 02	0.649E 0.888E	04 04	0.824E 0.666E	02 02 02	0.136E 0.115E 0.423E	05 05 04	0.173E 0.866E	03 02 02
E 17169 E 17711	3925. 4000.	0.695E 04 0.500E 04	0.959E	02 03	0.522E 0.252E	04 04	0.720E 0.897E	02 02 02	0.805E 0.247E	04 03	0.111E 0.880E	03
E 17720 E 17725	4080, 4135, 4210,	0.231E 02 0.232E 04 0.126E 04	0.138E 0.105E 0.257E	03 03 02	0.118E 0.140E 0.790E	04 04 03	0.785E 0.634E 0.161E	02 02 02	0.709E 0.338E 0.269E	03 03 03	0.4/9E 0.153E 0.549E	02 02 01
E 17730 E 17748 E 17763	4285. 4360. 4366.	0.506E 03 0.156E 03 0.136E 05	5 0.660E 5 0.129E 5 0.387E	02 02 04	0.461E 0.127E 0.102E	03 03 05	0.602E 0.104E 0.290E	02 02 04	0.220E 0.350E 0.185E	03 03 04	0.287E 0.289E 0.526E	02 02 03
 E 17753 E 17758 E 17762	4435. 4510. 4560.	0.164E 03 0.169E 03 0.625E 03	5 0.641E 5 0.849E 5 0.124E	02 02 03	0.722E 0.796E 0.289E	02 02 03	0.282E 0.399E 0.572E	02 02 02	0.238E 0.223E 0.276E	03 03 03	0.927E 0.112E 0.545E	02 03 02
E 17877A E 17877B	3669. 3669.	0.000	0.207E 0.234E	04 04	0.0	000 000	0.125E 0.142E	04 04	0.0	000	0.662E 0.750E	03 03

.

..

.

-

Table VI (continued)

l....

1....

PROBE TF	CYC6	(CYC6)	2-MC6	(2-MC6)	N-C7	(N-C7)
E 16286 415.	0.317E 02	0.225E 00	0.171E 03	0.121E 01	0.106E 04	0.752E 01
E 16293 520.	0.000	0.000	0.000	0.000	0.392E 01	0.510E-02
E 16300 625.	0.000	0.000	0.000	0.000	0.298E 01	0.447E-02
E 16307 730.	0.000	0.000	0,000	0+000	0.000	0.000
E 16312 805.	0.000	0.000	0.000	0.000	0.392E 01	0.823E-02
E 16318 895.	0.000	0.000	0.000	0.000	0.767E 02	0.921E-01
E 16324 985+	0,000	0.000	0.000	0.000	0.132E 02	0.185E-01
E 16330 10/5.	0+234E 02	0.210E-01	0.102E 03	0.918E-01	0.108E 02	0.968E-02
E 16336 1160+	0+2646 02	0+290E-01	0+182E 02	0.2006-01	0+108E 03	0.119E 00
	0,000	0.000	0 1505 A1	0.1045-01	0+02/E 02 0 1155 00	
E 16346 1040+	0.000	0,000	0.000	0.000	0.193E 01	0.7735-02
E 16364 1935.	0.517E 02	0.341E 00	0.2555 02	0.168F 00	0.125E 03	0.825E 00
E 16366 1615.	0.396E 02	0.499E 00	0.296E 02	0.373E 00	0.209E 03	0.263E 01
E 16368 1645.	0.386E 02	0.694E 00	0.162E 02	0.291E 00	0.161E 03	0.291E 01
- E 16370 1665.	0.331E 02	0.603E 00	0.132E 02	0.240E 00	0.112E 03	0.204E 01
E 16373 1710.	0.403E 02	0.115E 01	0.173E 02	0.495E 00	0.160E 03	0.457E 01
E 16376 1755.	0.305E 02	0.918E 00	0.121E 02	0.365E 00	0.123E 03	0.369E 01
E 16378 1785.	0.317E 02	0.609E 00	0.127E 02	0.244E 00	0.110E 03	0.210E 01
E 16380 1840.	0.652E 02	0.110E 01	0.316E 02	0.532E 00	0.190E 03	0.320E 01
E 16382 1870.	0.337E 02	0.493E 00	0.108E 02	0.157E 00	0.679E 02	0.992E 00
E 16384 1900.	0.751E 02	0.137E 01	0.269E 02	0.490E 00	0.142E 03	0.259E 01
E 16387 1945.	0.377E 02	0.600E 00	0.244E 02	0.388E 00	0.160E 03	0.254E 01
E 16389 19/5.	0.254E 02	0.336E 00	0.1/6E 02	0.232E 00	0.951E 02	0.126E 01
E 18378 2080.	0+661E 02	0+641E 00	0.808E 01	0+/82E-01	0.806E 02	0.782E 00
E 16402 21/0+	0,00E 03	0.51/E 01	0+166E 03	0.156E 01	0.210E 03	0.198E 01
E 17610 2240+	0.4505 04	0 717E 07	0,8046 03	0+370E 01	0,900E 03	0.1075 07
E 17404 0305				0 7575 02	0 1775 05	
E 17626 2373+	0.270F 05	0.278E 03	0.458F 04	0.478F 02	0.198E 05	0.204F 03
E 17636 2545.	0.682E 04	0.764E 02	0.185E 04	0.207E 02	0.539E 04	0.604E 02
E 17641 2620.	0.100E 05	0.135E 03	0.454E 04	0.614E 02	0.141E 05	0.190E 03
- E 17646 2695.	0.541E 04	0.671E 02	0.350E 04	0.434E 02	0,125E 05	0.155E 03
E 17651 2770,	0.254E 04	0.302E 02	0.879E 03	0.105E 02	0.277E 04	0.329E 02
E 17656 2845.	0.590E 04	0.702E 02	0.442E 04	0.525E 02	0.136E 05	0.162E 03
E 17038 2920+	0.167E 04	0.203E 02	0.466E 03	0.569E 01	0.143E 04	0.175E 02
E 17041 2965.	0.132E 05	0.121E 03	0.200E 04	0.184E 02	0.529E 04	0.487E 02
E 17044 3010.	0.307E 05	0.375E 03	0.631E 04	0.770E 02	0.190E 05	0,232E 03
E 17047 3055.	0.129E 05	0.112E 03	0.295E 04	0.256E 02	0.794E 04	0.690E 02
E 1/050 3100,	0.824E 04	0.865E 02	0.464E 04	0.48/E 02	0.14/E 05	0.155E 03
E 17052 3130.	0.3/1E 04	0.364E 02	0.122E 04	0.120E 02	0+30/E 04	0.301E 02
E 17054 3160+	0+304E 04	0+331E 02	0+16/E 04	0.182E 02	0+457E 04	0+311E 02
E 17037 3203+	0 707E 04	0+700E VI	0+0446 03	0,80JE 01		0+200E 02
E 17047 3233+	0.1775 05	0.141E 07	0.4785 04	0+13/E 02 0.445E 02	0.1775 05	0.124E 07
E 17065 3325	0.334E 03	0.320F 01	0.156E 03	0.150F 01	0.474F 03	0.455F 01
E 17067 3355	0.412F 04	0.375E 02	0.188F 04	0.172E 02	0.483F 04	0.440F 02
E 17069 3385.	0.527E 03	0.490E 01	0.678E 03	0.630F 01	0.241F 04	0.224F 02
E 17072 3430.	0,433E 04	0.381E 02	0.196E 04	0.173E 02	0.568E 04	0.500E 02
E 17075 3475.	0.172E 04	0.158E 02	0.222E 04	0.204E 02	0.645E 04	0.593E 02
E 17077 3505.	0.127E 04	0.131E 02	0.530E 03	0.546E 01	0.195E 04	0.201E 02
E 17078 3520.	0.801E 03	0.705E 01	0.120E 04	0.105E 02	0+466E 04	0.410E 02
E 17079 3535.	0.372E 05	0,517E 03	0.967E 04	0.134E 03	0.309E 05	0.430E 03
E 17080 3550,	0.503E 05	0.875E 03	0.125E 05	0.217E 03	0.391E 05	0.680E 03
E 17081 3565.	0.180E 05	0.362E 03	0.331E 04	0.665E 02	0.105E 05	0.210E 03
E 17146 3580.	0.925E 04	0.372E 03	0.102E 04	0.408E 02	0.342E 04	0.137E 03
E 17147 3595.	0.138E 05	0.387E 03	0.132E 04	0.369E 02	0.421E 04	0.118E 03
E 1/148 3610.	0.335E 05	0.643E 03	0+433E 04	0.831E 02	0.1/9E 05	0.344E 03
E 1/149 3625,	0,129E 05	0.259E 03	0.168E 04	0.337E 02	0.590E 04	0+119E 03
E (7130 - 3640+	V+104E V5	V+304E V3	V+123E 04	V+207E 02	0+447E 04	0+7/0E 02

.

I

	PROBE	TF	CYC6	CYC6 (CYC6)		2-MC6		(2-MC	5)	N-C7	(N-C)
.	E 17151	3655.	0.165E 05	0.408E	03	0.114E	04	0.282E	02	0.338E	04	0.837E	02
5	E 17154	3700.	0.123E 05	0.191E (03	0.116E	04	0.180E	02	0.468E	04	0.730E	02
	E 17155	3715.	0.175E 05	0.388E (03	0.172E	04	0.382E	02	0.596E	04	0.132E	03
R	E 17157	3745.	0.100E 05	0.240E	03	0.114E	04	0.272E	02	0.463E	.04	0.111E	03
	E 17159	3775.	0.719E 04	0.132E (03	0.708E	03	0.130E	02	0.276E	04	0.508E	02
- .	E 17161	3805.	0.103E 05	0.236E (03	0.138E	04	0.317E	02	0.569E	04	0.131E	03
	E 17163	3835.	0.938E 04	0.882E (02	0.117E	04	0.110E	02	0.526E	04	0.494E	02
	E 17164	3850.	0.691E 04	0.919E	02	0.719E	03	0.957E	01	0.363E	04	0.483E	02
	E 17165	3865.	0.961E 04	0,122E (03	0.117E	04	0.149E	02	0.438E	04	0.557E	02
	E 17167	3895.	0.130E 05	0.975E (02	0.208E	04	0.156E	02	0.843E	04	0.632E	02
	E 17168	3910.	0.750E 04	0.548E (02	0.174E	04	0.127E	02	0.719E	04	0.525E	02
	E 17169	3925.	0.780E 04	0.108E	03	0.149E	04	0.206E	02	0.494E	04	0.681E	02
÷.	E 17711	4000.	0.386E 04	0.137E (03	0.124E	04	0.441E	02	0.583E	04	0.207E	03
.	E 17715	4060.	0.161E 04	0.109E	03	0.591E	03	0.399E	02	0.368E	04	0.249E	03
	E 17720	4135.	0.218E 04	0.989E (02	0.675E	03	0.306E	02	0.380E	04	0.172E	03
.	E 17725	4210.	0.110E 04	0.225E (02	0.468E	03	0.954E	01	0.200E	04	0.408E	02
	E 17730	4285.	0.894E 03	0,117E (03	0.153E	03	0.200E	02	0.788E	03	0.103E	03
	E 17748	4360.	0.249E 03	0.205E	02	0.476E	02	0.393E	01	0.194E	03	0.160E	02
Ë,	E 17763	4366.	0.175E 05	0,498E (04	0.283E	04	0.806E	03	0.946E	04	0.269E	04
	E 17753	4435.	0.176E 03	0.684E	02	0.340E	02	0.133E	02	0.103E	03	0.401E	02
• :~	E 17758	4510.	0.248E 03	0.124E	03	0.178E	03	0.891E	02	0.327E	03	0.164E	03
1	E 17762	4560.	0.543E 03	0,107E (03	0.418E	03	0.828E	02	0.111E	04	0.219E	03
tin the second s	E 17877A	3669+	0.000	0.108E (02	0.0	000	0.473E	03	0.0	00(0.159E	04
	E 17877B	3669.	0.000	0.124E (02	0.0	000	0.552E	03	0.0	00(0.189E	04
	EOF												

. The transferred of the transferred of the second state of the second state of the second state of the second

,

ż

ż

. ! *

. .

1.

.

.

Table VI (continued)

÷

	PROBE	TF MCYC6		(MCYC6)	E-CYC5	(E-CYC5)	TOLUOL	(TOLUOL)		
	E 16286	415.	0.667E 03	0.474E 01	0.233E 03	0.165E 01	0,313E 03	0.222E 01		
	E 16293	520.	0.000	0.000	0.000	0.000	0.000	0.000		
	E 16300	625.	0.000	0.000	0.000	0,000	0.000	0.000		
	E 16307	730.	0.000	0.000	0.000	0.000	0.000	0.000		
-	E 16312	805.	0.350E 02	0,735E-01	0.000	0.000	0.168E 04	0.354E 01		
	E 16318	895.	0.663E 01	0.796E-02	0.000	0.000	0.124E 03	0.149E 00		
	E 16324	985.	0.000	0.000	0.000	0.000	0.605E 04	0.848E 01		
	E 14330	1075.	0.324E 02	0.291E-01	0.000	0.000	0.766F 04	0.490F 01		
	E 16330	1145.	0.1255 03	0.1375 00	0.000	0.000	0.1745 04	0.1975 01		
	E 16330	1255.	0.000	0.000	0.000	0.000	0.174E 04	0.1578 01		
	E 10042	1745	0,000	0,000	0,000	0.000				
•	E 10340	1040+			0.000	0,000	0,120E 03			
	E 10334	1400+	0+3216 02	0 1015 01	0,000 0 700E 02		0+227E 04			
	E 1000V	1020+			0+387E 02	0+237E 00	0,143E 03	0.904E 02		
	E 10300	1010+	0+282E V3		0+402E 02	0+367E 00	0+304E 04	0.44/E 02		
	E 16368	1645+	0.128E 03	0.231E 01	0.277E 02	0.498E 00	0+345E 04	0.620E 02		
	E 103/0	1000+		0+218E 01	0+253E 02	0.460E 00	0+3/3E 04	0+683E 02		
	E 163/3	1/10.	0+116E 03	0.331E 01	0.302E 02	0.865E 00	0.908E 04	0.260E 03		
	E 163/6	1/00+	0+116E 03	0.350E 01	0+266E 02	0,801E 00	0.532E 04	0+160E 03		
	E 103/8	1/80+	0+102E 03	0,178E 01	0+2/4E 02	0+526E 00	0.902E 04	0+1/3E 03		
	E 16380	1840.	0.8/3E 03	0.14/E 02	0+128E 03	0.215E 01	0.381E 04	0.641E 02		
•	E 16382	18/0+	0+3/2E 03	0,542E 01	0,415E 02	0.606E 00	0.460E 04	0.6/1E 02		
	E 10384	1900+	0+4376 03	0+832E 01	0+/67E 02	0+1402 01	0.8032 03	0.1106 02		
•	E 1638/	1945.	0.328E 03	0.522E 01	0.635E 02	0.101E 01	0.565E 04	0.898E 02		
	E 16389	1975.	0.254E 03	0.335E 01	0.327E 02	0.431E 00	0.239E 01	0.315E-01		
	E 16396	2080.	0+342E 03	0.331E 01	0+403E 02	0.391E 00	0.215E 02	0.209E 00		
2	E 16402	2170.	0.718E 03	0.675E 01	0.629E 02	0.591E 00	0.105E 04	0.982E 01		
	E 17616	2245+	0.246E 04	0.113E 02	0.414E 03	0.191E 01	0.161E 05	0.743E 02		
-	E 17621	2320+	0.460E 04	0.506E 02	0.288E 03	0.31/E 01	0.997E 04	0.110E 03		
	E 17626	2395.	0.302E 05	0.205E 03	0.195E 04	0.133E 02	0.238E 05	0.162E 03		
	E 17630	2455.	0.383E 05	0.394E 03	0.401E 04	0.413E 02	0.532E 05	0.548E 03		
÷	E 17636	2545.	0.120E 05	0+134E 03	0,133E 04	0.149E 02	0.826E 04	0.925E 02		
	E 17641	2620.	0.232E 05	0.313E 03	0.249E 04	0.336E 02	0.136E 05	0.184E 03		
	E 17646	2695.	0,181E 05	0.224E 03	0.228E 04	0.283E 02	0.542E 04	0.672E 02		
	E 17651	2770.	0+642E 04	0.763E 02	0.688E 03	0.818E 01	0.592E 04	0.704E 02		
	E 17656	2845.	0,181E 05	0.215E 03	0.195E 04	0.232E 02	0.375E 04	0.446E 02		
-	E 17038	2920+	0+345E 04	0.421E 02	0.355E 03	0+433E 01	0.309E 04	0.3/6E 02		
	E 1/041	2963.	0+149E 05	0+13/E 03	0.120E 04	0.111E 02	0.179E 05	0+184E 03		
~	E 17044	3010.	0,451E 05	0.551E 03	0+293E 04	0.357E 02	0.203E 05	0.248E 03		
	E 17047	3055.	0,230E 05	0.200E 03	0.163E 04	0.142E 02	0.100E 05	0.8/3E 02		
	E 17050	3100.	0.249E 05	0.261E 03	0.195E 04	0.205E 02	0.783E 04	0.823E 02		
	E 17052	3130,	0.784E 04	0.768E 02	0.571E 03	0.559E 01	0+378E 04	0.370E 02		
	E 17054	3160,	0.868E 04	0.946E 02	0.717E 03	0.781E 01	0.326E 04	0.355E 02		
2	E 17057	3205.	0.281E 04	0.264E 02	0.302E 03	0.284E 01	0.219E 04	0.205E 02		
	E 17059	3235.	0.749E 04	0.689E 02	0.612E 03	0.563E 01	0.352E 04	0.324E 02		
	E 17062	3280.	0.321E 05	0.298E 03	0.198E 04	0.184E 02	0.107E 05	0.997E 02		
	E 17065	3325.	0,868E 03	0.833E 01	0.691E 02	0.663E 00	0.389E 03	0.374E 01		
	E 17067	3355.	0,121E 05	0.110E 03	0.817E 03	0.744E 01	0,453E 04	0.412E 02		
	E 17069	3385.	0.253E 04	0.235E 02	0.232E 03	0.216E 01	0.363E 03	0.337E 01		
	E 17072	3430.	0.100E 05	0.881E 02	0.754E 03	0.663E 01	0.962E 04	0.847E 02		
-	E 17075	3475.	0.848E 04	0,781E 02	0.839E 03	0.771E 01	0.279E 04	0.257E 02		
	E 17077	3505.	0.251E 04	0.259E 02	0.283E 03	0.291E 01	0.690E 04	0.710E 02		
	E 17078	3520.	0.367E 04	0.323E 02	0+493E 03	0.434E 01	0+534E 04	0.470E 02		
	E 17079	3535.	0.370E 05	0.515E 03	0.902E 04	0.125E 03	0.534E 05	0.743E 03		
	E 17080	3550.	0.485E 05	0.844E 03	0.111E 05	0.194E 03	0.737E 05	0.128E 04		
	E 17081	3565.	0.141E 05	0.283E 03	0.269E 04	0.540E 02	0.411E 05	0.826E 03		
	E 17146	3580.	0.854E 04	0.343E 03	0.725E 03	0.291E 02	0.217E 05	0.874E 03		
	E 17147	3595.	0.118E 05	0.330E 03	0.107E 04	0.299E 02	0.318E 05	0.891E 03		
	E 17148	3610.	0.398E 05	0.765E 03	0.220E 04	0.422E 02	0.430E 05	0.825E 03		
	E 17149	3625.	0.135E 05	0.271E 03	0.113E 04	0.226E 02	0.263E.05	0.529E 03		
-	E 17150	3640.	0.151E 05	0.327E 03	0.841E 03	0.182E 02	0.233E 05	0.503E 03		

.

.

PROBE	TF	MCYC6	(MCYC6)	E-CYC5	(E-CYC5)	TOLUOL	(TOLUOL)
E 17151	3655.	0.144E 05	0.356E 03	0.657E 03	0.163E 02	0.218E 05	0.541E 03
E 17154	3700.	0.121E 05	0.189E 03	0.647E 03	0.101E 02	0.273E 05	0.425E 03
E 17155	3715.	0.154E 05	0.343E 03	5 0.132E 04	0.294E 02	0.368E 05	0.818E 03
E 17157	3745.	0.127E 05	0.304E 03	3 0.735E 03	0.176E 02	0.180E 05	0.431E 03
E 17159	3775.	0.758E 04	0.140E 03	0.430E 03	0.792E 01	0.181E 05	0.333E 03
E 17161	3805.	0.132E 05	0.303E 03	5 0.834E 03	0.192E 02	0.194E 05	0.447E 03
E 17163	3835.	0.112E 05	0.105E 03	5 0.764E 03	0.718E 01	0.190E 05	0.179E 03
E 17164	3850.	0.786E 04	0.104E 03	5 0.494E 03	0.657E 01	0.134E 05	0.178E 03
E 17165	3865.	0.103E 05	0.131E 03	5 0.840E 03	0.107E 02	0.202E 05	0.256E 03
E 17167	3895.	0.174E 05	0,131E 03	5 0.131E 04	0,982E 01	0.216E 05	0,162E 03
E 17168	3910.	0.124E 05	0.906E 02	2 0.105E 04	0.766E 01	0.101E 05	0.736E 02
E 17169	3925.	0.119E 05	0.164E 03	5 0.100E 04	0.138E 02	0.132E 05	0,183E 03
E 17711	4000+	0.116E 05	0.411E 03	S 0.794E 03	0.283E 02	0.264E 04	0.938E 02
E 17715	4060+	0.518E 04	0.350E 03	5 0.493E 03	0.334E 02	0.217E 04	0.147E 03
E 17720	4135.	0.745E 04	0.337E 03	3 0.637E 03	0.288E 02	0.158E 04	0.717E 02
E 17725	4210.	0,429E 04	0.875E 02	2 0,280E 03	0.572E 01	0.151E 04	0,308E 02
E 17730	4285.	0.210E 04	0.274E 03	5 0.136E 03	0.178E 02	0.673E 03	0.878E 02
E 17748	4360.	0.695E 03	0.573E 02	2 0.307E 02	0.253E 01	0.444E 03	0.366E 02
E 17763	4366.	0.398E 05	0,113E 05	5 0.171E 04	0.488E 03	0.142E 05	0.404E 04
E 17753	4435.	0.451E 03	0.176E 03	5 0.117E 01	0.458E 00	0.431E 03	0.168E 03
E 17758	4510.	0.104E 04	0.524E 03	0.603E 02	0,303E 02	0.294E 03	0.147E 03
E 17762	4560.	0.278E 04	0.550E 03	5 0.172E 03	0.341E 02	0.606E 03	0.120E 03
E 17877A	3669.	0.000	0.229E 04	0+000	0.218E 03	0.000	0.144E 04
E 17877B	3669.	0+000	0.273E 04	0.000	0.262E 03	0.000	0.171E 04

÷

• • -

,

Table VII

•																		
1 1 1					NAFI	THAL	ENE DI	STRIBUT	ION OF	SAMPL	.ES FRO	м						! !
! . !						STA	ATOIL 6	407/1-2	2									1 1 1
IEDGNR IDEPTH	! %CORG !	! 2-mn !	! 1 MN !	! !2 !	-EN !:	I-EN	12,6/ 12,7DN	1,3/ 1,7DN	1,6DN!	1,4/ ! 2,3DN!	1,5DN! !	1,2DN!	1. TN!	2. TN	!3. Ti !	N!4 !	• TNIE	5. TN!
IE178771 3669. IPERCENTAGE	•!!!	! 3.2 !100.0	2! 2.)! 84.	7! 9!	0,9! 27,8!	0.5 14.8	5! 2+4 3! 76+3	! 2.7! ! 83.9!	2+4! 75+1!	1+1! 34+4!	1.3! 39.7!	0.6!	0+8! 26+2!	1+1 33+8	! 1.; ! 37.	2! 5!	0,7! 21,8!	0,5!
Abbreviation					Comp	ound												
MN					Meth	ylna	phthale	ene										
EN					Ethy	lnap	hthaler	ne										
DN					Dime	thyl	naphtha	alene										
TN					Trin	nethy	lnaphti	nalene										

٠

٠

] – – –

••

· 1

.

l

Table VIII
、 										••• •••• ••• ••• •••		**** **** **** **** ****			····· ··· ··· ··· •	
			PHEN	ANTHRE	NE DIS	TRIBUT	ION OF	SAMPL	ES FRO	ň					!	
				STAT	DIL 64	07/1-2									!	
EOGNR IDEPTH 12CO	RG! PHE !	3MPHE!	2MPHE !	9MPHE!	1MPHE!	1.DMF!	2.DMP!	3.DMP!	4 • DMP !	5. DMP !	6.DMP!	7.DMP!	8.DMP!	9.DMP!	10DMP!	
E17877! 3669.! PERCENTAGE	! 0.5! !100.0!	0.3!	0+3! 50+0!	0+4! 65+5!	0+3! 55+2!	0.1! 17.2!	0+1! 24+1!	0.2! 31.0!	0.1! 20.7!	0.4!	0.3!	0.2! 37.9!	0,1! 20,7!	0.1! 20.7!	0.2!	
Abbreviation		C	ompound	1 , f												
РНЕ		P	henantl	nrene						•						
MPHE		М	ethylp	nenantl	nrene											•
DMP		D	imethy	lphena	nthrene	e										ł

ι.

L.,

1

Table IX

!	
ļ	
!	MATURITY- PARAMETERS BASED ON AROMATIC HYDROCARBONS
!	FROM STATOIL 6407/1-2
!	
! D	EPTH(M)! MNR ! ENR ! DNR ! TNR ! MPR ! DPR ! MPI1! MPI2!RC(%)!
!	
Į.	3669.00 ! 1.18! 1.87! 1.92! 0.67! 0.91! 0.48! 0.67! 0.68! 0.80
i	
1	

Calculation of maturity parameters:

Methylnaphthalene Ratio	$MNR = \frac{2 - MN}{1 - MN}$
Ethylnaphthalene Ratio	$ENR = \frac{2 - EN}{1 - EN}$
Dimethylnaphthalene Ratio	DNR = $\frac{2,6-DMN+2,7-DMN}{1,5-DMN}$
Trimethylnaphthalene Ratio	$TNR = \frac{TMN A + TMN B}{TMN C + TMN D}$
Methylphenanthrene Ratio	$MPR = \frac{2 - MP}{1 - MP}$
Dimethylphenantrene Ratio	$DPR = \frac{DMP \ 3 + DMP \ 4}{DMP \ 5 + DMP \ 6}$
Methylphenanthrene Index l	MPI 1 = $\frac{1.5 (2-MP+3-MP)}{P+1-MP+9-MP}$
Methylphenanthrene Index 2	MPI 2 = $\frac{3(2-MP)}{P+1-MP+9-MP}$
Calculated Vitrinite Reflectance	$R_{c} = 0.60 \text{ MPI } 1 + 0.40 \text{ (for} 0.65 \leq R_{m} \leq 1.35 \text{)}$

Table X

ł

...

Fig. 1

Fig. 2a

• . . •

.

,

LEHRSTUHL FUER GEOLOGIE, GEOCHEMIE UND LAGERSTAETTEN DES ERDOELS UND DER KOHLE RNTH AACHEN

NUMBER OF MEASURING POINTS: 43

MEAN REXI	1				=	.365
STANDARD	DEVIAT	FIOF	4		2	.062
STANDARD	ERROR	OF	THE	MEAN	~	.009

REL. FREQUENCY [2]

.

٠

0.0 0.1 0.1 0.2 1 0.2 1 0.3 1 1 1 1 1 0.4 1 1 1 1 1 1 1 1 1 1 1 1 1		0 1	15		30	45	ં દા
0.1 0.2 Biglify and the second sec	0.0	ز ر					
0.2] BIOR ELECTANCE READINGS: 1.5] REFLECTANCE READINGS: 1.7] 1.7] 1.7] 1.7] 1.7] 1.7] 1.1] 1.1] 1.2] 1.2] 1.4] 1.5] 1.4] 1.5] 1.6] 1.6] 1.7] 1.6] 1.7] 1.7] 1.7] 1.7] 1.7] 1.7] 1.7] 1.7] 1.7] 1.1] 1.2] 1.2] 1.2] 1.4] 1.5] 1.4] 1.5] 1.5] 1.6] 1.7] 1.7] 1.8	0.1	1					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0.2						
0.1 Initial and tial andininitial andinitial and initinitial and initial and ini	6 3						
0.4 TEXTISTERMENTER INSTRUCT 0.5 TEX 0.6 0.7 0.7 0.7 0.7 0.7 0.8 1 MEAN R[%] = .365 0.8 1 STANDARD DEVIATION = .062 1 STANDARD ERROR OF THE MEAN = .009 0.9 1.0 1.0 1.0 1.0 0.25 1.0 0.35 1.1 0.35 1.1 0.35 1.2 0.46 1.3 0.55 2.3 1.4 1.5 REFLECTANCE READINGS: 1.47 .32 .35 .31 .39 .35 .32 .42 .39 .37 .36 .49 .33 .37 .37 .36 .49 .33 .37 .37 .36 .49 .33 .37 .37 .36 .49 .33 .37 .37 .36 .37 .36 .37 .36 .37 .36 .37 .35 .37 .36 .37 .36 .37 .36 .49 .33 .37 .37 .37 .34 .37 .37 .37 .34 .37 .37 .37 .37 .37 .37 .37 .37	0.0						
0.5 Image: Standard Deviation = .365 0.7	0.4						
0.6	0.5						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.6						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0.7	-	2			2	
STANDARD DEVIATION = .062 STANDARD ERROR OF THE MEAN = .009 0.9 1.0 R-CLASS [%] REL. FREQUENCY [%] 0.25 6.9 1.1 0.30 32.5 1 0.35 41.8 1.2 0.40 9.35 445 4.6 1.3 0.55 2.3 1.4 1.5 REFLECTANCE READINGS: .47 .37 .37 .36 .37 .36 .37 .36 .37 .34		-	MEAN REX3		= .3	55 _	
0.9 R-CLASS [X] REL. FREQUENCY [X] 1.0 R-CLASS [X] REL. FREQUENCY [X] 0.25 6.9 1.1 0.30 32.5 1.2 0.40 9.3 1.3 0.40 9.3 1.3 0.55 2.3 1.3 0.55 2.3 1.4 1.5 REFLECTANCE READINGS: 1.4 .47 .32 .35 .37 .36 .49 .33 .37 1.6 .37 .31 .35 .37 .36 .42 .39 .37 .36 .49 .33 .37 1.6 .37 .31 .35 .37 .36 .31 .33 .39 .32 1.7 .34 .34 .37 .33 .37 .41 .33 .57	0.0	1	STANDARD DE	EVIATION PROP OF THE ME	= .00 କଧା- ଉଦ	52 39	
1.0 R-CLASS [X] REL. FREQUENCY [X] 0.25 6.9 1.1 0.30 32.5 0.35 41.8 1.2 0.40 9.3 0.40 9.3 1.3 0.45 4.6 1.3 0.55 2.3 1.4 0.55 2.3 1.4 0.55 2.3 1.4 0.55 2.3 1.4 0.55 2.3 1.4 0.55 2.3 1.4 0.55 31.39 .35 .32 .42 .39 .37 .36 .49 .33 .37 1.6 .37 .31 .35 .37 .36 .52 .37 .25 .33 .31 .33 .39 .32 .36 .31 .29 .42 .33 .38 .43 .37 .31 .33 .57 1.7 .34 .34 .37 .33 .37 .41 .33 .57	0.9	7				· پ	
1.1 0.25 6.9 1.1 0.30 32.5 1.2 0.40 9.3 1.2 0.40 9.3 1.3 0.45 4.6 1.3 0.56 2.3 1.4 0.55 2.3 1.4 1.5 REFLECTANCE READINGS: 1.4 1.5 REFLECTANCE READINGS: 1.6 .37 .31 .35 .35 .32 .42 .39 .37 .36 .49' .33 .37 1.6 .37 .31 .35 .37 .36 .52 .37 .25 .33 .31 .39 .32 1.6 .36 .31 .29 .42 .33 .28 .38 .43 .37 .31 .33 .57 1.7 .34 .34 .37 .33 .37 .41 .33 .57	1.0	+	R-CLASS [X]	REL.FF	EQUENCY CX	3	
1.1 0.39 32.5 0.35 41.8 1.2 0.40 9.3 0.40 9.3 0.45 4.6 1.3 0.56 2.3 0.55 2.3 1.4 1.5 REFLECTANCE READINGS:		_ _	0.25		6.9		
1.2 0.40 9.3 1 0.45 4.6 1.3 0.56 2.3 1.4 0.55 2.3 1.4 .47 .32 .35 .31 .39 .37 .36 .49' .33 .37 1.5 REFLECTANCE READINGS: .47 .32 .35 .37 .36 .49' .33 .37 1.6 .37 .31 .35 .37 .36 .52 .37 .25 .33 .31 .39 .32 .36 .31 .29 .42 .33 .28 .38 .43 .37 .33 .57 1.7 .34 .34 .37 .33 .37 .41 .33 .57		1	0.30 8.35	3	2.5		
0.45 4.6 1.3 0.56 2.3 0.55 2.3 1.4	1.2	, i	0.40		9.3		
1.3 6.56 2.3 1.4 0.55 2.3 1.4 1 1.5 REFLECTANCE READINGS: 1.6 .37 .31 .35 .35 .32 .42 .39 .37 .36 .49' .33 .37 1.6 .37 .31 .35 .37 .36 .52 .37 .25 .33 .39 .32 1.6 .36 .31 .29 .42 .33 .28 .38 .43 .37 .36 .37 .41 .33 .57 1.7 .34 .34 .37 .33 .37 .41 .33 .57		_	0.45		4.6		
1.4 2.3 1.5 REFLECTANCE READINGS: .47 .32 .35 .35 .32 .42 .39 .37 .36 .49' .33 .37 1.6 .37 .31 .35 .37 .36 .52 .37 .25 .33 .31 .39 .32 .36 .31 .29 .42 .33 .28 .38 .43 .37 .33 .37 .41 .33 .57 1.7 .34 .34 .37 .33 .37 .34 .37 .33	ت.1		0.50		2.3		
1.5 REFLECTANCE READINGS: 1.47 .32 .35 .35 .32 .42 .39 .37 .36 .49' .33 .37 1.6 .37 .31 .35 .37 .36 .52 .37 .25 .33 .31 .33 .39 .32 1.6 .37 .31 .35 .37 .36 .52 .37 .25 .33 .31 .33 .39 .32 1 .36 .31 .29 .42 .33 .28 .38 .43 .37 .33 .37 .41 .33 .57 1.7 .34 .34 .37 .33 .37 .41 .33 .57	1.4	-i	0.00		2.3		
13 REFLECTANCE READINGS: 1 .47 .32 .35 .32 .42 .39 .37 .36 .49' .33 .37 16 .37 .31 .35 .37 .36 .52 .37 .25 .33 .31 .33 .39 .32 16 .37 .31 .35 .37 .36 .52 .37 .25 .33 .31 .33 .39 .32 1 .36 .31 .29 .42 .33 .28 .38 .43 .37 .33 .37 .41 .33 .57 17 .34 .34 .34 .37 .39 .37 .41 .33 .57	1 5						
1.6 .37 .31 .37 .36 .32 .42 .37 .36 .49 .33 .37 1.6 .37 .31 .35 .37 .36 .52 .37 .25 .33 .31 .33 .39 .32 .36 .31 .29 .42 .36 .52 .37 .25 .33 .31 .39 .32 .36 .31 .29 .42 .33 .28 .38 .43 .37 .33 .37 .41 .33 .57 1.7 .34 .34 .34 .37 .33 .37 .41 .33 .57	ت 4	I REFLECT	HNCE READIN	465: M 99 95	aa 1a		oc vo' oo co
1 .36 .31 .29 .42 .33 .28 .38 .43 .37 .33 .37 .41 .33 .57 1.7 .34	1.6		.34 .35 .3	sz .ss 15 .37 .36	.JZ .HZ . .52 .37	.az .ak . .25 .33 -	35 .47 .33 .37 31 .33 .39 .32
	1.7	.36 .] .34	31 .29 .4	42 .33 .28	.38 .43 .	.37 .33 .	37 .41 .33 .57

:01L1% (546)

Fig. 2b

LEHRSTUHL FUER GEOLOGIE, GEOCHEMIE UND LAGERSTAETTEN DES EROOELS UND DER KOHLE RWTH AACHEN

SAMPLE CODE:.....STATOIL 64/07--E 16348 DATE/NAME:.....13.06.83 RANDOM REFLECTANCE STANDARD:......YAG 0.88% TYPE OF OBJECTIVE:......40% EPIPLAN MACERAL (SUB-)TYPE:.....1 3 4

NUMBER OF MEASURING POINTS: 42

MEAN RCX:	1				=	.369
STANDARD	DEVIAI	FIO	4		=	.043
STANDARD	ERROR	OF	THE	MEAN	=	.007

REL. FREQUENCY [%]

Ø 15 30 45 60 1 1 3.0 ٦ 3.1 3.2 and the first states 3. 3 The House of August Market Provide Strategy and the State of Strategy and Stra 3.4 Lockern House and the bar that the second state 3.5 T 3.6 7 MEAN REX1 .369 = STANDARD DEVIATION .048 = 3.7 ٦ .007 STANDARD ERROR OF THE MEAN = 3.8 7 R-CLASS (M) REL. FREQUENCY [%] 9.9 ٦ 0.25 7.1 0.30 23.8 1.9 0.35 45.2 0.40 19.0 L.1 0.45 4.7 1.2 T 1 REFLECTANCE READINGS: ...3 ٦ I IDENTIFIED AS NO. 1 (29 POINTS= 69 VOL%) .4 .38 .42 .29 .37 .48 .34 .35 .36 .36 .37 ٦ .45 .33 .38 .37 .49 .39 .43 .39 .36 .42 . 29 .34 .32 .41 .41 .33 .38 .32 .5 . 40 IDENTIFIED AS NO. 3 (13 POINTS= 31 VOL%) .67 .26 .38 .35 .42 .32 .34 .35 .35 IDENTIFIED AS NO. 4 (0 FOINTS= 0 VOL%) .34 .32 .38 .39 .37 .7 -.00 1

(IL1% (546)

Fig. 2c

LEHRSTUHL FUER GEOLOGIE, GEOCHEMIE UND LAGERSTAETTEN DES ERD GELS UND DER KOHLE RWTH AACHEN SAMPLE CODE:.....STATOIL 64.07--E 16366 DATE/NAME:.....13.06.83--HGN

RANDOM REFLECTANCE STANDARD:.....YAG .88% TYPE OF OBJECTIVE:.....40% EPIPLAN MACERAL (SUB-)TYPE:.....HUMOCOLLINIT

NUMBER OF MEASURING POINTS: 32

MEAN REXI]				=	.382
STANDARD	DEVIA	10I	4		=	.046
STANDARD	ERROR	OF	THE	MEAN	#	.008

Fig. 2 d

٠

· . .

LEHRSTUHL FUER GEOLOGIE, GEOCHEMIE UND LAGERSTAETTEN DES ERDOELS UND DER KOHLE RWTH AACHEN

SAMPLE CODE:....STATOIL 64/07--E 16375 DATE/NAME:.....13.06.83--HGN RANDOM REFLECTANCE STANDARD:.....YAG 0.88% TYPE OF OBJECTIVE:.....40% EPIPLAN MACERAL (SUB-)TYPE:....HUMINITE

NUMBER OF MEASURING POINTS: 35

.

MEAN REXI	=	.413
STANDARD DEVIATION	z	.089
STANDARD ERROR OF THE MEAN	=	.015

REL. FREQUENCY [%]

۰.

	0 1	10		20		30 '		4€ 1
0.0-	1							
0.1 -	1 1							
0 > -	1							
	ł							
0.3 -			en fall frög gat spetter den anter frög gate an er	Fafilie Hills (enfilie) South S				
0.4 -				and the second second				
0.5		a fai yeana da kanan Manaka (11 yeana						
0.6 -								
a 7 -		2						
0.1	l				ء • • • •	•		
0.8 -	1	MEAN R[%] STANDARD DEV	TATION	=	.413	-		
0.9 -	1	STANDARD ERR	OR OF THE	= MEAN =	.069			
1 19	!			-				
1.0	1	R-CLASS [%]	REL.	FREQUENCY	C%3			
1.1 -]	0.30		31.4				
1.2 -	1	0.40		20.0				• *
1 2 -	1	0.45 0.50		9.5				
1.3	1	0.55		8.5				
1.4 -	j	0.60		2.8				
1.5 -	1	9.63		2.8				
1.6 -	l 1 REFLE	CTANCE READING	5:					
	41	.34 .42 .39	.57 .32	.35 .49	.37	.33 .34	.47 .60	.54
1.7 ~	7 .31 .44	.37 .34 .34 .44 .47 .37	.66 .53	.53 .33 .35	.34	.40 .42	.41 .34	.44

01112 (546)

Fig. 2 e

LEHRSTUHL FUER GEOLOGIE, GEOCHEMIE UND LAGERSTAETTEN DES ERD DELS UND DER KOHLE RNTH AACHEN

SAMPLE CODE:....STATOIL 64.07--E 16393 DATE/NAME:....14.06.83--HGN RANDOM REFLECTANCE STANDARD:.....YAG 0.88% TYPE OF OBJECTIVE:.....40% EPIPLAN MACERAL (SUB-)TYPE:....REFLECTOGRAM

NUMBER OF MEASURING POINTS: 14

MEAN RCX	1				=	.480
STANDARD.	DEVIA	f I Oł	4		=	.313
STANDARD	ERROR	0F	THE	MEAN	=	.084

REL. FREQUENCY [%]

4	0 15	5	30	45	5 .	÷ 64
0.0 7	1 1 1 1 1 1 1 1 1 1	ji . Yakana ji like	<u>l</u>	l		ł
ا ٦ ٥.4	an ann an an 1920 ann an 1920 ann an 1920 ann an 1920. Tagairt ann ann an 1920 ann ann ann ann ann ann ann an 1920 an	a an an an an an ann an an an an an an a		a line for a second		
ا ٦ 0.3	n pala in ta Ara Ara di Sala					
1.2 7						
· · · · ·	a a a a a a a a a a a a a a a a a a a					
1.0		•				
2.0 7	•					
٦ 2.4 ا						
2.8	2			z		
3.2		-		_		
3.6	MEAN R[%] STANDARD	DEVIATION	= .48 = .31	30 13		
ا ٦ 4.0	STANDARD	ERROR OF THE ME	EAN = .08	34		
 4.4 7	R-CLASS D	XI REL. FR	REQUENCY CO	1		
ן 4.3 ך	0.00 0.20		21.4			
ו ד 5.2	0.40	5	50.0			
5.6 7	1.40		7.1			
0.0	REFLECTANCE READ	INGS: .55 .49 .50	.61 .43 .	.38 .57 1.	42 .16 .17	. 14
6.4 7 				• • • • • •		T
ך 6.8 ו						

(01L1% (546)

. Fig. 2 f

> LEHRSTUHL FUER GEOLOGIE, GEOCHEMIE UND LAGERSTAETTEN DES ER:DOELS UND DER MOHLE RWTH AACHEN

SAMPLE CODE:.....STATOIL 64/07--E 17621 DATE/NAME:.....23.06.83--HGN RANDOM REFLECTANCE STANDARD:......YAG 0.85% TYPE OF OBJECTIVE:.....40% EPIPLAN MACERAL (SUB-)TYPE:..... 1 3 4

NUMBER OF MEASURING POINTS: 27

MEAN REXI	1				=	.337
STANDARD	DEVIAT	TION	4		=	.046
STANDARD	ERROR	0F	THE	MEAN	=	.009

REL. FREQUENCY [%]

1.1.1.1.

	0 \ 15		30	45	6(
0.0	ر۲	·····		, k.=	<u> </u>
0.1					
0.2				•	
0.3					
0.4		n flippin och anppalakkarooptin		. and But Black I.	
0.5					
0.6 0.7	MEAN RCX STANDARD STANDARD) DEVIATION ERROR OF THE (= .337 = .046 1EAN = .009 *		
0.8 0.9 1.0 1.1	R-CLASS 0.20 0.25 0.30 0.35 0.40	(%) REL. 6	FREQUENCY [%] 7.4 14.8 25.9 48.1 3.7	÷	
1.2	T REFLECTANCE REAL	DINGS:			
1.3	T IDENTIFIED AS N	D. 1 < 15 POIN	TS= 55.6 VOL%)		
1.4	38 .23 .37 .34	.36 .35 .34	.35 .37 .32 .3	36 .36 .29 .44 .	34
1.5	IDENTIFIED AS N	0. 3 (6 POINTS .27 .34 .28	S= 22.2 VOL%)		
1.6	IDENTIFIED AS N .35 .35 .37	0. 4 (6 POINT: .37 .34 .37	5= 22.2 VOL%>		
1.7	i I				

COIL1% (546)

• •

Fig. 2 f

.

LEHRSTUHL FUER GEOLOGIE, GEOCHEMIE UND LAGERSTAETTEN DES ERDOELS UND DER MOHLE RNTH AACHEN

SAMPLE CODE:.....STATOIL 64/07--E 17621 DATE/NAME:.....23.06.83--HGN RANDOM REFLECTANCE STANDARD:.....YAG 0.88% TYPE OF OBJECTIVE:.....40% EPIPLAN MACERAL (SUB-)TYPE:......6

NUMBER OF MEASURING POINTS: 4

MEAN REXI]				Ξ	.505
STANDARD.	DEVIAT	ION	l		=	.024
STANDARD	ERROR.	ÛF	THE	MEAN	=	.012

(01L1% (546))

Fig. 2 g

1. .

1

.

LEHRSTUHL FUER GEOLOGIE, GEOCHEMIE UND LAGERSTAETTEN DES ERD GELS UND DER HOHLE RWTH AACHEN

SAMPLE CODE:..........STATOIL 64/07--E 17630 RANDOM REFLECTANCE MACERAL (SUB-)TYPE:....HUMOCOLLINIT

NUMBER OF MEASURING POINTS: 26

MEAN REXI]			=	.329
STANDARD	DEVIATIO	4		=	.032
STANDARD	ERROR: OF	THE	MEAN	=	.006

REL. FREQUENCY [%]

	0 1		15			30				45			60
0.0	٦ ١												<u>L</u>
0.1	,												
0.2			است است مرقل										
0.3	Linguening				1 () () () () () () () () () () () () ()	મ્યુ અને મુંગ	\$++1\$#\$\$\$\$					E	
0.4		is de La Mail d' Pris d' alla de la seconda de	t his a striki or d	A Control of									
0.5	- -												
0.6	-												
0.7	- -		· • • • •	-	=) =	PEOUE	ысч г	v 1	-				
0.3	- -	0.25	· Lisad	г.	5-L-• F	NE&02 19.2 50 0	1721 6						
0.9	- -	0.30				23.0							
1.0	ן ר	0.40				J.C							
1.1		CTANCE RE	ADINGS	:						<u>~-</u>	24	34	ন্থ
1.2	.33 .34	.33 .35) .35 7 .29	.42 .29	.29	.23	.33 .34	.35	.32	.31	.32	• • •	• - •
1.3													
1.4													
1.5	-												
1.6	-			-									
1.7													
רוזה	12 (546)												

<546. به تعالم م

. **.** .

7

.

Fig. 2 g

LEHRSTUHL FUER GEOLOGIE, GEOCHEMIE UND LAGERSTAETTEN DES ERD DELS UND DER KOHLE RWTH AACHEN SAMPLE CODE:..........STATOIL 64/07--E 17630 RANDOM REFLECTANCE TYPE OF OBJECTIVE:.....40X EPIPLAN OIL MACERAL (SUB-)TYPE:....COLLINITE NUMBER OF MEASURING POINTS: 10 MEAN REXI ÷ .555 STANDARD DEVIATION .035 = . . STANDARD ERROR OF THE MEAN = .011 REL. FREQUENCY (%) Ø 15 39 45 66 1 0.0 7 0.1 7 1 9.2 7 1 0.3 7 1 0.4 ٦ the state of the state of the 0.5 1 distant Briss Attempt die Seber Burne 0.7 7 . ÷ 0.8 7 MEAN REXT .555 = 0.9 7 STANDARD DEVIATION .035 = STANDARD ERROR OF THE MEAN = 1 .011 1.0 7 1.1 7 R-CLASS [%] REL. FREQUENCY [%] 0.45 1 10.0 1.2 7 0.50 20.0 0.55 60.0 1.3 ٦ 0.60 10.0 1.4 7 REFLECTANCE READINGS: 1.5 7 .57 .57 .57 .56 .57 .57 .52 .52 .61 . 49 1.6 7 1 1.7 7 T

OIL1% (546)

Fig. 2 h LEHRSTUNE FUER GEOLOGIE, GEOCHEMIE UND LAGERSTAETTEN DES E'F D OE LIS UND DER KOHLE RUTH AACHEN RANDOM REFLECTANCE TYPE OF OBJECTIVE:.....40 × EPI OEL MACERAL (SUB-)TYPE:.....VITRINIT NUMBER OF MEASURING POINTS: 30 MEAN REXI = .231 STANDARD DEVIATION .032 = STANDARD ERROR OF THE MEAN = .006 REL. FREQUENCY [X] ø 15 30 45 68 ÷ 1 0.0 ٦ I 0.1 7 6. 3 Transmittering in the second state of the 0.4 7 1 0.5 7 T 0.6 7 1 0.7 ٦ 1 0.3 7 .281 MEAN REXI 0.9 7 Ŧ STANDARD DEVIATION .032 ≠ STANDARD ERROR OF THE MEAN = .006 1.0 7 1.1 ٦ R-CLASS [%] REL. FREQUENCY [%] ł 0.20 13.3 1.2 7 0.25 56.6 1 0.30 26.6 1.3 7 . 0.35 3.3 ł 1.4 7 Į REFLECTANCE READINGS: 1.5 7 .26 .24 .27 .30 .28 .31 .27 .27 .32 .32 . 27 .27 .27 .35 .32 .27 .34 .23 .25 .23 .24 .29 .27 .29 .28 .32 .26 .26 $1.\varepsilon$ ٦ .26 .32 1.7 Г ł

(OIL1% (546)

. Fig. 2 j

LEHRSTUHL FUER GEOLOGIE, GEOCHEMIE UND LÄGERSTAETTEN DES E R D DE L S UND DER K O H L E RWTH AACHEN

NUMBER OF MEASURING POINTS: 50

MEAN REXI]				=	.340
STANDARD	DEVIAT	LIOF	4		2	.054
STANDARD	ERROR	OF	THE	MEAN	=	.008

(OIL]% (546)

Fig. 2 i LEHRSTUHL FUER GEOLOGIE, GEOCHEMIE UND LAGERSTAETTEN DES ERD DELS UND DER KOHLE RWTH AACHEN DATE/NAME:.....HGN RANDOM REFLECTANCE TYPE OF OBJECTIVE:.....40% EPIPLAN MACERAL & SUB->TYPE:....HUMOCOLLINITE AND EU-ULMINITE NUMBER OF MEASURING POINTS: 25 MEAN RC%3 .386 .053 STANDARD DEVIATION = STANDARD ERROR OF THE MEAN = .011 FREQUENCY REL. C%3 Ø 15 30 45 66 ŧe 1 ⊥ 0.0 Г 0.1 Г 1 0.2 ٦ ik e pro o 1 0.3 entities in 5.4 Termentioneteren Law C. Pr a di seri di sedi di sedi se 1.1 all the contained for the contained to 0.5 ٦ 1 0.6 7 9.7 ٦ 0.8 .386 MEAN REXI = 0.9 ר .053 STANDARD DEVIATION = .011 STANDARD ERROR OF THE MEAN = 1.0 ٦ 1.1 REL. FREQUENCY [%] R-CLASS [%] ł 0.25 4.0 1.2 ~ 8.0 0.30 0.35 52.0 1.3 ------0.40 24.0 1 12.0 0.45 1.4 -1 2 2 2 1.5 7 REFLECTANCE READINGS: 1 .39 .39 . 41 .41 .42 .26 .36 .37 .32 .49 .49 .49 .41 .42

0IL1% (546)

ŀ

٦

1.6 7

1.7

7

.34

.36

.35

.36

.41

.37

.37

.35

.35 .39

.38

1

Propagation (

• . Fig. 2 k

.

....

LEHRSTUHL FUER GEOLOGIE, GEOCHEMIE UND LAGEPSTAETTEN DES E R D OE L S UND DER K O H L E RNTH AACHEN

SAMPLE CODE:.....STATOIL 64/07--E 17147 DATE/NAME:.....14.06.83--HGN RANDOM REFLECTANCE STANDARD:.....YAG 0.88% TYPE OF OBJECTIVE:.....40% EPIPLAN MACERAL (SUB-)TYPE:.....HUMINTE/COLLINITE

NUMBER OF MEASURING POINTS: 39

MEAN REXI]				=	.589
STANDARD	DEVIA	LIOF	4		=	.107
STANDARD	ERROR	OF	THE	MEAN	=	.017

REL. FREQUENCY [%]

۱

	0	10	20	3	0	40
0.0 -	Ţ				1	L
0.1 -	l T					
0.2 -	1 7					
a -> -			•			
0.4 -						
0.5 -						
0.6						
0.7 -		na na halan ka ka ka		:		
0.8 -		RC%]	=	.589	_	
<u>9</u> 97	I STAN	DARD DEVIATION DARD ERROR OF TH	≠ E MEAN =	.107 .017		
1.0	R-CLI	ASS [%] REL	FREQUENCY	[%]		
1.1 -	9.	10 10	2.5			
1.2 -	- - - - -	15 · 50	15.3 17.9			
1.3 -	- - - -	55 50	15.3 10.2	•		
1.4 -	0.1	55	12.8			
1.5 -	9.1	75	5.1			
		30	2.5			
1.0	I REFLECTANCE	READINGS:				
1.7 -	.51 .50	.81 .75 .59 .	67 .55 .52	.53 .68	.54 .39	.71 .49
0113	.40 .71 * (546) ⁶⁶ .71	.47 .49 .46 .	04 .03 .35 54 .56 .55	.72 .69 .70 .49	.04 .62 .39	.38 .68

Fig. 2 l

1

LEHRSTUHL FUER GEOLOGIE, GEOCHEMIE UND LAGERSTAETTEN DES E R D DE L S- UND DER K O H L E RWTH AACHEN

SAMPLE CODE:....STATOIL 64/07--E 17150 DATE/NAME:.....23.06.83--HGN RANDOM REFLECTANCE STANDARD:.....YAG 0.88% TYPE OF OBJECTIVE:.....40% EPIPLAN MACERAL (SUB-)TYPE:....HUMINITE/COLLINITE

NUMBER OF MEASURING POINTS: 30

MEAN REXT]				=	.648
STANDARD	DEVIAT	'ION)		=	.062
STANDARD	ERROR	OF	THE	MEAN	=	.011

REL. FREQUENCY [X]

COILIN (546)

Fig. 2 m

•

.

LEHRSTUHL FUER GEOLOGIE, GEOCHEMIE UND LAGERSTAETTEN DES ER:DOELS UND DER KOHLE RWTH AACHEN

.

and the second
SAMPLE CODE:.....STATOIL 64/07--E 17169 DATE/NAME:.....23.06.83 RANDOM REFLECTANCE STANDARD:......YAG 0.88% TYPE OF OBJECTIVE:......40% EPIPLAN MACERAL (SUB-)TYPE:..... 1 3 4

NUMBER OF MEASURING POINTS: 38

MEAN REX	1				=	.314
STANDARD	DEVIAT	FION	4		=	.030
STANDARD	ERROR	0F	THE	MEAN	= ·	.005

REL. FREQUENCY [%]

ø	15	31	3	45	6(
6.6 T	1				
0.1 7					
0.2 j					
0.3 7			the providence of the pro-	ne anna han na af an a de Chreanne i	
0.4					
0.5 1					
0.67	•				
ا ٦ 7.0	MEAN RCX	1	= .314		
9.8 T	STANDARD STANDARD	DEVIATION ERROR OF THE MEAN	= .030 N = .005	-	
0.9 T	-				
1.0 7	R-CLASS 0.25	[X] REL. FRE	QUENCY [%]		
1.1 7	0.30 0.35	20 55 15	•• •2		
1.27	9.00	13	• '		
1 3 1	REFLECTANCE REA	DINGS:			
1	IDENTIFIED AS N	0. 1 (24 POINTS≖	63.2 VOLXX		
1.4 7	.33 .31 .29	.25 .32 .28 .:	36 .36 .29 .3	2 .31 .31 .31 .	31
1.5 7	IDENTIFIED AS N	0. 3 < 11 POINTS=	34 .34 .32 .33 28.9 VOL%)	≤	
1.6 7	.32 .28 .32 IDENTIFIED AS N	.31 .28 .30 .: 0.4 (3 POINTS≓)	38 .38 .32 .3: 7.9 VOLX)	2.28	
1.7	.32 .29 .29				

01L1% (546)

. Fig. 2 n

1....

.....

t j

÷ 4

3

.

LEHRSTUHL FUER GEOLOGIE, GEOCHEMIE UND LAGERSTAETTEN DES ERDOELS UND DER KOHLE RWTH RACHEN

SAMPLE CODE:..... STATOIL 64/07--- 17725 RANDOM REFLECTANCE MACERAL (SUB-)TYPE:.... 1 3 4

NUMBER OF MEASURING POINTS: 44

MEAN REXI]				=	.309
STANDARD	DEVIAT	FION	4		=	.031
STANDARD	ERROR	OF	THE	MERN	=	.005

REL. FREQUENCY (%)

Ø	15	30	45	60
9.0 T		<u> </u>		
ا 0.1 ٦				
8.2			·	•
	n og han ver het som som en staten at som en som er som	et y maissan-kaat		
	(b) Property and the descent of the descent of the second s second second se	gelines of a new most in other most program in a set	an o an an 2011 anns an 1012 an Anns a Anns an Anns an	
9.4 7				
0.57				
3.6 7	MEAN REXI		.309	
j.7 7	STANDARD DEVIAT: STANDARD ERROR (ION = · OF THE MEAN = ·	.031 .005 _	
).8 T				
ן ד פ.נ	R-CLASS [%] 0,20	REL. FREQUENCY 2.2	121	
1.0 7	0.25	29.5 56.8		
1.1 7	0.35	11.3		
1.27				
1	REFLECTANCE READINGS:			!
1.3 7	IDENTIFIED AS NO. 1 (31 POINTS= 70.5 V	DL%)	<u></u>
4	.27 .25 .35 .34 .3 .29 .32 .29 .26 .3	32 .33 .34 .31 27 .32 .32 .32	.31 .32 .25	.33 .33 .33
.5 1	IDENTIFIED AS NO. 3 (10 POINTS= 22.7 V	0L%)	
.e -	.31 .28 .31 .28 . IDENTIFIED AS NO. 4 (30 .23 .31 .28 3 POINTS= 6.8 VOL:	.27 .31 %>	
.7 7	.32 .31 .29			· · · · · ·
ł				
HLIX C	546)			

//L1% (546)

, , ,

•

• Fig. 2 o

à...

LEHRSTUHL FUER GEOLOGIE, GEOCHEMIE UND LAGERSTAETTEN. DES ERDOELS UND DER KOHLE RWTH AACHEN

SAMPLE CODE:......STATOIL 64/07--E 17730 RANDOM REFLECTANCE

NUMBER OF MEASURING POINTS: 34

MEAN REXI]				=	.664
STANDARD	DEVIAT	101	4		=	.059
STANDARD	ERROR	OF	THE	MEAN	=	.010
•						

•

REL. FREQUENCY [X] .

۰.

.

0	10	20	34	3	40
0.0 7	····	<u></u>			
ו ס.1					
0.2 T				•	
9 2 7					
0.4 T					
G.5 1.0					
9.6	el Color d'Arte producente. Arte (n. 1999 - Charles III a foi (n. 1999) de la color de la color de color.	The second states of a present free days			
9.7 1000	anda ya badi da sa pandingi ana anya dan lanin ngadat Manifi (1999) kana pana Bang ngang tabula kana kana kana k	a de la 1912 de la compañía de la deservadora. A California de la compañía de la co			122
			-	•	
9.5	MEAN R[%] Standard Devia	= =	.664 .859		
0.9 7	STANDARD ERROR	OF THE MEAN =	.010		
1.0 7					
1.1 7	R-CLASS [%] 0.50	REL. FREQUENCY 2.9	[%]		
1 2 7	0.55	3.8			
↓•≤ 	0.00 0.55	23.5			
ך 1.3	0.70	17.6			
1.4 7	0.75	8.8			
1.5 7	REFLECTANCE READINGS:	:			
1.6 7	IDENTIFIED AS NO. 6 <	24 POINTS= 70.6	VOL%>		
1.7 7	.60 .69 .62 .77 .76 .66 .66 .57	.65 .60 .65 .6 .69 .69 .68 .5	3 .56 .69 4 .67 .58 vo:"\	.68 .72 .	72.7
.01L1% (54	.72 .60 .71 .71 167	.68 .69 .63 .6	2.62.73		

Fig. 2 o

LEHRSTUHL FUER GEOLOGIE, GEOCHEMIE UND LAGERSTAETTEN DES ERD DELS UND DER KOHLE RWTH AACHEN

SAMPLE CODE:....STATOIL 64/07--E 17730 DATE/NAME:.....23.06.83--HGN) RANDOM REFLECTANCE STANDARD:.....YAG 0.88% TYPE OF OBJECTIVE:.....40% EPIPLAN OIL MACERAL (SUB-)TYPE:....COLLINIT

NUMBER OF MEASURING POINTS: 25

MEAN RENJ	=	.686
STANDARD DEVIATION	=	.055
STANDARD ERROR OF THE MEAN	4 =	.011

REL. FREQUENCY [3]

0ILIN (546)

Fig. 2 p

• .

LEHRSTUHL FUER GEOLOGIE, GEOCHEMIE UND LAGERSTAETTEN DES ERDOELS UND DER MOHLE RNTH AACHEN

SAMPLE CODE:.....STATOIL 64/07--E 17758 DATE/NAME:.....23.06.83--HGN RANDOM REFLECTANCE STANDARD:.....YAG 0.88% TYPE OF OBJECTIVE:......40% EPIPLAN MACERAL (SUB-)TYPE:.....TELOCOLLINITE--HAND PICKED COAL

NUMBER OF MEASURING POINTS: 50

MEAN REXI	=	1.072
STANDARD DEVIATION	-	.027
STANDARD ERROR OF THE N	1EAN =	.094

REL. FREQUENCY [2]

.

1. .

9	15	5	3	:0		-	45			60
0.0 7				<u>I</u>						
0.1 7 0.2 7	MEAN RC% STANDARD STANDARD] DEVIATION ERROR OF	I THE MEA	= 1 = +=	.072 .027 .004					
0.3 T	R-CLASS	r%n r	FIL FRFI	DUENCY	r%1					
0.4 7	1.00 1.05 1.10		22 22 58 29	.0 .0						
1 2.5										
0.6 7	REFLECTANCE REAL	DINGS:								
0.7 7	IDENTIEIED AS N	0 4 4 50	POINTS-	166 90	т. Н Ф.415					
0.8 7	$\begin{array}{c} 1.02 \\ 1.02 \\ 1.02 \\ 1.07 \\ 1.07 \\ 1.07 \end{array}$	1.04 1.06 1.07 1.04	1.06 1.0	36 1.06 38 1.08	1.07	1.07	1.03	1.04	1.07 1	1.08
0.9	1.07 1.07 1.05 1.12 1.09 1.09	1.05 1.12 1.12 1.10	1.12 1. 1.06 1.0	11 1.09 36 1.06	1.08	1.06	1.08	1.07	1.08 1	1.13
1.0 1		an as the factor								
			47 . n []	913		er nift i	h=```-{{{}}}	n:1-1	e in trateria	
1.2 7										
1.3 7										
1.4 7										
1.5 7										
1.5 7										
ר ק. ו										
01L1% (546)									

STATOIL 6407/1-2

Fig.3

STATOIL 6407/1-2

...

Fig. 5

DEPTH (M)

_

Fig. 6

Fig. 7b

.

Fig.7h

Fig.7n

-

4495 m - 4510 m

(E 17758-1)

÷

I

. .

-

.

Fig.7 o

.

Fig.8c

.

Fig.8d

....

÷.

.

Fig.8f

. مىرد

. • . . . •

ţ.,

ندر

.

Fig.8g

I

------1

. :

e ---

.

Fig.8i

Fig.8j

.

Fig.8k

Fig.8 1

Fig.8m

÷

....

· · ·

)--

-- +

STATOIL 6407/1-2 c2-c8 hydrocarbons (NG/G) CUTTINGS - -DEPTH (M) шu TER MIO œ۲ PAL CRE KIM HEA MJS ORE COK CUN -IRI TTTT

STATOIL 6407/1-2 c2-c8 saturated HC (NG/G)

STATOIL 6407/1-2 c2-c8 hydrocarbons (NG/G C-ORG)

STATOIL 6407/1-2 c2-c8 saturated HC (NG/G C-ORG)

CUTTINGS G-E

STATOIL 6407/1-2 N-BUTANE (NG/G)

CUTTINGS 5-0

Fig.15

•

STATOIL 6407/1-2 N-HEPTANE (NG/G C-ORG)

CUTTINOS O-0

i

1

CUTTINOS 09-0

CUTTINGS C-E

CUTTINGS C -2

÷

-

STATOIL 6407/1-2 CUTTINOS CI-CI D C DEPTH (M) -100 -80 -60 -20 -40 0 200 400 600 800 TER 1000 1200 1400 1600 1800 MIO 2000 2200 PAL 2400 2600 2800 CRE 3000 3200 3400 KIM HEA 3600 MJS 3800 . DRE 4000 COK 4200 4400 CUN -IRI -20 -100 -60 -80 -40 Q

5

<u>.</u>

Fig.25

÷

.

FPD

ા શામ

٧:

•

1

