Well no: 2/2-02 Operator: SAGA Coordinates : 56 56 40.61 N UTM coord. : 6311426 N 523099 E Licence no : 066 Permit no : 336 Rig : DYVI ALPHA Contractor : DYVI OFFSHORE A/S Bottom hole temperature : 93 deg.C Elev. KB : 25 M Spud. date : 82.07.05 Water depth : 66 M Spud. class : WILDCAT Form. at TD : PERMIAN Compl. class : P&A. GAS DISCOVERY Prod. form : Seisloca : SG 8052 - 302 SP 285 ### LICENSEES 5,000 ARCO NORWAY INC. 10,000 NORSK HYDRO PRODUKSJON A.S 25,000 MOBIL DEVELOPMENT NORWAY A/S 10,000 SAGA PETROLEUM A.S 50,000 DEN NORSKE STATS OLJESELSKAP A.S # CASING AND LEAK-OFF TESTS | Type | Casing
diam. | Depth
below KB | Hole
diam. | Hole depth
below KB | Lot mud eqv. g/cm | |-------------|-----------------|-------------------|---------------|------------------------|-------------------| | | | | | | | | CONDUCTOR | <i>30</i> | 203,0 | 36 | 206,0 | | | SURF. COND. | 20 | 706,0 | 26 | 715,0 | 1,57 | | INTERM. | 13 3/8 | 1945,0 | 17 1/2 | 1965,0 | 1,77 | | INTERM. | 9 5/8 | 3103,0 | 12 1/4 | 3124,0 | • | # CONVENTIONAL CORES | Core no. | Intervals cored | Recovery | Series | | | |----------|-----------------|-----------|--------------|--|--| | | meters | м % | | | | | | | | | | | | 1 | 1979.3 - 1996.9 | 15.0 85.2 | L. OLIGOCENE | | | | 2 | 2939.6 - 2947.5 | 7.3 92.4 | JURASSIC | | | | DRILL STEM TEST | | | | | | | | | | |------------------------|----------------------------|------------|--------------|----------------|--------------|--------------|-------------------|--------------|--------------| | TEST DEPTH NO BELOW KB | DEDTH | СНОКЕ | RECOVERY | | | | PRESS. | | | | | SIZE | OIL
Sm3 | GAS
M Sm3 | OIL
GRAV. | GAS
GRAV. | GOR
m3/m3 | (psi) | | | | | KB | mm | /đ | /đ | | cm3 rel. air | <i>11137 1113</i> | внр | WHP | | 1A | 1980 - 1988
1980 - 1988 | 9.5 | | 283.0
109.3 | | 0.57
0.57 | | 3053
3111 | 2591
2665 | | 1B
1C | 1980 - 1988 | 7.9 | | 207.3 | | 0.57 | | 3082
3060 | | | | 1980 - 1988 | 11.2 | | 313.5 | | 0.57 | | 3060 | 2030 | | | | | | | | | | | | | AVAILABLE LOGS | | | | | | | |---|---|------------------------|-------------|--|--|--| | LOG TYPE | INTERVALS | 1/200 | 1/500 | | | | | ISF DDBHC GR
ISF DDBHC
ISF DDBHC MSFL
ISF DDBHC MSFL | 203 - 714
705 - 1968
1946 - 2570
2550 - 3124 | x
x
x | х
х
х | | | | | LDT CNL LDT CNL DLL MSFL CDM | 1946 - 1971
2550 - 3127
1946 - 2250
1946 - 3127 | x
x
x
x | x
x
x | | | | | CDM AP CDM AP GEODIP GEODIP RFT | 1948 - 2124
2869 - 3105
1970 - 2060
2900 - 3010
1981 - 2546 | x
x
1:40
1:40 | X
X | | | | | RFT TEMPERATURE CBL CBL | 2937 - 2994
236 - 1900
603 - 1945
550 - 1945
1970 - 3101 | X
X
X
X | x
x
x | | | | | CST
MUD
VELOCITY (S.C.L.) | 90 - 3124
203 - 3124 | * | x
x | | | | ⁽⁺ Geogram Synthetic Seismogram, 10 - 20 cm/s 4stk) (+ Seismic log, (+ VSP, 205 - 3127m, 1stk) ⁽⁺ Seismic log, (+ VSP, 205 - 3127m, | MUD PROPERTIES | | | | | | | |--|--|------------------------|-------------------------|--|--|--| | DEPTH
BELOW KB
m | WEIGHT
g/cm3 | FUNNEL
VISC.
sec | FILTRATE
LOSS
cm3 | | | | | 315
650
740
960
1465
1665
1835
1940
2350
2435
2970 | 1.07
1.05
1.08
1.10
1.13
1.20
1.26
1.31
1.33
1.56
1.60 | | | | | | | DRILL BIT CO | JTTINGS AND | WET SAMPLES | |----------------|----------------------|----------------------| | SAMPLE
TYPE | INTERVAL
BELOW KB | NUMBER OF
SAMPLES | | CUTTINGS | 220 - 3120 | 297 | | WET SAMPLES | 230 - 3122 | 480 | | SHALLOW GAS | | | | | | |---------------------------|---------|--|--|--|--| | DEPTH
INTERVAL
m KB | REMARKS | | | | | | | NONE | | | | | # WELL HISTORY - 2/2-2 #### GENERAL: The main target of well 2/2-2 was the Ula formation in the Late Jurassic. Secondary targets were sandstones in the Middle Jurassic and Late Triassic. Secondary objectives were represented by the Late Cretaceous chalk and a sandstone of Oligocene age. The Jurassic sandstones proved water bearing. Gas was tested from the Oligocene sand. # OPERATIONS : Well 2/2-2 was spudded 05.07.82 by the drilling rig "Dyvi Alpha". When drilling the 36" hole, the pipe stuck. After the pipe was worked free, the drilling continued. The well took a kick at 2425 m. Two cores were cut in the 12 1/4" section before the well was drilled to TD at 3124 m. ## TESTING: The well was tested over one interval in the Oligocene sandstone. Initial flow lasted 794 minutes. Flowrates varied due to technical problems with the choke. Problems with plugging of the choke and hydrate build-up also accured. The initial build-up period lasted 295 minutes. Second flow and build-up lasted 302 and 325 minutes respectively. The third flow period lasted 480 minutes, but after two hours the choke got plugged by cement particles. The well was then shut-in for 642 minutes. The fourth flow period was designed to define the minimum flowrate at which sand production occured. Produced solids were found to be a mixture of cement and mud particles. Eight samples of gas were collected during the second and third flow periods. Neither condensate, water nor H₂S was reported during the test. # GEOLOGIC TOPS well: 2/2-2 | | Depth | n m | (I | RKB) | |--|-------|--------------------------|-----|--------| | Hordaland Group | | 130 | 8 | m | | Rogaland Group
Balder Fm
Sele Fm
Lista Fm | | 232
232
235
238 | 8 | m
m | | Calck Group
Tor Fm
Hod Fm | | 251
251
263 | 2 | m | | Cromer Knoll Group | | 275 | 4 | m | | Tyne Group
Mandal Fm | | 290
290 | _ | | | Vestland Group
Sleipner Fm | | 291
291 | • | | | Triassic Group
Smith Bank Fm | | 299
299 | _ | | | Zechstein Group | | 310 | 4 | m | | | TD = | 312 | 4 | m |