CASINGS

Table 1		
Diameter	Depth b	elow KB
Diameter	m	ft.
36"	166	545
20"	413	1356
13 3/8"	1169	3837

Depth b	Desesso	
m	ft.	- Degrees
152	500	1.00
306	1004	1.00
413	1335	0.50
611	2005	1.00
909	2982	1.00
1165	3822	2.00
1390	4560	2.00
1542	5059	1.00
1726	5663	2.50
1784	5835	2.75
2035	6677	3.25
2348	7703	2.25

;

MUD PROGRAMME

			Mud properties		
Dep	th below KB	Weight	Funnel visc.,	Filter loss	
m	ft.	PPg	sec.	cm ³	Remarks
to 152	to 500	Sea water			
152	500	8.6	90		Displaced water with mud.
419	1375	9.1	36		Circulated out 130 bbls cement and cement cut mud.
1173	3850	9.8	42	14	Reamed tight spot at 1401'. Cleaned hole. Inflow 5 bbls/h
2195	7200	10.4	58	10.8	salt water
2540	8333	10.4	42	6	Saturated mud with NaCl.
2681	8796	11.2	65	7.6	
3269	10726	11.5	53	6.2	Stuck Pipe. Spotted Pipe Lax Circulated and conditioned Mg- and K-contaminated mud

14

HOLE DEVIATION

MUD ADDITIVES

Table 3 a

Function Bactericides Calcium Removers Defoamer Emulsifier Lubricants Flocculant Filtrate Reducers Lost Circulation Material pH Control, Alkalinity Shale Control Inhibitors Surface Active Agent Thinners. Dispersants. Viscosifiers Weighting Materials Corrosion Inhibitors

Product Lime, Caustic Soda. Caustic Soda, Soda Ash, Sodium Bicarbonate. Magconol. Drilling Detergent. Lime, Bit Lube. NaCl. Magcogel, Spersene, XP-20, CMC, My-Lo-Jel. LMC, Mica, Nut Plug, Cell-O-Seal, Mud Fiber. Lime, Caustic Soda, Soda Ash, Sodium Bicarb. Lime, XP-20, NaCl. Drilling Detergent. Spersene, XP-20. Salt Gel, Magcogel, CMC, Sodium Bicarbonate. Barytes, NaCl. Lime.

;

AVAILABLE LOGS

Τ	Run	Depth be	Scales	
Туре	no.	m	ft.	available
IES	1	166- 419	545- 1374	1/200 1/500
×	2	415-1011	1360- 3318	*
«	3	1158-2195	3798- 7203	"
GR/BHC-Sonic	1	165- 411	1360- 3322	*
ĸ	2	415-1013	1360- 3322	«
*	3	1158-2194	3798-7197	*
GR/BHC-Sonic-C	1	2164-2679	7100- 8790	*
*	2	2649-3243	8690-10640	*
CAL	1	165-415	540-1360	*
LL-7	1	415-1160	1360- 3809	*
*	2	1158-2195	3798-7200	«
«	3	2164-3246	3798-10648	*
MLL-C	1	415-1015	1360- 3329	1/500
*	2	1158-2195	3798- 7200	"
«	3	2164-3243	7100-10640	«
FDC	1	415-1160	1360- 3806	1/200 1/500
*	2	1158-2195	3798- 7203	"
*	3	2164-2681	7100- 8795	"
«	4	2651-3243	8700-10640	«
SNP	1	415-1161	1360- 3810	*
*	2	1158-2196	3798- 7204	e e
*	3	2164-3243	7100-10640	*
CDM	1	1158-3237	3798-10620	1/200
CDM arrow plot	1	1158-3237	3798-10620	1/500
CBL	1	1067-1158	3500- 3798	1/200 1/500
SRS	1	121-3244	397-10643	1/500
TS	1	104- 442	341- 1450	1/1000
Mud	1	167-3269	547-10726	1/500

Table 4

•

	· · · · ·						•	· .				
	Depth interval	weight ppg 入	viscocity scc.MF火	waterloss cc. API	plastic viscocity	ge O min	els 10 min	alkal PH	imity PF	solids %	Cl ppm	Ca+My ppm
			L									
	0-1375	9.0	40	. –	-				-			-
	1375-3850	9.5	42	16	-	-	· · · · ·	10	-	-25		-
· · · · ·	3850-7200	10.2	50	12	25	throad 12	28	9월	0.3	18	22000	-
`	7200-8333	10.2	50	7	25	4	13	10	1.0	18	24000	400
1.4	8333-10726	11.3	50	6	20	0	8	12 ¹ /2	4.0	_	180000	600

2.06 MUD DATA AND CHEMICAL CONSUMPTION

.

CHEMICAL CONSUMPTION

,

i

1

ł

XXX. WELL 17/11-1

ı.

From 24/5. To 30/6/68

CIMETICALS		UNIT	Total Consumpt: PREVAINER MEEKS	ion UNIT COS!	T TOTAL COS		
* 							
Barytes	sacks	100 '1bs	2900	2.95	8555		
Salt Gel	sacks	80 lbs	967 -	4.67	4516		
Magaogel	sacks	100 lbs	1172	3.25	3809		
Lime	sacks	25 kg	130	1.875	244		
Spersene	sacks	50 lbs	1250	9.38	11725		
XP-20	sacks	50 lbs	332	9.64	3200		
CMC (L.V.)	sacks	56 1bs	290	12.28	3561		
Coustic Soda ×	sacks	112 lbs	587	9.94	5835		
🛫 Soda-Ash	sacks	112 1bs	604	5.08	3068		
Drilling Detergent	drums	55 gal	9	242.00	2178		
Magconol	drums/	55 gal	9	325.26	2927		
My-Lo-Gel LCM	sacks	56 lbs	449	7.11	3192		
Mica / /	sacks	56 lbs	-	5.69	-		
Nut Plug	sacks	25 kg		7.38	_		
Vell-O-Seal	sacks	28 1bs	-	4.00			
Mud Fiber	sacks	20 kg	~~	5.79	-		
Salt Nacl	sacks	50 kg	2484	2.16	5365		
Bit Lube	druns	55 gal	37	126.39	4676		
Pipe Lox	druns	55 gal	1	375.00	375		
Sodium Bicarbonate Boxfxxkxxcepx	der garasacks	112 lbs	10	5.72	57		
Total Mudchemicals .					63283		
Depth of well		107261	Mud cost/ft.		\$5.90		
Days drilling		37	Mud cost/day		\$1710		
			XOLDENKINOADSX XVIA	actocic construction	20043888c		
Minickorkisckitskiteri	edacacacaca	463283x					
CONSCR-DOCORENT	a areks	94xXIMXSC					
Closectrementoscox20	kadyalaistes						
COCCORD COCCORD COCCO	K XPROCHARDYCKOPX				•		
630530306996960000	Beterdez	L					
Mud chemicals consum	ed	\$63283	,	۲			
Chemicals wasted or	lost	\$ 3222					
Total chemicals cons		\$66505					

t

.

BA-78-100-1

24 NOV 1978 REGISTRERT OLJEDIREKTORATE

Technical Service Report <u>RKTR 0305.73</u> SOURCE ROCK AND CARBONIZATION EVALUATION WELL 17/11-1, NORWAY by CG K. Reiman & J.E.A.M. Dielwart

11-13

CONFIDENTIAL

The copyright of this CONFIDENTIAL document is owned by Shell Research BV

The Hague, which is responsible for the distribution listed within. Any further distribution must be authorised by the sponsoring Company/Function indicated on the title page. Before issue to non-Group Companies or organisations, the sponsoring Company/Function must obtain the agreement of the copyright owner. All recipients must use its contents with discretion.

KONINKLIJKE/SHELL EXPLORATIE EN PRODUKTIE LABORATORIUM RIJSWIJK, THE NETHERLANDS

Technical Service Report <u>RKTR 0305.73</u> SOURCE ROCK AND CARBONIZATION EVALUATION WELL 17/11-1, NORWAY by ICU,

al an air an a

K. Reiman & J.E.A.M. Dielwart

Sponsor: SIPM-EP/Norske Shell

ŗ

-41

4

7

In co-operation with:

J. Alblas J.H.H. Gales-Maas M.C.M. v.d. Knaap-Holierhoek

Investigation

912.895

Throughout the report the words 'Shell' and 'Group' are used collectively in relation to companies associated together under the name of the Royal Dutch/Shell Group of Companies. © Shell Research BV 1973

KONINKLIJKE/SHELL EXPLORATIE EN PRODUKTIE LABORATORIUM RIJSWIJK, THE NETHERLANDS

CONTENTS

			Page
•	I.	Introduction	1
	II.	Evaluation of source-rock properties	
	1.000	a. Source-rock indications	1
•	•	b. Type of organic matter	2
	III.	Maturity of the organic matter	
		a. General remarks and results	2
		b. Compatible fixed-carbon content	3
		c. True-layer fixed-carbon content	3
	IV.	Discussion and conclusions	5
	Refe	rences	6
	Figu	re 1. Map showing location of the well	
		2 · Fixed-carbon content as a function of depth	
• •		Fixed-carbon content histograms	•
	Encl	osure 1. Geochemical log	а.

- II -

I. INTRODUCTION

Geochemical investigations have been carried out on a suite of samples from the well as mentioned on the title page.

These investigations have been carried out to evaluate the presence and quality of source-rock layers, to establish the trend in fixed-carbon content, and to indicate the zone of possible oil and/or gas generation at the location of the well.

II. EVALUATION OF SOURCE-ROCK PROPERTIES

a. Source-rock indications

These indications have been determined for the original samples and, for those showing a high source-rock indication, also after extraction with warm chloroform.

The results are given in the geochemical log (enclosure 1). For the location of the well see figure 1.

The bars on the geochemical log are an approximate measure of the organic-carbon content of the samples. The column on the left represents indication of the organic-carbon content of the untreated samples, while the column on the right shows the organic-carbon content of the samples after chloroform extraction.

Moderate to high indications obtained for the original samples may indicate genuine source-rock properties or migrated oil, or may be due to the presence of contaminants such as diesel oil used in the drilling fluid. To distinguish between the first possibility and the latter two, original samples with strong indications are remeasured after extraction with chloroform. Intervals or samples with high indications after extraction are investigated microscopically to ensure that the high values indicate genuine source-rock properties and are not due to contaminants insoluble in chloroform (such as walnut shells or other lost circulation material of an organic nature).

b. Type of organic matter

Knowledge of the type of organic matter is important because it is known that organic matter rich in hydrogen¹ (kerogen, kerogenous) is a precursor of oil. Organic matter poor in hydrogen (humic) yields only gas. The types of organic matter recognised range from kerogenous, through mainly kerogenous, mixture and mainly humic, to humic. In this order, the type indicates decreasing concentrations of hydrogen in the organic matter.

- 2 -

The type of organic matter was determined by gas chromatography² as well as by microscopic inspection. Organic matter of humic type is a precursor of gas. Organic matter of mainly humic type is also considered to be a precursor of gas; if sufficient quantities are present it may also yield oil. Organic matter of mixed type is a precursor of light oil (usually of a paraffinic nature) and gas. Organic matter of mainly kerogenous and kerogenous types are precursors of oil and gas.

The results have been included in the geochemical log.

III. MATURITY OF THE ORGANIC MATTER

a. General remarks and results

It is important to determine the effect of temperature on the organic matter present in source rocks, since the generation of oil and gas is closely connected with the influence of relatively high temperatures. The effect of temperature (or the degree of maturity) was established by determining the rank of constituent coal particles³ by measurement of vitrinite reflectance⁴⁻⁶. Some 50 (maximum) reflectance measurements have been made for each sample, provided there was sufficient vitrinite present. The average value of these reflectances has been converted to fixed-carbon content (100 - volatile matter).

The results are plotted as function of depth in figure 2 in the form of fixed-carbon histograms. Any histogram that could not be accommodated on figure 2 is given in subsequent figures.

In general, the mode value of the histogram may or may not represent the true-layer fixed-carbon content (coal rank) of the stratum from which the sample is taken. The rank obtained from cuttings may have been influenced by vitrite from cavings. Alternatively, the rank may refer to reworked, resedimented or allochthonous vitrinite. However, it is probable that the coal rank obtained for samples with fixed-carbon histograms that have a rather sharp mode value does represent the true rank of the stratum from which the sample originates.

b. Compatible fixed-carbon content

The compatible fixed-carbon content (compatible FCC) is that which is in accordance with the present depth of burial and age of the formation in question. Knowledge of the compatible FCC is required to indicate the zone of possible oil generation (so-called cooking pot) 7,8 .

The dashed line in figure 2 indicates the compatible FCC. If only a solid line is given, the compatible FCC coincides with the so-called true-layer fixed-carbon content (true-layer FCC).

The compatible FCC values 60 and 75 indicate the limits of the zone in which oil generation may take place. Oil source rocks located within these limits are expected to generate oil. The major gas generation takes place below the level indicated by the compatible FCC 75.

In those cases where it can be assumed that the strata are presently at their maximum depth of burial, the compatible FCC also indicates the predicted true-layer FCC.

c. True-layer fixed-carbon content

The true-layer fixed-carbon content (true-layer FCC) is the FCC that a humic coal would have when subjected to the same burial as the formation in question.

The solid line in figure 2 is considered to indicate the trend of the true-layer FCC. It is based on those FCC values that are believed to be realiable. In this connection, it can be remarked that the standard deviation in the FCC measurement, including the variability occurring in nature, is 4 FCC units. The shape of the line, that is the rate of increase as a function of FCC is based on accumulated experience.

If the area has been uplifted, in the sense that the strata were once at greater depth, the true-layer FCC is higher than the compatible FCC. Source rocks with a true-layer FCC between 60 and 75 are mature for oil. If these source rocks have been uplifted, the true layer FCC is incompatible.

- 4

Mature source rocks for oil have generated oil when the relevant strata have dropped below the level of the compatible FCC 60. Mature source rocks for oil lying outside the interval between the compatible FCC 60 and 75 levels are not expected to generate oil at present. IV. DISCUSSION AND CONCLUSIONS

-

Interval 6830 - 7100 ft (Kimmeridgian/Oxfordian) and interval 7280 - 7790 ft (Jurassic/Triassic ?) contain source rocks for oil.

ile begine multile lee i vereen en een er een er een de er een gere meerste bestelen er tere een vereelige in t

a second a second of the second s

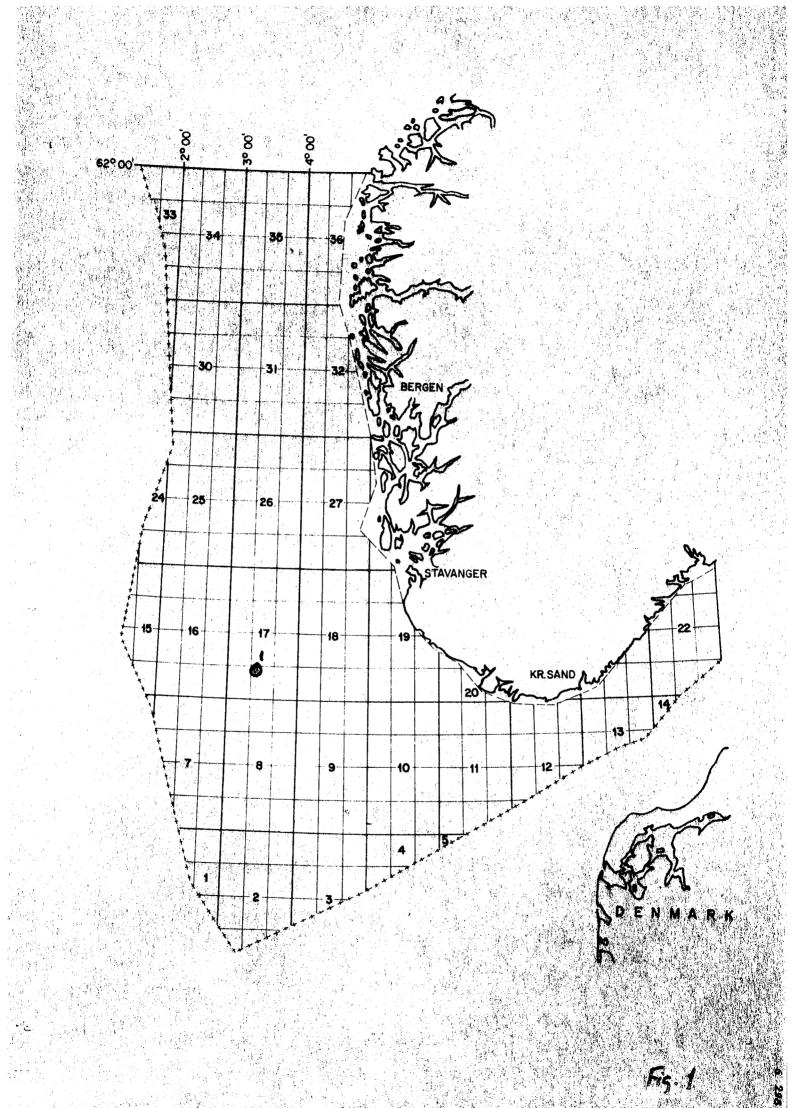
- 5 -

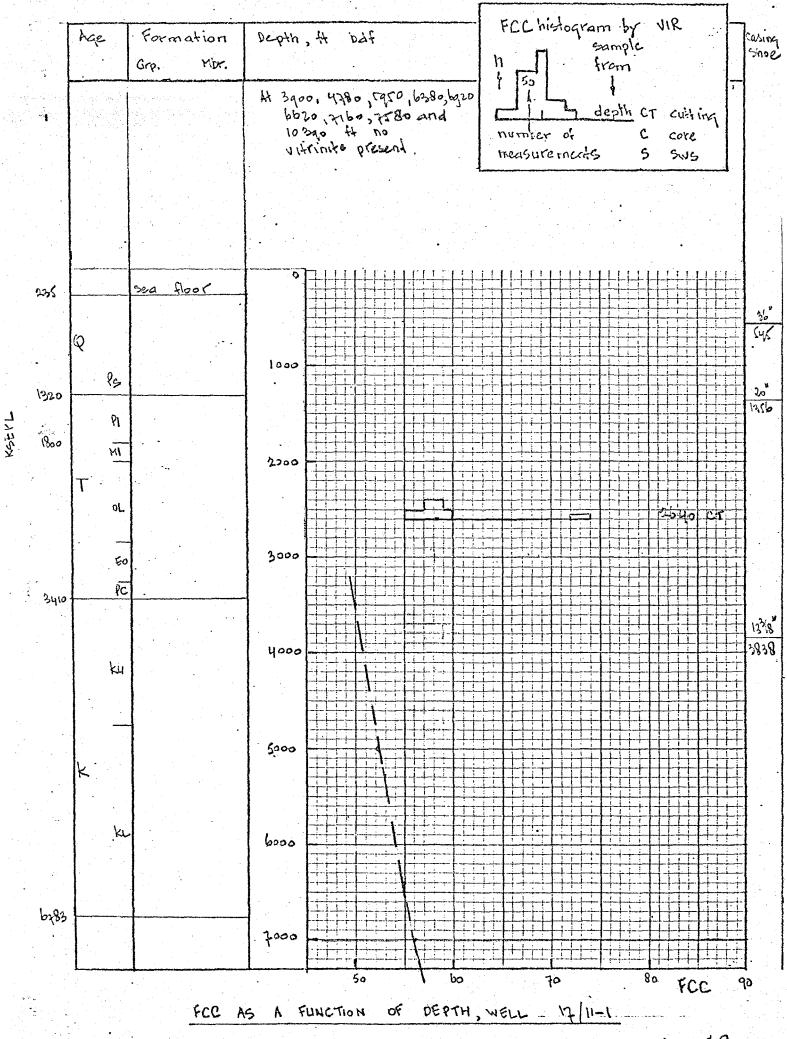
Same in the

·如此 教諭 1.14

Interval 7920 - 8950 ft (Triassic/Permian) and interval 10360 - 10540 ft (Permian) contain source rocks for oil. In these two intervals only interval 8885 -8895 ft shows a gamma ray intensity which could confirm the presence of source rock. The gamma ray intensity of the other source rock intervals below 7920 ft is somewhat higher than the background radiation but does not reach a level beyond that of indicating clay or potassium salt.

Reliable true-layer DOM values could not be obtained.


The top of the zone of possible oil generation or cooking pot at the location of well 17/11-1, as indicated by the level of compatible FCC 60, is at about 8000 ft.


REFERENCES

- Cane, R.F., The consitution and synthesis of oil shale.
 Proc. 7th World Petr. Congress <u>3</u> (1967), pp.681 689, Elsevier.
- Feugere, F. & Gerard, R.E., Geochemical logging a new exploration tool. World Oil, February 1970.

6

- 3. Ting, F.T.C., Reflectance of disseminated vitrinite as a diagenetic indicator in sedimentary rocks.
 4th Ann. Geol. Soc. Amer., Northeastern Sect. Meet. Program (1), 61, 1969.
- 4. Kötter, K., Die mikroskopische Reflexionsmessung mit dem Photomultiplier und ihre Anwendung auf die Kohlenuntersuchung. Brennst. Chemie <u>41</u> (1960), No. 9, pp. 263 - 272.
- De Vries, H.A.W. & Bokhoven, C., Reflectance measurements on coal. Geologie en Mijnbouw <u>47</u> (1968), No.6, p.243.
- 6. Wolf, M., Ein Inkohlungsprofil durch das Flözleere nördlich von Meschede.
 Erdöl und Kohle <u>22</u> (1969), No.4, pp. 185 187.
- 7. Vassoyevich, N.B., Korchagina, Yu.I., Lopatin, N.V. & Chernyshev, V.V., Principal phase of oil formation. Internat. Geol. Rev. <u>12</u> (1970), No.1.
- 8. Hood, A. & Gutjahr, C.C.M., Organic metamorphism and the generation of petroleum.
 Presented at a Symposium on Advances in Petroleum Geochemistry, Annual GSA Meeting, Minneapolis, November 1972.
- 9. Landes, K.K., Eometamorphism can determine oil floor. Oil and Gas Journal, <u>64</u> (1966), p.172.

F16: 20

•

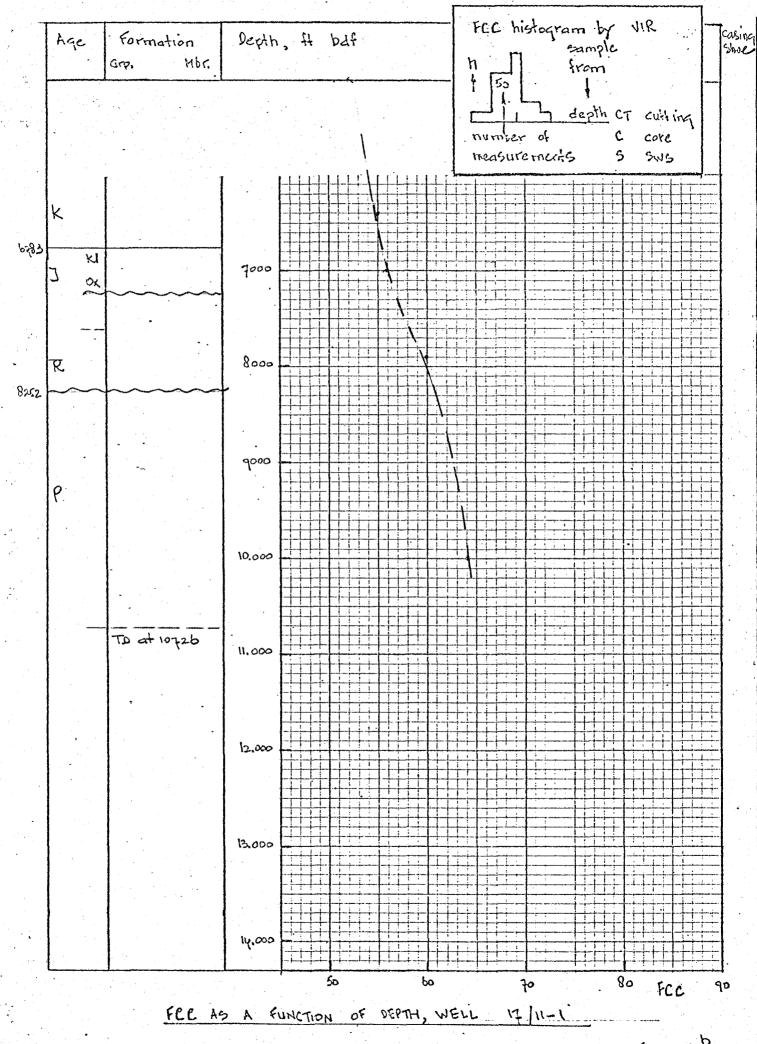
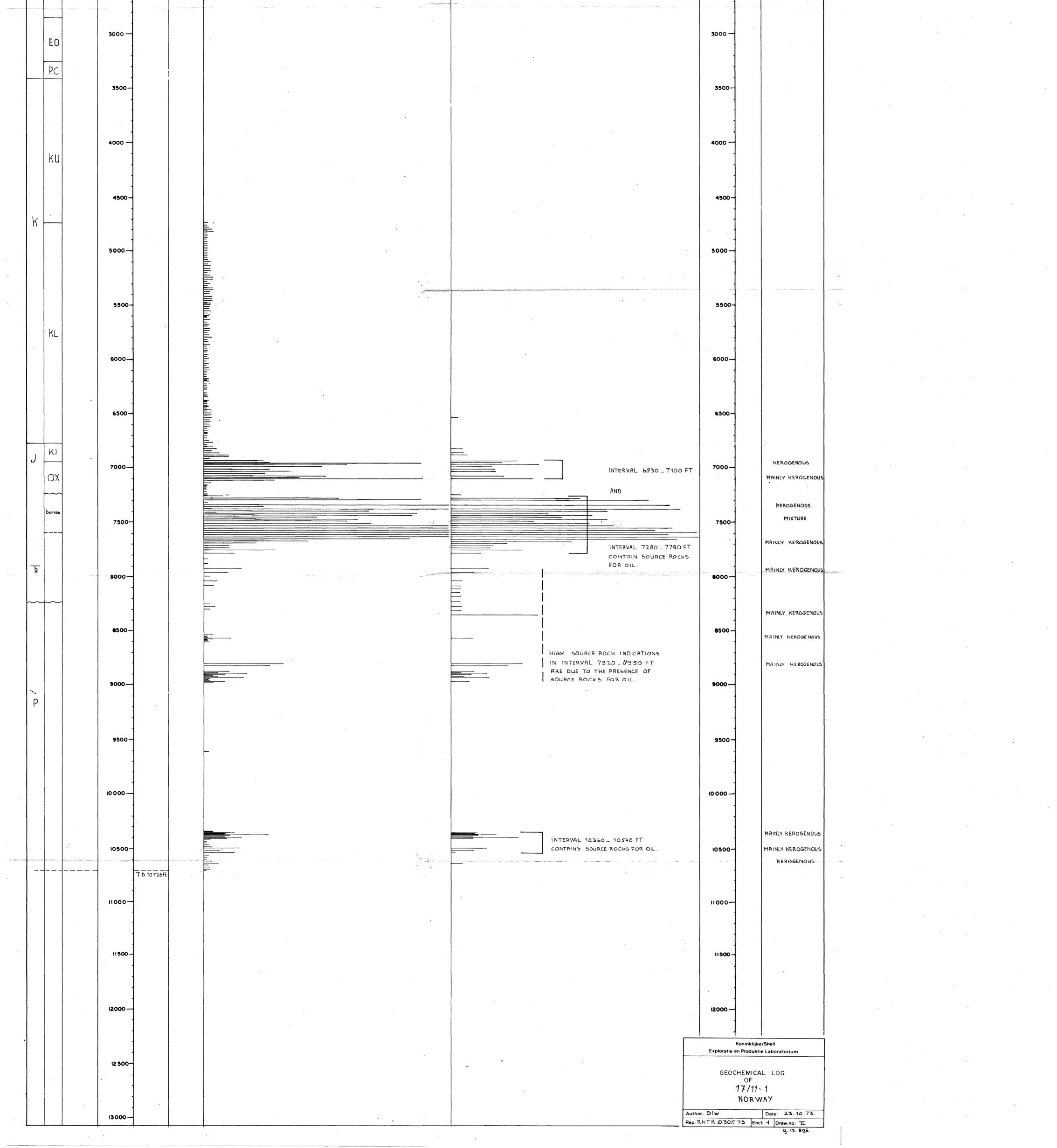


Fig: 20

•


GEOCHEMICAL LOG

WELL 17/11-1

SCALE 1:5000

· -

		FORMATION	DEPTH IN FT	ГІТНОГОGY	SOURCE ROCK INDICATION OF ORIGINAL SAMPLE			SOURCE ROCK INDICATION OF SAMPLE AFTER EXTRACTION WITH CHLOROFORM			RM	DEPTH IN FT		TYPE OF ORGANIC				
AGE		FOR	DEF		 100	200	300 I	400 I	500 I	600 I	100 20	0 300 I	4 00	500 60 1 1				MATTER
			o —		 ŗ						VALUES	SMALLER THAN NOT TO BE OF	SIGNIFICA)	0	-	
					n marina an						naanse van de maarte seelen gesterstere				ar aine dhe mei in se			
X			500	<u>seafloor</u>												500 -		·
			-													-		
			1000	E												1000 -		
	PS		-															,
	PI		1500-													1500-		
			-		- 											-		
	MI		2000 —	х.												2000		
			-													•		
	OL		2500 -													2500		

