

.

	Aagnussons gl: 1 B. • ↑ elex 55434: (KU N. • Te	ostbokš 1883 • 7001 Trondhe ilegram «NORSHELF» • Tele	eim, Norway • Tif efax (07) 9209.24	(07) 92 06 11 (Aut.)	KU
				REG.NO. 84 095	¥/
				ACCESSIBILITY	·····
				<u>Confident</u>	
			 T		7.
	REPORT TITLE/ TITLE	iL FINAL REPOR		1/2 0	
	Hydrocarbor	1 Characterization	i or well 3	51/3-2,	
	the front i	Gerd.			
	Norsk Hydro	o A/S		· ••• ·	
	RESPONSION STATE	MELABORIEKTANSVARLIG		· · · · · · · · · · · · · · · · · · ·	
	L. Schou	AT HERE THE A		engen an	
	AUTHORS FORFATT	5R5		Berna an an Aller	
	L. Schou,	J. Akernes, L. Hus	svik and E.	. Hustad	•
	DATE DATO	REPORT NOJ RAPPORT NR.	NO. OF PAGES/	NO. OF ENCLOSURES	5/
	12.12.84	05.1744.00/01/84	146	-	
	·····				
·					
SUMMARY/ SA	MMENDRAG	• • • • • • • • • • • • • • • • • • •			
		lstone cores were	analysed t	by organic g	eochemical
ne oil	and ten sand		contain th	he same type	of organic
)ne oil Nethods	and ten sand . All the samp	ples were seen to			
)ne oil methods matter,	and ten sand . All the samp with high ab	ples were seen to undances of matur	re hydrocar	rbons. The r	ichness' is
)ne oil methods matter, very hi	and ten sand . All the samp with high ab gh from 1567.	ples were seen to oundances of matur 80 down to 1593.	re hydrocar 50m, where	rbons. The r it starts o	ichness' is decreasing'
one oil Nethods Natter, Yery hi Nightl	and ten sand . All the samp with high ab gh from 1567. y.	ples were seen to oundances of matur 80 down to 1593.	re hydrocar 50m, where	rbons. The r it starts o	ichness' is decreasing'
one oil Nethods Natter, Yery hi Slightl	and ten sand . All the samp with high ab gh from 1567. y.	ples were seen to bundances of matur 80 down to 1593.	re hydrocar 50m, where	rbons. The r it starts o	ichness' is decreasing '
ne oil wethods watter, ery hi lightl	and ten sand . All the samp with high ab gh from 1567. y.	ples were seen to oundances of matur 80 down to 1593.	re hydrocar 50m, where	rbons. The r it starts (ichness' is decreasing'
ne oil hethods hatter, rery hi lightl	and ten sand . All the samp with high ab gh from 1567. y.	ples were seen to oundances of matur 80 down to 1593.!	re hydrocar 50m, where	rbons. The r it starts o	ichnes≤'is decreasing'
ne oil hethods hatter, rery hi lightl	and ten sand . All the samp with high ab gh from 1567. y.	ples were seen to bundances of matur 80 down to 1593.	re hydrocar 50m, where	rbons. The r it starts o	ichness' is decreasing '
one oil methods matter, very hi slightl	and ten sand . All the samp with high ab gh from 1567. y.	ples were seen to bundances of matur 80 down to 1593.	re hydrocar 50m, where	rbons. The r	ichness' is decreasing'
One oil Methods Matter, Very hi Slightl	and ten sand . All the samp with high ab gh from 1567. y.	ples were seen to bundances of matur 80 down to 1593.!	re hydrocar 50m, where	rbons. The r	ichness' is decreasing'
One oil Methods Matter, Very hi Slightl	and ten sand . All the samp with high ab gh from 1567. y.	ples were seen to bundances of matur 80 down to 1593.	re hydrocar 50m, where	rbons. The r	ichness' is decreasing '
One oil Methods Matter, Very hi Gightl	and ten sand . All the samp with high ab gh from 1567. y.	ples were seen to oundances of matu 80 down to 1593.	re hydrocar 50m, where	rbons. The r	ichness' is decreasing'
One oil methods matter, very hi ilightl	and ten sand . All the samp with high ab gh from 1567. y.	ples were seen to bundances of matur 80 down to 1593.	re hydrocar 50m, where	rbons. The r	ichness' is decreasing'
One oil nethods natter, very hi slightl	and ten sand . All the samp with high ab gh from 1567. y.	ples were seen to bundances of matur 80 down to 1593. bons	re hydrocar 50m, where Correlat	rbons. The r it starts (ichness' is decreasing '

138/	Q/a	11/	1
------	-----	-----	---

IKU

CONTENTS					
1. INTRODUCTION	4				
2. EXPERIMENTAL	6				
2.1 Extractable organic matter	6				
2.2 Evaporation of the light components in fluid samples	6				
2.3 Chromatographic separation	6				
2.4 Molecular sieve adsorption	7				
2.5 Gas chromatographic analysis	7				
2.6 Gas chromatography - mass spectrometry (GC-MS)	8				
2.7 δ ¹³ C isotope analysis	8				
3. RESULTS AND DISCUSSION	9				
3.1 API gravity	9				
3.2 GC of C ₂ -C ₈ hydrocarbons	9				
3.3 Amount of C_{15}^{+} EOM and hydrocarbons	9				
3.4 Gas chromatography of C ₁₅ + saturated hydrocarbons	9				
3.5 Branched/cyclic and n-alkanes	10				
3.6 Gas chromatography of C ₁₅ + aromatic hydrocarbons	11				
3.7 GC-MS analysis of saturated terpane and sterane	12				
3.8 GC-MS analysis of aromatic hydrocarbons	13				
3.9 δ ¹³ C isotope ratios	13				
4. CONCLUSION	14				
5. REFERENCES	15				
TABLES					
Table 1. API gravity of oil sample	16				
Table 2. Relative distribution of $C_{-}C_{-}$ hydrocarbons in					
the oil sample	17				
Table 3. Amount of light components in oil sample	19				
Table 4. Asphalthenes and FOM	20				
Table 5.1 Concentration of EOM and chromatographic					
fractions	21				
Table 5.2 Weight of EOM and chromatographic fractions	22				
Table 5.3 Composition in % of material extracted from the					
rock	23				
138/Q/a1/2					

CONTENT (continued)

Table	6.	Tabulation of data from the gas chromatograms	24
Table	7.	Amounts of n-alkanes and branched/cyclic hydro-	
		carbons	25
Table	8.	Aromatic hydrocarbon ratios	26
Table	9.	Maturity ratios calculated from peak heights in	
		sterane and terpane mass chromatograms	27
Table	10.	Molecular ratios calculated from sterane and	
		terpane mass chromatograms	28
Table	11.	Maturity ratios from aromatic sterane mass	
		chromatograms	29
Table	12.	δ^{13} C isotope ratios of hydrocarbon fractions	30

IKU

Page

FIGURES

Figure	1.	C ₂ -C ₈ hydrocarbon gas chromatograms	31
Figure	2.	Saturated HC gas chromatograms	33
Figure	3a.	n-alkanes after separation with molecular sieve	44
Figure	3b.	Branched/cyclic hydrocarbons after removal of	
		n-alkanes with molecular sieve	48
Figure	4.	Aromatic hydrocarbon gas chromatograms	52
Figure	5.	Mass chromatograms representing terpanes (m/z 191)	64
Figure	5.	Mass chromatograms representing steranes	
		(m/z 217 and 218)	71
Figure	6.	Triangular plots of molecular weight distribution	
		of C ₂₇ -C ₂₀ regular 148,178-steranes	84
Figure	7.	Mass chromatograms of aromatic hydrocarbons	86

APPENDIX

Molecular	ratios	from to	erpane a	nd sterane	mass	chromatograms	
applied a	s matur	ity and	source	characteris	stic p	parameters	144

خد ہے

1. INTRODUCTION

Ten sandstone cores and an oil from well 31/3-2 in the Troll field (Location Map) were analysed for hydrocarbon characterisation and correlation purposes. The samples were taken from the depth interval listed below:

IKU no.	Sample Type	Depth (m)
B-4681	011	
B-4682	Core, sst	1567.80
B-4683	н	1571.50
B-4684	n	1573.95
B-4685	н	1581.65
B-4686	и	1586.40
B-4687	п	1587.50
B-4688	n	1590.50
B-4689	н	1593.50
B-4690	п	1595.50
B-4691	н	1628.00

Common organic geochemical methods were applied. In addition to extraction and GC analyses, GC-MS and δ^{13} C isotope data were used in the correlation.

- 5 -

2. EXPERIMENTAL

2.1 Extractable Organic Matter

Powdered rock was extracted by flowblending for 3 minutes using dichloromethane (DCM) as solvent. The DCM used was of organic geochemical grade and blank analyses showed the occurrence of negligible amounts of contaminating hydrocarbons.

Activated copper fillings were used to remove any free sulphur from the samples.

After extraction the solvent was removed on a Buchi Rotavapor and the amount of extractable organic matter (EOM) was determined.

2.2 Evaporation of the light components in fluid samples

Prior to chromatographic separation of oil/condensate sample, the fraction boiling below 210° C were removed by heating the sample until constant weight at 210° C is obtained. The heating is performed at atmospheric pressure.

The fraction of light components is determined as the weight difference between the original sample and the amount that is left after the heating.

2.3 Chromatographic Separation

The extractable organic matter (EOM) was separated into saturated fraction, aromatic fraction and non hydrocarbon fraction using a MPLC system with hexane as eluant (Radke et al., Anal. Chem., 1980). The various fractions were evaporated on a Buchi Rotavapor and transferred to glass vials and dried in stream of nitrogen.

The same separation procedure was applied to the fractions of oil/condensate samples boiling above 210° C.

2.4 Molecular Sieve Adsorption

The sample containing 2mg of n-alkanes was dissolved in 35ml of cyclohexane and 1g of Molecular Sieve pellets (5A) which had been activated at $300^{\circ}C$ in 24 hours, were added. This mixture was then refluxed for about 24 hours. While the solution was still hot, the sieve pellets were removed from the solution by filtering. The solvent was then removed on a Buchi Rotavapor. GC analysis was performed on the samples, using the same conditions as for the other GC analysis.

The normal alkanes were recovered from the Molecular Sieve pellets by destruction of the pellets with hydrofluoric acid. The solution was extracted with boric acid and hexane, and the solvent was then removed on a Buchi Rotavapor. GC analysis were performed on the samples, using the same conditions as for the other GC analysis.

2.5 Gas Chromatographic Analysis

The C₂-C₈ hydrocarbon fractions were determined by hydrogen stripping on a Carlo Erba Fractovap GC. The column used was a 30m fused silica capillary column coated with SE-54. The temperature program applied was 50° C (2 min.) to 180° C at 4° C/min.

The saturated and the branched/cyclic hydrocarbon fractions were each diluted with n-hexane and analysed on a HP 5730A. The GC is equipped with a 15m DB-1 fused silica column and hydrogen (ca. 2.5 ml/min.) is used as carrier gas. Injections are performed in split mode (split ratio 1:10). The temperature program applied is 80° C (2 min.) to 280° C at 4° C/min.

The total aromatic fractions were, after dilution with n-hexane, analysed on a Carlo Erba Fractovap Series 2150 GC. The GC is equipped with a 30m DB-5 fused silica column, and hydrogen (2.5 ml/min.) is used as carrier gas. The temperature program applied is 80° C (2 min.) to 280° C at 4° C/min. and injections are performed splitless.

The data processing for all the GC analyses was performed on a VG Multichrom lab data system.

138/Q/a1/6

2.6 Gas chromatography - mass spectrometry (GC-MS)

GC-MS analyses were performed on a VG Micromass 70-70H GC-MS-DS system. The Varian Series 3700 GC was fitted with a fused silica OV-1 capillary column (30m x 0.3mm i.d.). Helium (0.7kg/cm²) was used as carrier gas and the injections were performed in split mode (1.5µl, split ratio 1:15). The GC oven was programmed from 70^oC to 280^oC at 4^oC/min. after an initial isothermal period of 2 minutes for the aromatic hydrocarbons, while an initial temperature of 120^oC was applied for the saturated fractions.

The saturated hydrocarbons were analysed in multiple ion mode (MID) at a scan cycle time of approximately 2 secs. Full data collection was applied for the aromatic hydrocarbons at a scan time of 1 sec/decade. The mass spectrometer operated at 70eV electron energy and an ion source temperature of 200⁰C. Data acquisition was done by VG data systems.

Peak identification was performed applying knowledge of elution patterns in certain mass chromatograms. Calculation of peak ratios was done from peak height in the appropriate mass chromatograms.

2.7 δ^{13} C isotope analysis

The δ^{13} C isotope analysis was performed by mass spectrometry at Institute for Energy Technology (IFE) in Oslo according to their method. Their reference value for the standard NBS-22 is -29.8.

3. RESULTS AND DISCUSSION

3.1 API gravity

The API gravity of the oil was determined to 28.1⁰API (Table 1), indicating it to be a relatively high gravity oil, of low maturity and/or possibly biodegraded.

3.2 GC of C_2-C_8 hydrocarbons

Gas chromatogram of C_2 - C_8 hydrocarbons in the oil is shown in Figure 1, while the relative distribution of the compounds is given in Table 2. The main compounds are seen to be cyclic, and thus the oil has probably undergone some degree of biodegradation. Very low amounts of n-alkanes are detected.

3.3 Amount of C_{15}^{+} EOM and hydrocarbons

The oil sample was topped to 210° C prior to separation of asphaltenes and chromatographic separation. Approximately 85% of the crude oil was left after the treatment (Table 3), implying the oil to be relatively heavy.

The amounts of asphaltenes (Table 4) are fairly similar in the oil and all the extracts with very rich hydrocarbon content (0.7-5.0% of EOM). The two deepest cores show relatively higher asphaltene content.

Eight of the ten sandstone cores were seen to be very rich both in extractable organic matter, EOM (4771-18027ppm, average 10979ppm) and in hydrocarbons (2000-10827ppm, average 6076ppm). The two deepest cores contain less organic material, but are still rich in EOM (1311-2267ppm, average 1789ppm) and fair-rich in hydrocarbon content (119-535ppm, average 327ppm). The amounts of the EOM and the various chromatographic fractions are presented in Table 5.1-5.3.

3.4 Gas chromatography of C_{15}^+ saturated hydrocarbons

Gas chromatograms of saturated hydrocarbons are given in Figure 2, and data from the chromatograms are presented in Table 6.

The oil is seen to exhibit a unimodal n-alkane distribution with maximum at nC_{17} . Isoprenoids are relatively abundant (Pr/n- $C_{17} = 1.0$) and the pristane/phytane ratio of 2.0 is high compared to most North Sea oils and Upper Jurassic source rocks (Cornford et al., 1983). The abundant isoprenoids suggest that mild biodegradation might have taken place.

- 10 -

All the extracts from the sandstone cores show the same general distribution of saturated hydrocarbons as the oil, except that the cores have lost most of the low molecular weight compounds $(\langle n-C_{17} \rangle)$. Abundant isoprenoids are seen in all the samples $(Pr/n-C_{17} \rangle)$ varies between 1.1 and 1.6), and the pristane/phytane ratios are in the range 1.7-2.5. From the relative amounts of the internal standard (S in Figure 2) the two deepest samples are seen to contain less hydrocarbons than the rest, supporting what was seen in the discussion on the chromatographic separation.

The data discussed so far suggest that the hydrocarbons in the extracted sandstones originate from the same source rock as the oil.

3.5 Branched/cyclic and n-alkanes

The oil and two of the cores were treated with molecular sieve to separate the n-alkanes from the branched and cyclic alkanes. The gas chromatograms are shown in Figure 3a and b, and the amounts are given in Table 7.

Even with the slightly higher intensity of n-alkanes in the C_{20} - C_{35} range seen in the cores the general distributions in the GC's show that both the n-alkanes and the branched/cyclic hydrocarbons can be siad to be of the same type in the three samples.

A quantitative comparison is presented in Table 7. The quantitative results were obtained in two different ways; by simple gravimetry and by integration of the gas chromatograms.

The gravimetric results give approximately 100% recovery for the two core samples, while the oil seems to have lost approximately 50%. This could be due to the difference seen in the GC traces of these three samples. The saturated HC fraction of the oil contained relatively more than the cores of low molecular weight compounds. Thus the weight loss

of the oil may be due to further loss of these compounds. All three samples were seen to have approximately the same ratio of n-alkanes and branched/cyclic hydrocarbons (0.29-0.35).

The results from the GC-integration are lower than the gravimetric. This would be expected since the chromatographic fraction contain higher molecular weight compounds that will not elute through a GC column. A relatively higher proportion in the n-alkane fractions is lost. However, the ratio of n-alkanes to branched/cyclic hydrocarbons is the same for all three samples.

3.6 Gas chromatography of C_{15}^{+} aromatic hydrocarbons

Gas chromatograms are given in Figure 4, while certain aromatic ratios used in maturity estimation (Radke et al., 1983) are presented in Table 8.

Except for the oil and one sandstone core sample from 1590.5m, the rest of the samples (all sandstone cores) have lost much of the low molecular weight material, i.e. mainly alkyl naphthalenes. This makes the alkylnaphthalene ratios less accurate. Apart from loss of the alkyl naphthalenes the general aromatic hydrocarbon distribution appears to be similar in all samples including the oil.

Maturity based on MPI 1 appears to be fairly low compared with the alkyl naphthalene ratios. The MPI 1 value varies from 0.59-0.76. The average value is therefore 0.69 (\pm 0.05 S.D.). The oil has an MPI 1 of 0.71. The estimated vitrinite reflectance of the source for these aromatic hydrocarbons is between 0.7-0.9% with a spot value based on the average MPI 1 equal to 0.8% approximately. This is based on the graph in the aromatics report no. 05.6260.00/01/84 (Hall and Schou, 1984). The methyl naphthalene ratios average 2 for the samples down to 1593.5m (but excluding this sample). It was felt that the methyl naphthalenes peaks were too small to be accurately measured below 1590.5m. The oil had a value of 2.1, whereas the most suitable sandstone core (i.e. the one with most alkyl naphthalenes) gave a value of 1.89. These values are considered to be high relative to the MPI 1 indicated maturity level. A value above 1.5 may be expected for condensates. Similarly values for DMNR (which roughly average 3.3) are not

those seen during the main phase of oil generation (which range from 1.0-2.0 - from aromatics report, Hall and Schou, 1984). Furthermore biphenyl and methyl-biphenyls (figure 4) have been tentatively identified as prominent components of all samples. These compounds are considered to become prominent only in very highly mature oil-prone source rocks (i.e. greater than 1% Ro). This may be an indication of a high maturity source for these hydrocarbons, however coals also appear to have large amounts of these compounds at lower maturities than type II marine source rocks.

The evidence suggests that there may be two sources for the aromatic hydrocarbons in these sandstone cores and the oil. One highly mature yielding mostly wet gas-condensate range hydrocarbons (i.e. mainly alkyl naphthalenes or lower molecular weight hydrocarbons), the second source being oil window mature and yielding a 'normal' oil. The latter has both alkyl naphthalenes and phenanthrenes in which the alkyl naphthalene pattern is marked by the higher maturity source hydrocarbons. There is no indication from the aromatics whether the two sources had similar organic matter (i.e. whether the hydrocarbons are from the same source rock horizon buried to different depths).

3.7 GC-MS analysis of saturated terpane and sterane

Mass chromatograms representing terpanes (m/z 191) and steranes (m/z 217 and 218) are shown in Figure 5. Molecular ratios calculated from the chromatograms are given in Table 9 and 10.

The same overall profiles are seen for steranes and terpanes in both the oil and the ten sandstone cores. All the applied molecular ratios suggest that the hydrocarbons are of oil window maturity. The deepest core shows somewhat different chromatograms, a fact that is probably due to generally much lower abundance of hydrocarbons in this sample. One compound elutes at the same retention time as bisnorhopane (Z) in the m/z 191 mass chromatograms. It is, however, not possible from the chromatograms to verify this very tentative determination. The relative abundance of this compound and the other two eluting immediately before and after the C₂₉ $17\alpha(H), 21\beta(H)$ -hopane is similar in all the samples.

The triangular plot in Figure 6 shows the molecular weight distribution of the $C_{27}-C_{29}$ regular 14β , 17β -steranes to be nearly identical for all the samples.

From the sterane and terpane mass chromatograms the hydrocarbons extracted from the sandstone cores can be said to originate from the same or at least a very similar source rock as the oil.

3.8 GC-MS analysis of aromatic hydrocarbons

The data obtained from the analysis of aromatic hydrocarbons support what was seen from other parameters (Figure 7). The total ion chromatograms (TIC) are similar to the GC traces, apart from one abundant peak representing elemental sulfur (S_8). This peak partly masks an interesting part of the TIC's. Mass chromatograms representing alkylated homologs of benzene (m/z 92, 106), naphthalene (m/z 142, 156, 170), phenanthrene (m/z 178, 192, 206) and dibenzothiophene (m/z 184, 198, 212) in addition to mono- and tri-aromatic steranes (m/z 253 and 231) are presented.

Only minor differences are detected from inspection of mass chromatograms and in the maturity data in Table 11.

3.9 δ^{13} C isotope ratios

Saturated and aromatic hydrocarbon fractions were analysed for their δ^{13} C isotope ratios. The data are presented in Table 12.

The results vary from -29.5 to $-28.3^{\circ}/\circ\circ$ (i.e. $1.2^{\circ}/\circ\circ$) for the saturated and from -27.9 to $-27.1^{\circ}/\circ\circ$ (i.e. $0.8\circ/\circ\circ$) for the aromatic hydrocarbons.

More than $1^{\circ}/\circ \circ$ variation in the saturated hydrocarbon fractions may be due to generation from different type of source rocks. However, the two samples with the most different values for saturated hydrocarbons (B-4682 and B-4690) gave exactly the same value for the aromatic hydrocarbons. Based on this and on the similarities of the results from the other analyses, the hydrocarbons in the cores and the oil are believed to originate from the same source rock or source rocks.

138/Q/a1/12

4. CONCLUSION

All the performed analyses suggest that the oil and the hydrocarbons in the cores have been generated from the same source rock. The amount of hydrocarbons is very high down to 1593.50m where it starts decreasing.

Some of the parameters indicate that more than one source rock, or different maturity stages of the same source rock, may have been responsible for the generation of the hydrocarbons.

5. REFERENCES

CORNFORD, C., MORROW, J.A., TURRINGTON, A., MILES, J.A. and BROOKS, J., 1983: Some geological controls on oil composition in the UK North Sea. In: Petroleum Geochemistry and Exploration of Europe. Ed. J. Brooks. Geol. Soc. Blackwell, p. 175-194.

- 15 -

MACKENZIE, A.S., PATIENCE, R.L., MAXWELL, J.R., VANDENBROUCKE, M. and DURAND, B., 1980: Geochim.Cosmochim.Acta, 44, p. 1709-1721.

RADKE, M., WILLSCH, H. and WELTE, D.H., 1980: Anal.Chem., 52, pp. 406-411.

RADKE, M. and WELTE, D.H., 1983: The methylphenanthrene index (MPI): a maturity parameter based on aromatic hydrocarbons. In: Advances in Organic Geochemistry 1981. Ed. M. Bjorøy et al., John Wiley & Sons, Chichester, p. 504-512.

SEIFERT, W.K. and MOLDOWAN, J.M., 1978: Geochim.Cosmochim.Acta, 42, p. 77-95.

SEIFERT, W.K. and MOLDOWAN, J.M., 1979: Geochim.Cosmochim.Acta, 43, p. 111-126.

SEIFERT, W.K. and MOLDOWAN, J.M., 1981: Geochim.Cosmochim.Acta, 45, p. 783-794.

,

٠

Table 1. API gravity of oil sample.

IKU no. ^OAPI B-4681 28.1

سد ، تعدد و

	B-4681
	% of total oil
nC ₂	-
nC ₂	-
MC3	-
nCa	*
MC	0.2
nC ₅	0.1
CyC ₅ +2,3DMC ₄	0.7
2MC ₅	-
3MC ₅	0.2
nC ₆	0.4
MCyC ₅	1.4
benzene	-
^۲ ۷ ^۲	2.2
2MC ₆	-
2,3DMC5	0.3
3MC ₆	0.4
DMCyC ₅ (1,3; 1,2)	0.7
2,2,4 TMC5	0.5
nC ₇	-
MCyC ₆	3.3
2,4DMC ₆	0.2
Toluene	-
2MC ₇	<0.1
3MC ₇	<0.1
DMCyC ₆ (1,2)	0.7
nC ₈	0.3
M/P-xylene	0.5
0-xylene	-

<u>Table 2.</u> Relative distribution of C_2-C_8 hydrocarbons in the oil sample.

List of $C_2 - C_8$ hydrocarbons in Table 2 and Figure 1.

- 18 -

nC ₂	ethane
nC3	propane
MC ₃	methyl-propane
nCa	butane
MC	methyl-butane
nC ₅	pentane
CyC ₅ +2,3DMC ₄	cyclopentane + 2,3-dimethyl-butane
2MC5	2-methyl-pentane
3MC5	3-methyl-pentane
nC ₆	hexane
MCyC5	methyl-cyclopentane
Ū	benzene
СуС _б	cyclohexane
2MC ₆	2-methyl-hexane
2,3DMC5	2,3-dimethyl-pentane
3MC ₆	3-methyl-hexane
DMCyC5	dimethyl-cyclopentane
2,2,4TMC5	2,2,4-trimethyl-pentane
nC ₇	heptane
MCyC6	methyl-cyclohexane
2,4DMC ₆	2,4-dimethyl-hexane
-	toluene
2MC ₇	2-methyl-heptane
3MC7	3-methyl-heptane
DMCyC ₆	dimethyl-cyclohexane
nC ₈	octane
-	m/p-xylene
	o-xvlene

		·			
IKU no.	Crude oil	>210 ⁰ C	Light co	omponents	
	(mg)	(mg)	(mg)	(%)	
	<u> </u>				
B-4681	212.0	180.9	31.1	14.7	

Table 3. Amount of light components in oil sample.

- 19 -

•

Table 4. Asphaltenes and EOM.

IKU No.	Depth (m)	Asphaltenes (mg)	EOM (mg)
B-4681	0i1	7.9	180.9
B-4682	1567.80	6.0	321.9
B-4683	1571.50	14.4	285.8
B-4684	1573.95	7.6	201.2
B-4685	1581.65	6.5	445.5
B-4686	1586.40	13.0	476.2
B-4687	1587.50	5.4	781.3
B-4688	1590.60	5.8	186.1
B-4689	1593.50	15.2	461.1
B-4690	1595.50	2.4	36.3
B-4691	1628.00	8.0	42.4

CONCENTRATION OF EOM AND CHROMATOGRAPHIC FRACTIONS

= =	*********			*******		=============		
I I	IKU-No :	DEPTH	Rock : Extr. :	EOM	Sat.	: : Aro.	: : HC	: Non : : HC :
I I I	:	(m)	(g)	(mg)	(mg)	: (mg) :	: (mg) -	(mg) :
] =			********			********		============
l I T	B 4681	OIL	0.2	180.9	40.2	: 22.4	: 62.6	: 118.3 :
I	B 4682	1567.80	33.2	321.1	135.7	; 57.3	193.0	: 128.1 :
I	B 4683	1571.50	: 33,3	285.8	105.4	: 45.0	: 150.4	: 135.4 :
I	B 4684	1573.95	: 42.2	201.2	57.6	: 26.7	84.3	116.9 :
I T	P 4685	: 1581.65	: 45,1	445.5	168.0	: 81.2	• : 249.2 ·	: 196.3 :
I I T	B 4686	1586.40	: 29.8	476.2	215.6	: 107.1	: 322.6	: 153.6 :
I T	B 4687	1587.50	- - 43.3	781.3	235.5	: 117.5	353.D	428.3 :
I	E 4688	1590.60	. 28.0	186.1	56.1	: 32.8	88.9	97.2
I	B 4689	1593.50	: 32.3	461.1	193.0	85.0	278.0	183.1 :
I I	E 4690	1595.50	36.3	82.3	12.8	: 6.6	17.4	62.9
I I	B 4691	1628	: 32.3	42.4	2.6	: 1.2	3.8	38.6
			•	:========	, 	• =====================================	===============	:222222222

WEIGHT OF EOM AND CHROMATOGRAPHIC FRACTIONS

- 22 -TABLE : 5.2

(Weight ppm OF rock)

212	*********	= a		= = =		= = =	*********	= ~		= =	az = z = u = z = z	⇒:		:=
1		:		:		:		;		:		ų	Non	I
I	IKU-No	đ	DEPTH	:	EOM	2	Sat.	;	Aro.	;	HC	:	HC	I
I		5		:		:				;		t		I
Ĩ		:	(m)	:		:		;		:		:		I
l≡: T	===============	:œ≓ •	********		======	===	*******	==	*******	==				י ד
1 T	8 4481	-	011	•		•		i d		i.				1
T	6 4001		ler as ten	;		•		:				÷		ī
Ī	B 4682	:	1567,80	;	9675	:	4088		1726	:	5814	ţ	3861	Ī
I		:		:		:		:		:		:		1
I	B 4683	ł	1571.50	:	8575	:	3162	3	1350	:	4512	;	4062	I
I		;		;		:		;		:		;		I
I	B 4684	:	1573.95	:	4771	*	1367	1	633	:	2000	2	2772	Ĩ
l T	D () 95	5	1501 /6	•	0071	:	غب الدرخيد غد	:	1700	ĩ	5577	1	1780	í
1 T	8 4502	:	1081-00	:	70/1	:	3/23	:	1/77	:	2222	;	4000	1
1	8 4686		1586,40	:	15780	:	7233	:	3594	:	10827		5153	Ţ
Ī		:	1949 1 12	:	12,20	:	/250	:		:	10027	;		Î
ĩ	B 4687	n 1	1587.50	ĩ	18027	:	5434	;	2711	:	8145	:	9882	I
Ï		:		:		:		5		:		:		I
I	B 4688	:	1590.60	:	5635	:	2000	3	1171	•	3171	ž	3463	I
I		:		:		:		:		:		:		I
I	8 4689	:	1593.50	:	14298	:	5984	5	2636	;	8620	ž	5678	I
I	r ((00		1805 50	;	~~~~	Ŷ			100	:	E 76	:		I
1 T	B 467U	:	1040.00	:	2207	:	304		102	:	2.32		17.31	4 T
ĭ	B 4491	•	1678	ī	1311	ì	82		77	5	119	;	1107	T T
ī				:	****	:			75	:	771	:	0111	Ĵ
	********	. = =		= = = =						==		-		-

COMPOSITION IN % OF MATERIAL EXTRACTED FROM THE ROCK

=== I	222222336	202 1		= = = ;	Sat :	Aro		HC	SAT	: Non HC	====== : HC		= I
I I I	IKU-No	: : :	DEPTH (m)	94 CA (EOM	EOM	:::::::::::::::::::::::::::::::::::::::	EOM	Aro	EOM	: : Non I	 +C	I I I
I = =	*********	# # #		===			===			*******	**====	===	I
I I	B 4631	1	OIL	:	22.2	12.4	:	34.6	179.5	65.4	: : 52	.9	I I T
I I T	B 4682	(]]	1567.80	:	42.3	17.8	:	60.1	236.9	37.9	: 150 :	.6	I I I
Î I	B 4683	2	1571.50	1	36.9	15.7	:	52.6	234.2	47.4	: 111.	.1	- I I
I I	B 4684		1573,95	:	28.6	13.3	;	41.9	215.9	: 58.1	: 72	.1	I I
I I	B 4685	1	1581.65	:	37.7	18.2	:	55.9	206.9	44.1	: 126	.9	I
I I	B 4685	:	1586.40	:	45.3 :	22.5	:	67.8	: 201.3	32.2	: 210	.1	I I
I I	B 4687	:	1587.50	:	30.1 :	15.0	:	45.2	: 200.4	54.8	: 82 :	.4	I I
I I	B 4688	4	1590.60	:	30.1 :	17.7	:	47.8	170.8	52.2	: 9í	. Ó	I I
I I	ይ 4489		1593.50	:	41.9 :	18.4	:	60.3	: 227.1	39.7	: 151 :	.8	I I
I I	B 469D	:	1595.50	;	15.6 :	8.0	:	23.6	: 194.5 : :	76.4	: 30 :	.9	I I
I I	E 4691	:	1628	:	6.2 :	2.8	:	9.1	220.0	90.9	: 10 :	.0	1 1

==: I	**********	DEPTH	PRISTANE	PRISTANE	**************	=== I
1 I T	1KU No. :	(m) f	n-C17	PHYTANE	: CPI : .	1 1 T
I = I I	B 4681	OIL	1.0	2.0	: 1.0	I I
l I I	B 4682	1567.80	1.3	: 1.3 :	: 1.1	I I I
I I I	B 4683	1571.50	1.2	1.8	: 1.1	I T
I I	B 4684	1573.95	1.6	. 1.7	: 1.1	I
I T	B 4685	1581.65	1.3	. 2.0	: 1.0	I
I	B 4686	1586.40	. 1.2	. 1.9	: 1.0	I
I	B 4687	1587.50	1.1	1.9	: 1.0	I
I	B 4688	1590.60	1.2	2.2	: 1.0	I
I	B 4689	1593.50	1.1	1.7	: 1.0	I
 1 T	£ 4690	1595.50	1.3	2.0	: 1.0	I
I I I	B 4691 :	1628	1,3	2.5	· · 1.1	I I I
= =	=======================================	**********				z = =

a) Gravime	tric results.								
IKU no.	Sample tyl	pe Dep	th (m)	SAT	N-alkane	es B/C	N-alk	<pre>canes+B/C</pre>	N-alkanes
				(mg)	(mg)	(ຍພ)	(mg)	(% of SAT)	B+C
B-4681	011	·		11.1	1.3	4.5	5.8	52.3	0.29
B-4682	Core, ss	t 15	67.80	10.2	2.6	7.4	10.0	98.0	0.35
B-4684	Core, ss:	t 15	73.95	8.9	2.3	7.1	9.4	105.6	0.32
b) Results	from integrat	ion of gas	chroma togr	ams.					- 25 -
IKU No.	Depth	SA	T		N-6	alkanes	B/C		N-alkanes
	(m)	(mg)	(% of g	rav.)	(bu)	(% of grav.)	(mg)	(% of grav)	B+C
8-4681	0il	4.5	40.5		0.3	24.6	2.3	50.8	0.13
B-4682	1567.80	3.3	32.4		6.0	32.7	4.9	66.2	0.17
B-4684	1573.95	2.9	32.6		0.6	25.2	4.7	66.2	0.12

Table 7. Amounts of n-alkanes and branched/cyclic hydrocarbons.

ł

- 25 -

. 1

ĺ

Table 8. Aromatic hydrocarbon ratios.

IKU No.	Depth (m)	MNR	MPI 1
B-4681	011	2.14	0.71
B-4682	1567.80	1.75	0.69
B-4683	1571.50	2.50	0.73
B-4684	1573.95	2.11	0.70
B-4685	1581.65	2.10	0.72
B-4686	1586.40	1.63	0.64
B-4687	1587.50	1.91	0.73
B-4688	1590.60	1.89	0.62
B-4689	1593.50	1.43	0.76
B-4690	1595.50	∿1.00	0.72
B-4691	1628.00	1.67	0.59

هممد بويد بغد بريريا 100

MNR = 2/1 MN

MPI 1 = 1.5(3-MP+2-MP/P+9-MP+1-MP)

Table 9. Maturity ratios calculated from peak heights in sterane and terpane mass chromatograms.

I

			m/z 1	91	m/z	217
IKU code	Depth (m)	Sample type	αβ/αβ+βα ¹)	%225 ²)	%20S ³)	%88 ⁴)
B-4681	ł	011	0.91	58.4	49.0	75.6
B-4682	1567.80	Core, sst	0.90	54.8	47.1	76.9
B-4683	1571.50	=	0.90	62.0	42.1	74.7
B-4684	1573.95	÷	0.91	55.6	47.9	71.7
B-4685	1581.65	=	0.90	59.1	50.8	76.1
B-4686	1586.40	æ	0.90	57.1	50.8	74.9
B-4687	1587.50	=	0.91	56.5	53.2	73.2
B-4688	1590.50	Ξ	0.91	59.1	47.1	27°0 27 13°0
B-4689	1593.50	=	0.91	60.2	53.1	73.6
B-4690	1595.50	=	0.91	61.9	52.3	69.4
B-4691	1628.00	=	0.90	59.1	61.6	73.5

1) E/E+F in m/z 191.
2) J₁/J₁+J₂ in m/z 191.
3) q/q+t in m/z 217.
4) 2(r+s)/(2(r+s)+q+t) in m/z 217.

135/bb/ah/20

chromatograms.
mass
terpane
and
sterane
from
calculated
ratios
Molecular
Table 10.

				2 / W	191		m/z 217
IKU code	Depth (m)	Sample type	Tm/Ts ^{l)}	TR1/E ²⁾	Z/E	X/E	a/a+j ³⁾
8-4681	ı	011	0.52	0.07	0.17	0.18	0.85
B-4682	1567.80	Core, sst	0.72	0.06	0.18	0.14	0.85
B-4683	1571.50	. =	0.53	0.07	0.18	0.17	0.83
B-4684	1573.95	Ξ	0.83	0.05	0.16	0.18	0.83
B-4685	1581.65	Ξ	0.76	0.06	0.19	0.20	0.83
8-4686	1586.40	3	0.76	0.06	0.18	0.17	0.83
B-4687	1587.50	z	0.63	0.08	0.22	0.18	- ²² 9.86
8-4688	1590.50	=	0.61	0.05	0.23	0.20	0.85 .
B-4689	1593.50	=	0.70	0.05	0.17	0.16	0.85
B-4690	1595.50	Ξ	0.75	0.05	0.19	0.18	0.82
B-4691	1628.00	Ξ	1.00	0.06	0.17	0.14	0.61
1)							
2) 0,5 5,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2	.191.						
-/ U/E IN M/Z	. 191.						

3) Relative amounts of C_{27} rearranged steranes (a/a+j in m/z 217).

135/bb/<u>a</u>h/21

ļ

- 29 -

IKU no.	Depth (m)	Sample type	C ₂₁ /C ₂₁ +C _{28,29}	^C 20 ^{/C} 20 ^{+C} 26,27	TRI/TRI+MONO
B-4681	-	011	50.0	35.3	70.5
B-4682	1567.80	Core, sst	41.2	35.3	60.5
B-4683	1571.50	11	44.4	50.0	59.8
B-4684	1573.95		37.5	35.3	57.9
B-4685	1581.65	· u	47.1	36.8	62.4
B-4686	1586.40	11	41.2	31.3	61.3
8-4687	1587.50	11	39.8	40.2	55.2
B-4688	1590.50	83	41.2	37.5	55.1
B-4689	1593.50	11	46.0	35.3	58.2
B-4690	1595.50	it	44.4	36.8	63.2
B-4691	1628.00	n	33.3	33.3	49.5

Table 11. Maturity ratios from aromatic sterane mass chromatograms.

IKU no.	Depth (m)	Sample type	SAT	ARO
B-4681	-	0i1	-29.1	-
B-4682	1567.80	Core, sst	-29.5	-27.6
B-4683	1571.50	11	-28.7	-27.7
B-4684	1573.95	и	-28.5	-27.6
B-4685	1581.65	и	-28.5	-27.9
B-4686	1586.40	н	-28.7	-27.2
B-4687	1587.50	н	-28.8	-27.1
B-4688	1590.50	н	-28.9	-27.4
B-4689	1593.50	п	-28.9	-27.2
B-4690	1595.50	If	-28.3	-27.6
B-4691	1628.00	и	not sufficie	nt material

Table 12. δ^{13} C isotope ratios of hydrocarbon fractions.

FIGURE 1

- 31.-

 C_2-C_8 hydrocarbon gas chromatogram

FIGURE 2

- 33 -

Saturated hydrocarbon gas chromatograms

n-C ₁₅ etc.	- n-alkanes
Pr	- pristane
Ph	- phytane
*	- acyclic isoprenoids
S	- squalane (internal standard)

- 34 -

- 35a -

- 36 -

1

ھ. .

- 43 -

FIGURE 3a

- 44 -

n-alkanes after separation with molecular sieve

138/0/a1/28

- 45 -

- 46 -

3

- 47 -

FIGURE 3b

- 48 -

Branched/cyclic hydrocarbons after removal of n-alkanes with molecular sieve

ى مىيىلىمىيىتىن بىلىيىتىنى مىيا مىمى ،

Ċ.

- 49 -

- 50 -

- 51 -

FIGURE 4

Aromatic hydrocarbon gas chromatograms

- N naphthalene
- MN methylnaphthalenes
- DMN dimethylnaphthalenes
- TMN trimethylnaphthalenes
- P phenanthrene
- MP methylphenanthrenes
- DMP dimethylphenanthrenes

- 54 -

- 55 -

- 56 -

- 57 -

- 58 -

- 59 -

- 60 -

- 61 -

- 62 -

Figure 5

Mass chromatograms representing terpanes (m/z 191)

А	Τ _s , 18α(H)-trisnorneohopane	^С 27 ^Н 46	(III)
В	T _m , 17α(H)-trisnorhopane	C ₂₇ H ₄₆	(I,R=H)
С	17a(H)-norhopane	C ₂₉ H ₅₀	(I,R=C ₂ H ₅)
D	17ß(H)-normoretane	C ₂₉ H ₅₀	$(II, R=C_2H_5)$
Ε	17α(H)-hopane	C ₃₀ H ₅₂	(I,R=C3H7)
F	17β(H)-moretane	C ₃₀ H ₅₂	$(II, R=C_3H_7)$
G	17α(H)-homohopane (22S)	$C_{31}H_{54}$	$(I,R=C_4H_9)$
Н	17α(H)-homohopane (22R)	C ₃₁ H ₅₄	$(I,R=C_4H_9)$
	+ unknown triterpane (gammacerane?)	01 01	
I	17g(H)-homomoretane	C ₃₁ H ₅₄	(II,R=C ₄ H ₉)
J	17α(H)-bishomohopane (22S,22R)	C ₃₂ H ₅₆	$(I, R=C_5H_{11})$
Κ	17α(H)-trishomohopane (22S,22R)	C ₃₃ H ₅₈	$(I, R=C_6H_{13})$
L	$17\alpha(H)$ -tetrakishomohopane (22S,22R)	C ₃₄ H ₆₀	$(I,R,=C_7H_{15})$
М	17a(H)-pentakishomohopane (22S,22R)	C ₃₅ H ₆₂	$(I, R=C_8H_{17})$
Z	bisnorhopane	C ₂₈ H ₄₈	0 1/
Х	unknown triterpane	C ₃₀ H ₅₂	
Ρ	tricyclic terpane	C ₂₃ H ₄₂	$(IV, R=C_4H_q)$
Q	tricyclic terpane	$C_{24}H_{44}$	(IV,R=C5H1)
R	tricyclic terpane (17R,17S)	$C_{25}H_{46}$	$(IV, R=C_6H_{13})$
S	tetracyclic terpane	$C_{24}H_{42}$	(V) U 15
T	tricyclic terpane (17R,17S)	C ₂₆ H ₄₈	(IV,R=C ₇ H ₁₅)

11

111

IKU

1

L

K

.

· --

1

- -

IKU

- 71 -

.

IKU

Figure 5

Mass	chromatograms representing steranes	(m/z 217 and	218)
ä	138(H),17α(H)-diasterane (20S)	C ₂₇ H ₄₈	(III,R≈H)
b	13β(H),17α(H)-diasterane (20R)	C ₂₇ H ₄₈	(III,R≈H)
с	i3α(H),17β(H)-diasterane (20S)	C ₂₇ H ₄₈	(IV,R=H)
d	13μ(H),17β(H)-diasterane (20R)	C ₂₇ H ₄₈	(IV,R=H)
e	138(H),17u(H)-diasterane (20S)	C ₂₈ H ₅₀	(III,R-CH ₃)
f	13B(H),17u(H)-diasterane (20R)	С ₂₈ н ₅₀	(IJI,R=CH ₃)
g	13u(H),17β(H)-diasterane (20S)	С ₂₈ Н ₅₀	(IV,R=CH ₃)
	+ 14a(H),17a(H)-sterane (20S)	(₂₇ H ₄₈	(1,R=H)
h	$13B(H), 17\alpha(H)$ -diasterane (20S)	C ₂₉ H ₅₂	(III,R=C ₂ H ₅)
	+ 14B(H),176(H)-sterane (20R)	C ₂₇ H ₄₈	(II,R=H)
i	14¤(H),17¤(H)-sterane (2US)	C ₂₇ H ₄₈	(I],R=H)
	+ 13a(H),176(H)-diasterane (20R)	C ₂₈ H ₅₀	(IV,R=CH ₃)
j	14ɑ(H),17ɑ(H)-sterane (20R)	C ₂₇ H ₄₈	(1,R=H)
k	13B(H),17u(H)-diasterane (20R)	C ₂₉ H ₅₂	(III,R=C ₂ H ₅)
1	$13u(H), 17\beta(H)$ -diasterane (20S)	C ₂₉ H ₅₂	$(III, R=C_2H_5)$
m	14a(H),17u(H)-sterane (20S)	C ₂₈ H ₅₀	(1,R=CH ₃)
n	13u(H),17β(H)-diasterane (20R)	C ₂₉ H ₅₂	(III,R=C,H ₅)
	+ 148 (H),176 (H)-sterane (20R)	С ₂₈ Н ₅₀	(II,R=CH ₃)
0	14B(H),17B(H)-sterane (20S)	C ₂₈ H ₅₀	(II, R=CH ₃)
ρ	14u(H),17a(H)-sterane (20R)	C ₂₈ H ₅₀	(I,R=CH ₃)
q	14a(H),17a(H)-sterane (20S)	С ₂₉ Н ₅₂	(I,R=C ₂ H ₅)
r	14ß(H),17ß(H)-sterane (20R)	C.25H52	(II,R=C ₂ H ₅)
	+ unknown sterane		
s	146(H),178(H)-sterane (20S)	C29H52	(II,R=C ₂ H ₅)
t	14B(H),17B(H)-sterane (20R)	C29H52	(1,R=C ₂ H ₅)
u	5u(H)-sterane	C21H36	(V,R=C ₂ H ₅)
v	5u(H)-sterane	C ₂₂ H ₃₈	(IV,R=C ₃ H ₇)

1

IKU

I

IKU

K

ļ

IKU

| •

744TROL2 218.1000 GI II SI

ï

FIGURE 6

Triangular plots of molecular weight distribution of C_{27} - C_{29} regular 14 β ,17 β -steranes

138/Q/a1/31

FIGURE 7

Mass chromatograms of aromatic hydrocarbons

TIC	-	total ion chromatogram
m/z 92, 106	-	alkylated benzenes
m/z 142, 156, 170	-	alkylated naphthalenes
m/z 178, 192, 206	-	alkylated phenanthrenes
m/z 184, 198, 212	-	alkylated dibenzothiophenes
m/z 231	-	triaromatic steranes
m/z 253	-	monoaromatic steranes

- 86 -

•

- 88 -

- 89 -

- 92 -

98 -

- 99 -

- 100 -

- 101 -

- 104 -

- 108 -

- 111 -

- 112 -

- 113 -

- 114 -

i

- 119 -

فت

- 120 -

- 121 -

- 123 -

- 124 -

- 125 -

- 126 -

- 131 -

- 132 -

- 140 -

æ.,

- 141 -

- 143 -

APPENDIX

Molecular ratios from terpane and sterane mass chromatograms applied as maturity and source characteristic parameters

Geochemical fossils or biological marker components are characteristic of the type of organic matter present at the time the sediments were deposited. The biological isomers of these components undergo changes due to increased maturity in particular, but also to a certain degree caused by migration and weathering processes.

1.2.1 Source characteristic parameters

In the m/z 191 mass chromatograms, representing terpanes, the hopanes and moretanes are the major components in most extracts and oils. Of the hopanes the C_{27} and C_{29} - C_{35} homologs are ubiquitous, while the C_{28} bisnorhopane is believed to be typical of certain types of source rocks. This is also the case for the component, probably gammacerane, sometimes seen to coelute with the 22S isomer of the C_{31} 17 α (H)-hopanes (H). In the sterane mass chromatograms, m/z 217 and m/z 218, the molecular weight distribution of the C_{27} - C_{29} regular steranes is believed to be representative of the original input of organic matter. The highest molecular weight compounds, the C_{29} steranes, represent organic matter of terrestrial origin, while the lower molecular weight analogs originate from more marine type environments.

1.2.2 Maturity dependant parameters

The biological isomers of the hopanes, the $17_{\beta}(H)$, $21_{\beta}(H)$ -hopanes, undergo structural changes during the maturation process. The isomerisation reactions are thought to be produced via the $17_{\beta}(H)$, $21_{\alpha}(H)$ -hopanes (moretanes) to the most stable $17_{\alpha}(H)$, $21_{\beta}(H)$ -hopanes. At equilibrium 100% of the $17_{\alpha}(H)$ -hopanes are seen. The ratio $_{\alpha\beta/\alpha\beta+\beta\alpha}$ is used to describe this reaction. In the extended hopanes ($\geq C_{31}$), the thermally stable S configurations at C-22 become increasingly more abundant as compared to the biological preferred R configurations at increased maturity level. The equilibrium ratio is approximately 60% of the 22S configuration. Another ratio that is known to change with maturity is the Tm/Ts (Seifert et al., 1978) of the C₂₇ hopanes. The maturable $18_{\alpha}(H)$ -trisnorneohopane (Tm) is reduced in intensity relative to the more stable

138/Q/a1/29

IKU

 $17\alpha(H)$ -trisnorneohopane (Ts), causing the Tm/Ts to decrease at increased maturity. This ratio is also believed to be source dependant, and this should be born in mind when applying the ratio for maturity comparison. The amount of tricyclic terpanes is also to a certain extent seen to be maturity dependant.

Two isomerisation reactions taking place in the steranes are most commonly applied for maturity assignments from the m/z 217 mass chromatograms. The biologically preferred $14\alpha(H)$, $17\alpha(H)$ -isomers of the regular steranes is transformed to the thermally stable $14\beta(H)$, $17\beta(H)$ -steranes, the % $\beta\beta$ approaching 75% at equilibrium. An equilibrium concentration of 50% is seen of the stable S configuration at C-20 as opposed to the 100% of the biological 20R epimer (Mackenzie et al., 1980). The abundance of rearranged steranes increased with increasingly maturity.

One of the reactions taking place at an early stage of diagenesis is the aromatisation of steranes, leading to the formation of mono- and tri-aromatic analogs. This process is measured as the abundance of triaromatic relative to mono-aromatic compounds (% tri/tri + mono) in the m/z 231 and 253 mass chromatograms, respectively. In addition the degree of side chain cracking, as C_{20}/C_{26} , 27 and C_{21}/C_{28} , 29 respectively, is applied. These cracking processes are also taking place during early diagenesis, and are used for maturity assignment together with the previously mentioned ratios.

Migration and weathering

The effect on the geochemical fossils of migration and weathering, is less apparent than the maturity induced changes. Migration is believed to cause an increase in the relative amounts of rearranged and $14\beta(H)$, $17\beta(H)$ regular steranes (Seifert and Moldowan, 1978, 1981). Severe biological alteration leads to the formation of desmethyl-hopanes (Seifert and Moldowan, 1979).