5.3 <u>Formation Pressure Measurements</u>

A Dresser Atlas Pormation Multi Tester (FMT) with a HP quartz gauge was used for formation pressure measurements (fig. 5.3). One segregated sample was sent to the laboratory for PVT-analyses (ref. chapter 5.5). After evaluating the pressure measurements, 13 points have been used to define the oil/water contact. The pressure vs. depth plot defines the oil/water contact at 2586 m RKB (fig. 5.4). The oil gradient from the plot is 0.069 bar/m and the water gradient is 0.099 bar/m. PLT-logging during production test No. 1 (fig. 5.5) also proved mobile oil down to 2586 m RKB.

5.4 <u>Testing</u>

Two tests were carried out in the upper member of the Lunde Formation.

Before testing was initiated a cement squeeze was performed in the interval 2579 - 2580 m RKB to isolate the oil bearing sands above the perforation intervals of test No. 1.

Test No. 1, the exploration test, was carried out in two sands straddling the oil water contact. The sands were interpreted from the open hole logs to be separated by a 1 m shale section.

```
The perforated intervals were:
```

2579 - 2587 m RKB 2590 - 2596 m RKB

The depths refer to the CDL-CNL-GR log of March 13, 1987.

The test objectives were to:

- determine if movable oil exists in the "residual" oil zones and thereby determine the oil water contact,
- obtain formation water samples,
- measure the injectivity in the "residual" oil zone.

After the test a 7" liner was run to isolate the perforations and to give enough rathole to drop the guns in test No. 2.

Test No. 2, the special test, included 18 days of continuous production from five sands. The perforated intervals were:

2506.0 - 2512.5 m RKB 2517.0 - 2529.0 m RKB 2532.5 - 2535.5 m RKB 2544.0 - 2550.5 m RKB 2560.0 - 2566.0 m RKB

The test objectives were to:

- investigate the longer term production behaviour during commingled flow from several sands in the upper Lunde.
- investigate the relative zonal contribution to the total production as well as changes with time in the relative rates.
- qualitatively compare the results with the three dimensional geological/reservoir simulation model predictions,
- investigate the reservoir parameters and possible reservoir heterogeneities,
- obtain reservoir fluid samples,
- define, if possible, the interconnected pore volume drained during the test.

The main components of the test string were:

- Schlumberger tubing conveyed perforating system.
- Gun release with shifting tool.
- Three bundle carriers with pressure and temperature gauges with external and internal sensing.
- Standard Halliburton teststring with a downhole testervalve, circulating valves (including OMNI-APR) and retrievable packer.
- 4 1/2 inch IF Mannesmann tubing.
- Flopetrol subsea test tree, lubricator valve and surface test tree.

The main test results are shown in fig. 5.6.

The well has been temporarily abandoned with two memory gauges in the well. They are programmed to record 60-120 days of the final build-up after test No. 2.

Test No. 1, Exploration test:

The well was perforated with 45 bar underbalance to the formation. A 18 minutes initial flow was carried out and followed by a 4.5 hour initial build up period with downhole shut-in. Two clean up periods of 2 and 5 hours duration, respectively, were performed. Unsuccessful attempts to run in the hole with a gun release tool on a slick line were performed during the following build up periods. A thick emulsion or a waxy well fluid prevented the wireline tool from entering the well.

The well produced with a fairly stable rate of $405 \text{ Sm}^3/\text{d}$ during the main flow period of 30 hours. The water cut was 53%. The well was shut in at the downhole tester value for a 28 hours build up period.

A new clean up flow was carried out. The well fluid was then displaced by seawater, the slick line tool was run in the hole and the gun successfully dropped into the rathole. Finally the production logging tool, PLT, was run in the hole. Passes with the PLT were made while performing a 6 hours flow period with a rate of 650 Sm^3/d . After a short build up, filtered seawater treated with scale inhibitor, biocide and oxygen scavenger was injected into the formation at a final rate of 395 Sm^3/d . The 25 hours injection period was followed by a 6 hours fall off period.

An oil water emulsion was produced during the entire test. The emulsion was broken by injecting demulsifier at the subsea test tree and by running the separator at a high temperature. Small amounts of oil in the produced water were removed by flowing to the tank.

The main test results are listed in fig. 5.7.

The test performance is shown in fig. 5.8.

Test No. 2, Special test:

The well was perforated with 35 bar underbalance to the formation. An initial flow period of 12 minutes was carried out followed by a 3 hours build up with downhole shut-in. The well was then cleaned up for 5 hours and the perforation guns dropped into the rathole by use of a slick line releasing tool. A second 2.5 hours clean up flow was then performed and a production logging tool run in the hole and calibrated.

A multirate pretest flow was then carried out. The purpose of this pretest flow was to define the permeability and skin for each layer and to carry out the following build up with a minimum of cross flow. The spinner was located above each layer and rate changes introduced to measure the rate and pressure transients of the layers below. Before moving the tool to the next layers, logging passes over the perforated intervals were made. The flow rate was varied between 500 and 1740 sm^3/d . After the 26 hours pretest flow, the tool was positioned above the uppermost perforations and the well was shut in at the choke manifold for a 34 hours build-up period. A set of logging passes were performed after 3 hours of shut in.

The extended flow period was carried out with the production logging tool located below the lowermost perforations. Logging passes were performed after 1, 6, 13 and 18 days of flow. Except for a 53 minutes shut in period after 65 hours of flow, the well was flowed continuously for 18 days. After a small initial decline in the rate, a fairly constant rate was obtained.

The flowrate decreased from an initial value of 1550 to 1378 Sm^3/d with the wellhead pressure dropping from 176 to 161 bar. During the flow period, the wellhead temperature fluctuated between 24 and 35 deg C causing the choke performance to change and the flowrate to vary with up to 4%.

Before the well was shut in at the choke manifold, the PLT was located above the uppermost perforations. The final shut in period lasted for 35 hours and the test was then terminated.

Foaming problems were observed in the test separator and defoamer had to be injected during the entire test to obtain a good separation of the oil.

The main test results are given in fig. 5.9.

The test performance is shown in fig. 5.10.

5.5 Fluid Analyses

FMT sample

One segregated FMT chamber was collected at 2509 m RKB. The chamber contained approximately 2 litres of oil and 1.1 litres of water. Analyses showed the water to be mud filtrate.

Test No. 1

During the different flow periods in test No. 1, water samples were collected at regular intervals at the wellhead. Analyses of some of the ions were performed offshore and used to establish when constant composition of the produced water was reached. In addition water samples where collected and analysed for the tritium concentration since tritium was used as a tracer in the mud when the reservoir interval was drilled. The tritium analyses showed the water produced at the end of the test to be true formation water contaminated with less than 0.1% of mudfiltrate. In fig. 5.11 the formation water composition is listed.

During test No. 1, six sets of separator recombination samples were collected. PVT analyses have been performed on a reservoir fluid recombined from one separator oil and one separator gas sample. The main results are presented in figs. 5.12 and 5.13.

Trace component analyses were performed both offshore and onshore, with the results presented in fig. 5.14.

Test No. 2

During production test No. 2, 12 monophasic oil samples were taken at the wellhead, as the bubble point pressure of the fluid was below the wellhead flowing pressure. Seven sets of separator recombination samples were also taken at regular intervals during this long test.

PVT analyses have been performed on one of the monophasic oil samples, with the main results presented in figs. 5.13 and 5.15.

Trace component analyses were performed both offshore and onshore. The results are presented in fig. 5.14.

Depth <u>mRKB</u>	Hydros mud pr before		Temperatur	a Correcte
<u>mRKB</u>	-	ASSILLA		e correcte
<u>mRKB</u>	before	coour c	Formation	Pressure
<u>nRKB</u>		after		
	PSIA	PSIA	PSIA	BAR
RUN 2A				
2509.0	6151.0	6151.0	5566.4	383.79
2518.6	6174.0	6174.0	5575.6	384.42
2526.0	6192.0	6192.0	5583.0	384.93
2533.5	6211.0	6211.0	5591.0	385.49
2547.0	6243.5	6243.5	5603.7	386.36
2560.4	6276.0	6276.0	5617.1	387.28
2575.4	6314.5	6314.5	5713.7	393.95
2581.0	6327.5	6327.5	5622.7	387.67
2584.1	5974.0	5973.5	5641.3	388.95
2592.0	5996.5	5996.5	5652.7	389.74
2604.5	6025.5	6065.5	5669.5	390.91
2620.5	6065.5	6065.5	5695.0	392.66
2632.5	6096.5	6096.0	5712.7	3 93.88
2584.0*	5971.0	5971.0	5639.0	388.79
2584.4**	5971.5	5973.5	5638.7	3 88.77
2584.0* 2584.4** * Opened 2	5971.0 5971.5	5971.0	5639.0 5638.7	3 88. 79
Run 2B				
	5991.5	5991.5	5651.9	384.68

Date 6/87	Autt.	TF	Appr	BR	
Draw by	Ref	EPF			

- 75 -

	_	static	Temperature	e Corrected
	mud pr	essure	Formation	Pressure
	before	after		
<u>mRKB</u>	<u>PSIA</u>	PSIA	PSIA	BAR
Run 3D				
2509.0	5799.1	5798.2	5566.4	383.79
2526.0	5840.2	5838.8	5583.3	384.95
2547.0	5891.1	5889.5	5604.0	386.38
2557.8	5917.7	5914.8	5624.5	387.79
2575.2	5961.0	5958.6	5688.0	3 92. 17
2581.0	5972.8	5971.8	5638.9	388.79
2582.0	5975.2	5974.6	5639.1	388.80
2586.0	5985.8	5985.3	5642.9	389.06
2590.0	5997.2	5663.5	5663.5	390.48
2595.5	6010.7	6010.2	5657.4	390.06
2604.5	6032.7	6032.7	5670.7	390.98
2620.5	6073.6	6073.1	5692.9	392.51
2748.5	6391.0	6390.9	5875.9	405.13
2874.0	6704.0	6703.7	6058.5	417.72
2581.5*	5977.2	5978.4	5639.3	388.82

- 26 -

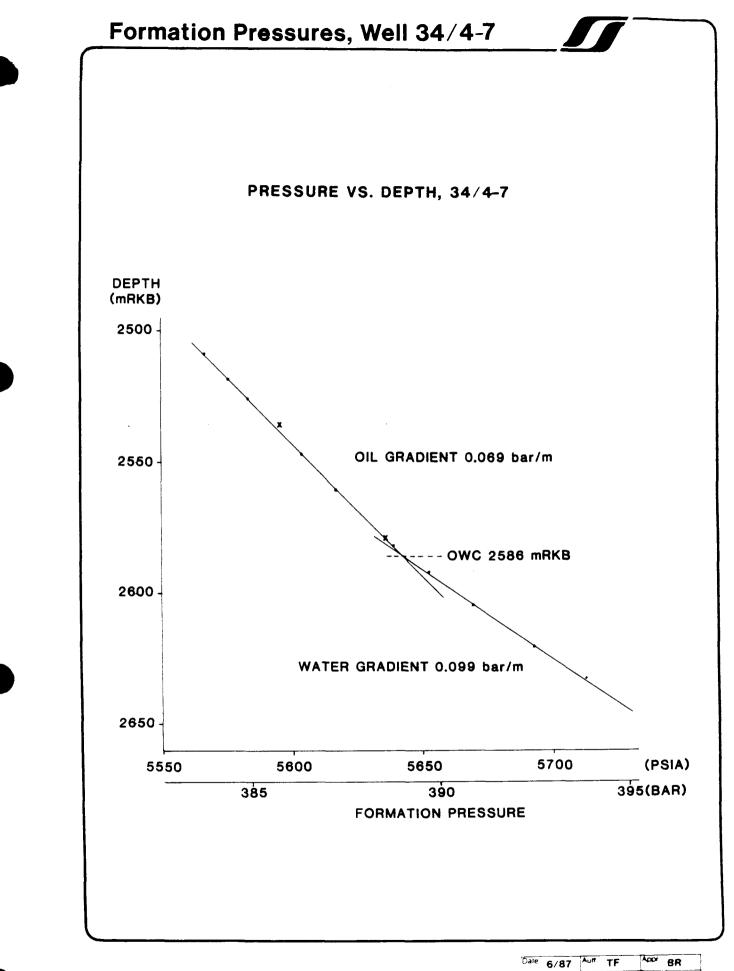
Depth	Hydros		Temperature	
	before	essure after	Formation	Pressure
PKB			DCTL	BID
<u>LRKB</u>	PSIA	<u>PSIA</u>	<u>PSIA</u>	BAR
Run 3E				
2581.3*	5974.0	5969.7	5640.6	388.91
2582.1*	597 6.4	5974.5	5637.3	388.68
2509.0**	5795.5	5796.5	5567.3	383.85
-	-	amber, lost s	seal.	
** Segregat	ed sample.			
Run 3F				
25 82.7¹	5974.4	5973.8	5640.8	3 88.91
2581.7 ¹	5973.0	5973.0	5638 ³	388.72
2580.9 ¹	5970.0	5972.0	56413	388.93
2580.2	5970.0	5971.0	5644 ³	389.14
2581.4 ¹	5975.0	5974.0	5642 ³	389.00
2583.3 ²	5978.0	5978.0	5643 ³	389.07
2581.8 ²	5974.0	5974.0	5640 ³	388.86
¹ Opened 2	3/4 gal cha	amber, lost s	eal.	
-		ing 1 gal cha		
³ Strain ga		-		

Date	6/87	Autt.	TF	ADDY	BR	_
Draw	Dy	Ref	EPF	•		

Formation pressure evaluation

- - - -

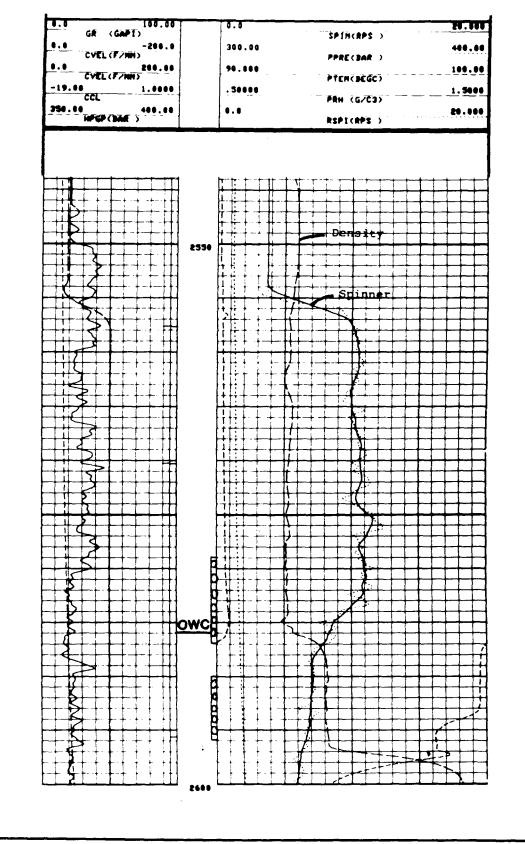
<u>RUN 2</u>A


Depth	Formation	Pressure	Quality
(mRKB)	(PSIA)	(BAR)	
2509.0	5566.4	383.79	e
2518.6	5575.6	384.42	е
2526.0	5583.0	384.93	e
2547.0	5603.7	386.36	e
2560.4	5617.1	387.28	e-m
2584.1	5641.3	388.95	e
2592.0	5652.7	389.74	e
2604.5	5669.7	390.91	e
2632.5	5712.7	393.88	e-m

RUN 3 D

Depth (mRKB)	Formation (PSIA)	Pressure (BAR)	Quality
2582.0	5639.1	388.80	e-m
2595.5	5675.4	390.00	e-m
2620.5	5692.9	392.51	e
2748.5	5875.9	405.13	e

e = excellent m = medium


Date 6/87	Autt.	TF	Actor	BR
Draw by	Ret	EPF		

- 78 -

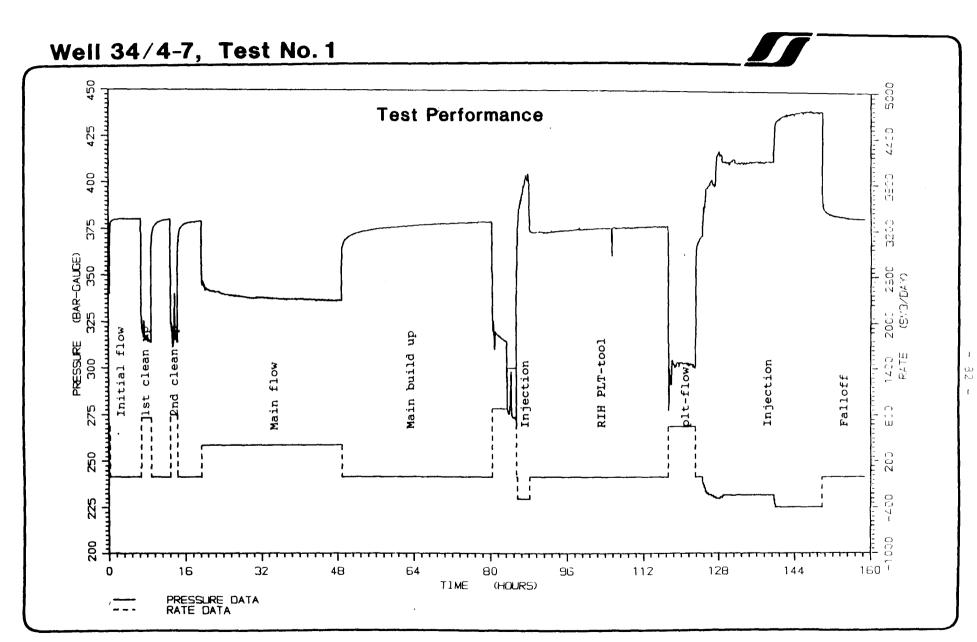
Fig. 5.4 Formation pressure vs depth, well 34/4-7

- 79 -

Fig 5.5 PLT-log test No. 1, well 34/4-7

Date 6/87 Auth Drawby AMJo Plet EPF Actor

Well 34/4-7


MAIN RESULTS WELL NO. 34/4-7 ++++++++++++++++++++++++++++++++++++	++++++++++++++++++++++++++++++++++++++	++++++++++++ 1	+++++++++++++ 2
Perforation interval (mRKB)	2579-2587 2590-2596		$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
		Injection	Production
Choke size (mm)	7.9		14.3
Oil rate (Sm3/D)	190		1378
Water rate (Sm3/D)	215	-395	0
Wellhead pressure (bar)	126	186	161
Wellhead temperature (deg. C)	21		32
Flowing bottom hole press. (bar)	337.8	441.3	339.3
Reference depth (mRKB)	2518.9	2518.9	2421.8
Gas-Oil ratio (Sm3/Sm3)	105		85
Separator pressure (bar)	24		48
Separator temperature (deg C)	64		57
Dead oil density (kg/Sm3)	833		835
Gas gravity (Air = 1)	0.81		0.73

- 80 -

BHP1) PI/II²⁾ TIME WHP WHT BHT TOTAL WATER GOR SEPARATOR RATE CUT PRESS TEMP (°C) (Sm^{3}/D) (%) $(Sm^{3}/Sm^{3})(bar)(°C)(Sm^{3}/D/bar)$ (bar) (°C) (bar) 31.3.87 2035 Perforate, initial flow period, chokesize = 3.2 mm 2048 66.9 7.2 343.3 86.5 645 -- -16.1 2053 Shut in well downhole 1.4.87 0320 1st clean up flow period, chokesize increasing from 6.4 mm to 11.1 mm 0350 52.2 9.8 320.6 92.6 710 -----------11.3 0520 Shut in well downhole 0930 2nd clean up flow period, chokesize = 11.1 mm 1035 98.3 17.1 318.5 96.7 786 -12.1 1059 Shut in well at surface 1600 Main flow period, chokesize = 7.9 mm 2130 126.5 14.1 341.0 97.9 418 53 108 24 64 9.9 2.4.87 2130 126.0 20.8 337.8 98.8 405 53 105 24 64 8.9 2132 Shut in well downhole 4.4.87 0930 3rd clean up flow period, variable chokesizes 0945 67.0 32.3 275.9 99.6 900³ 59³ -8.4 1059 Shut in well at surface Bullhead tubing content with seawater and release the gun Run in the hole with PLT 5.4.87 1749 PLT flow period, chokesize = 11.1 mm 2300 100.6 19.9 303.6 99.4 633 46 112 20 63 7.9 2340 Shut in well at surface 6.4.87 0108 Injection period 0130 187.2 - 390.5 96.7 -133 18.5 1604 Increase injection rate 2330 185.8 - 441.3 43.4 -395 6.8 7.4.87 0220 Shut in well at surface 1) BHP reference, SDP 85373 at 2518.9 mRKB Pi = 383.3 bar at 2518.9 mRKB 2) 3) Unstable separator conditions

- 31 -

Fig. 5.7 Main test results

6/87 Auth Appi Oate IV Draw by AMJO EPF

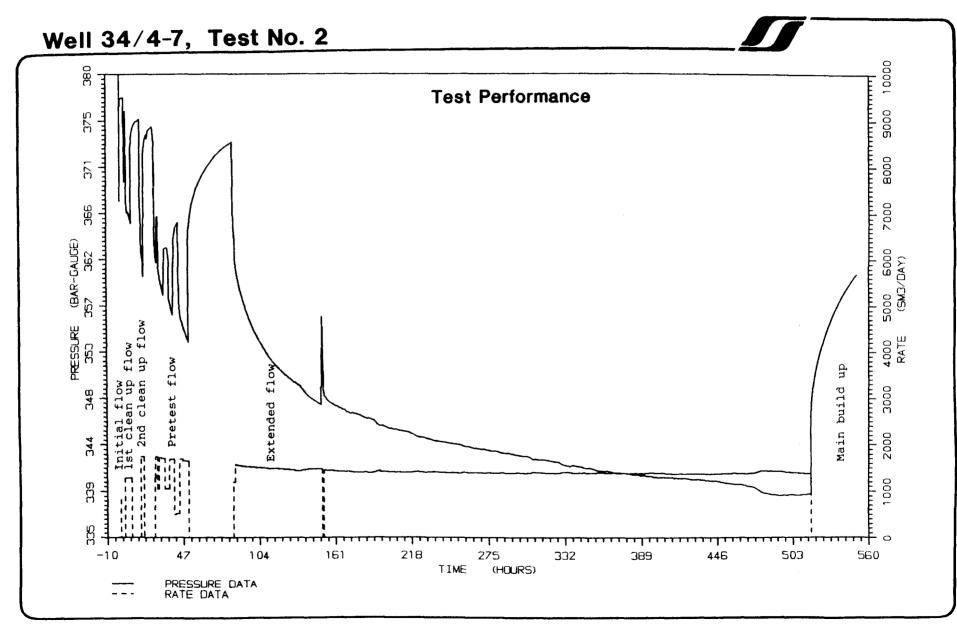
TIME	WHP (bar)	WHT (°C)	BHP1) (bar)	BHT ¹⁾ (°C)	OIL RATE (Sm ³ /D)	GOR (Sm ³ /Sm ³)	SEPAR PRESS (bar)	TEMP	pl2) (Sm ³ /D/bar
0150	Perforate 35.1	8.0		period,	choke si: 691	ze = 15.9 mm	1		
0155	Shut in v	vell dow	mhole						
0900 1001 :	lst clear 187.9 Shut in v Release t	20.7 vell dov	366.1	size = 92.9		94	43	63	109
1800 1910 :	2nd flow, 174.9 Shut in v Run in th	21.7 well at	362.2 surface	94.1	1743	84	49	55	112
14.4.	87								
0309 0415	Pretest f 172.6.	Elow, ch 20.0				_	47	60	111
0430 0600	Choke siz 192.5			94.7	1046	91	45	64	90
	Choke siz 172.7		.9 mm. 358.6	95.6	1702	80	58	66	89
1033 1300	Choke siz			95.5	1049	84	55	67	71
1406 1700	Choke si: 171.5			96.0	1678	80	58	67	79
1736 2100	Choke si: 198.8			95.5	517	-	50	66	43
2141	Choke si:	ze = 15	.9 mm						
15.4. 0000		27 .4	355.8	96.3	1007	76	67	67	46

- 83 -

Fig. 5.9 Main test results

Dale 6/87 Auth IV Draw by AMJo Per EPF ADDr

TIME	WHP	WHT	BHP1)	BHP ¹⁾ BHT ¹⁾ OIL GOR SEPARATOR RATE PRESS TEMP		pI ₂)					
	(bar)	(°C)	(bar)	(°C)	$(\mathrm{Sm}^3/\mathrm{D})$	(sm ³ /sm ³)	(bar)(°C)		(Sm ³ /D/bar		
16.4	87		<u></u>								
		flow.	chokesize	= 14 3	mm						
1800	176.0	23.8	359.9	96.2	1550	74	59	52	87		
	27010	20.0	557.7		1330		59	52	07		
17.4.	. 87										
0000	174.2	23.2	357.0	96.5	1524	73	60	52	73		
1200	172.1	25.9	353.6		1496	74	59	54	62		
								•••	•2		
18.4.	. 87										
0000	170.5	27.5	351.4	96.7	1480	74	61	55	56		
0847	Shut in	well at	surface								
0940	Reopen w	ell									
1200	170.0	29.8	350.0		1452	76	61	58	52		
19.4.	. 87										
0000	168.0	24.7	348.6	96.8	1473	74	61	53	50		
1200	168.8	27.7	348.4		1442	77	60	58	49		
20.4.											
0000	168.3	29.3	347.4	96.8	1427	76	61	57	47		
1200	168.3	33.5	346.9		1406	76	61	57	45		
21.4.		22.6	246 2	06 0	1406	75	63	56	45		
0000	167.6	33.6	346.3	96.9	1406	75	61	56 57	45		
1200	166.5	31.2	345.6		1420	76	60	57	44		
22.4	97										
0000	166.7	30.4	345.3	96.9	1403	7 6	60	56	43		
1200	165.9	28.6	344.7		1417	76	60	56	43		
1200	105.5	20.0	511.7		111/	, 0					
23.4	. 87										
0000	165.6	30.3	344.3	96.9	1413	75	61	57	42		
1200	165.6				1399	75	59	55	41		
					- <u>-</u>	-		-			
24.4	.87										
0000	165.3	33.1	343.7	96.9	1398	75	60	57	41		
1200	165.0	32.9			1395	76	60	57	41		
25.4	.87										
0000	164.8	33.7	343.2	96.9	1395	76	60	56	40		
1200	164.5	34.7	342.9		1391	76	5 9	56	40		


Date 6/87 Auth IV Draw by AMJo Per EPF ADDr

- 84 -

ſ

TIME	WHP	WHT	BHP1)	BHT1)	OIL RATE	GOR	SEPARI PRESS		PI ²⁾			
	(bar)	(°C)	(bar)	(°C)	(Sm ³ /D)	(sm ³ /sm ³)	(bar)(°C)		(Sm ³ /D/bar)			
26.4.87												
0000	164.0	32.9	342.6	96.9	1398	74	61	57	40			
1200	163.9	33.4	342.4		1387	86	48	57	39			
27.4.8												
0000	163.1	29.9	341.9	96.9	1407	86	47	56	39			
1200	163.1	31.7	341.8		1394	86	47	57	39			
28.4.8												
0000	162.6	29.5	341.4	96.9	1399	86	48	57	38			
1200	162.4	30.3	341.2		1401	86	47	56	38			
29.4.8					1007	04	47	. 7	38			
0000	162.5	30.8	341.2	96.9	1387	86 86	47 46	57 55	38			
1200	162.1	32.3	340.9		1391	80	40	55	38			
30.4.				06 0	1205	86	48	57	38			
0000	162.4	32.7	340.9	96.9	1385 1376	87	40	58	37			
1200	162.3	32.7	340.7		1370	07	,	50	57			
01.5.		<u> </u>	242 6	06.0	1265	85	49	5 6	37			
0000	162.4	31.4	340.6 340.5	96.9	1365 1369	85	49	54	37			
1200	162.2	33.2	340.5		1303		10	51	0.			
02.5.		22.6	240.2	06 0	1200	85	48	57	37			
0000	161.9	33.6	340.3 340.1	96.9	1380 1380	85	40	55	37			
1200	161.5	30.1	340.1		1300	05		55	•			
03.5.		24.0	220 E	96.6	1424	85	49	57	37			
0000 1200	160.0 159.7	24.0 25.0	339.5 339.1	90.0	1424	85	48	56	37			
1200	159.7	23.0	553.1		1727		•					
04.5. 0000	87 160.2	27.8	339.1	96.7	1393	85	48	56	36			
1200	160.2	31.3	339.3		1379	86	48	57	36			
			surface									
		-				0 P KD						
			ence, SD 1 2421.8		at 2421.	5 MKKB						
<i>L</i> / fl		U DAL O										

Date	6/87	Auth	IV	Acor
Drawl	* AMJo	Ref	EPF	

၊ ယက ၊

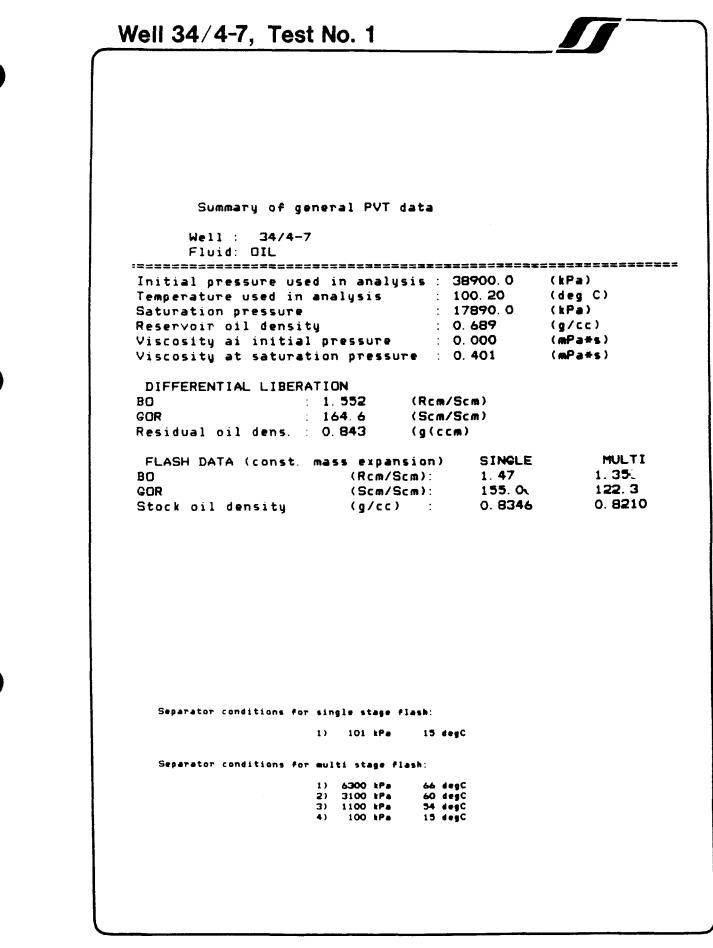
Date 6/87 Auth IV Draw by A A Feel For Appr

FORMATION WATER COMPOSITION

- 87 -

DISSOLVED SOLIDS

	mg/l	me/l
<u>Cations</u>		
Sodium	11700	509
Calcium	2330	116
Magnesium	202	16.6
Barium	3.89	-
Iron (dissolved)	1.02	-
Iron (total)	8.46	-
Potassium	350	8.95
Strontium	274	6.25
Anions		
Cloride	23200	654


Cloride	23200	0.74
Sulfate	82.6	1.72
Carbonate	-	
Bicarbonate	277	4.54

pH (measured at 18.6°C): 6.47Specific gravity: 1.0288Resistivity (ohm-m) at 25°C : 0.171

Date 8/87 Auth JMH ADD JMH Draw by AMJO Pet EPR

.

Figure 5.11 Formation water composition

- 38 -

Γi	gure	5.	12	Genera	a 1	ΡV	Т-	da	t	9
----	------	----	----	--------	-----	----	----	----	---	---

Deeto 9/8	7 Fort	JMH	Godki	JMH
Tegn av AM	Jo Ref.	EPR		

RESERVOIR FLUID COMPOSITION, TEST NO. 1

Well :34/4-7 Fluid: OIL

							•		4	(g/	cc)	
Compone	ntli	nol	7.	10	ot %		- m o	1	wti	den	situ	ł
c02		0.	22		0.	10	 1	0.	00:	0.	000	
N2	1	1.	36	;	Ο.	40	:	0.	00:	0.	000	
C1	1	35.	69	:	6.	07	:	0.	00:	0.	000	
C2	1	8.	26	;	2.	63	ł	0.	00:	0.	000	
CЗ	;	8.	21	ł	З.	84	:	0.	00:	0.	000	
i-C4	:	1.	18	1	Ο.	73	:	0.	00:	0.	000	
n-C4	:	4.	35	;	2.	68	;	0.	00	0.	000	
i-C5	;	1.	43	1	1.	09	;	0.	00	0.	000	
n-C5	:	2.	20	ł	1.	68	:	0.	00	0.	000	
C6	:	2.	90	:	2.	59	1 8	4.	201	0.	670	
C7	:	34.	20	:	78.	19	:21	5.	80	O .	849	

RESERVOIR FLUID COMPOSITION, TEST NO. 2

Well : 34/4-7 Fluid: OIL

										(g/	cc)	
Component	+	o l	%	-+- ¦w	t %	+		1	wt	+	en	situ	,
C02	·+- ;	0.	22	-+ ;	0.	10	 ;	0.	00	:	0.	000	
N2	:	1.	10	;	0.	33	1	0.	00	:	0.	000	
C1	;	36.	81	:	6.	33	t	0.	00	1	0.	000	
C2	;	8.	69	:	2.	80	:	0.	00	ł	0.	000	
C3	ł	8.	39	;	З.	97	t	0.	00	:	0.	000	
i-C4	:	1.	19	:	0.	74	:	0.	00	1	0.	000	
n~C4	1	4.	21	t	2.	62	:	0.	00	;	0.	000	
i-C5	;	1.	35	;	1.	04	ļ	0.	00	:	0.	000	
n-C5	:	2.	03	:	1.	57	!	0.	00	1	0.	000	
C6	:	2.	61	;	2.	36	: 6	34.	50	:	0.	670	
C7	;	33.	40	t	78.	14	:21	9.	00	1	0.	817	

Deto	9/87	Fort	JMH	Godky	JMH
Tegn	MAJo	Ref	EPR		

- 89 -

	Production	Production
	test no. l	test no. 2
Gas phase		
H ₂ S (ppm-mol)	<0.1	<0.1
Mercaptanes (ppm-mol)	<0.1	<0.1
CO ₂ (mol %)	0.30-0.40	0.30
Radon-222 (Bq/1)	0.37	0.03-0.14
H ₂ O (mg/1)		1.9-7.1
Total mercury (µg/m ³)	2.0-2.7	3.7-17.7
Helium (mol %)	0.020	0.010-0.015

- 90 -

<u>Oil phase</u>

-

Density (g/cm ³)	0.83
Water (mg/l) at 20°C	1000-2207
Total sulphur (Wt %)	0.15
Polonium-210 (Bg/1)	0.1-0.2
Nickel (ppm-weight)	1.2
Vanadium (ppm-we ight)	1.3
Mercury (µg/l)	<0.001-0.004

	Summar	y of ge	neral P	PVT dat	a		
	Fluid:						
In Te Sa Re Vi	itial press nperature u turation pr servoir oil scosity ai scosity at	ure use sed in essure densit initial	d in ar analysi y pressu	alysis is ure	: 38 : 10 : 18 : 0.	600.0 0.80 450.0 667 397	(kPa) (deg C) (kPa) (g/cc)
BO GOI		:	1. 573 170. 7	(9		m)	
80 GO!			(Ro (So	m/Scm) m/Scm)	:	SINGLE 1.48 150.7 0.8300	1.41 130.0
	Separator cond	itions for	-	-	1: L5 degC		·
	Separator cond	4	1) 101		-		
	Separator Lung		1) 6300 2) 3100 3) 1100 4) 100	tPa tPa tPa	56 degC 50 degC 54 degC 13 degC		

- 91 -

	Fort	Godiu
9/87	LJMH	
Tegn # AMJo	EPR	

6.2.1 MUD PROPERTIES, DAILY REPORT Well no: 34/4-7

Date	Hole size	Hole depth	Mud weight	PV	YP	Gel strength 	рН 	Alkalinity Pf / Mf 	Ca++ mg/l 	Cl- mg/l 	Sand X	Solids %	Mudtype
870214		.0	1.03										WATER BASED
870215		.0	1.03										WATER BASED
870216		.0	1.03										WATER BASED
870217	36	422.0	1.06										SPUD MUD
870218	36	470.0	1.06										SPUD MUD
870219	36	470.0	1.06										GEL MUD
870220	17-1/2	680.0	1.12	4	25		9.0						GEL MUD
870221	17-1/2	915.0	1.14	4	26	13/24	9.0						GEL MUD
870222	26	915.0	1.14	7	34	16/24	9.0						GEL MUD
870223	26	915.0	1.16	6	31	19/28	8.5						GEL MUD
870224	26	915.0	1.03										SPUD MUD
870225	17-1/2	915.0	1.03										SPUD MUD
870226	17-1/2	1113.0	1.16	20	22	2/4	8.0	0.0/0.2		1200	0.8	5.0	GYP/POLYMER MUD
870227	17-1/2	1480.0	1.20	20	21	5/6	8.5	0.0/0.2		1800	1.4	7.0	GYP/POLYMER MUD
870228	17-1/2	1644.0	1.30	25	23	5/7	8.0	0.0/0.2		1700	1.2	11.5	GYP/POLYMER MUD
870301	17-1/2	1887.0	1.47	24	22	6/14	9.0	0.2/0.5		1600	0.8	16.0	GYP/POLYMER MUD
870302	17-1/2	1887.0	1.47	24	20	6/15	9.0	0.1/0.4		1800	0.8	16.0	GYP/POLYMER MUD
870303	17-1/2	1887.0	1.47	21	15	6/13	9.0	0.0/0.2		1700	0.9	15.5	GYP/POLYMER MUD
870304	17-1/2	1887.0	1.47	21	17	6/16	9.0	0.1/0.5		1800	0.9	15.5	GYP/POLYMER MUD
870305	12-1/4	2145.0	1.58	23	21	7/35	10.0	0.2/0.6		2100	0.5	19.5	GYP/POLYMER MUD
870306	12-1/4	2298.0	1.68	26	24	4/56	10.0	0.2/0.6		2800	0.5	23.0	GYP/POLYMER MUD
870307	12-1/4	2407.0	1.70	26	27	13/72	10.0	0.3/0.9		3000	0.5	25.0	GYP/POLYMER MUD
870308	12-1/4	2471.0	1.70	23	16	4/7	8.0	0.1/0.2		65000	0.5	19.5	KCL MUD
870309	12-1/4	2512.0	1.70	23	18	4/6	9.0	0.1/0.8		65000	0.5	24.0	KCL MUD
870310	12-1/4	2563.5	1.70	26	18	4/6	8.5	0.1/0.4		65000	1.0	24.0	KCL MUD
870311	12-1/4	2591.3	1.70	24	16	4/7	8.5	0.1/0.7		63000	0.3	24.0	KCL MUD
870312	12-1/4	2647.0	1.70	25	18	5/11	8.5	0.1/0.7		63000	1.0	24.0	KCL MUD
870313	12-1/4	2647.0	1.70	25	18	5/10	8.5	0.1/0.7	480	63000	1.0	24.0	KCL MUD
870314	12-1/4	2647.0	1.70	27	17	4/9	8.5	0.1/0.8	400	63000	0.5	24.0	KCL MUD
870315	8-1/2	2675.0	1.70	25	17	4/11	8.0	0.1/0.6	400	63000	0.8	24.5	KCL MUD
870316	8-1/2	2711.5	1.70	25	17	5/11	9.0	0.2/0.9	320	63000	0.8	25.0	KCL MUD

6.2.1 MUD PROPERTIES, DAILY REPORT Well no: 34/4-7

Date	Hole size	Hole depth	Mud weight	PV	۲P	Gel strength	рН 	Alkalinity Pf / Mf 	Ca++ mg/l 	Cl- mg/l 	Sand X	Solids X	Mudtype
870317	12-1/4	2792.0	1.70	25	15	4/12	8.5	0.1/0.6	360	63000	0.8	25.5	KCL MUD
870318	12-1/4	2950.0	1.70	25	17	4/24	9.5	0.1/0.8	420	60000	1.5	26.0	KCL MUD
870319	12-1/4	2950.0	1.70	24	14	4/14	9.5	0.1/0.5	380	58000	1.0	26.0	KCL MUD
870320	12-1/4	2950.0	1.70	23	13	3/14	9.5	0.1/0.5	380	58000	0.5	26.0	KCL MUD
870321	12-1/4	2950.0	1.70	22	11	3/12	9.5	0.1/0.5	380	58000	0.5	26.0	KCL MUD
870322	12-1/4	2950.0	1.70	22	9	3/13	9.2	0.1/0.5	380	56000	0.5	26.0	KCL MUD
370323	12-1/4	2950.0	1.70	22	9	3/13	9.2	0.1/0.5	380	56000	0.5	26.0	KCL MUD
870324	PB	2869.0	1.70	20	10	3/9	9.0	0.1/0.4	320	50000		24.0	KCL MUD
870325	PB	2869.0	1.70	13	9	3/8	10.5	0.5/0.9	800	38000		24.0	KCL MUD
870326	PB	2869.0	1.70	14	9	6/15	12.0	2.0/2.8	400	40000		25.0	KCL MUD
370327	PB	2869.0	1.70	12	11	8/19	11.5						KCL MUD
370328	PB	2869.0	1.70										BRINE
370329	PB	2869.0	1.70										BRINE
370330	РВ	2869.0	1.70										BRINE
370331	PB	2869.0	1.70										BRINE
370401	PB	2869.0	1.70										BRINE
370402	PB	2869.0	1.70										BRINE
870403	PB	2869.0	1.70										BRINE
70404	РВ	2869.0	1.70										BRINE
370405	PB	2869.0	1.70										BRINE
370406	PB	2869.0	1.70										BRINE
370407	PB	2869.0	1.70										BRINE
870408	PB	2784.0	1.70										BRINE
870409	PB	2738.0	1.70										BRINE
370410	PB	2738.0	1.70										BRINE
370411	PB	2738.0	1.70										BRINE
370412	PB	2738.0	1.70										BRINE
370413	PB	2738.0	1.70										BRINE
370414	PB	2738.0	1.70										BRINE
870415	PB	2738.0	1.70										BRINE
370416	PB	2738.0	1.70										BRIN

6.2.1 MUD PROPERTIES, DAILY REPORT Well no: 34/4-7

Date	Hole size	Hole depth 	Mud weight	PV	YP	Gel strength 	рН 	Alkalinity Pf / Mf	Ca++ mg/l 	Cl- mg/l	Sand %	Solids X	Mudtype
870417	РВ	2738.0	1.70										BRINE
870418	PB	2738.0	1.70										BRINE
870419	PB	2738.0	1.70										BRINE
370420	PB	2738.0	1.70										BRINE
370421	PB	2738.0	1.70										BRINE
370422	PB	2738.0	1.70										BRINE
370423	PB	2738.0	1.70										BRINE
370424	PB	2738.0	1.70										BRINE
370425	PB	2738.0	1.72										BRINE
370426	PB	2738.0	1.70										BRINE
370427	PB	2738.0	1.72										BRINE
370428	PB	2738.0	1.72										BRINE
370429	PB	2738.0	1.72										BRINE
370430	PB	2738.0	1.72										BRINE
370501	PB	2738.0	1.72										BRINE
370502	PB	2738.0	1.72										BRINE
370503	PB	2738.0	1.72										BRINE
370504	PB	2738.0	1.72										BRINE
370505	PB	2738.0	1.72										BRINE
370506	PB	2738.0	1.70										KCL MUD
370507	PE	2738.0	1.70		_								KCL MUD
870508	PB	2738.0	1.70	12	16	18/29	9.5	0.2/1.6		27000	0.8	24.0	KCL MUD
370509	PB	2738.0	1.70	14	26	19/27	10.5	1.0/2.3		35000	0.8	25.0	KCL MUD
870510	PB	2493.0	1.71	17	26	21/28	10.5	1.6/1.6		25000	0.8	23.5	KCL MUD
370511	PB	632.0	1.71	14	27	19/26	10.5	0.8/2.2		28000	0.8	23.0	KCL MUD

6.2.2 MUD MATERIALS USED

Well no: 34/4-7

Materials	Unit	36 in hole	26 in hole	17-1/2 hole	12-1/4 hole	8-1/2 hole	Total
BARITE	M/T	0	36	404	952	242	1634
BICARBONATE	50 KG	Ő	0	0	9	6	15
CAUSTIC SODA	25 KG	5	9	20	30	33	97
GYPSUM	50 KG	Ő	ó	434	9	0	443
LIME	40 KG	18	10		, 0	0	28
KCL-powder	40 kg	, 0 0	0	0	586	0	586
KwickSeal F/M	40 Lb	0	0	0	21	Ő	21
KOH -POTASS.	50KG	Ö	Ö	Ő	45	1	46
SODA ASH	50 KG	Ő	Ő	ŏ	1	Ó	-0
BENTONITE	M/T	25	30	5	7	8	75
BENTONITE	50 KG	0	0	40	ņ	Õ	40
ANTISOL FL 10	25 KG	Õ	õ	63	147	Õ	210
ANTISOL FL 30	25 KG	Ő	õ	219	87	17	323
BORREWELL C	25KG	õ	ō	0	52	87	139
DOWICIL 75	55GAL	õ	õ	õ	1	2	3
MAGCO 101 INH	55 GA	õ	ō	õ	3	16	19
OS-1L	55GAL	Ō	0	0	1	0	1
XC-POLYMER	25 KG	ō	Ō	7	28	12	47
KCL - BRINE	BBL	Ō	Ō	0	1110	0	1110
XP-20	50 LB	Ō	Ō	0	26	5	31
Ammonium Bisu	55 ga	Ō	ō	Ō	0	2	2
MPOC-freeing	55 ga	ō	ō	ō	4	0	4
··g	- 3-						